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Using the Feynman path integral method and a theory of polarizable fluids, I eval-

uate properties of nondegenerate Fröhlich polarons interacting in the strong coupling

limit. At large enough densities and temperatures these properties are found to be

mainly governed by the dispersion forces, i.e. attractive van-der-Waals interactions,

which are no attributed to any permanent electric multipoles. Neglecting short-range

correlations in the polaron gas, I have obtained an explicit expression for the disper-

sion contribution to the free energy of the system. The analysis of this contribution

indicates that the dispersion effect is nonlinear and strongly cooperative at large

enough densities of the polaron gas. The quasiparticles attract due to these forces

leading to softening of the absorption peak, negativity of the dielectric function, and

divergence of compressibility of the system. The main consequence of the dispersion

forces is a quantum transition which results in a dielectric catastrophe considered as

the onset of metallization. A possible excitonic phase consisting from quasiparticles

with a nonzero dipole momentum is also examined. Comparing experimental data

for metal-ammonia solutions, alkali-halide molten salts, and high-Tc superconduct-

ing cuprates, I find that dispersion forces may govern the behavior of self-trapped

carries in these compounds.
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I. INTRODUCTION

London dispersion forces, i.e. induced dipole-dipole van-der-Waals interactions, are quite

important in soft condensed matter. They play a significant role both in chemical and

biological systems.1 At the same time, their role in charged systems is not revealed and they

are usually ignored with respect to the Coulomb interactions. Indeed, the estimates of their

effect obtained by perturbation methods indicate that the dispersion interactions are usually

much weaker than Coulomb interactions. However, despite of recent progresses,2 the theory

of dispersion forces in quantum systems is still incomplete, while its application is restricted

to the study of small atomic/molecular dimers or layered systems (linked by van-der-Waals

attractions). The origin of this difficulty mainly resides on the fact that dispersion forces

are not additive and must be collectively treated, whereas coupling between short- and

long-range correlations of electrons complicates the treatment of these collective effects.

These forces have been proposed to play a crucial role for quantum quasiparticles.3–8 First,

in the case of doped ionic solids with strong electron-phonon coupling and at low enough

densities, they result in a new metal-to-insulator transition (MIT) for a 2D or 3D Wigner

crystal of large polarons,3–5 namely, a polarization catastrophe is caused by these dipolar

interactions, yielding the onset of metallization of the polaronic Wigner crystal. It has been

shown recently6–8 that the same ideas can be applied to explain the origin of the MIT and

a phase separation in metal-ammonia solutions (MAS). Furthermore, an analogy between

the MAS and the superconducting cuprates has been proposed.9,11 Following this analogy,

there are three regions10 in the phase diagram of such polar materials: the low density

region where the Coulomb forces lead to the formation of bound states like as polarons or

solvated electrons; the highest density region where the Coulomb interactions are completely

screened, preventing the formation of such bound states (only free carriers may exist), and

finally an intermediate region where the Coulomb forces may be overscreened, resulting in

either a superconducting state either a phase separation.9,10 As it has been shown,6 this new

MIT picture radically contradicts the usual Mott transition scheme, opening the road for

considering the possibility of new exotic electronic phases in doped polar substances.8

The formation of polarons and their interactions is a major problem in the physics of

doped dielectrics. Being an old problem, it still carries a lot of mysteries. Polarons are usually

believed to play an important role in determining the properties of several compounds,
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such as high-Tc superconducting cuprates,12 manganites,13 doped oxides and also conjugated

polymers.14 It is little known beyond a single polaron or bipolaron state, although many

specific situations have been considered to investigate the state of a homogeneous polaron

gas and especially its stability. A general theory is not complete due to the complexity of

the problem. The fundamental reason resides on the fact that a single polaron is already a

many-body problem, whereas Coulomb and short-range interactions between polarons still

enhance one step beyond the difficulty of the problem. Besides the low density limit of

Fröhlich polarons in the crystallized state discussed above,3–5 many groups have recently

improved our knowledge in different limits of the problem,15–17 including the possibility of

electron strings and stripes,18 or even more complicated situations as in the coupled boson-

fermion model.19

In the present paper, I will generalize my previous results to the case of the 3D Fröhlich

polaron gas interacting at finite temperatures. Moreover, I will provide analytical evaluations

of the dispersion forces in the strong electron-phonon coupling limit corresponding to a

large Fröhlich coupling constant Ω = ce2(m∗/2~3ωlo)
1/2,21 where e and m∗ are the electron

charge and the effective band mass, c = ǫ−1
∞ − ǫ−1

0 is the Pekar factor, while ǫ∞ and ǫ0

are respectively the dielectric constants of the host medium at high (ω >> ωlo) and low

(ω << ωlo) frequencies, and ωlo is the longitudinal optical phonon frequency. I should

emphasize that the strong electron-phonon coupling (Ω > 7) is hardly realized in real 3D

solids. However, the 3D results will serve as a robust basis to better understand 2D, or

layered quasi-2D systems of polarons, which are believed to occur in cuprates, since the

strong coupling limit is easily reached at Ω > 4 for these layered systems20 (see, also Ref.4).

First, I focus on the statistical behavior of the polarons, i.e. if they may be consid-

ered as classical (nondegenerate) or quantum (degenerate) gas. This behavior depends

on the dimensionless parameter θ = nΛ(T )3, where n is the density of polarons, while

Λ(T ) = (2π~2/MP kBT )1/2 is the de Broglie wavelength and MP is the polaron mass. The

system remains classical if parameter θ is small with respect to unity. Hence, I obtain the

temperature T0 below which the gas is to be degenerate:

T0 ∼
(

m∗

MP

)
0.4

r2
s

m∗e4

~2
, (1)

where rs = (4πn/3)−1/3m∗e2/~2. Therefore, under the conditions rs > 20 (n < 2 · 1020cm−3)

and MP /m ∗ (Ω > 7) > 50 corresponding to the strong coupling case, I have T0 = 2 · 10−5
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a.u., i.e. the degeneracy temperature is lower than few Kelvins.

Thus, the polaron gas is not degenerate at T > T0 and behaves mainly as a classical

diluted electrolyte. Starting from this point, I evaluate the Debye electrostatic screening

length for this gas, which is given by ℓD = (4πne2/kBTǫ0)
−1/2. Taking T ∼ 100K, ǫ0 ∼ 30

and a density of n ∼ 1020cm−3, one obtains ℓD ∼ 1Å. This indicates a strong screening of

the electrostatic interactions in the nondegenerate polaron gas. However, there are other

correlations in the system, due to the composite nature of the polarons. Indeed, although

a polaron behaves classically as a whole, the electron self-trapped in the polarization cloud

remains quantum. The fluctuations due to electronic transitions in localized excited states,

occurring at a characteristic frequency ω0 (typically of the order of 0.1 − 0.2 eV), induce

dipolar interactions between polarons, i.e. dispersion forces. Since I consider the strong

coupling case, these electronic transitions are of Franck-Condon type because the transition

time duration ω−1
0 is much lower than the phonon relaxation time ω−1

lo . The difference of

behavior between the two kinds of correlations, i.e. the classical (elestrostatic) correlations in

one hand, and the quantum (dipolar) correlations in the other hand, allows me to treat them

separately. My strategy exactly follows that already used for solvated electrons in MAS,6–8

and the reader may find there details and complementary discussions. Basically, the main

idea is to consider the classical motion of the charged polarons in the framework of the

theory of classical one-component plasmas (OCP),22 while the quantum degrees of freedom

are treated with the help of Feynman path integrals,23 together with the known results of

the theory of polarizable fluids.24–27 This allows me to obtain semi-analytical expressions for

the free energy of the system, and evaluate its thermodynamical behavior.

The layout of the paper is as follows. Starting from the linear electron-phonon coupling

between N interacting electrons, I derive in Sec. II the partition function of the system

and then factorize it by separating the quantum and the classical contributions. In Sec. III

I obtain an analytical expression for the free energy of the polaron gas at large coupling

constants. Then I will analyze this expression in Sec. IV to reveal a role of the dispersion

forces for the polarons. The physical consequence of these forces on the behavior of the

quantum quasiparticles is discussed in Sec. V. Finally, I give an evidence of the essential role

of these dispersion forces for several compounds such as alkali-halide molten salts (AMHS),

MAS, and cuprates. Below I will use the effective atomic units (~2/m∗e2 = 1) to simplify

all the analytical expressions throughout.
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II. PARTITION FUNCTION OF THE SYSTEM.

To begin with, I consider a system of N interacting electrons in a 3-dimensional space.

The electrons are immersed in a neutralizing jellium background and coupled to longitudinal

optical phonons. The partition function Z of the system can be presented as

Z =
1

N !

∫
dR{N}dQ{N}Tr{exp[−βH]}, (2)

where dR{N}dQ{N} means dR1dR2 . . . dRNdQ1dQ2 . . . dQN , while Ri and Qi are the co-

ordinates and the momenta corresponding to the translational motion of polarons, β is the

inverse temperature, and H is the Hamiltonian of the system, whereas symbol Tr means

trace over quantum degrees of freedom. I generalize the Pekar model28 to the many-polaron

case and define the Hamiltonian as

H(t) = −
N∑

i=1

∇2
i

2
+

∫
[
2π

c
(P 2+ω−2

lo Ṗ 2)−P·D]dr+

∫ ∫
(n̂(r, t) − n)(n̂(r1, t) − n)drdr1

2ǫ∞|r − r1|
, (3)

where P(r, t) is the longitudinal polarization of the medium. In the above relation I have

used the notation n for the average density of excess electrons, while D(r, t) is the induction

induced by excess charges:

D(r, t) = D− + D+, D−(r, t) = ∇
∫

n̂(r1, t)dr1

|r − r1|
, D+ = −∇

∫
ndr1

|r − r1|
, (4)

whereas n̂(r, t) is the operator of electron density given by

n̂(r) =
N∑

i=1

ni(r − ri − vit) =
N∑

i=1

δ(r − ri − vit), (5)

where I take into account that each polaron moves with velocity vi = ∂Ri/∂t. The main

problem to treat (2) is that the classical and the quantum degrees of freedom are coupled

due to interactions between polarons and phonons, therefore my task in this section is to

separate the respective degrees of freedom by factorizing the partition function into the

classical and the quantum contributions.

Since the jellium is assumed to be rigid, I introduce the polarization field which responds

only to the electron motion by making the following transformation:

P−(r, t) = P(r, t) − c

4π
D+. (6)
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Then, the Hamiltonian reads

H(t) = −
N∑

i=1

∇2
i

2
+

∫
[
2π

c
(P 2

− + ω−2
lo Ṗ 2

−) − P− · D−]dr (7)

+

∫ ∫
n̂(r, t)n̂(r1, t)drdr1

2ǫ∞|r − r1|
+

∫ ∫
n(n̂(r, t) − n)drdr1

2ǫ0|r − r1|
.

The translational motion of polarons seems to be slow, i.e.

|vi| ≪ ωlorp. (8)

where rp = 〈r2
i 〉

1/2
is the mean polaron radius, and can be treated by perturbation methods.

Moreover, I assume the density of polaron gas to be small and ignore exchange effects and

possibility of formation of multi-electron states. Then, expanding (7) with respect to the

small parameter up to the second order, I find

H(t) ≈ H0 =
N∑

i=1

(hi +
Mpv

2
i

2
) +

∫ ∫
n̂(r)n̂(r1)drdr1

2ǫ∞|r − r1|
+

∫ ∫
n(n̂(r) − n)drdr1

2ǫ0|r − r1|
, (9)

and hi is one-polaron hamiltonian:

hi = −∇2
i

2
+

∫
[
2π

c
(P 2

−i + ω−2
lo Ṗ 2

−i) − P−i · Di]dr, (10)

while Di = ∇
∫
〈ni(r1)〉 dr1/|r− r1| is the induction induced by i-th polaron, 〈ni(r1)〉 is the

averaged one-electron density, and the effective polaron mass Mp is related with Di as28

Mp =
c

4πω2
lo

∫
(
∂Di

∂xi

)2dr =
4πc

3ω2
lo

∫
〈ni(r)〉2 dr, (11)

where xi is a vector coinciding with the direction of polaron velocity vi.

Introducing de Broglie wavelength Λ = (2πβ/Mp)
1/2 and providing integration over the

momenta corresponding to the translational motion of polarons:
∫

dQ{N} exp[−βMp

2

∑

i

v2
i ] = Λ−3N = (2πβ/Mp)

−3N/2, (12)

I write the partition function of the system in terms of the density matrix ρ as:

Z =

∫
dR{N}

V N
exp[−N(ln(nΛ3) − 1)]ρ(R{N}), (13)

while density matrix ρ(R{N}) is expressed by path integrals:

ρ =

∫
· · ·

∫

ri(0)=ri(β)

∏

i

Dri(τ) exp[−S], (14)
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where
∫
· · ·

∫
ri(0)=ri(β)

means the functional integration over all space-time paths ri(τ) of the

particles, S is the action of the system:

S =
1

2

∑

i

∫ β

0

ṙ2
i (τ)dτ +

∑

i,j

∑

k

c2
k

2β

∫ β

0

∫ β

0

exp[i(kri(τ) − krj(σ))]Gωlo
(τ − σ)dτdσ

+
1

2βǫ∞

∑

i6=j

∫ β

0

∫ β

0

dτdσ

|ri(τ) − rj(σ)| +
n

2ǫ
0

∫
{
∑

i

∫ β

0

dτ

|ri(τ) − r| −
βN

|r| }dr, (15)

and Gω(k)(τ − σ) is the phonon propagator given by

Gω(k)(x) =
exp[(β − |x|)ωlo] + exp[xωlo]

exp[βωlo] − 1
. (16)

To separate the classical and the quantum motions of polarons, I introduce new variables

ui(τ) related as

ri(τ) = Ri(τ) + ui(τ). (17)

The variables R{N} = {R1,R2, ...,RN} are the coordinates of the centers of mass of polarons,

and related with the translational (classical) motion of polarons. On the contrary, the

variables ui(τ) correspond to highly oscillating quantum fluctuations. Since I consider the

polaron gas at large coupling constants Ω, the electrons are well localized:

|ui(τ)| ≪ |Ri(0)|. (18)

Therefore I can expand the Hamiltonian with respect to the small parameter |ui/Ri| and

neglect in the expansion the terms higher than the second order. As a result, I obtain

ρ = exp[−Scl(R
{N}) − Smix(R

{N}u{N})] · ρq, (19)

where Scl is the classical action

Scl =

∫ ∫
n̂cl(r)n̂cl(r1)drdr1

2ǫ0|r − r1|
, (20)

while n̂cl(r1) is the density operator determined the distribution of classical charges, it is

given by

n̂cl(r) =
N∑

i=1

δ(r − Ri) − n. (21)

On the other hand, the density matrix ρq is related with quantum degrees of freedom and

expressed as

ρq =

∫
· · ·

∫
ui(β)=0

ui(0)=0

∏

i

Dui(τ) exp[−
N∑

i=1

Si −
N∑

i6=j

Sij], (22)
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where Si and Sij are the one- and the two- electron contributions presented as

Si(ui) =
1

2

∫ β

0

u̇2
i (τ)dτ − ωloc

4β

∫ β

0

∫ β

0

dτdσGωlo
(τ − σ)

|ui(τ) − ui(σ)| , (23)

Sij(ui,uj) =
1

2βǫ∞

∫ β

0

∫ β

0

u⊥
i (τ) · Tij · uj(σ)G̃(τ − σ)dτdσ, (24)

whereas G̃(τ − σ) is the modified phonon propagator given by

G̃(x) = δ(x) − ωlocǫ∞
2

Gωlo
(x), (25)

and Tij(Rij) is the dipolar tensor depending on the distance Rij = Ri−Rj between centers

of mass of polarons, which takes the form:

Tαγ
ij (Rij) =

δαγR
2
ij − 3Rα

ijR
γ
ij

|Ri − Rj|5
. (26)

Apart from the classical and the quantum contributions, the density matrix ρ depends on

the mixing part Smix(R
{N}u{N}), but this action includes only the terms which are linearly

proportional to ui(τ) or n̂cl(r), corresponding to permanent-dipole-charge and permanent

dipole-dipole interactions between polarons. However, I have 〈n̂cl〉 = 〈ui〉 = 0 due to

neutrality of polaron gas and spherical symmetry of the polaron ground state. Therefore,

these terms do not yield any contribution to the partition function of the system. Therefore,

I can factorize the partition function:

Z = ZclZq, Zcl =

∫
dR{N}

V N
exp[−N(ln(nΛ3) − 1) − β

∫ ∫
n̂cl(r)n̂cl(r1)drdr1

2ǫ0|r − r1|
],

Zq =

∫
· · ·

∫
ui(β)=0

ui(0)=0

∏

i

Dui(τ) exp[−
N∑

i=1

Si −
N∑

i6=j

Sij], (27)

where the effective actions Si and Sij are determined by Eqs. (23) and (24), respectively.

III. EVALUATION OF THE FREE ENERGY OF THE SYSTEM

A. Classical contribution

The classical part Zcl corresponds to the partition function of the one-component plasma,

i.e. classical point charges with mass Mp immersed in a jellium. This part gives the following

contribution to the free energy:

βfocp(n, T ) = −N−1 ln Zcl =
[
ln(nΛ3) − 1

]
+ βfex(Γ), (28)
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where the first term in (28) is the ideal part, while the second one is the excess free energy

due to electrostatic interactions between point charges, it can be expressed in terms of

dimensionless parameter Γ = β(4πn/3)1/3/ǫ0.
22 There are available analytical expressions

for fex(Γ), for instance,29 in the range 1 < Γ < 160 it can be written as:

βfex(Γ > 1) = −0.89752Γ + 3.620172Γ1/4 − 0.75824Γ−1/4 − 0.81487 ln Γ − 2.58274. (29)

The first term in this expression represents the Madelung energy of polarons, while the rest

is a temperature-dependent correction due to the thermal motion of polarons. I note that

the degeneracy parameter θ is determined by the value nΛ3, whereas the polaron gas is

nondegenerate until the parameter is small, i.e. θ = nΛ3 << 1.

B. Quantum contribution in the ultra-low density limit

When the average density of the gas tends to zero, i.e., n → 0, polaron interactions

are infinitely small and I can ignore Sij with respect to Si. Therefore, I have a system of

noninteracting polarons, while the quantum contribution is given by

Zq =

∫
· · ·

∫
ui(β)=0

ui(0)=0

Dui(τ) exp[−NSi]. (30)

To estimate this partition function, I can use the variational method with the Feynman trial

action S0:
23

S0 =
1

2

∫ β

0

u̇2
i (τ)dτ +

(ω2
0 − ω2

1)ω1

8

∫ β

0

∫ β

0

dτdσGF (τ − σ)|ui(τ) − ui(σ)|2, (31)

where ω1 and ω0 are the variational parameters, while GF (τ) is the propagator defined by:

GF (x) =
cosh[(β/2 − |x|)ω1]

sinh[βω1/2]
. (32)

Then, the variational estimate of the free energy is obtained by a cumulant expansion of

(30) with respect to the difference ∆S = Si − S0, (23, see also30) and the quantum part of

the free energy is expressed as

βfpol = −N−1 ln Zq = βf0 + 〈∆S〉0 + ... (33)

where f0 is the free energy associated with the trial action, while symbol 〈..〉0 means the

mean value obtained with the use of the trial action S0. I remark that the main advantage
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of the choice of the Feynman trial action is that the corresponding free energy is calculated

explicitly in terms of the variational parameters. As β → ∞, it reads23

fpol =
3(ω0 − ω1)

2

4ω0

− Ωω0√
π

∫ ∞

0

e−x[x + (
ω0

ω1

− ω1

ω0

)(1 − exp[−ω0x

ω1

])]−1/2dx, (34)

Moreover, it can be evaluated analytically in the weak and the strong coupling limits. When

Ω >> 1, I have ω1/ωlo = 1, whereas ω0/ωlo = 4Ω2/9π − (4 ln 2 − 1).

C. Dispersion contribution

The quantum part Zq deviates from exp{−βNfpol} at moderate density n of polarons

due to their interactions. In the case of the Feynman trial action, it can be presented as

Zq = Zd exp[−βNfpol], Zd =

∫
· · ·

∫
ui(β)=0

ui(0)=0

∏

i

Dui(τ) exp[−Sdd]. (35)

where Zd is the dispersion contribution,while Sdd is the effective action of the induced dipole-

dipole interactions between polarons:

Sdd =
1

2

N∑

i

[

∫ β

0

u̇2
i (τ)dτ +

(ω2
0 − ω2

1)ω1

4

∫ β

0

∫ β

0

dτdσGF (τ − σ)|ui(τ) − ui(σ)|2] (36)

+
N∑

i6=j

∫ β

0

∫ β

0

u⊥
i (τ) · Tij · uj(σ)

G̃(τ − σ)

2βǫ∞
dτdσ.

As it is seen, this action is quadratic with respect to ui and corresponds to a set of Drude

oscillators interacting by induced dipolar forces. The most difficult part of the free en-

ergy comes from this contribution, because the dispersion forces should be collectively

treated. Moreover their evaluation requires data on the two-electron density distribution

n2(r, r
′) = 〈〈n̂n̂〉〉. However the low-density of polaron gas nr3

p << 1 and different scales in

quantum and classical motions allows me to simplify these contribution and represents the

two-electron density as a product n2(r, r
′) ∼ ng(R)n1(r), where g(R) is the correlation func-

tion responsible for the distribution of centers mass of polarons. Concerning the quantum

contribution Zq, I can treat polarons as polarizable particles in polar medium and consider

only induced dipolar interactions between them, since the electrostatic Coulomb interactions

are taken in account by (28), while other electrostatic interactions (like as permanent-dipole-

charge and permanent dipole-dipole contributions) disappear due to spherical symmetry of

the polaron ground state.
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To begin with the dispersion forces, I use the fourier transform of the variables ui(τ):

ui(ω) =

∫
ui(τ) exp[iωτ ]dτ, (37)

and define the polarizability αF (ω) of the Feynman quasiparticle

αF (ω) =
ω2 − ω2

1

ω2[ω2
0 − ω2]

. (38)

Then, using the dielectric frequency-dependent function of the host medium

ǫh(ω) =
ǫ∞(ω2

lo − ω2)

ω2
to − ω2

= ǫ∞ +
(ǫ0 − ǫ∞)ω2

to

ω2
to − ω2

, (39)

which has pole at ω = ωto = ωlo

√
ǫ∞/ǫ0 and equals zero at ω = ωlo, I arrive at

Sdd =
1

2

N∑

ij

∫
ui(ω) · [ Iij

αF (ω)
+

Tij

ǫh(ω)
] · uj(ω)dω. (40)

where Iij is the tensor, whose elements equal to δij. Thus, when the polaron gas is subjected

to an external frequency-dependent field Eℓ(ω), the later induces the instantaneous moment

ui(ω) given by

ui(ω) = [Iij/αF (ω) + Tij/ǫh(ω)]−1 · Eℓ(ω), (41)

where symbol [Iij/αF (ω) + Tij/ǫh(ω)]−1 means matrix inverse to [Iij/αF (ω) + Tij/ǫh(ω)].

At the same time, the average moment 〈ui(ω)〉 is related with the effective polarizability

α(ω) of the polaron gas

〈ui(ω)〉 = α(ω)Eℓ(ω)/ǫh(ω). (42)

Thus, the effective polarizability is formally expressed as

α(ω)/ǫh(ω) =
〈
[Iij/αF (ω) + Tij/ǫh(ω)]−1

〉
. (43)

However the computation of the polarizability is not simple. To perform it, I should calculate

the matrix [Iij/αF (ω) + Tij/ǫh(ω)]−1 and then average this matrix. Formally, the relation

for effective polarizability α̃(ω) = α(ω)/ǫh(ω) can be rewritten as Dyason’s equation31

α̃(ω) =
α̃F (ω)

[1 − α̃F (ω)U(α̃(ω), n)]
, (44)

where α̃F (ω) = αF (ω)/ǫh(ω) and U(α̃(ω), n) is the self-energy. Using suitable approxima-

tions for U(α̃) , I should solve (44) to find a complex solution α̃(ω) and calculate the density
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of states D(ω, n), which defines the number of eigen-states with frequency ω in a small

interval [ω; ω + dω].

With the use of the fluctuation-dissipation theorem I relate the imaginary part α̃i of the

polarizability and the density of states (DOS):

D(ω, n) = 6ωα̃i(ω)/π. (45)

I remark that the polarizability has an imaginary part at a finite range ω− < ω < ω+, where

ω− and ω+ are the edge eigen-frequencies. To reveal the role of these eigen-frequencies,

I note that ǫh(ω → ωlo) → 0, and there are no nontrivial real solutions for ui(ω) in the

range ωto < ω < ωlo. Hence electrons can not move in the polarizable medium subjected to

the field altering with frequency ωto < ω < ωlo. This is a consequence of the formation of

phonon polaritons which are stationary electro-magnetic waves in the polarizable medium.

The presence of polaritons results in a stopgap at the range ωto < ω < ωlo where polaritons

decay. Therefore, if the low-edge frequency ω−(n) is to be equal to the phonon frequency

ωlo under a certain critical density nc, an instability of eigen-modes takes place,3 and the

behavior of the polaron gas changes sufficiently. This critical density plays a central role

in behavior of quantum polarizable particles, while the condition of this transition can be

formulated as

ω−(nc) = ωlo. (46)

Then, using the conventional formulas2 for the set of harmonic oscillators, I arrive at

βfd(n, T ) = − ln Zd

N
=

∫ ∞

0

[D(ω, n) − 3δ(ω − ω0 + ω1)] ln(2 sinh[
βω

2
])dω, (47)

in which I take into account that the free energy of the Feynman trial action is equal to

f0(T → 0, Ω → ∞) = 3(ω0 − ω1)/2. The expression for dispersion contribution fd can be

written in terms of a dimensionless function d(η, ζ, ω, ω1) depending on the dimensionless

parameters ζ = 2βc2/9π >> 1, η = n/nc ≤ 1, and on the variational frequencies ω =

9πω0/2c
2 = ω0/γωlo, ω1 = ω1/ωlo, and γ = 4Ω2/9π:

9πfd/2c
2 = ζ−1d(η, ζ, ω, ω1) = (48)

1

ζ

∫ ∞

0

[D(x, η, ω, ω1) − 3δ(x − ω + γ−1ω1)] ln(2 sinh[
ζx

2
])dx.

Introducing the dimensionless free energy f = 9πf(n, T )/2c2, I have finally:

f =
3(ω − γ−1ω1)

2

4ω
− 3(ω1ω)1/2

2

∫ ∞

0

F (ω/ω1, x)dx+ ζ−1[d(η, ζ, ω, ω1)+ ln θ + fex(Γ)], (49)



13

where F (z, x) = exp(−x/z)/
√

(x + [z2 − 1])(1 − exp[−x]), while fex(Γ) and d(η, ζ) are cal-

culated by (29) and (48), respectively, whereas Θ(η, ω, ω1) = nΛ3. Therefore, the complete

behavior of the nondegenerate polaron gas is described by (49) with the dimensionless free

energy f(ω, ω1, ζ, Γ, η, γ) depending on dimensionless parameters ζ, Γ, γ, and η. The varia-

tional frequencies ω and ω1 are obtained by the minimization of the free energy:

∂f

∂ω
=

∂f

∂ω1

= 0. (50)

They depend on the dimensionless density η and the dimensionless inverse temperature ζ.

This means that the frequency ω and the mean polaron radius should be calculated self-

consistently by the extremum (50). Thermodynamic properties such as pressure p, chemical

potential µ, and compressibility κ are calculated by the usual relations:

p = n2∂f

∂n
, µ = f + n

∂f

∂n
, κ−1 = n

∂p

∂n
. (51)

Therefore, the set of Eqs. (29), (48), and (49) is my final result for the free energy, it describes

completely the behavior of the nondegenerate polaron gas, though additional approximations

for U(α̃) are required to solve this set. Below I will consider a model, which allows me to

treat semi-analytically these relations.

IV. ANALYSIS

Although the results described above are valid not only for large coupling constants Ω

but also at intermediate coupling, to provide semi-analytical analysis, I consider the strong

coupling limit Ω → ∞. In this case my formulas are simplified since ω1/ω → 0 and I have

the well known results23 when β → ∞ and n → 0:

9πfpol

2c2
=

3ω

4
− 3ω1/2

2
, Mp = ω2, rp =

3
√

3π

2c
. (52)

Finite-temperature corrections to these relations and next-order terms with respect to Ω are

well documented in literature.32

With the same accuracy I can put ω1 = 0 in the relations for the dispersion contribution

and ignore the difference between phonons and polaritons, furthermore I consider the low-

temperature asymptotic β → ∞ ignoring in (48) the terms proportional to exp[−βωlo].

Then, the condition for the polarization catastrophe reads:

ω−(nc) = 0, (53)
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while the polarizability of an isolated polaron is given by

αF (ω) =
1

ω2
0 − ω2

. (54)

and the dispersion contribution is expressed as

ζ−1d(η, ζ, ω, ω1 = 0) =
1

2

∫ ∞

0

x[D(x, η, ω) − 3δ(x − ω)]dx. (55)

The next level of the consideration requires information on D(x, η, ω) and, respectively,

an approximation for the self-energy U(α̃(ω), n). I note the physical meaning of the self-

energy, i.e. the value U(α̃) is related with the average dipolar energy Ud of an effective

dipolar liquid, while the later can be presented in terms of the pair distribution function

g(rΨ1Ψ2, α̃) of induced dipoles with an effective momentum d = (3α̃/β)1/2:

U(α̃, n) = −2βUd

3α̃
= n

∫
d · T · d

d2
g(rΨ1Ψ2, α̃)

drdΨ1dΨ2

(4π)2
, (56)

where Ψ1 and Ψ2 are the Euler angles of the interacting dipoles. In general, the required

information on g(rΨ1Ψ2, α̃) can be obtained by the integral equation theory33 or directly by

approximating function U(α̃, n).24,34 In our case the function U(α̃, n) as well as g(rΨ1Ψ2, α̃)

depend on the two dimensionless parameters: nσ3 and α̃F (0)σ−3, where σ is the characteris-

tic size of short-range correlations in the effective liquid. The first of these parameters means

the relative fraction of the volume occupied by the dipoles, while the second one indicates a

strength of an isolated dipole. Dependencies of the functions on these parameters are quite

complicated and well parameterized only in the case when α̃F σ−3 << 1 corresponding to

a weakly polarizable classical liquid. Since I consider polarons as distinguishable quasipar-

ticles, what means σ & 2rp. Hence, taking into account the relation between rp and ω0, I

have α̃F (0)σ−3 ≈ rp/18ǫ∞ = 1/4(1 − ǫ∞/ǫ0), which more than an order exceeds the values

typical for classical liquids. At the same time, as I indicated below, the parameter nσ3 is

less than 1/2 at n = nc. Therefore, it is reasonable to consider the low-density (LD) limit

when nσ3 → 0 as an approximation for our case. Then, the dependency U(α̃, n) can be

easily found

U(α̃, nσ3 → 0) =
8πnα̃

3σ3
, (57)

while equation (44) becomes quadratic and may be solved analytically.

Analyzing the free energy (49), I note first that parameter η < 1 is small, while param-

eter ζ >> 1 and parameter Γ >> 1 are large. Therefore, in the zero approximation the
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asymptotic behavior of the polaron gas is described by the function f(ω, ζ = Γ = ∞, η) =

fPC(ω, η), but this limiting case corresponds exactly to the polaron crystal, which has been

studied before.3 Hence, my model recovers the formation of polaron crystals and I should

estimate the influence of finite values of parameters η, ζ, and Γ for evaluating the behavior

of the polaron gas.

To continue the analysis, I have to choose the cut-off distance σ. It is obvious that

σ(n → 0) → 2rp due to the construction of dipolar interactions and inequality (18). However,

the size can deviate from the twice mean polaron radius due to exchange effects in the

concentrated regime. Nevertheless, with the same level of the accuracy as before, I ignore

these deviations and assume σ(n) = 2rp(n). Then, all the required quantities are calculated

analytically. The real (α̃r) and the imaginary (α̃i) parts of the polarizability are given by:

α̃r(ω < ω−) =
2nc[(ω

2
0 − ω2) − (ω2

+ − ω2)1/2(ω2
− − ω2)1/2]

nω4
0

,

α̃r(ω > ω+) =
2nc[(ω

2
0 − ω2) + (ω2

+ − ω2)1/2(ω2
− − ω2)1/2]

nω4
0

,

α̃i(ω− < ω < ω+) =
2nc(ω

2
+ − ω2)1/2(ω2 − ω2

−)1/2

nω4
0

, (58)

where ω−and ω+ are the edge eigen-frequencies expressed as

ω± = ω0[1 ±√
η]1/2, (59)

whereas the critical density nc, at which ω−(nc) = 0, is given by

nc =
3r3

pω
4
0ǫ

2
∞

4π
=

243ǫ2
∞

64πr5
p(n)

=
31/29ǫ2

∞ω
5/2
0

21/28π
. (60)

The expression for dispersion contribution d(η, ζ) reads:

ζ−1d(η, ζ → ∞) =
3

π

∫ π

0

[(1 + η1/2 cos y)1/2 − 1] sin2 ydy. (61)

and expressed in terms of a hypergeometric function. Expanding the integrand function in

series with respect to η, I find

ζ−1d(η, ζ → ∞) = −[
3η

64
+

15η2

2048
+ · · ·]. (62)

Therefore, the dispersion contribution is negative and provide attractions between polarons.

At low densities it gives a contribution ∝ n2 to the total free energy as it should be to provide
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van-der-Waals tails ∝ r−6
s , (where rs = (4πn/3)1/3 is the inter-electron distance). However,

the dispersion contribution deviates significantly from this asymptotic behavior at increased

densities (see, Fig. 1), indicating a strong cooperative effect of the dispersion forces. It is

approximately twice stronger than the estimate obtained by the linear contribution, i.e. the

first term in (62). Therefore, the dispersion term is always small with respect to the free

energy of polaron formation, i.e. fd/fpol ≤ η/16 (η ≤ 1), nevertheless this contribution has

a pronounced effect on the polaron formation in the vicinity of nc. The dispersion forces do

not play a role at low densities, but become significant at intermediated densities and even

dominant in the thermodynamic behavior of polaron gas in the vicinity of nc.

The dispersion forces result not only in attractions between polarons, but increase also the

mean polaron radius. Moreover, the spherically symmetrical state of polarons can disappear

due to the dispersion forces. The simple estimates indicate that the dimensionless polaron

radius rp = ω−1/2 follows the relation:

rp(n) = 1 − 4ζ−1rp +
3ηrp

32
+

5η2r2
p

128
+ ... (63)

The second term in the right side of (63) is caused by classical pressure of the polaron gas

due to the thermal motion of polarons. It decreases the polaron radius, but the effect is

minor, because the term includes the small factor ζ−1 << 1. The next terms in the right side

of (63) are due to the dispersion contribution providing a negative pressure. At moderate

temperatures they increase the mean polaron radius by several percents, while the localized

spherically symmetrical solution disappears at low enough temperatures when the polaron

density exceeds some critical value, i.e. η > ηei(T ). Our estimates indicate that this value is

less than unity at ζ > 32 (Fig. 2) and decreases monotonically as temperature decreases, i.e.

the solution disappears before the dielectric catastrophe takes place. Thus, the dispersion

forces lead to a transition at low temperatures, since the localized electron states with zero

dipole momentum can not exist at n > nei(T ).

In this paper I do not treat properly the absorption spectrum, since it requires to account

of anharmonic contributions to the polaron self-trapped potential. I note only that the

characteristic frequency is inversely proportional to the mean polaron radius, hence I have

for the maximum frequency ωm of the absorption spectrum

ωm ∼ ω0(n) =
2c2

9π
[1 − 4ζ−1rp +

3ηrp

32
+

5η2r2
p

128
+ ...]−2 (64)
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Therefore, an increased temperature results in the blue shift of the absorption spectrum,

whereas an increased radius leads to a decrease in the frequency (Fig. 2), which can be

detected as a red shift of the maximum of the absorption spectrum.

Let us focus on the behavior of the polaron gas near the critical density nc. Formally,

my model is not applicable at n > nc, since the particles can not stay in the same ground

state, because the square of the lowest eigen-frequency ω− becomes negative. Rigourously,

such instability may be interpreted in two ways: either polarons escape from their self-

trapped potentials and that corresponds to the onset of metallization; either the polaron

gas becomes instable with respect to the formation of a state having a permanent dipole

momentum 〈u(ω = 0)〉 6= 0. This possible phase arises in the vicinity of the metal-insulator

transition and referred as an excitonic insulator.35 It has been intensively studied36,37 in

semiconductors as a possible paring between electrons and holes. At the same time, the

similar scenario in liquid mercury was first proposed by Turkevich and Cohen38 for Frenkel

excitons, and later studied by different authors39–41 treated neutral atoms. I will argue below

that the excitonic phase can arise in the polaron gas only at very low temperatures, and the

critical density nc is close to the onset of metallization.

For this purpose I deal with dielectric properties of the gas, which can be evaluated with

the use of the data on the effective polarizability α(ω). Treating the polaron gas as a set of

polarizable quasiparticles with the effective polarizability α(ω) in the medium with dielectric

constant ǫ0, I obtain the modified Maxwell-Garnett expression:7

ǫ(ω) − ǫ0

ǫ(ω) + 2ǫ0

=
4πnα(ω)

3ǫ∞
. (65)

It is important that effective polarizability α(ω) depends on the density of polarons, and

hence the above relation accounts the interactions between quasiparticles in contrast to the

original Herzfeld treatment.42 Finally, I write the effective dielectric function ǫ(ω) versus the

polaron density n by inversion (65):

ǫ(ω) = ǫ0
3ǫ∞ + 8πnα(ω)

3ǫ∞ − 4πnα(ω)
. (66)

Figure 3 shows the real and imaginary parts of normalized dielectric function ǫ(ω)/ǫ0 of

the polaron gas versus the the normalized frequency ω/ω0 obtained with the use of (66).

As it is seen, the real part rises sufficiently (more than 20 times) close to n = nc. At the

same time, the detailed study of dielectric function ǫ(ω) indicates that this function becomes
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negative in a wide range of frequencies (see inset in Fig. 3) at densities exceeding η > 0.3.

Therefore, the dispersion forces result in a strong negativity of the dielectric function. At

this stage, I have not extended the calculations to k 6= 0, but it is clear that the dielectric

function ǫ(0, k 6= 0) should be also negative. The physical consequence of this effect has been

discussed, for example, it could result in superconducting properties of polaron crystal.3

I note also the following effect. Formally, the real part of the dielectric constant diverges

when denominator in (66) is equal to zero:

4πn∞αr(ω = 0, n∞)

3ǫ∞
= 1, (67)

which defines the second critical density n∞ corresponding to a dielectric catastrophe in the

system. This catastrophe may be interpreted as a locus of metallization. With the use of

(60) and (58), I find

√
3

π

(1 − ǫ∞/ǫ0)ω
2
0(n∞)

rp(nc)ω2
0(nc)

[1 − (1 − n∞

nc

)1/2] = 1. (68)

This equation is valid only when the dimensionless radius rp(nc) is less than unity, because

the value in the square brackets is always less than unity. Such situation takes place at

high temperatures when rp(nc) < 1 due to pressure of the polaron gas (see Fig. 1). On

the other hand, I have rp(nc) > 1 at low temperatures and hence the dielectric catastrophe

occurs after the instability of eigen-modes, i.e. n∞/nc > 1. Figure 4a shows these two cases

corresponding to the high and the low temperatures. Therefore, within the framework of

our assumptions, I have n∞ > nc at low temperatures. This means that the MIT from the

polaron states to metallic states occurs at large enough temperatures, whereas an excitonic

insulator phase can arise at low temperatures. In this paper, I do not consider this phase, but

indicate only that it can be formed from polarons trapped in a self-consistent nonspherical

potential with p−symmetry. Such states have been numerically investigated in Ref.43 (see,

also review44). On the other hand, this state exhibiting phonon instability45 can transit

into a metallic state. Thus, at low temperatures the polaron gas can undergo a ferroelectric

transition to an excitonic insulator phase and then transits to a metallic state.

The next important feature of dispersion interactions is that they provide a negative

compressibility (Fig. 4b) like it takes place for classical fluids where the dispersion interac-

tions compete with the short-range repulsions to drive a liquid-gas phase separation below a

critical temperature. The same situation occurs in my model, however the phase separation
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is frustrated due to neutralizing rigid background. Although the classical one-component

plasma is not stable at Γ ≥ 3,46 the the dispersion forces enhance substantivally this in-

stability. Using (51), I find the condition for the critical line nvdW (T ) below which the

compressibility is negative:

T

ω0

=
0.094η + 0.022η2 + · · ·

1 − 1.187Γ + 3.92Γ1/4 − 0.694Γ−1/4 + ...
. (69)

Simple evaluations yield the dispersion contributions are dominant at moderate densities,

for example the dispersion term gives the main effect on the compressibility at η > 1/3 at

ǫ∞/ǫ0 = 0.1. There is a critical temperature Tcr above which the polaron gas is always stable.

Using (69), I find Tcr ∼ 0.1ω0 that corresponds to several hundreds of Kelvins. Of course,

the van-der-Waals instability caused by the dispersion forces does not immediately imply the

thermodynamic instability of the polaron gas and can be realized only in the case of a finite

compressibility of the ionic subsystem. Typically, the finite size of ions stabilizes the ocp, for

example, the critical temperature TDH
cr calculated within the framework of the Debye-Hückel

model is about of 1/16σǫ0,
47 while nDH

cr ∼ 1/64πσ3
i (where σi is characteristic diameter of

ions), hence the ratios TDH
cr /Tcr ∼ 0.36(ǫ∞σ/ǫ0σi) << 1 and nDH

cr /nc ∼ 10−2(σ/σi)
3 << 1

are small in strongly polar dielectrics and the finite-size effects can not stabilize the polaron

gas, it remains unstable in a wide range of temperatures and densities.

Finally, I depict the phase diagram for the polaron gas (Fig. 5) at Ω → ∞, in which I

indicate various phases and instabilities arising in the strong coupling case. The variable

ζ−1 is the dimensionless temperature, while η is the dimensionless density. The thick dashed

line η∞ corresponds to the dielectric catastrophe, the solid line ηc to the instability of eigen-

modes, whereas the thin dashed line shows schematically a transition from an excitonic

insulator to a metallic state. All these line correspond to a MIT. In the phase diagram I

indicate as a gas the state of the many-polaron system at which I can ignore the interactions

between the polarons. This phase is separated from the polaron condensed phase by the crit-

ical line ηvdW (T )(dash-dotted curve), below which the system is not stable due to dispersion

interactions and the inverse compressibility is negative, whereas the classical ocp is unstable

below the line indicated by dotted curve Γ = 3. The ground state of polarons fails spherical

symmetry below the line indicated by circles, while the system crystalizes at sufficiently low

temperatures when Γ > 179 (the line depicted by triangles). The arising polaron crystal

is to melt at high enough densities, indicating by the arrow corresponding to the quantum
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melting following the Lindenmann criterion. Above this critical density the polaron crystal

is an imperfect, however the spherically-symmetrical ground state of polarons disappears

below ηei and a ferroelectric phase consisting from self-trapped polarons having nonzero

dipole moment can arise. Such excitonic insulator phase can undergo the MIT transition to

a metallic state at increased densities due to the instability of eigen-modes. On the other

hand, the polaron condensate consisting from spherical polarons can transit directly to a

metallic phase caused by the dielectric catastrophe occurring at η∞(T ) which is quite close

to the instability ηc = 1. I note that η∞(T ) ≈ 1 is due to account of dispersion interactions

between polarons in the relation for the dielectric function. I should mentioned also that the

temperature dependencies of all the critical lines can be sufficiently modified due to account

of various short-range corrections (influence of acoustical phonons, finite-size of ions, etc).

Nevertheless, I believe the proposed phase diagram to be rather general, it may be revealed

in strongly polar dielectrics, where the condensed phase of polarons can arise. To estimate

the required density, I rewrite (60) in the conventional units

nc ≈ 4.5 · 1021(
m∗

ǫ∞
)3(1 − ǫ∞

ǫ0

)5
cm

−3. (70)

Since the high-frequency dielectric constant ǫ∞ varies typically between 1.5 and 5, the critical

concentration is to be of the order (1019 ÷ 1021) cm−3 that is not so extraordinary and

corresponds to many practical cases for doped dielectrics. Therefore, the considered scenario

can be realized the systems in which strongly coupled polarons can arise.

V. DISCUSSIONS

Thus, I have evaluated the effect of the dispersion forces on dielectric, optical, and thermo-

dynamic properties of the many-polaron system in the strong coupling limit. Starting from

the linear coupling between the electrons and the longitudinal polarization of the medium,

I have derived the free energy of the system. The great difference in the times scales of

the quantum and the classical degrees of freedom allows me to separate the relevant con-

tributions and obtain semi-analytical estimates for these contributions. The classical term

is evaluated with the use of the theory of the one-component plasma, whereas the quan-

tum contribution by the methods of quantum polarizable liquids. Considering the diluted

limit nr3
p << 1 I have obtained the explicit expression for the dispersion contribution. The
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analysis of this contribution indicates that the dispersion effect is nonlinear and strongly

cooperative at large enough densities of polarons. I have found the dispersion forces are to

result in an increased radius of polarons and, hence, decrease in the characteristic frequency

of absorption spectrum. It is interesting that similar shift can be obtained for polarons even

in the weak coupling case.48

In addition to these peculiarities, there are two main consequences of the dispersion

forces. The first one is the quantum phase transition at n∞ ≈ nc leading to a metal-

insulator transition and revealed as the dielectric catastrophe, the second transition results

is the classical van-der-Waals instability leading to possibility of a phase separation (PS).

Although my analysis is restricted to the system with a neutralizing rigid background, the

simple arguments evidence in favor of such separation in real systems. The detailed study of

the phase separation requires a consideration of the metallic phase which has been beyond

the scope of the current paper. I note that the presence of the metallic phase substantivally

modifies the behavior of the polaron condensate close to the the polarization catastrophe,

and details of this behavior will be investigated elsewhere. In the current treatment I have

focused on the long-range correlations caused by dispersion forces and ignore completely

the exchange effects due to short-range correlations. With the use of (63), I find that the

parameter nσ3 = 8nr3
p ∼ 0.4 is not so small in the vicinity of nc. A careful estimation of

the influence of this parameter requires a more detailed model for dispersion effects nearly

nc, for instance, an advanced model for the density dependency of U(α, n). Various models

of polarized liquids24 or disordered lattice like as the effective medium approximation49 or

the coherent potential approximation (see, for example Ref.31) can be used to improve my

simple evaluations. However, the main difficulty seems to provide self-consistent evaluations

accounting changes in the polaron radius caused by both the short- and the long-range

effects. But the later requires a proper account of exchange effect again.

On the other hand, the large value of the parameter nσ3 indicates strong effects of as-

sociation and a possibility of formation of multielectron states like as bipolarons, polaron

clusters and so on. Of course, to model such aggregates, I should account short-range corre-

lations which are completely ignored in my current model, since the short-range correlations

are responsible for the stability of bipolarons in ionic systems50 and polar dielectrics51. Nev-

ertheless, my numerical analysis indicates that the criteria for stability of bipolarons and

multielectron states should be sufficiently modified to account the role of the dispersion
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forces. The proper treatment of both the types of the correlations (exchange and disper-

sion contributions) can be based on the explicit separation between them in the correlation

potential52 or by the construction a ’seamless’ functional,53 although additional efforts are

required to separate explicitly these interactions in the case of polarons.

It has been believed so long that the dielectric catastrophe following the original Herzfeld

model42 is not realistic in doped dielectrics, since it occurs at densities so high that overlap-

ping of orbitals is essential (see, for example, discussion in Ref.54). My calculations confirm

it, since η∞ ≈ 2 and hence η∞σ3 ≈ 1 when I ignore the dispersion interactions as in the

Herzfeld model.42 However, the critical density decreases sufficiently (more than twice) due

to the dispersion interactions, and the dielectric catastrophe can occur in a diluted regime

where short-range correlations play a minor role. Thus, my study indicates the dispersion

forces change completely the scenario of the metal-insulator transition. In contrast to the

usual Mott mechanism focused on the screening of the long-range Coulomb potential by a

stable electron gas, my scenario assumes the dominant role of the dispersion attractions for

localized electrons. My model is also different from the Anderson transition, since disorder

does not play a significant role in my treatment. It results only in a translational motion of

polarons and weak temperature dependencies of the polaron characteristics due to this ef-

fect. On the other hand, the consequence of the dispersion attractions is the strong coupling

between the MIT and phase separation.

The question arises in what systems the similar mechanism could realize? First, the

systems should exhibit a significant difference between the dielectric constants. Next, the

size of quasiparticles should neither so large nor so small, since nc ∝ r−5
p . For large sized

particles the critical concentration can be so low to be masked by Coulomb forces, whereas

the dispersion effect disappears in the case of small sizes of particles due to a dominant role

of short-range correlations. On the other hand, the dispersion effect plays the crucial role

mainly for quasiparticles, because special conditions are required to obtain the polarization

catastrophe for classical objects (high pressures an so on) since nc ∝ α−2, while the polariz-

ability of classical molecules is quite low (for example, αNH3
∼ 18.8 (Ref.55) (in Born units

a0 = ~2/me2), αNa+ ∼ 1.34 (Ref.56) (for sodium ion), at the same time the polarizability of

polarons exceeds by two orders or even more, since α(0) ∼ 184(m/m∗)3/c4 a3
0.

Although my model of many-polaron system is so simplified, I believe that similar sce-

nario occurs in the metal-ammonia solutions, alkali-halide molten salts, whose behavior is
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controlled by self-trapped electrons and where the MIT is associated with the phase sep-

aration and the dielectric catastrophe. High-Tc superconducting cuprates (HTSC) can be

another example of the compounds, where similar scenario may occur, however the phase

separation is frustrated in these systems by layering of the material. As a result of such

frustration, a new superconducting phase may arise. I have compared various properties of

these compounds in Table 1. First, I have evaluated the critical density nc in these com-

pounds, for this purpose I apply ǫ∞ = 1, ǫ0 = ∞ for AHMS,57,58 ǫ∞ = 1.75, ǫ0 = 25 for

MAS,7,8 and ǫ∞ = 5, ǫ0 = 30 for HTSC,3 which have been used before to describe details of

the absorption spectrum in the corresponding compounds. I also apply m∗/me = 1 for MAS

and AHMS, but I use the two values for m∗ for HTSC, since the information on the effective

mass of carries is controversial in this case. Several authors estimate m∗/me ≈ 2,59,60 while

others believe the mass to be higher and estimate it as 4− 5me.
61,62 I have derived available

experimental data on the critical density corresponding to the MIT in these compounds,63–66

although this transition continues and the critical density varies sufficiently as composition

of the compounds or temperature change. I have estimated also the critical density n∞

corresponding to the dielectric catastrophe,67 using the data on dielectric enhancement in

the relevant compounds.60,63,68 The comparison between my results and the experimental

values indicates that the estimates are quite close, while the deviations from this correspon-

dence in the cases of HTSC and AHMS can be caused by peculiarities of these systems,

i.e. the quasi-two dimensional structure of cuprates and finite size of ions in molten salts.

The considered compounds reveal also similarities in the properties associated with the

dispersion effect, namely, experimental observations exhibit a dielectric catastrophe,59,63,68

softening of the absorption peak68,69 as well as the possibility of phase segregation close to

the MIT.64,65,70–72 I remark also other interesting similarity, i.e. a strong spin-pairing of

electrons in the considered compounds.61,73,74 Perhaps, it is the one of the reasons why the

high-Tc superconductivity of MAS has been debated during several decades,75,76 and only

the recent experiments have given an evidence77 that a highly conducting (nonstationary)

state arises instead of a superconducting phase. Thus, my analysis indicates that the disper-

sion effect is to be strong in these systems, though a detailed study of these quite different

systems requires additional efforts and, perhaps, will be provided elsewhere.

A special question is the dispersion effect to be peculiarity of interacting polarons or it

can be observed for other quasiparticles? The effect seems to take place for excitons also,
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but the the critical density is much less in this case because it behaves as r−5 and size of

excitons is much large than that of polarons, rex >> rp. Hence, the critical density is low

and it could be the origin of the existence of the second critical point in the phase diagram

of excitons in semiconductors.78 Therefore I believe that the effect of dispersion forces is

quite important for quantum particles in strongly polar dielectrics at intermediate doping,

while the study of the effect in the manner provided in this paper may give a new insight

into collective properties of a condensate formed from quasiparticles like as excitons and

polarons.

Acknowledgments

I am particularly grateful to the CNRS for partial support of this work by the cooperative

SNRS/RAS grant and wish to thank Dr. Maxim Fedorov for helpful discussions. I would

like to take this opportunity to acknowledge the deep insight from Pascal Quémerais to the
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Figure captions.

Fig. 1. Density dependency of the dimensionless dispersion contribution fd to the free

energy at T = 0. The solid line corresponds to the total contributions, while the dashed one

to the low-density limit (the first term in (62).

Fig. 2. Density dependencies of the normalized polaron radius rp (solid lines) and the

normalized frequency ωm (dashed lines) at various temperatures. The curves corresponding

to increased temperatures are indicated by thick lines.

Fig. 3. The real (a) and the imaginary (b) parts of the normalized dielectric function

ǫ(ω)/ǫ0 versus dimensionless frequency ω/ω0 at various densities of the polaron gas. The

parameter ζ is equal to 30, while ǫ∞/ǫ0 = 0.1. The inset shows the negativity of the real

part of the dielectric function in the range ω− < ω < ω+. The relevant densities of the

polaron gas are depicted at each curve.

Fig. 4. Density dependencies of the normalized static dielectric function ǫs(ω = 0)/ǫ0 (a)

and the dimensionless inverse compressibility κ−1 = βκ−1/nc (b) at various temperatures

governed by parameter ζ. The symbols η∞ and ηvdW corresponds to the densities at which

dielectric catastrophe or van-der-Waals instability take place.

Fig. 5. Phase diagram of interacting polarons in the strong coupling limit and ǫ∞/ǫ0 =

0.08 (see details in the text).

Table 1. Similarities between the behavior of self-trapped carriers in various compounds,

indicating a strong effect of dispersion forces.

properties � compound AHMS MAS HTSC

nc/1021 cm−3 (Theory) 4.5 0.7 0.2 ÷ 1.2

m∗

me
= 2 m∗

me
= 4

nMIT /1021 cm−3 (Exp.) 1 ÷ 2 63,64 0.5 ÷ 1 65 0.5 ÷ 5 66

n∞/1021 cm−3 (Exp.) 1.2 63 0.3 ÷ 0.8 68 0.2 ± 0.05 60

dielectric enhancement X63 X68 X60

softening of the absorption peak not X68 X69

possibility of PS close to MIT X64,72 X65,71 X70

spin pairing of electrons X73 X74 X61

high-Tc superconductivity not X75 not77 X79
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