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SOME REMARKS ON THE STRONG MAXIMUM PRINCIPLE ARISING IN

NONLOCAL OPERATORS

PASCAL AUTISSIER AND JÉRÔME COVILLE

ABSTRACT. In this note we make some remarks concerning maximum principles holding for
nonlocal diffusion operator of the form

M[u](x) :=

Z

G

J(g)u(x ∗ g
−1)dµ(g) − u(x),

where G is a group acting continuously on a Hausdorff space X and u ∈ C(X). We first
investigate the existence of a strong maximum principle in the general situation and then
focus on the case of homogeneous spaces. Depending on the topology of the homogenerous
space, we give contidions on J and dµ such that M achieves a strong maximum principle. We
also revisit the classical case of convolution operator on R

n.

1. Introduction and Main results

This note is devoted to the strong maximum principle and some conditions to obtain the
strong maximum principle for operator of the form

(1.1) M[u] :=

∫

G

J(g)u(x ∗ g−1)dµ − u

where (G, ∗, X, J, dµ) satisfies the following set of assumptions :

(H1) X is an Hausdorff’s space,
(H2) (G, ∗) be a topological group acting continuously on X through the operation ∗,
(H3) dµ is a Borel measure on G such that for all open set A ∈ G, dµ(A) > 0,
(H4) J ∈ C(G, R) is a non-negative function of unit mass with respect to dµ.

Such kind of operator has been recently introduced to analyse nonlocal effects in various
models ranging from Ising model to cellular growth, see [1, 4, 5, 7, 10, 13]. A first example is
the well known nonlocal reaction diffusion equation below,

(1.2)
∂u

∂t
=

∫

Rn

J(x − y)u(y) dy − u + f(u) in R
+ × R

n.

In this case, we have (G, ∗) = (Rn, +), X = R
n, J ∈ C(Rn) and dµ = dy is the Lebesgue

measure. Such equation appears in particular in ecology and in some Ising models see [1,
5, 6, 13] and their many references. Another example of such model is given by the two
following discrete versions of (1.2),

(1.3)
∂u

∂t
=

1

2
[u(x + 1) + u(x − 1) − 2u(x)] + f(u) in R

+ × R
n,
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(1.4)
∂u

∂t
=

1

2
[u(p + 1) + u(p − 1) − 2u(p)] + f(u) in R

+ × Z
n.

In both situation the diffusion operator can be rewrited in term of a nonlocal operator M
defined by (1.1). Indeed, in these two cases, (G, ∗) = (Zn, +), dµ = δ1 + δ−1 where δx is the
Dirac measure at a point x and J ∈ C(Zn, R) is defined as follows:

J(p) :=

{
1

2
if {(±1, 0, . . . , 0), . . . , (0, 0, . . . ,±1)},

0 otherwise,

and the Hausdorff space is either X = R
n or X = Z

n. As their continuous version (Equation
(1.2)), such two equations appear in particular in some discrete reaction diffusion models
describing a wide variety of phenomena, ranging from combustion to ecology, nerve prop-
agation or phase transitions. We point the interested reader to [4, 3, 9] and they many refer-
ences.

Another example comes from the following size structured population model, recently
introduced by Perthame et ale in [10, 11]

(1.5)
∂u

∂t
+

∂u

∂x
=

∫
+∞

0

u(
x

y
)b(y)dy − u(x) in R

+ × R
+.

In such case, (G, ∗) = (R+ \ {0}, •), X = R
+ and again dµ = dy the Lebesgue measure.

In all theses cases, depending on the group and the measure considered, the properties
satisfied by the corresponding operator M show significantly differences. However, as the
classical Laplace operator (∆) see [2], they all satisfy the following positive maximum prin-
ciple property

Courrège Positive maximum principle :
An operator A ∈ L(C(X)) is said satisfying the positive maximum principle if for all f ∈ C(X) and
x ∈ X such that f(x) = sup(f) we have A(f)(x) ≤ 0.

For the Laplace operator (∆), in addition to the above property, it is well known [8, 12],
that sub-harmonic function satisfies a strong maximum principle, that is :

Elliptic Strong maximum principle :
Let u ∈ C2(Rn) be such that

∆u ≥ 0 in R
n.

Then u cannot achieve a global maximum without being constant.

In this note, we investigate conditions on (G, ∗), X, J and dµ in order to achieve such
strong maximum principles for the general operator M. More precisely , we are interested
in finding simple conditions on (G, ∗), X, J and dµ for the strong maximum principle to
hold, that is:

Strong maximum principle :
Let u ∈ C(X, R) be such that

M[u] ≥ 0 in X.

Then u cannot achieve a global maximum without being constant.

Such kind of strong maximum principle plays an important role in the analysis of elliptic
non linear equations since it has already proved to be a very efficient tool to provide various
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a priory estimates which is usually a crucial point in the analysis of non linear pde’s. It is
therefore of great interest to obtain simple conditions to achieve a strong maximum principle
for M.

In this direction, we first establish a generic result that we call pre-maximum principle
satisfied by operators M. More precisely, we show

Theorem 1.1. (Pre-maximum principle)
Let (G, ∗, X, J, dµ) satisfying (H1 − H4) and let u ∈ C(X, R) be such that

M[u] ≥ 0 (resp. ≤ 0).

Assume that u achieves a global maximum (resp. minimum) in x0 and let us denoted Fx0
, the smallest

closed subset of X such that

• x0 ∈ Fx0
,

• Fx0
∗ {g−1 ∈ G|J(g) > 0} ⊂ Fx0

.

Then u ≡ u(x0) in Fx0
.

Our next result is a characterization of the set Fx0
defined in the above Theorem 1.1.

Namely, we have

Proposition – 1.1. Let (G, ∗, X, J, dµ) satisfying (H1 − H4) and let Fx0
be the set defined in

Theorem 1.1, then

Fx0
=

⋃

n∈N

Fn,

where the Fn are defined by induction as follows

F0 = {x0},

∀n ≥ 0 Fn+1 := Fn ∗ {g−1 ∈ G|J(g) > 0}.

In view of the above generic result, in order to get a strong maximum principle for M, we
need to find conditions on (G, ∗), X, dµ and J which implies that Fx0

= X . Note that, from
the characterization of the set Fx0

, the condition Fx0
= X implies that X = Fx0

⊂ orb(x) :=
{x ∗ g−1|g ∈ G} ⊂ X , which means that orb(x0) is a dense set in X .

Remark that for the diffusion operator considered in (1.3), the set orb(x) is never dense
in X . Therefore, we cannot expect to have a strong maximum principle for such diffusion
operator. On the contrary, for the diffusion operator considered in (1.4), the set orb(x) is
always dense in X and we can find conditions on J and dµ to ensure a strong maximum
principle.

Considering the above remarks, in what follows, we restrict our investigation to the case
of Hausdorff homogeneous spaces X (i.e. X := G/H , where H is a closed subgroup of G).
For such Hausdorff’s spaces, the set orb(x) is always dense in X and sufficient conditions
(G, ∗), X, J and dµ for the strong maximum principle to hold reduce to simple condition on
J . In this direction, we first give a sufficient condition on J to ensure that M satisfies the
strong maximum principle. Namely, we have the following
Theorem 1.2.
Let X be a connected homogeneous space and (G, ∗), J, dµ as in Theorem 1.1. Assume that J(e) > 0,
then M satisfies the strong maximum principle.
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Adding some compactness assumption on X , we can generalize the previous statement
to
Theorem 1.3.
Let (G, ∗), X, J, dµ as in the above Theorem and assume further that X is compact. Then M satisfies
the strong maximum principle.

Next, we state optimal conditions on J in some special cases. Namely, we first retrieve
the Markov necessary and sufficient condition for the convolution operator (i.e. (G, ∗) =
(Rn, +), X = R

n, dµ = dy, which is well known among experts in Stochastic processes.

Theorem 1.4. (Markov condition)
Assume that the (G, ∗) = (Rn, +), X = R

n and dµ = dy then M satisfies the strong maximum
principle iff the convex hull of {y ∈ R

n|J(y) > 0} contains 0.

From the above Markov condition, we also derive the following optimal condition when
(G, ∗) = (R+ \ {0}, •), X = R

+ and dµ = dy. Namely, we have the following :
Theorem 1.5.
Assume that the (G, ∗) = (R+\{0}, •), X = R

+ and dµ = dy then M satisfies the strong maximum
principle iff there exists 2 points x1 and x2 such that J(xi) > 0, x1 6= x2 and 0 ≤ x1 ≤ 1 ≤ x2).

1.1. General comments.
We first note that, provide an extra assumption on the non-negativity (-positivity) of the
maximum (minimum), we can easily extend the above results to operators M[u] + c(x)u
with non-positive zero order term (i.e. c(x) ≤ 0). As for M, the operator M + c(x) satisfies
a Courrèges positive maximum principle [2] which in this case state the following

Positive maximum principle :
An operator A ∈ L(C(X)) is said satisfying the positive maximum principle if for all f ∈ C(X) and
x ∈ X such that f(x) ≥ 0 and f(x) = sup(f) we have A(f)(x) ≤ 0.

Along our investigation, we also observe that to obtain a strong maximum principle for
M, we only need the inequality M[u](x) ≥ 0 at points of global maximum of the function u.
As a consequence, for operators satisfying the strong maximum principle and the Courrèges
positive maximum principle, we have the following characterization

Proposition :
Assume that M satisfies the strong maximum principle and the Courrège positive maximum principle
then for all u ∈ C(X) and x ∈ X such that u(x) = sup(u) we have the following alternative:

• Either ∃ y ∈ {y ∈ X |u(y) = u(x)} such that M[u](y) < 0,
• Or ∀ y ∈ {y ∈ X |u(y) = u(x)},M[u](y) = 0 and u ≡ Cste.

We also wanted to point out that although the Markov condition is well known among the
expert in Stochastic analysis, we present here a simple analitical proof, which we believe is
new. Using such point of view, allows us to relate conditions to have the maximum property
to a simple recovering problem.

The outline of this paper is the following. In the two first sections ( Section 2 and 3), we
recall some basic topological results and prove the pre-maximum principle and the char-
acterization of Fx (Theorems 1.1 and Proposition 1.1). Then in section 4, we establish the
strong maximum principle (Theorems 1.2 and 1.3). Finally, in the last section, we deal with
the optimal conditions ( Theorems 1.4 and 1.5).
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2. Preliminaries

In this section, we present some definitions that we use along this paper and establish a
useful proposition. Let us first define some notations

• Σ := {g−1 ∈ G|J(g) > 0}
• For a function u, we define Γy := {x ∈ X|u(y) = u(x)}

and introduce this two definitions:

Definition 2.1. Let A ⊂ X and B ⊂ G be two sets, then we define A ∗ B ⊂ X as follows

A ∗ B := {a ∗ b | a ∈ A and b ∈ B}.

Definition 2.2. Let A ⊂ X and B ⊂ G be two sets, then we say that A is B∗ stable iff

A ∗ B ⊂ A.

Next, let us recall the following basic property of ∗ stable sets :

Proposition – 2.1.
Let A ⊂ X and B ⊂ G be two sets. If A is B∗ stable, then Ā is B∗ stable, where Ā denotes
the closure of A.

Proof:

Let y ∈ Ā∗B and V (y) be an open neighbourhood of y. By definition, we have y := x1 ∗ b1

for some x1 ∈ Ā and b1 ∈ B. Since the operation ∗ is continuous, the following application
T is continuous:

T : X → X
z 7→ z ∗ b1.

Therefore T (V (y))−1 is a open neighbourhood of x1. Since Ā is a closed set and x1 ∈ Ā, we
have T (V (y))−1 ∩ A 6= ∅. By definition of T (V (y))−1, using the stability of A, it follows that
for all z ∈ T (V (y))−1 ∩ A,

z ∗ b1 ∈ A.

Therefore,

z ∗ b1 ∈ V (y) ∩ A for all z ∈ T (V (y))−1 ∩ A,

and yields to

V (y) ∩ A 6= ∅.

The above argumentation being independant of the choice of V (y), it follows that y ∈ Ā.
Now, since y is chosen arbitrary, we end up with

Ā ∗ B ⊂ Ā.

¤

3. Pre-maximum principle and Characterizations: Proof of Theorems 1.1 and
Proposition 1.1

In this section, we deal with the proof of Theorems 1.1 and the characterization of the set
Fx defined in Theorem 1.1. We also give some characterization of the corresponding set Γx.

Let us first start with the proof of the pre-maximum principle.

Proof of Theorem 1.1
5



The proof is rather simple. Let us first recall the definition of Γx0
:

(3.1) Γx0
:= {x ∈ X|u(x) = u(x0)}.

Since u is continuous, Γx0
is a closed subset of X .

Now observe that Γx0
is Σ∗ stable (i.e. Γx0

∗ Σ ⊂ Γx0
).

Indeed, choose any x̄ ∈ Γx0
. At x̄, u satisfies the following

0 ≤ M[u](x̄) =

∫

G

J(g)u(x̄ ∗ g−1) dµ − u(x̄) =

∫

G

J(g)[u(x̄ ∗ g−1) − u(x̄)] dµ ≤ 0.

Therefore,

(3.2)

∫

G

J(g)[u(x̄ ∗ g−1) − u(x̄)] dµ = 0.

Using that J ≥ 0 and for all g ∈ G, [u(x̄ ∗ g) − u(x̄)] ≤ 0, from (3.2), it follows that

u(x̄ ∗ g−1) = u(x̄) for all g ∈ Σ.

Thus, we have

u(y) = u(x0) for all y ∈ {x̄} ∗ Σ.

Hence,

{x̄} ∗ Σ ⊂ Γx0
.

Since this computation holds for any element of Γx0
, we then have

Γx0
∗ Σ ⊂ Γx0

.

Recall now that Fx0
is the smallest closed subset of X such that

• x0 ∈ Fx0
,

• F0 ∗ Σ ⊂ Fx0
.

Since Γx0
satisfies the above conditions, we then have Fx0

⊂ Γx0
.

¤

Note that Γx0
is independent of the choice of the point where u takes its global maximum.

Indeed, we easily see that Γx0
= Γy for any y ∈ Γx0

. On the contrary, the set Fx0
strongly

depends on x0 and there is no reason to always have Fx0
= Fy. Indeed, for X = G = R, if

Σ = R
+ then for x0 < y, Fy ⊂6= Fx0

.
Now, we give a characterization of the set Fx0

defined in Theorem 1.1 and prove Proposi-
tion 1.1. For the sake of clarity, let us first recall Proposition 1.1:

Proposition – 3.1. Let Fx0
be the set defined in Theorem 1.1, then

Fx0
=

⋃

n∈N

Fn,

where the Fn are defined by induction as follows

F0 = {x0},

∀n ≥ 0 Fn+1 := Fn ∗ Σ.
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Proof:

Let us define the following set

F∞ :=
⋃

n∈N

Fn.

Using the definition of F∞, we easily see that F∞ is Σ∗ stable. From Proposition 2.1, it follows
that F̄∞ is Σ∗ stable. Therefore, by definition of Fx0

, we have F ⊂ F̄∞.
Now, since x0 ∈ Fx0

and Fx0
is Σ∗ stable, by induction we easily see that ∀n ∈ N, Fn ⊂ Fx0

.
Thus, F∞ ⊂ Fx0

and yields to Fx0
⊂ F̄∞ ⊂ Fx0

.
¤

Using Theorem 1.1, we can also give a characterization of the set Γx0
in term of the Fy.

More precisely,

Γx0
=

⋃

n∈N

An,

where the set An are defined by induction as follows:

• A0 := Fx0

• An+1 :=

{
Fx for some x ∈ Γx0

\ An

∅ otherwise

Remark 3.1. As already mentioned in the introduction, in order to get a strong maximum
principle for M, we only need to find condition on X, dµ and J such that Fx0

= Γx0
= X .

4. Strong maximum principle when X is an homogeneous space

In this section, we deal with the case of homogeneous space (i.e. X = G/H , where G is a
topological group and H is a closed subgroup of G) and give some sufficient conditions on
J ( Theorems 1.2 and 1.3) in order to have a strong maximum principle property for M.

For convenience, let us first recall Theorem 1.2,

Theorem – Let X be connected homogeneous space. Assume that J(e) > 0, then M satisfies the
strong maximum principle.

Proof:

Again the proof is rather simple, we must check that for any u ∈ C(X, R) such that

M[u] ≥ 0 (resp. ≤ 0)

then u cannot achieve a global maximum (resp. minimum) in X without being constant. So
consider u ∈ C(X, R) such that u achieves a maximum at x0 and satisfies

M[u] ≥ 0 (resp. ≤ 0).

By definition of Γx, we are reduced to show that Γx0
= X . To this end, we will prove that

Γx0
is a closed and open set. By definition of Γx0

, Γx0
is a closed set of X . Now, let us show

that Γx0
is open. Choose any y ∈ Γx0

, then at this point we have:

0 ≤ M[u](y) =

∫

G

J(g)u(y ∗ g−1) dµ − u(y) =

∫

G

J(g)[u(y ∗ g−1) − u(y)] dµ(g) ≤ 0.

Arguing as in the proof of Theorem 1.1, we have u(y ∗ g−1) = u(y) = u(x0) for all g ∈ Σ.
Since, e ∈ Σ, we have

u(y ∗ g−1) = u(x0) for all g−1 ∈ B(e).
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Using that G is a topological group, y ∗ B(e) is then an open neighborhood of y. Thus,

B(y) := y ∗ B(e) ⊂ Γx0
.

Hence, X = Γx0
since X is connected.

¤

Let us now turn our attention to the case of compact homogeneous space and prove The-
orem 1.3 that we recall below.

Theorem – If X is compact then M satisfies the strong maximum principle.

Before going to the proof, let us prove the following practical Lemma

Lemma – 4.1. For any g ∈ X there exists a sequences of integer (nk)k∈N
, such that gnk → e,

where e is the unit element.

Proof:

Take g ∈ X and let us consider the following sequence (gm)m∈N. Since X is compact,
(gm)m∈N has a convergent sub-sequence (gmk

)k∈N. Without any restriction, we can assume
that mk+1 ≥ mk+1. Consider now the following sequence, wk := gmk+1−mk . By construction,
wk → e and mk+1 − mk ∈ N. Hence, with nk := mk+1 − mk, gnk → e.

¤ .
Let us now turn our attention to the proof of Theorem 1.3.

Proof:

As for Theorem 1.2 we have to check that for any u ∈ C(X, R) such that

M[u] ≥ 0 (resp. ≤ 0)

then u cannot achieve a global maximum (resp. minimum) in X without being constant. So
consider u ∈ C(X, R) such that u achieves a maximum at x0 and satisfies

M[u] ≥ 0 (resp. ≤ 0).

By definition of Γx, we are reduced to show that Γx0
= X . Again, as in the proof of Theorem

1.2, we prove that Γx0
is an open and closed set and therefore X = Γx0

since X is connected.
By definition Γx0

is closed. Let y ∈ Γx0
and Fy be the set defined in Theorem 1.1 with y

instead of x0. Using now the description of Fy given in Proposition 1.1, we have

(4.1) Fy :=
⋃

n∈N

Fn ⊂ Γx0
,

where Fn := {y} ∗ Σn.
Choose now g ∈ Σ, according to Lemma 4.1 there exists a sequence (nk)k∈N such that

gnk → e. By assumption, Σ is an open subset of G, therefore Σnk is a sequence of open subset
of G. Since gnk → e, Σnk is a open neighborhood of e for k sufficiently large.

Therefore

{y} ∗ Σnk ⊂ Fy ⊂ Γx0

Since Σnk is a open neighborhood of e for k sufficiently large, {y} ∗ Σnk is then an open
neighborhood of y. Thus, Γx0

contains an open neighborhood of y for any y in Γx0
. Hence,

Γx0
is open.
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5. Some optimal conditions

In this section we deal with the optimal Markov condition for convolution operator (The-
orem 1.4) and prove Theorem 1.5 .

The classical convolution case (X = G = R
n) and dµ = dy:

When (X = G = R
n) the operator M take the form of the usual convolution, i.e

M[u] :=

∫

Rn

J(y)u(x − y) dy − u.

For such convolution operator, the optimal condition on J in order that M satisfies a strong
maximum principle is the following:

Theorem – M satisfies a strong maximum principle iff the convex hull of {y ∈ R
n|J(y) > 0}

contains 0.

This condition is known as the Markov condition.

Proof:

Let us start with the necessary condition. Assume the Markov condition fails. We will
show that M does not satisfy the strong maximum principle. To this end, we construct a
non constant function u which achieves a global maximum and satisfies

M[u] ≥ 0.

Let us denote conv({y ∈ R
n|J(y) > 0}) the convex hull of {y ∈ R

n|J(y) > 0}. By as-
sumption, 0 6∈ conv({y ∈ R

n|J(y) > 0}). Using Hahn-Banach Theorem, there exists an
Hyperplane H such that conv({y ∈ R

n|J(y) > 0}) ⊂ H+ where H+ := {x ∈ R
n|xn ≥ 0} in

an orthonormal basis (e1; e2; . . . ; en). Consider v a non-increasing function which is constant
in R

−, and let us compute M[u] with u(x) := v(xn). Since the Lebesgue measure is invariant
under rotation and supp(J) ⊂ H+ we have

M[u] =

∫

Rn−1

∫

R

J(t, xn − yn)[v(yn) − v(xn)] dxn dt

=

∫

Rn−1

∫ xn

−∞

J(t, xn − yn)[v(yn) − v(xn)] dxn dt.

Therefore, since v is non increasing we end up with

M[u] ≥ 0.

Since u achieves a global maximum without being constant, u is our desired function.

Let now turn our attention to the sufficient condition. Assume that 0 ∈ conv({y ∈
R

n|J(y) > 0}), then there exists a simplex S(xi) form by n + 1 point of R
n such that 0 ∈ S

and J(xi) > 0. By continuity, we can always assume that (x1; ...;xn) is a basis of R
n. Let us

now rewrite x0 in the basis (x1; ...; xn) :

x0 = −a1x1... − anxn with ai > 0.

Observe now that for R
n equipped with the sup norm associated to the base (x1; ...; xn),

there exists r > 0 so that B(x0, r) ⊂ {J > 0}. Now for all integer m > 0, set ym = mx0 +
[ma1]x1+ ...+[man]xn, where [ ] denotes the integer part. Now let u be a continuous function
satisfying

M[u] ≥ 0
9



which achieves a global maximum at some point z ∈ R. Without loosing generality, we may
always assume that z = 0. Indeed, if z 6= 0, we consider the function uz(x) := u(x − z),
instead of u. We easily see that uz achieves a global maximum at 0 and satisfies M[uz] ≥ 0.
Using now Theorem 1.1, we see that for all m ∈ N,

‖ym‖ < 1 and B(ym; mr) ⊂ F0.

Therefore, ⋃

m∈N

B(ym; mr) ⊂ F0.

Hence, R
n ⊂ F .

¤

The above necessary and sufficient condition for the convolution operator, can be weak-
ened depending and the underlying topological structure of the space. In particular, we have
in mind the following setting. Since M is translation invariant, M is also an operator on the
set of periodic functions. On this set of functions, the strong maximum principle always
holds. This condition is not so surprising since the additional periodic structure will in some
sense compactify the homogeneous space R

n.

Another special case: X = R
+, (G, ∗) = (R+ \ {0}, •) and dµ = dy:

In this situation,

M[u] :=

∫

R+

J(y)u(
x

y
) dy − u,

and the above operator has essentially the same property that the usual convolution opera-
tor. Indeed, let us make the following change of variables x := et, then we have

M[u](et) =

∫

R

J̃(t − s)u(es) ds − u(et),

where J̃(t) := J(et)et. Therefore, letting v(t) = u(et), we end up with

M[v](t) = J̃ ⋆ v(t) − v(t) in R,

with
∫

R
J̃(t)dt = 1. Hence, the optimal condition to achieve a strong maximum principle for

such kind of operator will be of the same type as the one used for the convolution operator.
Namely, there exists two points a < 1 < b such that J(a) > 0 and J(b) > 0. This condition

corresponds to the one given for the convolution operator which is the existence of two

points a′ < 0 < b′ such that J̃(a′) > 0 and J̃(b′) > 0.
The above observation proves of Theorem 1.5.

¤
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