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Abstract. - We study an evolutionary algorithm that locally adapts thresholds and wiring in
Random Threshold Networks, based on measurements of a dynamical order parameter. If a node
is active, with probability p an existing link is deleted, with probability 1 — p the node’s threshold
is increased, if it is frozen, with probability p it acquires a new link, with probability 1 — p the
node’s threshold is decreased. For any p < 1, we find spontaneous symmetry breaking into a new
class of self-organized networks, characterized by a much higher average connectivity Ke.,, than
networks without threshold adaptation (p = 1). While Kepo and evolved out-degree distributions
are independent from p for p < 1, in-degree distributions become broader when p — 1, indicating
crossover to a power-law. In this limit, time scale separation between threshold adaptions and
rewiring also leads to strong correlations between thresholds and in-degree. Finally, evidence is
presented that networks converge to self-organized criticality for large IV, and possible applications
to problems in the context of the evolution of gene regulatory networks and development of

neuronal networks are discussed.

Introduction. — Interaction networks in nature often
exhibit highly inhomogeneous architectures. Examples
are scale-free degree distributions in protein networks [1]
and metabolic networks [2], mostly accompanied by intri-
cate second order regularities as, for example, community
structure [3]. The emergence of these properties often is
explained by means of intuitive topology-based models,
e.g. preferential attachment [4] or node duplications [5].
Real networks, however, are characterized not only by an
evolving topology, but also by evolution of function, con-
veniently abstracted in terms of dynamics, i.e. the flow
of information or matter on these networks. So far, only
few studies explicitly consider the more general case of co-
evolution between network dynamics and -topology [6-9].

One example is the question how networks may evolve
topologies that optimize biologically relevant parameters,
e.g. flexible adaptation with respect to changing environ-
ments, or insensitivity against random perturbations of
topology or dynamics (robustness) [10]. In this context,
Kauffman introduced random Boolean networks (RBN)
to study the dynamics of gene regulatory networks from
a global perspective [11,12]. It was shown that RBN un-
dergo a order-disorder transition at a critical wiring den-

sity (connectivity) K. = 2 [11-14]; similar results were
established for random threshold networks (RTN), which
constitute a sub-class of RBN [15-18]. It has been pos-
tulated that evolution should drive dynamical networks
towards this ’edge of chaos’ to optimize adaptive flexibil-
ity and robustness [11,12,19]. Interestingly, in recent years
experimental evidence has accumulated that information
processing networks in biological organisms indeed operate
close to criticality. In particular, gene regulatory networks
of several organisms have been shown to exhibit critical
dynamics [20-22], similar results were established for neu-
ronal networks in the brain [23,24]. Since, in all these
systems, there generally exists no central control instance
that could continously adjust global system parameters to
poise dynamics at the critical state, we have to postulate
that there are simple, local adaptive mechanisms present
that are capable of driving global dynamics to a state of
self-organized criticality. However, for many years no such
mechanism able to generate critically connected networks
could be provided.

To address this problem, a RTN-based model was pro-
posed, linking rewiring of network nodes to local mea-
surements of a dynamical order parameter, e.g. the aver-
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age activity (magnetization) [7]. Tt was shown that this
simple, local adaptive mechanism leads to a global self-
organized critical state in the limit of large system sizes
N. Subsequently, this principle was generalized to net-
works of noisy neurons [8] and to RBN with evolvable
logical functions [9]. Interestingly, finite size networks in
these models evolve a broadly distributed heterogeneous
in-degree connectivity [9,25]. Still, these topological het-
erogeneities are smaller than those observed in real-world
networks, presumably because dynamical elements were
assumed to be homogeneous with respect to their dy-
namical behavior. While this assumption leads to elegant
models, it is quite unrealistic, as it becomes apparent e.g.
in the frequent occurrence of canalizing functions in gene
regulatory networks, with strong impact on dynamics in
RBN models [26]. Recent studies have shown that partial
canalization completely dominates the space of all possi-
ble Boolean functions, in particular, for higher k [27]; this
can implicitly result in a rewiring in models that evolve
the functions of the nodes [28,29]. Considering the accu-
mulating experimental evidence of both close-to criticality
and heterogeneous architecture of information processing
networks in nature, for instance in gene regulatory net-
works [20-22,30,31] and neuronal networks in the nervous
system [23,24,32], it is fascinating to speculate about a
mechanism that might explain both observations: coevolu-
tion of local structural-dynamical heterogeneity and global
homeostasis by local dynamical rules. For this purpose,

|l h;]

Fig. 1: Left: with probability p, active nodes lose one of their
inputs, with probability 1 — p they increase their (absolute)
threshold |h;|. Right: with probability p, frozen nodes aquire a
new input from a randomly chosen site j, changing ¢;; = 0 to
cij = 1, +1 or —1 with equal probability. With probability
1 — p, the (absolute) threshold |h;| is decremented instead.

we introduce a minimal model linking regulation of acti-
vation thresholds and rewiring of network nodes in RTN
to local measurements of a dynamical order parameter.
A new control parameter p € [0, 1] determines the proba-
bility of rewiring vs. threshold adaptations: If a node is
active, with probability p an existing link is deleted, with
probability 1 — p the node’s threshold is increased, if it
is frozen, with probability p it acquires a new link, with
probability 1 — p the node’s threshold is decreased. We
show that the symmetry of the evolutionary attractor for

p =1 (no threshold adaptations, rewiring only) is broken
spontaneously for any p < 1. This new dynamical fixed
point, that potentially constitutes a new universality class
of self-organized networks, exhibits a much higher average

connectivity Ke,,, compared to p = 1 networks, however,
with a value K., that is insensitive to p. In-degree dis-
tributions become very broad, suggesting a crossover to a
distribution with a power-law tail ~ ki_n3/ 4
ther, we establish the emergence of strong correlations be-
tween in-degree and thresholds in this limit, while for small
p, correlations are weak. This indicates that an adaptive
time-scale separation, with rare events of dynamical di-
versification and frequent rewiring, can lead to emergence
of highly inhomogeneous topologies, without the need for
network growth (as, for example, in preferential attach-
ment models). Evidence is presented that networks with
p < 1 converge to a critical state for large NV, however,
with a finite size scaling significantly different from the
one found for the case p = 1, and problems associated to
the identification of criticality in this new class of densely
wired coevolutionary adaptive networks are discussed. Fi-
nally, we discuss how the adaptive principles working in
this model might apply to gene regulatory networks in liv-
ing organisms and neuronal networks in the nervous sys-

for p — 1. Fur-

tem.

Dynamics. — We consider a network of N randomly
interconnected binary elements with states o; = +1. For
each site i, its state at time ¢ 4+ 1 is a function of the in-
puts it receives from other elements at time ¢ (synchronous
updates):

+1
-1

if f; (t) >0
else

oit+1)= { (1)

with

N
fi(t) = Z cijoj(t) + hy. (2)

The interaction weights c;; take discrete values ¢;; = +1,
with ¢;; = 0 if site ¢ does not receive any input from
element j. Thresholds h; may vary from node to node,
taking integer values h; < 0 . In the following discussion,
adaptive changes will be applied to the absolute value |h;],
keeping in mind that the sign of h; is always negative.

As a dynamical order parameter, we define the average
activity A(4) of a site ¢

' 1 Ti+T1
0= 5g X ol 3)

Notice that a frozen site, i.e. a site that does not change its
state, has |A(7)] = 1, whereas an active site has |A(7)] < 1.

1We chose h; < 0 to ensure that thresholds make activation, i.e.
o; = +1, more difficult.
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Fig. 2: Upper panel: Evolution of the average connectivity K
of threshold networks, using the adaptive algorithm (cf. Fig.
1), for N = 512 and initial connectivity Kini = 1. Time series
for five different values of p are shown. Lower panel: The same
for the average threshold h.

Topology evolution. — Let us now discuss a partic-
ular evolutionary scheme that couples local adaptations
of both the number of inputs and of thresholds to a site’s
average activity. Since the switching dynamics of nodes
is governed by the deterministic rule Eq. (1), it can be
modified only by adaptations of ¢;; or h; in Eq. (2), by
either changing the values of the existing non-zero weights
cij, by setting a weight that zero previously to ¢;; = +1,
or by incrementing/decrementing h;. If node i is frozen, it
can increase the probability to change its state by either
setting a zero weight to ¢;; = +£1, thereby increasing its
number of inputs k; — k; + 1, or by making its threshold
hi < 0 less negative, i.e. |h;| — |h;| — 1. If 7 is active, it
can reduce its activity by adapting either setting one of
its existing non-zero inputs to ¢;; =0, i.e. k; — k; — 1, or
by increasing its threshold |h;| — |h;| + 1. This adaptive
scheme is realized in the following algorithm (see also Fig.

1):

1. Create a random network with average connectivity
Kin; > 0 and average threshold hini = 0. Each of the
N - K;,,; interaction weights is randomly initialized to
¢ij = +1 or ¢;; = —1 with equal probability.

2. Select a random initial state &, = (01, ...,0n).

3. Iterate network dynamics for T timesteps.

4. Select a network site 7 at random and measure its
average activity A; over the last 7 = T'/2 updates.

100
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INevol
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Fig. 3: Upper four curves: Evolutionary mean values Kcyo of
the average connectivity, as a function of p; system sizes from
top to bottom: N = 512, N = 256, N = 128 and N = 64.
Lower four curves: The same for the evolutionary mean values
|fzevo|0f the average absolute threshold. Statistics was taken
over 10° evolutionary steps, after a transient of 4 - 10° steps.

5. Adapt input number k; and threshold h; in the fol-
lowing way:
- If |A;| < 1, then with probability p remove one in-
put ¢;; randomly selected from the k; inputs, i.e. set
¢;j = 0. With probability 1 — p, adapt |h;| — |hi| + 1
instead.
- If |4;] = 1, then with probability p add a new input
ci; from a randomly selected site j, assigning ¢;; = +1
or ¢;; = —1 with equal probability. With probability
1 —p, adapt |h;| — |hi| — 1 instead. If h; = 0, let its
value unchanged.

6. Go back to step 3.

If the control parameter p takes values p > 1/2, rewiring
of nodes is favored, whereas for p < 1/2 threshold adap-
tations are more likely. Notice that the model introduced
in [7] is contained as the limiting case p = 1 (rewiring
only and h; = const. = 0 for all sites). Notice that adap-
tation of interaction weights c;; in step 5 conserves the
initial symmetry of the weight distribution, i.e. ¢;; takes
the values +1 and —1 with equal probability p = 1/2. The
number of dynamical updates T" in step 3 of the algorithm
was set to 7' = 200 in simulations, i.e. the average activity
was measured over the last 7//2 = 100 dynamical updates,
after a transient of 100 updates. The transient before ac-
tivity measurement ensures a proper decoupling from ini-
tial conditions, while averaging of A() over 100 updates
is enough to provide the typical switching behavior of ¢
and a decent time scale separation between fast switch-
ing dynamics and slow topology adaptation 2. However,
simulations show that the results are not very sensitive to
the choice of T', only for very small values T' < 10 we see
differences, e.g. convergence to a slightly lower average
connectivity.

2Since in each evolutionary step one node is rewired, this time
scale separation is at the order of N - T'.
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Fig. 4: Line-pointed curves: in-degree distributions of evolved
networks, data points only: the corresponding out-degree dis-
tributions ((A) p=0.3, (+) p = 0.5, (x) p = 0.8, (*) p = 0.95,
(0) p = 0.99). Statistics was gathered over 10° evolutionary
steps, after a transient of 4 - 10% steps. Networks had size
N = 512. The dashed line has slope —3/4.

Results. — After a large number of adaptive cycles,
networks self-organize into a global evolutionary steady
state. An example is shown in Figure 2 for networks with
N = 512: starting from an initial value Kin; = 1, the
networks’ average connectivity K first increases, and then
saturates around a stationary mean value K evo: similar
observations are made for the average threshold h (Fig.
2, lower panel). The non-equilibrium nature of the sys-
tem manifests itself in limited fluctuations of both K and
h around K.y, and heyo. Regarding the dependence of K
with respect to p, we make the interesting observation that
it changes non-monotonically. Two cases can be distin-
guished: when p = 1, K stabilizes at a very sparse mean
value Kepo, e.g. for N = 512 at K.,, = 2.664 + 0.005.
When p < 1, the symmetry of this evolutionary steady
state is broken. Now, K converges to a much higher mean
value Koy =~ 43.5+0.3 (for N = 512), however, the partic-
ular value which is finally reached is independent of p. The
latter observation is made rigorous from measurements of
K.y, for different N over 10° evolutionary steps, after sys-
tems have reached the steady state. While Kevo obviously
depends on the system size N, curves are very flat with
respect to p (Fig. 3, upper four curves); the same holds
for |hevo| (Fig. 3, lower four curves). On the other hand,
convergence times T.o, needed to reach the steady state
are strongly influenced by p: Teon(p) diverges when p ap-
proaches 1 (compare Fig. 2 for p = 0.99). We conclude
that p determines the adaptive time scale. This is also
reflected by the stationary in-degree distributions p(k,)
that vary considerably with p (Fig. 4); when p — 1, these
distributions become very broad. The numerical data sug-
gest that a power law

lim p(kin) o k"
p—1

(4)
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Fig. 5: Average number (k;,) of inputs for a given node in
evolving networks, as a function of the respective nodes (ab-
solute) threshold |h|. Statistics was taken over 10° rewiring
steps, after a transient of 4 - 10% steps. For all values p < 1, a
clear positive correlation between kin and |h| is found.

with v & 3/4 + 0.03 is approached in this limit (cf. Fig.
4, dashed line). At the same time, it is interesting to
notice that the evolved out-degree distributions are much
narrower and completely insensitive to p (Fig. 4, data
points without lines).

How can one understand the emergence of broad in-
degree distributions for with increasing p? Evidently, life
times of both low thresholds |h;| ~ 0 and high thresholds
|hi| > 0 become long for p — 1. Since sites with low
thresholds tend to be active and hence, on average, loose
links, while sites with high thresholds tend to freeze and
hence, on average, aquire new links, we would indeed ex-
pect that p(k;,) is broadened for p — 1. On the other
hand, for p — 0, frequent adaptive changes of thresh-
olds prevent long sequences of both frozen or highly active
states, and hence make emergence of strong local wiring
heterogeneities less probable. If this idea is correct, we
would expect that, in the limit p — 1, the in-degree of
sites should exhibit a strong positive correlation to their
thresholds, while for p — 0 these correlations should be
less pronounced. This is indeed exactly what we observe.
For p = 0.99, the average in-degree (k;,) of a given node,
as a function of its threshold |h|, shows a steep increase,
while the corresponding curve is relatively flat for p = 0.3
(Fig. 5).

An interesting question is whether the networks with
p < 1 still approach a self-organized critical state for large
N, as it was found for the case p = 1 [7]. Since networks
now evolve more densely wired, non-trivial topologies, this
question has to be answered by application of a dynamical
criterion. For this purpose, we studied damage spreading:
after each adaptive step, dynamics was run from an initial
system state & and again from a direct neighbor state &’
differing in one bit; after ¢ = 200 updates, the Hamming
distance d between both trajectories was measured and
the average fraction of damaged nodes 7(t) =: d/N was
determined. Figure 6 shows ¥, averaged over 10° evolu-
tionary steps, as a function of N. We find that the finite
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Fig. 6: Average fraction (V) of damaged nodes, 200 updates
after a one-bit perturbation at time ¢t = 0, for different p, as
a function of system size N. The lined curve is a fit of the
average scaling behavior.

networks investigated here are all supercritical, however,
y decreases monotonically with N. The average scaling
behavior can be fit by

y(N) = a- [In(N)]~7 ()
with ¢ = 0.77 + 0.02 and 6 = 0.917 £+ 0.01. This depen-
dence indicates that § = 0, i.e. the critical transition form
chaotic to frozen dynamics, is approached for large N. No-
tice, however, that convergence is logarithmic, whereas for
p = 1 power laws were found [7,9]. Again, this indicates
that p < 1 networks evolve to a new dynamical fixed point
different from the case p = 1, and hence may constitute a
new universality class.

Discussion. — To summarize, we studied a model of
network evolution that couples both rewiring of inputs and
adaptation of activation thresholds to local measurements
of a dynamical order parameter. A control parameter p de-
termines the probability of threshold adaptations vs. link
rewiring. While for p = 1 (rewiring only, no threshold
adaptation) networks evolve a self-organized critical state
with a sparse average connectivity Ke,, ~ 2, for any p < 1
(both rewiring and threshold adaptation) networks evolve
a significantly more dense wiring, with broad heteroge-
neous in-degree distributions exhibiting a crossover to a
power-law ~ ki_n3/ * for p — 1. In this limit, time scale
separation between rare threshold adaptations and fre-
quent rewiring leads to emergence of strong correlations
between thresholds and in-degree. Hence, a new dynam-
ical fixed point of adaptive network evolution has been
found that is fundamentally different from networks with-
out threshold adaptation (p = 1) and may correspond to
a new universality class. We presented evidence that, in
the limit of large N, networks logarithmically approach a
self-organized critical state. A detailed characterization of
the critical state for this new class of more densely wired,
self-organized networks in the limit N — oo is difficult
and remains to be done in future work.

Our model presents a novel mechanism leading to co-
evolution of topological and dynamical heterogeneity with
robust homeostatic regulation, the latter reflected e.g. by
the insensitivity of the evolved average connectivity with
respect to p. This combination of properties is rather re-
markable and may play a decisive role in information pro-
cessing networks in nature for maintaining both a close-
to critical state and diversity of structure and dynamics;
hence, it is interesting to speculate that similar mecha-
nisms might be at work in the evolution of biological net-
works. Let us briefly discuss this for gene regulatory net-
works and neuronal networks.

Recent experimental results provide evidence that gene
regulatory networks of Eukaryotic cells operate close to
criticality [20-22], exhibiting a stunning degree of struc-
tural diversity [30] and interactions that can change in
response to diverse stimuli [31]. The paradigm of activity-
dependent rewiring, that can be paraphrased in this con-
text as frozen genes aquire new inputs (functions), ac-
tive (chaotic) genes lose inputs, provides a simple coevo-
lutionary adaptive scheme [33] for the evolution of a self-
organized critical state in regulatory networks. While this
model correctly captures topological properties of regula-
tory networks in simple organisms, e.g. Bacteria [25, 34],
it does not reproduce the structural diversity observed
in regulatory networks of Eukaryotes. In this paper,
we showed that coevolution of dynamical diversity, ab-
stracted in terms of threshold adaptations, with dynamical
rewiring can lead to emergence of such non-trivial topolo-
gies, reflected e.g. in the observed crossover to power-law
distributed connectivities for p — 1. It is interesting to
note that diversity of dynamical mechanisms in gene reg-
ulation has primarily evolved in Eukaryotes, for example
in the context of RNA-based regulation [35] that comple-
ments protein-based circuits, and epigenetic reprogram-
ming through DNA methylation [36].

Indications for critical behavior were found also in neu-
ronal networks in the brain [23,24]. Activity-dependent
neural development [32,37,38] is a candidate mechanism
for emergence of criticality from local dynamical rules
capable to regulate crucial global parameters, e.g. the
average wiring density, without global knowledge about
the system state. Coevolution of global homeostasis with
structure-dynamics diversity is found, for example, in the
distribution of dendritic spines, with an almost constant
average density despite a broad life time distribution of in-
dividual spines [32]. Interestingly, the activity-dependent
adaptation of wiring and thresholds in our model leads to
a similar emergence of both local heterogeneity and global
homeostasis. While the current model certainly strongly
simplifies the complexity of real dynamical networks, these
two examples demonstrate that its evolutionary principles
might well apply to different classes of adaptive systems
in nature.
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