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Abstract

We define the Floer complex for Hamiltonian orbits on the cotangent bundle of a compact

manifold satisfying non-local conormal boundary conditions. We prove that the homology of

this chain complex is isomorphic to the singular homology of the natural path space associated

to the boundary condition.

Introduction

Let H : [0, 1] × T ∗M → R be a smooth time-dependent Hamiltonian on the cotangent bundle
of a compact manifold M , and let XH be the Hamiltonian vector field induced by H and by
the standard symplectic structure of T ∗M . The aim of this paper is to define the Floer complex
for the orbits of XH satisfying non-local conormal boundary value conditions, and to compute its
homology. More precisely, we fix a compact submanifold Q of M2 = M × M and we look for
solutions x : [0, 1] → T ∗M of the equation

x′(t) = XH(t, x(t)),

such that the pair (x(0),−x(1)) belongs to the conormal bundle N∗Q of Q in T ∗M2. We recall
that the conormal bundle of a submanifold Q of the manifold N (here N = M2) is the set of
covectors in T ∗N which are based at points of Q and vanish on the tangent space of Q. Conormal
bundles are Lagrangian submanifolds of the cotangent bundle, and the Liouville form vanishes
identically on them.

When Q = Q0 × Q1 is the product of two submanifolds Q0, Q1 of M , the above boundary
condition is a local one, requiring that x(0) ∈ N∗Q0 and x(1) ∈ N∗Q1. Extreme cases are given
by Q0 and/or Q1 equal to a point or equal to M : since the conormal bundle of a point q ∈ M
is the fiber T ∗

q M , the first case produces a Dirichlet boundary condition, while since N∗M is the
zero section in T ∗M , the second one corresponds to a Neumann boundary condition. A non-local
example is given by Q = ∆, the diagonal in M ×M , inducing the periodic orbit problem (provided
that H can be extended to a smooth function on R × T ∗M which is 1-periodic in time). Another
interesting choice is the one producing the figure-eight problem: M is itself a product O×O, and
Q is the subset of M2 = O4 consisting of points of the form (o, o, o, o), o ∈ O. The Floer complex
for the figure-eight problem enters in the factorization of the pair-of-pants product on T ∗O (see
[4]).

The set of solutions of the above non-local boundary value Hamiltonian problem is denoted
by S Q(H). If H is generic, all these solutions are non-degenerate, meaning that the linearized
problem has no non-zero solutions, and S Q(H) is at most countable (and in general infinite). The
free Abelian group generated by the elements of S Q(H) is denoted by FQ(H). This group can be
graded by the Maslov index of the path λ of Lagrangian subspaces of T ∗(Rn×R

n) produced by the
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†The last author was partially supported by the DFG grant SCHW 892/2-3.
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graph of the differential of the Hamiltonian flow along x ∈ S Q(H), with respect to the the tangent
space of N∗Q, after a suitable symplectic trivialization of x∗(TT ∗M) ∼= [0, 1]×T ∗

R
n, n = dimM .

Our first result is that such a definition does not depend on the choice of this trivialization,
provided that the trivialization preserves the vertical subbundle and maps the tangent space of
N∗Q at (x(0),−x(1)) into the conormal space N∗W of some linear subspace W ⊂ R

n × R
n. See

section 2 for the precise statement.
When the Hamiltonian H is the Fenchel-dual of a Lagrangian L : [0, 1] × TM → R which is

fiber-wise strictly convex, the M -projection of the orbit x ∈ S Q(H) is an extremal curve γ of the
Lagrangian action functional

SL(γ) =

∫ 1

0

L(t, γ(t), γ′(t)) dt,

subject to the non-local constraint (γ(0), γ(1)) ∈ Q. In this case, a theorem of Duistermaat’s [5]
can be used to show that the above Maslov index µ(λ, N∗W ) coincides up to a shift with the
Morse index iQ(γ) of γ as a critical point of SL in the space of paths on M satisfying the above
non-local constraint. Indeed, in section 3 we prove the identity

iQ(γ) = µ(λ, N∗W ) +
1

2
(dimQ − dim M) −

1

2
νQ(x),

where νQ(x) denotes the nullity of x, i.e. the dimension of the space of solutions of the linearization
at x of the non-local boundary value problem. This formula suggests to incorporate the shift
(dimQ − dim M)/2 into the grading of FQ(H), which is then graded by the index

µQ(x) := µ(λ, N∗W ) +
1

2
(dimQ − dim M),

which is indeed an integer if x is non-degenerate. When the Hamiltonian H satisfies suitable
growth conditions on the fibers of T ∗M , the solutions of the Floer equation

∂su + J(∂tu − XH(t, u)) = 0

on the strip R×[0, 1] with coordinates (s, t), satisfying the boundary condition (u(s, 0),−u(s, 1)) ∈
N∗Q for every real number s, and converging to two given elements of S Q(H) for s → ±∞, form
a pre-compact space. Here J is the almost complex structure on T ∗M induced by a Riemannian
metric on M . Assuming also that the elements of S Q(H) are non-degenerate, a standard counting

process defines a boundary operator on the graded group FQ
∗ (H), which then carries the structure

of a chain complex, the Floer complex of (T ∗M,Q,H, J). This free chain complex is well-defined
up to chain isomorphisms.

Changing the Hamiltonian H produces chain equivalent Floer complexes, so in order to com-
pute the homology of the Floer complex we can assume that H is the Fenchel-dual of a strictly
convex Lagrangian L. In this case, we prove that the Floer complex of (T ∗M,Q,H, J) is iso-
morphic to the Morse complex of the Lagrangian action functional SL on the Hilbert manifold
consisting of the absolutely continuous paths γ : [0, 1] → M with square-integrable derivative and
such that the pair (γ(0), γ(1)) is in Q. The latter space is homotopically equivalent to the path
space

CQ([0, 1],M) = {γ : [0, 1] → M | γ is continuous and (γ(0), γ(1)) ∈ Q} ,

so Morse theory for SL implies that the homology of the Floer complex of of (T ∗M,Q,H, J) is
isomorphic to the singular homology of CQ([0, 1],M). The isomorphism between the Morse and
the Floer complexes is constructed by counting the space of solutions of a mixed problem, obtained
by coupling the negative gradient flow of SL with respect to a W 1,2-metric with the Floer equation
on the half-strip [0,+∞[×[0, 1].

These results generalize the case of Dirichlet boundary conditions (Q is the singleton {(q0, q1)}
for some pair of points q0, q1 ∈ M , and CQ([0, 1],M) has the homotopy type of the based loop
space of M) and the case of periodic boundary conditions (Q = ∆, and CQ([0, 1],M) is the free
loop space of M), studied by the first and last author in [3]. They also generalize the results by
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Oh, concerning the case Q = M ×S, where S is a compact submanifold of M (with such a choice,
the path space CQ([0, 1],M) is homotopically equivalent to S, so one gets a finitely generated
Floer homology, isomorphic to the singular homology of S). See [14] and [13] for previous proofs
of the isomorphism between the Floer homology for periodic Hamiltonian orbits on T ∗M and
the singular homology of the free loop space of M (see also the review paper [16]). Most of the
arguments from [3] readily extend to the present more general setting, so we just sketch them
here, focusing the analysis on the index questions, which constitute the more original part of this
paper.

Acknowledgements. This paper was completed while the first author was spending a one-
year research period at the Max-Planck-Institut für Mathematik in den Naturwissenschaften and
the Mathematisches Institut of the Universität Leipzig, with a Humboldt Research Fellowship for
Experienced Researchers. He wishes to thank the Max-Planck-Institut for its warm hospitality
and the Alexander von Humboldt Foundation for its financial support.

1 Linear preliminaries

Let T ∗
R

n = R
n × (Rn)∗ be the cotangent space of the vector space R

n. The Liouville one-form
on T ∗

R
n is the tautological one-form θ0 := p dq, that is

θ0(q, p)[(u, v)] := p[u], ∀q, u ∈ R
n, ∀p, v ∈ (Rn)∗.

Its differential
ω0 := dθ0 = dp ∧ dq, ω0[(q1, p1), (q2, p2)] := p1[q2] − p2[q1],

is the standard symplectic form on T ∗
R

n. The group of linear automorphisms of T ∗
R

n which
preserve ω0 is the symplectic group Sp(T ∗

R
n). The Lagrangian Grassmannian L (T ∗

R
n) is the

space of all n-dimensional linear subspaces of T ∗
R

n on which ω0 vanishes identically.
If λ, ν : [a, b] → L (T ∗

R
n) are two continuous paths of Lagrangian subspaces, the relative

Maslov index µ(λ, ν) is a half-integer counting the intersections λ(t)∩ ν(t) algebraically. We refer
to [11] for the definition and the main properties of the relative Maslov index. Here we just need to
recall the formula for the relative Maslov index µ(λ, λ0) of a continuously differentiable Lagrangian
path λ with respect to a constant one λ0, in the case of regular crossings. Let λ : [a, b] → L (T ∗

R
n)

be a continuously differentiable curve, and let λ0 be in L (T ∗
R

n). Fix t ∈ [a, b] and let ν0 ∈
L (T ∗

R
n) be a Lagrangian complement of λ(t). If s belongs to a suitably small neighborhood of t

in [a, b], for every ξ ∈ λ(t) we can find a unique η(s) ∈ ν0 such that ξ + η(s) ∈ λ(s). The crossing
form Γ(λ, λ0, t) at t is the quadratic form on λ(t) ∩ λ0 defined by

Γ(λ, λ0, t) : λ(t) ∩ λ0 → R, ξ 7→
d

ds
ω0(ξ, η(s))

∣

∣

∣

s=t
. (1)

The number t is said to be a crossing if λ(t) ∩ λ0 6= (0), and it is called a regular crossing if the
above quadratic form is non-degenerate. Regular crossings are isolated, and if λ and λ0 have only
regular crossings the relative Maslov index of λ with respect to λ0 is defined as

µ(λ, λ0) :=
1

2
sgn Γ(λ, λ0, a) +

∑

a<t<b

sgn Γ(λ, λ0, t) +
1

2
sgn Γ(λ, λ0, b), (2)

where sgn denotes the signature.
If V is a linear subspace of R

n, its conormal space N∗V is the linear subspace of T ∗
R

n defined
by

N∗V := V × V ⊥ = {(q, p) ∈ R
n × (Rn)∗ | q ∈ V, p[u] = 0 ∀u ∈ V } .

Conormal spaces are Lagrangian subspaces of T ∗
R

n. The set of all conormal spaces is denoted by
N ∗(Rn),

N
∗(Rn) := {N∗V | V ∈ Gr(Rn)} ,

3



where Gr(Rn) denotes the Grassmannian of all linear subspaces of R
n. The conormal space of (0),

N∗(0) = (0) × (Rn)∗, is called the vertical subspace. Note that if α is a linear automorphism of
R

n and V ∈ Gr(Rn), then

(

α−1 0
0 αT

)

N∗V = α−1V × αT V ⊥ = α−1V × (α−1V )⊥ = N∗(α−1V ), (3)

where αT ∈ L((Rn)∗, (Rn)∗) denotes the transpose of α.
Let C : T ∗

R
n → T ∗

R
n be the linear involution

C(q, p) := (q,−p), ∀q ∈ R
n, ∀p ∈ (Rn)∗,

and note that C is anti-symplectic, meaning that

ω0(Cξ,Cη) = −ω0(ξ, η), ∀ξ, η ∈ T ∗
R

n.

In particular, C maps Lagrangian subspaces into Lagrangian subspaces. Changing the sign of
the symplectic structure changes the sign of the Maslov index, so the naturality property of the
Maslov index implies that

µ(Cλ,Cν) = −µ(λ, ν), (4)

for every pair of continuous paths λ, ν : [0, 1] → L (T ∗
R

n). Since conormal subspaces of T ∗
R

n are
C-invariant, we deduce the following:

Proposition 1.1 If V,W : [0, 1] → Gr(Rn) are two continuous paths in the Grassmannian of R
n,

then µ(N∗V,N∗W ) = 0.

The subgroup of the symplectic automorphisms of T ∗
R

n which fix the vertical subspace is
denoted by

Spv(T
∗
R

n) := {B ∈ Sp(T ∗
R

n) | BN∗(0) = N∗(0)} .

The elements of the above subgroup can be written in matrix form as

B =

(

α−1 0
β αT

)

,

where α ∈ GL(Rn), β ∈ L(Rn, (Rn)∗), and βα ∈ Ls(R
n, (Rn)∗), the space of symmetric linear

mappings. Note that every element of Spv(T
∗
R

n) can be decomposed as

B =

(

α−1 0
β αT

)

=

(

I 0
βα I

) (

α−1 0
0 αT

)

. (5)

The second result of this section is the following:

Proposition 1.2 Let V0, V1 be linear subspaces of R
n, and let B : [0, 1] → Spv(T

∗
R

n) be a
continuous path such that B(0)N∗V0 = N∗V0 and B(1)N∗V1 = N∗V1. Then

µ(BN∗V0, N
∗V1) = 0.

Proof. By (5), there are continuous paths α : [0, 1] → GL(Rn) and γ : [0, 1] → Ls(R
n, (Rn)∗)

such that B = GA with

G :=

(

I 0
γ I

)

, A :=

(

α−1 0
0 αT

)

.

The assumptions on B(0) and B(1) and the special form of G and A imply that

A(0)N∗V0 = G(0)N∗V0 = N∗V0, A(1)N∗V1 = G(1)N∗V1 = N∗V1. (6)
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The affine path F (t) := tG(1) + (1 − t)G(0) is homotopic with fixed end-points to the path G
within the symplectic group Sp(T ∗

R
n), so by the homotopy property of the Maslov index

µ(BN∗V0, N
∗V1) = µ(GAN∗V0, N

∗V1) = µ(FAN∗V0, N
∗V1). (7)

We can write F (t) as F1(t)F0(t), where F0 and F1 are the symplectic paths

F0(t) :=

(

I 0
(1 − t)γ(0) I

)

, F1(t) :=

(

I 0
tγ(1) I

)

.

We note that F0(t) preserves N∗V0, while F1(t) preserves N∗V1, for every t ∈ [0, 1]. Then, by the
naturality property of the Maslov index

µ(FAN∗V0, N
∗V1). = µ(F1F0AN∗V0, N

∗V1)

= µ(F0AN∗V0, F
−1
1 N∗V1) = µ(F0AN∗V0, N

∗V1).
(8)

By the concatenation property of the Maslov index, (3), (6), and the fact that F0(t) preserves
N∗V0 for every t and is the identity for t = 1, we have the chain of equalities

µ(F0AN∗V0, N
∗V1) = µ(F0A(0)N∗V0, N

∗V1) + µ(F0(1)AN∗V0, N
∗V1)

= µ(F0N
∗V0, N

∗V1) + µ(AN∗V0, N
∗V1) = µ(N∗V0, N

∗V1) + µ(N∗(α−1V0), N
∗V1) = 0,

(9)

where the latter term vanishes because of Proposition 1.1. The conclusion follows from (7), (8),
and (9). 2

We conclude this section by discussing how graphs of symplectic automorphisms of T ∗
R

n can
be turned into Lagrangian subspaces of T ∗

R
2n.

Let us identify the product T ∗
R

n ×T ∗
R

n with T ∗
R

2n. Then the graph of the linear involution
C is the conormal space of the diagonal ∆Rn in R

n × R
n,

graphC = N∗∆Rn .

Moreover, the fact that C is anti-symplectic easily implies that a linear endomorphism A : T ∗
R

n →
T ∗

R
n is symplectic if and only if the graph of CA is a Lagrangian subspace1 of T ∗

R
2n, if and only

if the graph of AC is a Lagrangian subspace of T ∗
R

n.
Theorem 3.2 in [11] implies that if A is a path of symplectic automorphisms of T ∗

R
n and λ, ν

are paths of Lagrangian subspaces of T ∗
R

n, then

µ(Aλ, ν) = µ(graphAC,Cλ × ν) = −µ(graphCA, λ × Cν). (10)

2 Hamiltonian systems on cotangent bundles with conor-

mal boundary conditions

Let M be a smooth manifold of dimension n, and let T ∗M be the cotangent bundle of M with
projection τ∗ : T ∗M → M . The cotangent bundle T ∗M carries the following canonical structures:
The Liouville one-form θ and the Liouville vector field η which can be defined intrinsically by

θ(x)[ζ] = x
[

Dτ∗(x)[ζ]
]

= dθ(x)[η, ζ], ∀x ∈ T ∗M, ∀ζ ∈ TxT ∗M,

and the symplectic structure ω = dθ. Elements of T ∗M are also denoted as pairs (q, p), with
q ∈ M , p ∈ T ∗

q M .

1Here T ∗
R

2n is endowed with its standard symplectic structure. In symplectic geometry it is also customary
to endow the product of a symplectic vector space (V, ω) with itself by the symplectic structure ω × (−ω). With
the latter convention, the product of two Lagrangian subspaces is Lagrangian, and an endomorphism is symplectic
if and only if its graph is Lagrangian. When dealing with cotangent spaces and conormal spaces it seems more
convenient to adopt the former convention, even if it involves the appearance of the involution C.
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The vertical subbundle is the n-dimensional vector subbundle of TT ∗M whose fiber at x ∈ T ∗M
is the linear subspace

T v
x T ∗M := kerDτ∗(x) ⊂ TxT ∗M.

Each vertical subspace T v
x T ∗M is a Lagrangian subspace of the symplectic vector space (TxT ∗M,ωx).

If Q is a smooth submanifold of M , the conormal bundle of Q is defined by

N∗Q :=
{

x ∈ T ∗M | τ∗(x) ∈ Q, x[ξ] = 0 ∀ξ ∈ Tτ∗(x)Q
}

.

It inherits the structure of a vector bundle over Q of dimension codimQ. Moreover, N∗Q is a
Lagrangian submanifold of T ∗M , meaning that its tangent space at every point x is a Lagrangian
subspace of (TxT ∗M,ωx). The conormal bundle of the whole M is the zero-section, while the
conormal bundle of a point Q = {q} is T ∗

q M .
A smooth Hamiltonian H : [0, 1] × T ∗M → R induces a time dependent vector field XH on

T ∗M defined by
ω
(

XH(t, x), ζ
)

= −DxH(t, x)[ζ], ∀ ζ ∈ TxT ∗M.

We denote by φH
t the non-autonomous flow determined by the ODE

x′(t) = XH(t, x(t)). (11)

Local boundary conditions. Let Q0 and Q1 be submanifolds of M . We are interested in the
set of solutions x : [0, 1] → T ∗M of the Hamiltonian system (11) such that

x(0) ∈ N∗Q0, x(1) ∈ N∗Q1. (12)

In other words, we are considering Hamiltonian orbits t 7→ (q(t), p(t)) such that q(0) ∈ Q0,
q(1) ∈ Q1, p(0) vanishes on Tq(0)Q0, and p(1) vanishes on Tq(1)Q1. In particular, when Q0 = {q0}
and Q1 = {q1} are points, we find Hamiltonian orbits whose projection onto M joins q0 and q1,
without any other conditions. When Q0 = Q1 = M , (12) reduces to the Neumann boundary
conditions p(0) = p(1) = 0.

The nullity νQ0,Q1(x) of the solution x of (11- 12) is the non-negative integer

νQ0,Q1(x) = dimDφH
1 (x(0))Tx(0)N

∗Q0 ∩ Tx(1)N
∗Q1,

and x is said to be non-degenerate if νQ0,Q1(x) = 0, or equivalently if φH
1 (N∗Q0) is transverse to

N∗Q1 at x(1).
We wish to associate a Maslov index to each solution of the boundary problem (11-12). If

x : [0, 1] → T ∗M is such a solution, let Φ be a vertical preserving symplectic trivialization of the
symplectic bundle x∗(TT ∗M): for every t ∈ [0, 1], Φ(t) is a symplectic linear isomorphism from
Tx(t)T

∗M to T ∗
R

n,
Φ(t) : Tx(t)T

∗M → T ∗
R

n,

which maps T v
x(t)T

∗M onto the vertical subspace N∗(0) = (0)× (Rn)∗, the dependence on t being
smooth. Moreover, we assume that the tangent spaces of the conormal bundles of Q0 and Q1 are
mapped into conormal subspaces of T ∗

R
n:

Φ(0)Tx(0)N
∗Q0 ∈ N

∗(Rn) and Φ(1)Tx(1)N
∗Q1 ∈ N

∗(Rn). (13)

Let V Φ
0 and V Φ

1 be the linear subspaces of R
n defined by

N∗V Φ
0 = Φ(0)Tx(0)N

∗Q0, N∗V Φ
1 = Φ(1)Tx(1)N

∗Q1.

The fact that Φ maps the vertical subbundle into the vertical subspace implies that dimV Φ
0 =

dim Q0 and dimV Φ
1 = dimQ1. Since the flow φH

t is symplectic, the linear mapping

GΦ(t) := Φ(t)DφH
t (x(0))Φ(0)−1 (14)

is a symplectic automorphism of T ∗
R

n. Notice that

νQ(x) = dimGΦ(1)N∗V Φ
0 ∩ N∗V Φ

1 .
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Definition 2.1 The Maslov index of a solution x of (11-12) is the half-integer

µQ0,Q1(x) := µ(GΦN∗V Φ
0 , N∗V Φ

1 ) +
1

2
(dimQ0 + dimQ1 − n).

The shift
1

2
(dimQ0 + dimQ1 − n)

comes from the fact that in the case of convex Hamiltonians we would like the Maslov index of
a non-degenerate solution to coincide with the Morse index of the corresponding extremal curve
of the Lagrangian action functional (see section 3 below). The next result shows that the Maslov
index of x is well-defined:

Proposition 2.2 Assume that Φ and Ψ are two vertical preserving symplectic trivializations of
x∗(TT ∗M), and that they both satisfy (13). Then

µ(GΦN∗V Φ
0 , N∗V Φ

1 ) = µ(GΨN∗V Ψ
0 , N∗V Ψ

1 ). (15)

If x is non-degenerate, the number µQ0,Q1(x) is an integer.

Proof. Since both Φ and Ψ are vertical preserving, the path B(t) := Ψ(t)Φ(t)−1 takes values
into the subgroup Spv(T

∗
R

n). We first prove the identity (15) under the extra assumption

V Φ
0 = V Ψ

0 = V0, V Φ
1 = V Ψ

1 = V1. (16)

In this case,
B(0)N∗V0 = N∗V0, B(1)N∗V1 = N∗V1. (17)

Consider the homotopy of Lagrangian subspaces

λ(s, t) := B(s)GΦ(st)N∗V0.

By the concatenation and the homotopy property of the Maslov index,

µ(λ|[0,1]×{0}, N
∗V1) + µ(λ|{1}×[0,1], N

∗V1) = µ(λ|{0}×[0,1], N
∗V1) + µ(λ|[0,1]×{1}, N

∗V1). (18)

Since λ(0, t) = B(0)N∗V0 is constant in t,

µ(λ|{0}×[0,1], N
∗V1) = 0. (19)

By the naturality of the Maslov index and since B(1) preserves N∗V1,

µ(λ|{1}×[0,1], N
∗V1) = µ(B(1)GΦN∗V0, N

∗V1) = µ(GΦN∗V0, N
∗V1). (20)

Moreover,
µ(λ|[0,1]×{0}, N

∗V1) = µ(BN∗V0, N
∗V1) = 0, (21)

because of (17) and Proposition 1.2. Finally,

µ(λ|[0,1]×{1}, N
∗V1) = µ(BGΦN∗V0, N

∗V1) = µ(GΨN∗V0, N
∗V1). (22)

Then (18) together with (19), (20), (21), and (22) imply the identity (15) under the extra assump-
tion (16).

Now we deal with the general case. Let α0, α1 : [0, 1] → GL(Rn) be continuous paths such that

α0(1) = α1(0) = I, α0(0)V Ψ
0 = V Φ

0 , α1(1)V Ψ
1 = V Φ

1 .

Consider the paths in Spv(T
∗
R

n)

A0 =

(

α−1
0 0
0 αT

0

)

, A1 =

(

α−1
1 0
0 αT

1

)

.
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Then A0(1) = A1(0) = I, and by (3)

A0(0)N∗V Φ
0 = N∗V Ψ

0 , A1(1)N∗V Φ
1 = N∗V Ψ

1 .

The trivialization Θ(t) := A1(t)A0(t)Φ(t) is vertical preserving, and

Θ(0)Tx(0)N
∗Q0 = A1(0)A0(0)Φ(0)Tx(0)N

∗Q0 = A0(0)N∗V Φ
0 = N∗V Ψ

0 ,

Θ(1)Tx(1)N
∗Q1 = A1(1)A0(1)Φ(1)Tx(1)N

∗Q1 = A1(1)N∗V Φ
1 = N∗V Ψ

1 .

Therefore, Θ is an admissible trivialization with V Θ
0 = V Ψ

0 and V Θ
1 = V Ψ

1 . By the particular case
treated above,

µ(GΘN∗V Θ
0 , N∗V Θ

1 ) = µ(GΨN∗V Ψ
0 , N∗V Ψ

1 ),

so it is enough to prove that the left-hand side coincides with µ(GΦN∗V Φ
0 , N∗V Φ

1 ). By the natu-
rality property of the Maslov index,

µ(GΘN∗V Θ
0 , N∗V Θ

1 ) = µ(A1A0G
ΦN∗V Φ

0 , A1(1)N∗V Φ
1 ) = µ(A1(1)−1A1A0G

ΦN∗V Φ
0 , N∗V Φ

1 ).

By the concatenation property of the Maslov index the latter quantity coincides with

µ(A1(1)−1A1A0G
Φ(0)N∗V Φ

0 , N∗V Φ
1 ) + µ(A1(1)−1A1(1)A0(1)GΦN∗V Φ

0 , N∗V Φ
1 )

= µ(A1(1)−1A1A0N
∗V Φ

0 , N∗V Φ
1 ) + µ(GΦN∗V Φ

0 , N∗V Φ
1 ).

By (3), A1(1)−1A1(t)A0(t)N
∗V Φ

0 is a conormal subspace of T ∗
R

n for every t ∈ [0, 1], so the first
addendum in the latter expression vanishes because of Proposition 1.1. The identity (15) follows.

If x is non-degenerate, GΦ(1)V Φ
0 ∩V Φ

1 = (0), whereas the intersection GΦ(0)V Φ
0 ∩V Φ

1 = V Φ
0 ∩V Φ

1

might be non-trivial. By Corollary 4.12 in [11], the relative Maslov index µ(GΦV Φ
0 , V Φ

1 ) differs by
an integer from the number d/2, where

d := dimN∗V Φ
0 ∩ N∗V Φ

1 .

Since
N∗V Φ

0 ∩ N∗V Φ
1 = (V Φ

0 ∩ V Φ
1 ) × (V Φ

0

⊥
∩ V Φ

1

⊥
) = (V Φ

0 ∩ V Φ
1 ) × (V Φ

0 + V Φ
1 )⊥,

the number

d = dimV Φ
0 ∩ V Φ

1 + n − dim(V Φ
0 + V Φ

1 ) = dimV Φ
0 + dimV Φ

1 + n − 2 dim(V Φ
0 + V Φ

1 )

has the parity of
dim Q0 + dimQ1 − n = dimV Φ

0 + dimV Φ
1 − n.

It follows that

µQ0,Q1(x) = µ(GΦV Φ
0 , V Φ

1 ) +
1

2
(dimQ0 + dimQ1 − n)

is an integer, as claimed. 2

Non local boundary conditions. The smooth involution

C : T ∗M → T ∗M, C (x) = −x,

is anti-symplectic, meaning that C ∗ω = −ω. Its graph in T ∗M × T ∗M = T ∗M2 is the conormal
bundle of the diagonal ∆M of M×M . Note also that conormal subbundles in T ∗M are C -invariant.

Given a smooth submanifold Q ⊂ M × M , we are interested in the set of all solutions x :
[0, 1] → T ∗M of (11) satisfying the nonlocal boundary condition

(

x(0),−x(1)
)

∈ N∗Q. (23)

8



Equivalently, we are looking at the Lagrangian intersection problem
(

graphC ◦ φH
1

)

∩ N∗Q

in T ∗M2. A solution x of (11-23) is called non-degenerate if the above intersection is transverse
at (x(0),−x(1)), or equivalently if the nullity of x, defined as

νQ(x) := dim
(

T(x(0),−x(1))graphC ◦ φH
1

)

∩ T(x(0),−x(1))N
∗Q,

is zero.
When Q = Q0 ×Q1 is the product of two submanifolds Q0, Q1 of M , the boundary condition

(23) reduces to the local boundary condition (12). A common choice for Q is the diagonal ∆M in
M ×M : this choice produces 1-periodic Hamiltonian orbits (provided that H can be extended to
R×T ∗M as a 1-periodic function). Other choices are also interesting: for instance in [4] it is shown
that the pair-of-pants product on Floer homology for periodic orbits on the cotangent bundle of M
factors through a Floer homology for Hamiltonian orbits on T ∗(M ×M) with nonlocal boundary
condition (23) given by the submanifold Q of M ×M ×M ×M consisting of all 4-uples (q, q, q, q).

The nonlocal boundary value problem (11-23) on T ∗M can be turned into a local boundary
value problem on T ∗M2 = T ∗M × T ∗M . Indeed, a curve x : [0, 1] → T ∗M is an orbit for the
Hamiltonian vector field XH on T ∗M if and only if the curve

y : [0, 1] → T ∗M2, y(t) =
(

x(t/2),−x(1 − t/2)
)

,

is an orbit for the Hamiltonian vector field XK on T ∗M2, where K ∈ C∞([0, 1] × T ∗M2) is the
Hamiltonian

K(t, y1, y2) :=
1

2
H(t/2, y1) +

1

2
H(1 − t/2,−y2).

By construction,
y(1) =

(

x(1/2),−x(1/2)) ∈ graphC = N∗∆M ,

and the curve x satisfies the nonlocal boundary condition (23) if and only if

y(0) =
(

x(0),−x(1)) ∈ N∗Q.

Therefore, the nonlocal boundary value problem (11-23) for x : [0, 1] → T ∗M is equivalent to the
following local boundary value problem for y : [0, 1] → T ∗M2:

y′(t) = XK(t, y(t)), (24)

y(0) ∈ N∗Q, y(1) ∈ N∗∆M . (25)

Using the identity (30) below, it is easy to show that

νQ,∆M (y) = νQ(x).

In particular, x is a non-degenerate solution of (11- 23) if and only if y is non-degenerate solution
of (24-25). We define the Maslov index of the solution x of (11-23) as the Maslov index of the
solution y of (24-25):

µQ(x) := µQ,∆M (y).

It is also convenient to have a formula for the latter Maslov index which avoids the above local
reformulation.

Proposition 2.3 Assume that Φ is a vertical preserving symplectic trivialization of x∗(TT ∗M),
and that the linear subspace

(

Φ(0) × CΦ(1)DC (−x(1))
)

T(x(0),−x(1))N
∗Q ⊂ T ∗

R
n × T ∗

R
n = T ∗

R
2n

is a conormal subspace of T ∗
R

2n, that we denote by N∗WΦ, with WΦ ∈ Gr(R2n). Then

µQ(x) = µ(graphGΦC,N∗WΦ) +
1

2
(dimQ − n), (26)

where GΦ is defined by (14). In particular, if Q = Q0 ×Q1 with Q0 and Q1 smooth submanifolds
of M , then µQ(x) = µQ0,Q1(x).
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Proof. The isomorphisms

Ψ(t) := Φ(t/2) × CΦ(1 − t/2)DC (−x(1 − t/2)) : Ty(t)T
∗M2 → T ∗

R
2n

provide us with a vertical preserving symplectic trivialization of y∗(TT ∗M2). By assumption,

Ψ(0)Ty(0)N
∗Q =

(

Φ(0) × CΦ(1)DC (−x(1))
)

T(x(0),−x(1))N
∗Q = N∗WΦ.

Moreover, since C is an involution,

Ψ(1)Ty(1)N
∗∆M = Ψ(1)T(x(1/2),−x(1/2))graphC = Ψ(1)graphDC (x(1/2))

=
(

Φ(1/2) × CΦ(1/2)DC (−x(1/2))
)

graphDC (x(1/2))

=
{

(Φ(1/2)ξ, CΦ(1/2)ξ) | ξ ∈ Tx(1/2)T
∗M

}

= graphC = N∗∆Rn .

(27)

Therefore, Ψ is an admissible trivialization of y∗(TT ∗M2), and

µQ(x) = µQ,∆M (y) = µ(GΨN∗WΦ, N∗∆Rn) +
1

2
(dimQ + dim ∆M − 2n), (28)

where GΨ is defined as
GΨ(t) := Ψ(t)DφK

t (y(0))Ψ(0)−1,

see (14). We denote by φH
t,s the solution of

{

φH
s,s(z) = z,

∂tφ
H
t,s(z) = XH(t, φH

t,s(z)),
∀z ∈ T ∗M, ∀s, t ∈ [0, 1],

and we omit the second subscript s when s = 0. By differentiating the identity

φr,t(φt,s(z)) = φr,s(z) ∀z ∈ T ∗M, ∀r, s, t ∈ [0, 1],

we find
Dφr,t(φt,s(z))Dφt,s(z) = Dφr,s(z) ∀z ∈ T ∗M, ∀r, s, t ∈ [0, 1]. (29)

By construction, the flow of XK is related to the flow of XH by the formula

φK
t (y1, y2) =

(

φH
t/2(y1),−φH

1−t/2,1(−y2)
)

.

It follows that

DφK
t (y(0)) = DφH

t/2(x(0)) × DC (x(1 − t/2))DφH
1−t/2,1(x(1))DC (−x(1)), (30)

and
GΨ(t) = Φ(t/2)DφH

t/2(x(0))Φ(0)−1 × CΦ(1 − t/2)DφH
1−t/2,1(x(1))Φ(1)−1C.

By (29), the inverse of this isomorphism can be written as

GΨ(t)−1 = Φ(0)DφH
t/2(x(0))−1Φ(t/2)−1 × CΦ(1)DφH

1,1−t/2(x(1 − t/2))Φ(1 − t/2)−1C.

Then
GΨ(t)−1N∗∆Rn = GΨ(t)−1graphC = graphCA(t),

where A is the symplectic path

A(t) := Φ(1)DφH
1,1−t/2(x(1 − t/2))Φ(1 − t/2)−1Φ(t/2)DφH

t/2(x(0))Φ(0)−1.

Note that
A(0) = I, A(1) = Φ(1)DφH

1 (x(0))Φ(0)−1,
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and that this path is homotopic with fixed end-points to the path GΦ by the symplectic homotopy
mapping (s, t) into

Φ(1)DφH
1,1− t

2
−s 1−t

2

(

x(1−
t

2
− s

1 − t

2
)
)

Φ
(

1−
t

2
− s

1 − t

2

)−1
Φ

( t

2
+ s

1 − t

2

)

DφH
t
2
+s 1−t

2

(x(0))Φ(0)−1.

Therefore, by the naturality and the homotopy properties of the Maslov index,

µ(GΨN∗WΦ, N∗∆Rn) = µ(N∗WΦ, GΨ−1
N∗∆Rn) = µ(N∗WΦ, graphCA)

= µ(N∗WΦ, graphCGΦ) = −µ(graphCGΦ, N∗WΦ).
(31)

The conormal subspace N∗WΦ is invariant with respect to the anti-symplectic involution C × C,
while (C × C)graphCGΦ = graphGΦC. Then the identity (4) implies that

µ(graphCGΦ, N∗WΦ) = −µ(graphGΦC,N∗WΦ). (32)

Formulas (31), and (32) imply

µ(GΨN∗WΦ, N∗∆Rn) = µ(graphGΦC,N∗WΦ). (33)

Identities (28) and (33) imply (26).
If now Q = Q0 ×Q1, we have N∗Q = N∗Q0 ×N∗Q1, and we can choose a vertical preserving

symplectic trivialization Φ of x∗(TT ∗M) such that

Φ(0)Tx(0)N
∗Q0 = N∗V Φ

0 , Φ(1)Tx(1)N
∗Q1 = N∗V Φ

1 ,

with V Φ
0 and V Φ

1 in Gr(Rn). It follows that WΦ = V Φ
0 × V Φ

1 , and by the identity (10) we have

µ(graphGΦC,N∗WΦ) = µ(graphGΦC,N∗V Φ
0 × N∗V Φ

1 ) = µ(GΦN∗V Φ
0 , N∗V Φ

1 ). (34)

By (26) and (34) we deduce that

µQ(x) = µ(GΦN∗V Φ
0 , N∗V Φ

1 ) +
1

2
(dimQ0 + dimQ1 − n),

which is precisely µQ0,Q1(x). This concludes the proof. 2

Remark 2.4 (Periodic boundary conditions) In the particular case Q = ∆M , we have

(

Φ(0) × CΦ(1)DC (−x(1))
)

T(x(0),−x(1))N
∗∆M = N∗∆Rn ,

see (27). So any vertical preserving trivialization Φ of x∗(TT ∗M) satisfies the assumption of
Proposition 2.3, and the Maslov index of the periodic orbit x : T → T ∗M , where T := R/Z, is

µ∆M (x) = µ(graphGΦC,N∗∆Rn),

which is precisely the Conley-Zehnder index µCZ(GΦ) of the symplectic path GΦ. Note that the
trivialization Φ need not be periodic: if M is not orientable and x = (q, p) is a closed loop such
that the vector bundle q∗(TM) over T is not orientable, then there are no vertical preserving
periodic trivializations of x∗(TT ∗M). In this case, one can identify suitable classes of non-vertical-
preserving periodic trivializations for which the formula relating µ∆M (x) to the Conley-Zehnder
index of the corresponding symplectic path involves just a correction term +1, see [15].
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3 The dual Lagrangian formulation and the index theorem

In this section we assume that the Hamiltonian H ∈ C∞([0, 1]×T ∗M) satisfies the classical Tonelli
assumptions: It is C2-strictly convex and superlinear, that is

DppH(t, q, p) > 0 ∀(t, q, p) ∈ [0, 1] × T ∗M, (35)

lim
|p|→∞

H(t, q, p)

|p|
= +∞ uniformly in (t, q) ∈ [0, 1] × M. (36)

Here the norm |p| of the covector p ∈ T ∗
q M is induced by some fixed Riemannian metric on M . If

M is compact, the superlinearity condition does not depend on the choice of such a metric.
Under these assumptions, the Fenchel transform defines a smooth time-dependent Lagrangian

on TM ,
L(t, q, v) := max

p∈T∗

q M

(

〈p, v〉 − H(t, q, p)
)

, ∀(t, q, v) ∈ [0, 1] × TM,

which is also C2-strictly convex and superlinear,

DvvL(t, q, v) > 0 ∀(t, q, v) ∈ [0, 1] × TM,

lim
|v|→∞

L(t, q, v)

|v|
= +∞ uniformly in (t, q) ∈ [0, 1] × M.

Since the Fenchel transform is an involution, we also have

H(t, q, p) = max
v∈TqM

(

〈p, v〉 − L(t, q, v)
)

, ∀(t, q, p) ∈ [0, 1] × T ∗M. (37)

Furthermore, the Legendre duality defines a diffeomorphism

L : [0, 1] × TM → [0, 1] × T ∗M, (t, q, v) →
(

t, q,DvL(t, q, v)
)

,

such that
L(t, q, v) = 〈p, v〉 − H(t, q, p) ⇐⇒ (t, q, p) = L(t, q, v). (38)

A smooth curve x : [0, 1] → T ∗M is an orbit of the Hamiltonian vector field XH if and only if
the curve γ := π ◦ x : [0, 1] → M is an absolutely continuous extremal of the Lagrangian action
functional

SL(γ) :=

∫ 1

0

L(t, γ(t), γ′(t)) dt.

The corresponding Euler-Lagrange equation can be written in local coordinates as

d

dt
∂vL(t, γ(t), γ′(t)) = ∂qL(t, γ(t), γ′(t)). (39)

If Q is a non-empty submanifold of M × M , the non-local boundary condition (23) is translated
into the conditions

(γ(0), γ(1)) ∈ Q, (40)

DvL(0, γ(0), γ′(0))[ξ0] = DvL(1, γ(1), γ′(1))[ξ1] ∀(ξ0, ξ1) ∈ T(γ(0),γ(1))Q. (41)

The second condition is the natural boundary condition induced by the first one, meaning that
every curve which is an extremal curve of SL among all curves satisfying (40) necessarily satisfies
(41).

In order to study the second variation of SL at the extremal curve γ, it is convenient to localize
the problem in R

n. This can be done by choosing a smooth local coordinate system

[0, 1] × R
n → [0, 1] × M, (t, q) 7→ (t, ϕt(q)),

12



such that γ(t) ∈ ϕt(R
n) for every t ∈ [0, 1]. Such a diffeomorphism induces the tangent bundle

and cotangent bundles coordinate systems

[0, 1] × TR
n → [0, 1] × TM, (t, q, v) 7→ (t, ϕt(q), Dϕt(q)[v]

)

, (42)

[0, 1] × T ∗
R

n → [0, 1] × T ∗M (t, q, p) 7→ (t, ϕt(q), (Dϕt(q)
∗)−1[p]

)

. (43)

If we pull back the Lagrangian L and the Hamiltonian H by the above diffeomorphisms, we obtain
a smooth Lagrangian on [0, 1] × TR

n - that we still denote by L - and a smooth Hamiltonian on
[0, 1]×T ∗

R
n - that we still denote by H. These new functions are still related by Fenchel duality.

The submanifold Q ⊂ M × M can also be pulled back in R
n × R

n by the map ϕ0 × ϕ1. The
resulting submanifold of R

n × R
n is still denoted by Q. The cotangent bundle coordinate system

(43) induces a symplectic trivialization of x∗(TT ∗M) which preserves the vertical subspaces and
maps conormal subbundles into conormal subbundles. In particular, this trivialization satisfies
the assumptions of Proposition 2.3.

The solution γ of (39-40-41) is now a curve γ : [0, 1] → R
n. Let iQ(γ) be its Morse index, that

is the dimension of a maximal subspace of the Hilbert space

W 1,2
W (]0, 1[, Rn) :=

{

u ∈ W 1,2(]0, 1[, Rn) | (u(0), u(1)) ∈ W
}

,where W := T(γ(0),γ(1))Q,

on which the second variation

d2
SL(γ)[u, v] :=

∫ 1

0

(

DvvL(t, γ, γ′)[u′, u′] + DqvL(t, γ, γ′)[u′, v]

+DvqL(t, γ, γ′)[u, v′] + DqqL(t, γ, γ′)[u, v]
)

dt

is negative definite. The nullity of such a quadratic form is denoted by νQ(γ),

νQ(γ) := dim
{

u ∈ W 1,2
W (]0, 1[, Rn) | d2

SL(γ)[u, v] = 0 for every v ∈ W 1,2
W (]0, 1[, Rn)

}

.

The following index theorem relates the Morse index and nullity of γ to the relative Maslov index
and nullity of the corresponding Hamiltonian orbit:

Theorem 3.1 Let γ : [0, 1] → R
n be a solution of (39-40-41), and let x : [0, 1] → T ∗

R
n be the

corresponding Hamiltonian orbit. Let λ be the path of Lagrangian subspaces of T ∗
R

n × T ∗
R

n =
T ∗

R
2n defined by

λ(t) := graphDφH
t (x(0))C, t ∈ [0, 1],

where φH
t denotes the Hamiltonian flow and C is the anti-symplectic involution C(q, p) = (q,−p).

Let W = T(γ(0),γ(1))Q ∈ Gr(Rn × R
n). Then

νQ(γ) = dimλ(1) ∩ N∗W,

iQ(γ) = µ(λ, N∗W ) + 1
2 (dimQ − n) − 1

2νQ(γ).

This theorem is essentially due to Duistermaat, see Theorem 4.3 in [5]. However, in Duister-
maat’s formulation the Morse index of γ is related to an absolute Maslov-type index i(λ) of the
Lagrangian path λ (see Definition 2.3 in [5]). This choice makes the index formula more com-
plicated. The use of the relative Maslov index µ(λ, ·) introduced by Robbin and Salamon in [11]
simplifies such a formula. Rather than deducing Theorem 3.1 from Duistermaat’s statement, we
prefer to go over his proof, using the relative Maslov index µ instead of the absolute Maslov-type
index i.

Proof. Let c be a real number, chosen to be so large that the bilinear form d2
SL+c|q|2(γ) is

positive definite, hence a Hilbert product on W 1,2
W ([0, 1], Rn). We denote by E the bounded self-

adjoint operator on W 1,2
W ([0, 1], Rn) which represents the symmetric bilinear form d2

SL(γ) with
respect to such a Hilbert product. It is a compact perturbation of the identity, and iQ(γ) is the
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number of its negative eigenvalues, counted with multiplicity (see Lemma 1.1 in [5]), while νQ(γ)
is the dimension of its kernel. The eigenvalue equation E u = λu corresponds to a second order
Sturm-Liouville boundary value problem in R

n. Legendre duality shows that such a linear second
order problem is equivalent to the following first order linear Hamiltonian boundary value problem
on T ∗

R
n:

ξ′(t) = A(µ, t)ξ(t), (ξ(0), Cξ(1)) ∈ N∗W. (44)

Here

A(µ, t) :=

(

DqpH(t, x(t)) DppH(t, x(t))
−µcT − DqqH(t, x(t)) −DpqH(t, x(t))

)

,

where µ = λ/(1 − λ) and T : R
n → (Rn)∗ is the isomorphism induced by the Euclidean inner

product. The fact that d2
SL+c|q|2(γ) is positive definite implies that problem (44) has only the

zero solution when µ ≤ −1. Let Φ(µ, t) be the solution of

∂Φ

∂t
(µ, t) = A(µ, t)Φ(µ, t), Φ(µ, 0) = I.

When µ = 0, Φ(0, ·) is the differential of the Hamiltonian flow, so

λ(t) = graph Φ(0, t)C.

In particular, using also the fact that N∗W is invariant with respect to the involution C × C, we
find

νQ(γ) = dim kerE = dim
(

graphCΦ(0, 1)
)

∩ N∗W = dimλ(1) ∩ N∗W,

as claimed. The eigenvalue λ is negative if and only if µ belongs to the interval (−1, 0), so

iQ(γ) =
∑

−1<µ<0

dim
(

graphΦ(µ, 1)C
)

∩ N∗W, (45)

see equation (1.23) in [5]. By Proposition 4.1 in [5], the Lagrangian path

[−1, 0] 7→ L (T ∗
R

2n), µ 7→ graphΦ(µ, 1)C,

has non-trivial intersection with the Lagrangian subspace N∗W for finitely many µ ∈]− 1, 0], and
the corresponding crossing forms (see (1)) are positive definite. Then (45) and formula (2) for the
relative Maslov index in the case of regular crossings imply that if ǫ > 0 is so small that there are
no non-trivial intersections for µ ∈ [−ǫ, 0), there holds

iQ(γ) = µ(graphΦ(·, 1)C|[−1,−ǫ], N
∗W ), (46)

µ(graphΦ(·, 1)C|[−ǫ,0], N
∗W ) = 1

2 dim
(

graphΦ(0, 1)C
)

∩ N∗W = 1
2 dim νQ(γ). (47)

By considering the homotopy

[−1, 0] × [0, 1] → L (T ∗
R

2n), (µ, t) 7→ graphΦ(µ, t)C,

and by using the homotopy and concatenation properties of the relative Maslov index, we obtain
from (46) the identity

iQ(γ) = −µ(graphΦ(−1, ·)C|[0,1], N
∗W ) + µ(graphΦ(·, 0)C|[0,1], N

∗W )

+µ(graphΦ(0, ·)C|[0,1], N
∗W ) − µ(graphΦ(·, 1)C|[−ǫ,0], N

∗W ).
(48)

The path t 7→ graphΦ(−1, t)C appearing in the first term can intersect N∗W only for t = 0,
where it coincides with graphC = N∗∆, where ∆ = ∆Rn is the diagonal in R

n × R
n. By Lemma

4.2 in [5], the corresponding crossing form is non-degenerate and has Morse index equal to

dim τ∗(N∗W ∩ N∗∆),
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where τ∗ : T ∗
R

2n → R
2n is the standard projection. Since τ∗(N∗W ∩N∗∆) = W ∩∆, we deduce

that this crossing form has signature

dim N∗W ∩ N∗∆ − 2 dimW ∩ ∆ = dimW⊥ ∩ ∆⊥ − dim W ∩ ∆ = dim(W + ∆)⊥ − dim W ∩ ∆

= 2n − dim(W + ∆) − dim W ∩ ∆ = 2n − dim W − dim ∆ = n − dim W.

So by (2),

µ(graphΦ(−1, ·)C|[0,1], N
∗W ) =

1

2
(n − dim W ). (49)

Since graph Φ(µ, 0)C = graphC = N∗∆ does not depend on µ, the second term in (48) vanishes,

µ(graphΦ(·, 0)C|[0,1], N
∗W ) = 0. (50)

The third term in (48) is precisely

µ(graphΦ(0, ·)C|[0,1], N
∗W ) = µ(λ, N∗W ), (51)

and the last one is computed in (47). Formulas (47), (48), (49), (50), and (51) imply

iQ(γ) = µ(λ, N∗W ) +
1

2
(dimW − n) −

1

2
νQ(γ),

concluding the proof. 2

We conclude this section by reformulating the above result in terms of the Maslov index for
solutions of non-local conormal boundary value Hamiltonian problems introduced in section 2.

Corollary 3.2 Assume that the Hamiltonian H ∈ C∞([0, 1] × T ∗M) satisfies (35-36), and let
L ∈ C∞([0, 1] × TM) be its Fenchel dual Lagrangian. Let x : [0, 1] → T ∗M be a solution of the
non-local conormal boundary value Hamiltonian problem (11-23), and let γ = τ∗ ◦ x : [0, 1] → M
be the corresponding solution of (39-40-41). Then

νQ(x) = νQ(γ), µQ(x) = iQ(γ) +
1

2
νQ(x).

Remark 3.3 The Tonelli assumptions (35-36) are needed in order to have a globally defined
Lagrangian L. Since the Maslov and Morse indexes are local invariants, the above result holds
if we just assume the Legendre positivity condition, that is

DppH(t, q(t), p(t)) > 0 ∀t ∈ [0, 1],

along the Hamiltonian orbit x(t) = (q(t), p(t)).

4 The Floer complex

Let us fix a metric 〈·, ·〉 on M , with associated norm | · |. We denote by the same symbol the
induced metric on TM and on T ∗M . This metric determines an isometry TM → T ∗M and a
direct summand of the vertical tangent bundle T vT ∗M , the horizontal bundle ThT ∗M . It also
induces a preferred ω-compatible almost complex structure J on T ∗M , which in the splitting
TT ∗M = ThT ∗M ⊕ T vT ∗M takes the form

J =

(

0 I
−I 0

)

.

In order to have a well-defined Floer complex, we assume that M is compact, that the submanifold
Q of M × M is also compact, and that the smooth Hamiltonian H : [0, 1] × T ∗M → R satisfies
the following conditions:
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(H0) every solution x of the non-local boundary value Hamiltonian problem (11-23) is non-
degenerate, meaning that νQ(x) = 0;

(H1) there exist h0 > 0 and h1 ≥ 0 such that

DH(t, q, p)[η] − H(t, q, p) ≥ h0|p|
2 − h1,

for every (t, q, p) ∈ [0, 1] × T ∗M (η denotes the Liouville vector field);

(H2) there exists h2 ≥ 0 such that

|∇qH(t, q, p)| ≤ h2(1 + |p|2), |∇pH(t, q, p)| ≤ h2(1 + |p|),

for every (t, q, p) ∈ [0, 1] × T ∗M (∇q and ∇p denote the horizontal and the vertical compo-
nents of the gradient).

Condition (H0) holds for a generic choice of H, in basically every reasonable space. Since M
is compact, it is easy to show that conditions (H1) and (H2) do not depend on the choice of the
metric on M (it is important here that the exponent of |p| in the second inequality of (H2) is one
unit less than the corresponding exponent in the first inequality).

We denote by S Q(H) the set of solutions of (11-23), which by (H0) is at most countable. The
first variation of the Hamiltonian action functional

AH(x) :=

∫

x∗(θ − Hdt) =

∫ 1

0

(

θ(x′(t)) − H(t, x(t))
)

dt

on the space of free paths on T ∗M is

dAH(x)[ζ] =

∫ 1

0

(

ω(ζ, x′(t)) − dH(t, x)[ζ]
)

dt + θ(x(1))[ζ(1)] − θ(x(0))[ζ(0)], (52)

where ζ is a section of x∗(TT ∗M). Since the Liouville one-form θ × θ of T ∗M2 vanishes on the
conormal bundle of every submanifold of M2, the extremal curves of AH on the space of paths
satisfying (23) are precisely the elements of S Q(H). A first consequence of conditions (H0), (H1),
(H2) is that the set of solutions x ∈ S Q(H) with an upper bound on the action, AH(x) ≤ A, is
finite (see Lemma 1.10 in [3]).

Let us consider the Floer equation

∂su + J(u)
(

∂tu − XH(t, u)
)

= 0 (53)

where u : R× [0, 1] → T ∗M , and (s, t) are the coordinates on the strip R× [0, 1]. It is a nonlinear
first order elliptic PDE, a perturbation of order zero of the equation for J-holomorphic strips on
the almost-complex manifold (T ∗M,J). The solutions of (53) which do not depend on s are the
orbits of the Hamiltonian vector field XH . If u is a solution of (53), an integration by parts and
formula (52) imply the identity

∫ b

a

∫ 1

0

|∂su|
2 ds dt = AH(u(a, ·))−AH(u(b, ·))+

∫ b

a

(

θ(u(s, 1))[∂su(s, 1)]− θ(u(s, 0))[∂su(s, 0)]
)

ds.

In particular, if u satisfies also the non-local boundary condition

(u(s, 0),−u(s, 1)) ∈ N∗Q, ∀ s ∈ R, (54)

the fact that the Liouville form vanishes on conormal bundles implies that

∫ b

a

∫ 1

0

|∂su|
2 ds dt = AH(u(a, ·)) − AH(u(b, ·)). (55)
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Given x−, x+ ∈ S Q(H), we denote by M (x−, x+) the set of all solutions of (53-54) such that

lim
s→±∞

u(s, t) = x±(t), ∀t ∈ [0, 1].

By elliptic regularity, such solutions are smooth up to the boundary. Moreover, conditions (H0)
implies that the above convergence of u(s, t) to x±(t) is exponentially fast in s, uniformly with
respect to t. Furthermore, (55) implies that the elements u of M (x−, x+) satisfy the energy
identity

E(u) :=

∫ +∞

−∞

∫ 1

0

|∂su|
2 ds dt = AH(x−) − AH(x+). (56)

In particular, M (x−, x+) is empty whenever AH(x−) ≤ AH(x+) and x− 6= x+, and it consists of
the only element u(s, t) = x(t) when x− = x+ = x.

A standard transversality argument (see [8]) shows that we can perturb the Hamiltonian H
in order to ensure that the linear problem obtained by linearizing (53-54) along every solution in
M (x−, x+) has no non-zero solutions, for every pair x−, x+ ∈ S Q(H). The same task could also
be achieved by keeping H fixed and by perturbing the almost complex structure J . The Levi-
Civita almost complex structure J has some special features which turn out to be useful when
dealing with compactness questions for M (x−, x+), so we prefer to perturb the Hamiltonian. The
support and the size of this perturbation can be chosen in such a way to keep the set S Q(H) and
the linearization of (11) along its elements unaffected.

It follows that M (x−, x+) has the structure of a smooth manifold. Then Theorem 7.42 in
[12] implies that the dimension of M (x−, x+) equals the difference of the Maslov indices of the
Hamiltonian orbits x−, x+:

dim M (x−, x+) = µQ(x−) − µQ(x+).

The manifolds M (x−, x+) can be oriented in a way which is coherent with gluing. This fact
is true for more general Lagrangian intersection problems on symplectic manifolds (see [7] for
periodic orbits and [9] for Lagrangian intersections), but the special situation of conormal boundary
conditions on cotangent bundles allows simpler proofs (see section 1.4 in [3], where the meaning
of coherence is also explained; see also section 5.2 in [10] and section 5.9 in [4]).

By conditions (H1) and (H2), the solution spaces M(x−, x+) are pre-compact in the C∞
loc

topology. In fact by the energy identity (55), Lemma 1.12 in [3] implies that setting u = (q, p), p
has a uniform bound in W 1,2([s, s+1]×[0, 1]). From this fact, Theorem 1.14 in [3] produces an L∞

bound for the elements of M(x−, x+). A C1 bound is then a consequence of the fact that bubbling
off of J-holomorphic spheres cannot occur (because the symplectic form ω of T ∗M is exact), nor
can occur the bubbling off of J-holomorphic disks (because the Liouville form - a primitive of ω -
vanishes on conormal bundles). Finally, Ck bounds for all positive integers k follow from elliptic
bootstrap.

When µQ(x−) − µQ(x+) = 1, M (x−, x+) is an oriented one-dimensional manifold. Since the
translation of the s variables defines a free R-action on it, M (x−, x+) consists of lines. Com-
pactness and transversality imply that the number of these lines is finite. Denoting by [u]
the equivalence class of u in the compact zero-dimensional manifold M (x−, x+)/R, we define
ǫ([u]) ∈ {+1,−1} to be +1 if the R-action is orientation preserving on the connected component
of M (x−, x+) containing u, and −1 in the opposite case. The integer nF (x−, x+) is defined as

nF (x−, x+) :=
∑

[u]∈M (x−,x+)/R

ǫ([u]),

If k is an integer, we denote by FQ
k (H) be the free Abelian group generated by the elements

x ∈ S Q(H) with Maslov index µQ(x) = k. These groups need not be finitely generated. The
homomorphism

∂k : FQ
k (H) → FQ

k−1(H)
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is defined in terms of the generators by

∂kx− :=
∑

x+∈S (H)

µQ(x+)=k−1

nF (x−, x+) x+, ∀x− ∈ S
Q(H), µQ(x−) = k.

The above sum is finite because, as already observed, the set of elements of S Q(H) with an upper

action bound is finite. A standard gluing argument shows that ∂k−1 ◦ ∂k = 0, so {FQ
∗ (H), ∂∗} is

a complex of free Abelian groups, called the Floer complex of (T ∗M,Q,H, J). The homology of
such a complex is called the Floer homology of (T ∗M,Q,H, J):

HFQ
k (H,J) :=

ker(∂k : FQ
k (H) → FQ

k−1(H))

ran (∂k+1 : FQ
k+1(H) → FQ

k (H))
.

The Floer complex has an R-filtration defined by the action functional: if FQ,A
k (H) denotes the

subgroup of FQ
k (H) generated by the x ∈ S Q(H) such that AH(x) < A, the boundary operator

∂k maps FQ,A
k (H) into FQ,A

k−1 (H), so {FQ,A
∗ (H), ∂∗} is a subcomplex (which is finitely generated).

By changing the orientation data, we obtain isomorphic chain complexes. Moreover, a different
choice of the (small) perturbation of the original Hamiltonian or a different choice of the metric
on M - hence of the almost complex structure J - produces isomorphic chain complexes. There-
fore, if we do not assume transversality, the Floer complex of (T ∗M,Q,H) is well-defined up to
isomorphisms.

On the other hand, a different choice of the Hamiltonian (still satisfying (H0), (H1), (H2))
produces chain equivalent complexes. These facts can be proven by standard homotopy argument
in Floer theory, but the Hamiltonians to be joined have to be chosen close enough, in order to
guarantee compactness (see Theorems 1.12 and 1.13 in [3]).

Remark 4.1 Conditions (H1) and (H2) do not require H to be convex in p, not even for |p|
large. They are used to get compactness of both the set of Hamiltonian orbits below a certain
action and the set of solutions of the Floer equation connecting them. They could be replaced by
suitable convexity and super-linearity assumptions on H. This approach is taken in the context
of generalized Floer homology in [6]. Since this class has a non-empty intersection with the class
of Hamiltonians satisfying (H1) and (H2), the homotopy type of the Floer complex is the same in
both classes.

5 The Morse complex

In order to define the Morse complex of the Lagrangian action functional, we need the smooth
Lagrangian L : [0, 1] × TM → R to satisfy the following conditions:

(L1) there exists l0 > 0 such that
∇vvL(t, q, v) ≥ l0I

for every (t, q, v) ∈ [0, 1] × TM ;

(L2) there exists l1 ≥ 0 such that

|∇vvL(t, q, v)| ≤ l1, |∇qvL(t, q, v)| ≤ l1(1 + |v|), |∇qqL(t, q, v)| ≤ l1(1 + |v|2)

for every (t, q, v) ∈ [0, 1] × TM .

These conditions are expressed in terms of the Riemannian metric of M , but the compactness of
M easily implies that they do not depend on the choice of the metric. Again, it is important here
that every derivative with respect to v in (L2) lowers the exponent of |v| by one unit. Assumption
(L1) implies that L is strictly convex and grows at least quadratically in v, while (L2) implies that
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L grows at most quadratically in v. In particular, L satisfies the classical Tonelli assumptions.
As recalled in section 3, these assumptions imply the equivalence between the Euler-Lagrange
equation (39) associated to L and the Hamiltonian equation (11) associated to its Fenchel dual
H : [0, 1] × T ∗M → R. It is also easy to show that if L satisfies (L1) and (L2) then H satisfies
(H1) and (H2).

By the Legendre transform, the elements x of S Q(H) are in one-to-one correspondence with
the solutions γ of (39) satisfying the boundary conditions (40) and (41). Let S Q(L) denote the
set of these M -valued curves. By (L2), the Lagrangian action functional SL is twice continuously
differentiable on the Hilbert manifold W 1,2

Q (]0, 1[,M) consisting of the absolutely continuous curves
γ : [0, 1] → M whose derivative is square integrable and such that (γ(0), γ(1)) ∈ Q (see e.g.
Appendix A in [1]). The elements of S Q(L) are precisely the critical points of SL on such a
manifold, and condition (H0) is equivalent to:

(L0) all the critical points γ ∈ S Q(L) of SL on W 1,2
Q (]0, 1[,M) are non-degenerate,

meaning that the bounded self-adjoint operator on TγW 1,2
Q (]0, 1[,M) representing the second dif-

ferential of SL at γ with respect to a W 1,2 inner product is an isomorphism. Under this assump-
tion, Corollary 3.2 implies that the Morse index iQ(γ) of γ ∈ S Q(L) as a critical point of SL on
W 1,2

Q (]0, 1[,M) coincides with the Maslov index µQ(x) of the corresponding element x ∈ S Q(H).
By (L1), L is bounded from below and so is the action functional SL. The metric of the compact

manifold M induces a complete Riemannian structure on the Hilbert manifold W 1,2
Q (]0, 1[,M),

namely

〈〈ξ, ζ〉〉 :=

∫ 1

0

(

〈∇tξ,∇tζ〉γ(t) + 〈ξ, ζ〉γ(t)

)

dt, ∀ γ ∈ W 1,2
Q (]0, 1[,M), ∀ξ, ζ ∈ TγW 1,2

Q (]0, 1[,M),

where ∇t denotes the Levi-Civita covariant derivative along γ. Conditions (L1) and (L2) imply
that SL satisfies the Palais-Smale condition on the Riemannian manifold W 1,2

Q (]0, 1[,M), that is

every sequence (γh) ⊂ W 1,2
Q (]0, 1[,M) such that SL(γh) is bounded and ‖∇SL(γh)‖ is infinitesimal

has a subsequence which converges in the W 1,2 topology (see e.g. Appendix A in [1]).
Therefore, the functional SL is twice continuously differentiable, bounded from below, has non-

degenerate critical points with finite Morse index, and satisfies the Palais-Smale condition on the
complete Riemannian manifold W 1,2

Q (]0, 1[,M). Under these assumptions, the Morse complex of

SL on W 1,2
Q (]0, 1[,M) is well-defined (up to chain isomorphisms) and its homology is isomorphic

to the singular homology of W 1,2
Q (]0, 1[,M). The details of the construction are contained in [2].

Here we just state the results and fix the notation.
Let MQ

k (SL) be the free Abelian group generated by the elements γ of S Q(L) of Morse index

iQ(γ) = k. Up to perturbing the Riemannian metric of W 1,2
Q (]0, 1[,M), the unstable and stable

manifolds Wu(γ−) and W s(γ+) of γ− and γ+ with respect to the negative gradient flow of SL on
W 1,2

Q (]0, 1[,M) have transverse intersections of dimension iQ(γ−)−iQ(γ+), for every pair of critical

points γ−, γ+. An arbitrary choice of an orientation for the (finite-dimensional) unstable manifold
of each critical point induces an orientation of all these intersections. When iQ(γ−)− iQ(γ+) = 1,
such an intersection consists of finitely many oriented lines. The integer nM (γ−, γ+) is defined to
be the number of those lines where the orientation agrees with the direction of the negative gradient
flow minus the number of the other lines. Such integers are the coefficients of the homomorphisms

∂k : MQ
k (SL) → MQ

k−1(SL), ∂kγ− =
∑

γ+∈S
Q(L)

iQ(γ+)=k−1

nM (γ−, γ+) γ+,

defined in terms of the generators γ− ∈ S Q(L), iQ(γ−) = k. This sequence of homomorphisms
can be identified with the boundary operator associated to a cellular filtration of W 1,2

Q (]0, 1[,M)

induced by the negative gradient flow of SL. Therefore, {MQ
∗ (SL), ∂∗} is a chain complex of free

Abelian groups, called the Morse complex of SL on W 1,2
Q (]0, 1[,M), and its homology is isomorphic
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to the singular homology of W 1,2
Q (]0, 1[,M). Changing the (complete) Riemannian metric on

W 1,2
Q (]0, 1[,M) produces a chain isomorphic Morse complex. The Morse complex is filtered by

the action level, and the homology of the subcomplex generated by all elements γ ∈ S Q(L) with
SL(γ) < A is isomorphic to the singular homology of the sublevel

{

γ ∈ W 1,2
Q (]0, 1[,M) | SL(γ) < A

}

.

The embedding of W 1,2
Q (]0, 1[,M) into the space CQ([0, 1],M) of continuous curves γ : [0, 1] → M

such that (γ(0), γ(1)) ∈ Q is a homotopy equivalence. Therefore, the homology of the above Morse
complex is isomorphic to the singular homology of the path space CQ([0, 1],M).

6 The isomorphism between the Morse and the Floer com-

plex

We are now ready to state and prove the main result of this paper. Here M is a compact manifold
and Q is a compact submanifold of M × M .

Theorem 6.1 Let L ∈ C∞([0, 1] × TM) be a time-dependent Lagrangian satisfying conditions
(L0), (L1) and (L2). Let H ∈ C∞([0, 1] × T ∗M) be its Fenchel-dual Hamiltonian. Then there is
a chain complex isomorphism

Θ : {MQ
∗ (SL), ∂∗} −→ {FQ

∗ (H), ∂∗}

uniquely determined up to chain homotopy, having the form

Θγ =
∑

x∈S
Q(H)

µQ(x)=iQ(γ)

nΘ(γ, x) x, ∀γ ∈ S
Q(L),

where nΘ(γ, , x) = 0 if SL(γ) ≤ AH(x), unless γ and x correspond to the same solution, in which
case nΘ(γ, , x) = ±1. In particular, Θ respects the action filtrations of the Morse and the Floer
complexes.

Proof. Let γ ∈ S Q(L) and x ∈ S Q(H). Let M (γ, x) be the space of all T ∗M -valued maps
on the half-strip [0,+∞[×[0, 1] solving the Floer equation (53) with the asymptotic condition

lim
s→+∞

u(s, t) = x(t), (57)

and the boundary conditions

(u(s, 0),−u(s, 1)) ∈ N∗Q, ∀s ≥ 0, (58)

τ∗ ◦ u(0, ·) ∈ Wu(γ), (59)

where τ∗ : T ∗M → M is the standard projection and Wu(γ) denotes the unstable manifold of γ
with respect to the negative gradient flow of SL on W 1,2

Q (]0, 1[,M). By elliptic regularity, these
maps are smooth on ]0,+∞[×[0, 1] and continuous on [0, 1] × [0,+∞[ (actually, the fact that
τ∗ ◦ u(0, ·) is in W 1,2(]0, 1[) implies that u ∈ W 3/2,2(]0, S[×]0, 1[) for every S > 0, in particular u
is Hölder continuous up to the boundary).

The proof of the energy estimate for the elements of M (γ, x) is based on the following imme-
diate consequence of the Fenchel formula (37) and of (38):

Lemma 6.2 If x = (q, p) : [0, 1] → T ∗M is continuous, with q of class W 1,2, then

AH(x) ≤ SL(q),

the equality holding if and only if the curves (q, q′) and (q, p) are related by the Legendre transform,
that is (t, q(t), q′(t)) = L(t, q(t), q′(t)) for every t ∈ [0, 1]. In particular, the Hamiltonian and the
Lagrangian action coincide on corresponding solutions of the two systems.
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In fact, if u ∈ M (γ, x) the above Lemma together with (55) (which holds because of (58)),
(57), and (59) imply that

E(u) :=

∫ +∞

0

∫ 1

0

|∂su|
2 ds dt = AH(u(0, ·)) − AH(x)

≤ SL(τ∗ ◦ u(0, ·)) − AH(x) ≤ SL(γ) − AH(x).

(60)

This energy estimate allows to prove that M (γ, x) is pre-compact in C∞
loc, as in section 1.5 of [3].

It also implies that:

(E1) M (γ, x) is empty if either SL(γ) < AH(x), or SL(γ) = AH(x) but γ and x do not correspond
to the same solution;

(E2) M (γ, x) consists of the only element u(s, t) = x(t) if γ and x correspond to the same solution.

The computation of the dimension of M (γ, x) is based on the following linear result, which is
a particular case of Theorem 5.24 in [4]:

Proposition 6.3 Let A : [0,+∞] × [0, 1] → Ls(R
2n) be a continuous map into the space of

symmetric linear endomorphisms of R
2n. Let V and W be linear subspaces of R

n and R
n × R

n,
respectively. We assume that W and V × V are partially orthogonal, meaning that their quotients
by the common intersection W ∩ (V × V ) are orthogonal in the quotient space. We assume that
the path G of symplectic automorphisms of R

2n defined by

G′(t) = J0A(+∞, t)G(t), G(0) = I, where J0 =

(

0 I
−I 0

)

,

satisfies
graphG(1)C ∩ N∗W = (0).

Then for every p ∈]1,+∞[ the bounded linear operator

v 7→ ∂sv + J0∂tv + A(s, t)v

from the Banach space
{

v ∈ W 1,p(]0,+∞[×]0, 1[, R2n) | v(0, t) ∈ N∗V ∀t ∈ [0, 1], (v(s, 0),−v(s, 1)) ∈ N∗W ∀s ≥ 0
}

to the Banach space Lp(]0,+∞[×]0, 1[), R2n) is Fredholm of index

n

2
− µ(graphG(·)C,N∗W ) −

1

2
(dimW + 2 dimV − 2 dimW ∩ (V × V )). (61)

If we linearize the problem given by (53-57-58) and (59) replaced by the condition that τ∗ ◦
u(0, ·) should be a given curve on M , we obtain an operator of the kind introduced in the above
Proposition, where V = (0), dimW = dimQ, and G is the linearization of the Hamiltonian flow
along x. By Proposition 2.3,

µ(graphG(·)C,N∗W ) = µQ(x) −
1

2
(dimQ − n),

so by (61) this operator has index −µQ(x). Since (59) requires that the curve τ∗ ◦ u(0, )̇ varies
within a manifold of dimension iQ(γ), the linearization of the full problem (53-57-58-59) produces
an operator of index iQ(γ)− µQ(x). By perturbing the Lagrangian L (hence the Hamiltonian H)
and the metric on W 1,2

Q (]0, 1[,M), we may assume that this operator is onto, for every u ∈ M (γ, x),

and every γ ∈ S Q(L), x ∈ S Q(H), except for the case in which γ and x correspond to the same
solution. In the latter case, M (γ, x) consists of the only map u(s, t) = x(t), see (E2), and the
corresponding linear operator is not affected by the above perturbations. However, in this case
this operator is automatically onto. The proof of this fact is based on the following consequence
of Lemma 6.2, and is analogous to the proof of Proposition 3.7 in [3].
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Lemma 6.4 If x ∈ S Q(H) and γ = τ∗ ◦ x, then

d2
AH(x)[ξ, ξ] ≤ d2

SL(γ)[Dτ∗(x)[ξ], Dτ∗(x)[ξ]],

for every section ξ of x∗(TT ∗M).

We conclude that whenever M (γ, x) is non-empty it is a manifold of dimension

dim M (γ, x) = iQ(γ) − µQ(x).

See section 3.1 in [3] for more details on the arguments just sketched
When iQ(γ) = µQ(x), compactness and transversality imply that M (γ, x) is a finite set.

Each of its points carries an orientation-sign ±1, as explained in section 3.2 of [3]. The sum
of these contributions defines the integer nΘ(γ, x). A standard gluing argument shows that the
homomorphism

Θ : {MQ
∗ (SL), ∂∗} −→ {FQ

∗ (H), ∂∗}, Θγ =
∑

x∈S
Q(H)

µQ(x)=iQ(γ)

nΘ(γ, x) x, ∀γ ∈ S
Q(L),

is a chain map. By (E1) such a chain map preserves the action filtration. In other words, if we
order the elements of S Q(L) and S Q(H) - that is the generators of the Morse and the Floer
complex - by increasing action, the homomorphism Θ is upper-triangular with respect to these
ordered sets of generators. Moreover, by (E2) the diagonal elements of Θ are ±1. These facts
imply that Θ is an isomorphism and concludes the proof. 2

Corollary 6.5 Let H : [0, 1] × T ∗M → R be a Hamiltonian satisfying (H0), (H1), (H2). Then
the homology of the Floer complex of (T ∗M,Q,H, J) is isomorphic to the singular homology of the
path space CQ([0, 1],M).
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