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Abstract. In this paper we consider stationary Navier-Stokes equations in a bounded

domain with a boundary, which has several connected components. The velocity vector is given

on the boundary, where the fluxes differ from zero on its components. In general case, the

solvability of this problem is an open question up to now. We provide a survey of previous

results, which deal with partial versions of the problem. We construct an a priori estimate of

the Dirichlet integral for velocity vector in the case, when the flow has an axis of symmetry and

a plane of symmetry perpendicular to it, moreover this plane intersects each component of the

boundary. Having available this estimate, we prove the existence theorem for axially symmetric

problem in a domain with a multiply connected boundary. We consider also the problem in a

curvilinear ring and formulate a conditional result concerning its solvability.

1. Introduction

Let Ω ⊂ R
n (n = 2, 3) is a bounded domain with smooth boundary ∂Ω consisting from

m disjoint components Σ1, . . . ,Σm. Stationary problem for the Navier-Stokes equations
in zero external force field

v · ∇v = −∇p+ ν∆v, ∇ · v = 0, x ∈ Ω, (1.1)

v = ai(x), x ∈ Σi (i = 1, . . . ,m) (1.2)

is considered. Let introduce values

qi =

∫

Σi

ni · aidΣi (i = 1, . . . ,m) (1.3)

where ni is a unit vector of an exterior normal to the surface Σi . In view of the continuity
equation,

qi + . . .+ qm = 0. (1.4)

Let there is fulfilled a stronger condition

qi = 0 (i = 1, . . . ,m) (1.5)

instead of (1.4). In this case, under corresponding smoothness conditions, the global
existence theorem for the problem (1.1), (1.2) takes place (J.Leray, [1]). The proof is
based on finiteness of the Dirichlet integral

I =

∫

Ω

∇v : ∇v dx (1.6)

for all possible solutions of problem (1.1), (1.2), (1.5). Leray demonstration used argument
by contradiction and did not contain an a priori estimate of I in terms of problem data.
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E.Hopf [2] first obtained an effective estimate of Dirichlet integral. His construction is
based on the following lemma

Lemma 1. Assume that Σi ∈ C2+α, 0 < α < 1, and ai ∈ C2+α(Σi), i = 1, . . . ,m. If
condition (1.5) is satisfied, then for arbitrary ε > 0 there exists a solenoidal continuation
bi(x) ∈ C2+α(Ω̄) of vector ai(x) into domain Ω such that for any u(x) ∈ H(Ω)

∣

∣

∣

∫

Ω

bi · u · ∇u dx
∣

∣

∣
≤ ε||∇u||2L2

, i = 1, . . . ,m. (1.7)

Here H(Ω) is the functional space introduced by O.A.Ladyzhenskaya [3]. Everywhere
below the smoothness conditions formulated in Lemma 1 are assumed to be fulfilled.
A.Takeshita proved [4] that the condition (1.5) is not only sufficient but also a necessary
one for possibility of continuation of vector field ai so that inequality (1.7) is satisfied for
any ε > 0.

We will consider problem (1.1), (1.2) under general outflow conditions. It means that
qi 6= 0 at least for one i ∈ 1, . . . ,m. It should be noted that violation of condition (1.5)
does not lead to principal difficulties for the non-stationary problem for the Navier-Stokes
equations [3]. As for stationary one, there are no general results about its solvability in
case qi 6= 0 up to now. On the other hand, there are a number of papers, in which the
existence theorems are proved under some additional conditions on the problem data.
Next section is devoted to description of results obtained in this direction.

2. Survey of Previous Results

As shown by R.Finn [5], the existence theorem for the problem (1.1), (1.2) remains
valid if one assumes that |qi| < c∗ν, i = 1, . . . ,m, and c∗ is small enough. G.P.Galdi [6, 7]
has given the bound c∗ in terms of imbedding constants depending on the domain Ω and
properties of solutions of non-uniform divergence equation. The constant was computed
explicitly in the flow in an annulus. For special cases if domain Ω is confined by concentric
spheres (or circles as n = 2 ) with radii R1 and R2 > R1, W.Borchers and K.Pileckas [8]
have obtained effective estimates of admissible |qi| bounds in terms of R1, R2 and ν.

C.J.Amick [9] showed how to relax condition (1.5) without the smallness assumption
on |qi| quantities. He studied two-dimensional flow under certain symmetry assumption.
Following [9], let us introduce

Definition 1. A bounded domain Ω ⊂ R
2 is said to be admissible if (a) ∂Ω is of

class C2+α, (b) ∂Ω consists of m ≥ 2 components Σi, (c) Ω is symmetric about the line
{x2 = 0} and (d) each component Σi intersects the line {x2 = 0}.

A function h = (h1, h2) mapping Ω or ∂Ω into R
2 is said to be symmetric about the

line {x2 = 0} if h1 is an even function of x2 while h2 is an odd function of x2.
Definition 2. A vector a is said to be admissible data if (a) a ∈ C2+α(∂Ω → R

2) and
(b) a is symmetric about the line {x2 = 0}.

It is well known that the Navier-Stokes equations are invariant with respect to reflec-
tion about the coordinate axis. This property allows us to seek symmetric solutions (v, p)
of this system, with v being symmetric about {x2 = 0} and the corresponding pressure p
being an even function of x2 .

Theorem 1 [9]. Let Ω ⊂ R
2 be an admissible domain and let (a1, . . . , am) be admissible

data. Then for every ν > 0 there exists a solution (v, p) ∈ C2+α(Ω̄ → R
2)×C1+α(Ω̄ → R)

of (1.1), (1.2). The function v is symmetric about {x2 = 0} and the pressure p is an even
function of x2.
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Similarly to Leray’s basic work [1], Amick’s result was obtained via the proof by
contradiction. The next important step was done by H.Fujita [10], who presented a
constructive proof of an existence of symmetric solutions via an a priori estimate of
Dirichlet integral (1.6). Fujita construction is based on the concept of a virtual drain
introduced by him.

Definition 3. Vector field ci(x) is said to be a virtual drain if (a) ci ∈ C2+α(Ω̄) is
solenoidal and parallel to the x1 - axis, (b) the outflow of ci from each Σi coincides with
that of ai ; namely,

∫

Σ1

ni · ci dΣi =

∫

Σ1

ni · ai dΣi (i = 1, . . . ,m) (2.1)

and (c) ci contains a positive free parameter κ, and by choosing κ sufficiently small, we
can make sup(|x2||ci1(x)|) arbitrarily small.

Another method for obtaining an a priori estimate of Dirichlet integral under con-
ditions of Theorem 1 was proposed by H. Morimoto [11]. Her construction exploits the
stream function ψ of plane flow defined by relations

v1 =
∂ψ

∂x2

, v2 = −
∂ψ

∂x1

. (2.2)

H. Fujita and H. Morimoto [12] studied problem (1.1), (1.2) in a domain Ω with
two components of the boundary Σ1 and Σ2. Functions ai in (1.2) were taken in the
form µ∇ϕ + ãi where µ ∈ R, ϕ is a fundamental solution of the Laplace operator and
ãi (i = 1, 2) satisfy the condition (1.5). Authors proved that there is a countable subset
N of R such that if µ /∈ N and ãi are small (in a suitable norm), then problem (1.1), (1.2)
has a weak solution. Moreover, if Ω ∈ R

2 is an annulus, then N is empty.
In the conclusion of this section, we mention results of papers [13-15] dedicated to

flows in an annular domain Ω = {x ∈ R
2; R1 < |x| < R2} under boundary conditions

with non-vanishing outflow. H.Morimoto [13] considered this problem in the case

ai = µR−1
i er + bieθ on Σi = {x ∈ R

2; |x| = Ri}, i = 1, 2 (2.3)

where µ, b1, b2 are constants and er, eθ are the unit vectors in polar coordinates {r, θ}.
Problem (1.1), (2.3) has an exact rotationally symmetric solution, in which v = v(r), p =
p(r) are given by explicit formulae. As µ = 0, this solution describes the well known
Couette flow. In [13] it was proved that if |µ|, |b1 − b2| are sufficiently small and µ 6= −2ν
then the solution of problem (1.1), (2.3) is unique. The uniqueness theorem is valid also
in case µ = −2ν and |µ|, |b1|, |b2| are sufficiently small. Besides, for sufficiently large ν,
the above exact solutions are exponentially stable.

Let now the boundary condition has the form

ai = {µR−1
i +ϕi(θ)}er+{ωiRi+ψi(θ)}eθ on Σi = {x ∈ R

2; |x| = Ri}, i = 1, 2 (2.4)

where ϕi(θ), ψi(θ) are smooth functions of θ with a zero mean value. Problem (1.1), (2.4)
was studied by H.Morimoto and S.Ukai [14]. The main result of the paper [14] is

Theorem 2. Suppose the inequality

|ω1 − ω2|
R2

1R
2
2

R2
2 −R2

1

(

log
R2

R1

)2

< 2ν (2.5)
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holds. Then there exists at most discrete countable set M such that for each µ ∈ R\M the
boundary problem (1.1), (2.4) has a solution for sufficiently small ϕi(θ), ψi(θ) (i = 1, 2).

We note that under condition of Theorem 2 the quantity |µ| can be large in comparison
with ν. It is interesting to distinguish a class of conditions (2.4) as the set M is empty.
H.Fujita, H.Morimoto and H.Okamoto [15] established that this is true as ω1 = ω2; in
this case, inequality (2.5) is fulfilled automatically. The special case b1 = b2 = 0 in (2.3)
corresponds to a radial flow with velocity field vr = µr−1, vθ = 0. As it is shown in
[15], the radial flow in an annulus is stable to perturbation of steady state, whatever
the Reynolds number µ/ν or the aspect ratio R1/R2 are. At the same time, the precise
calculations carried out in [15] provide the numerical evidence that Hopf’s bifurcations
occur for the case b1R1 = b2R2. In this case, the solution of (1.1), (2.3) problem is
self-similar; corresponding velocity field is vr = µr−1, vθ = λr−1 where λ = b1R1.

3. Axially symmetric flows

In this section we consider problem (1.1), (1.2) in the case, when domain Ω ∈ R
3 has

an axis of symmetry and a plane of symmetry, which is perpendicular to this axis.
Definition 4. A bounded domain Ω ∈ R

3 is said to be admissible is (a) ∂Ω is of class
C2+α, (b) ∂Ω consists of m ≥ 2 simply connected components Σi, (c) Ω has the axis of
symmetry {x1 = x2 = 0} and the plane of symmetry {x3 = 0}, and (d) each component
Σi intersects the plane {x3 = 0}.

Let us introduce cylindrical coordinates r = (x2
1 + x2

2)
1/2, θ = arctg(x2/x1), z = x3

and denote as vr, vθ, vz projections of vector v on the axis r, θ, z.
A function h = (hr, hθ, hz) mapping Ω or ∂Ω is said to be axially symmetric if hθ = 0

while hr and hz do not depend on θ. A function h = (hr, 0, hz) mapping Ω or ∂Ω is said
to be symmetric about the planes {z = 0} if hr is an even function of z while hz is an odd
function of z.

Definition 5. A vector a is said to be admissible data if (a) a ∈ C2+α(∂Ω → R
3) and

(b) a is axially symmetric and symmetric about the plane {z = 0}.
Our purpose is to prove the existence theorem for problem (1.1), (1.2) in the class of

axially symmetric flows. It means that the vector v = (vr, 0, vz) is axially symmetric and
symmetric about plane {z = 0}, moreover the corresponding pressure p does not depend
on θ. In consequence (1.1), functions vr, vz and p satisfy the following system:

vr
∂vr

∂r
+ vz

∂vr

∂z
= −

∂p

∂r
+ v

(

∂2vr

∂r2
+

1

r

∂vr

∂r
+
∂2vr

∂z2
−
vr

r2

)

,

vr
∂vz

∂r
+ vz

∂vz

∂z
= −

∂p

∂z
+ v

(

∂2vz

∂r2
+

1

r

∂vz

∂r
+
∂2vz

∂z2

)

, (3.1)

1

r

∂(rvr)

∂r
+
∂vz

∂z
= 0.

Lemma 2. Let Ω → R
3 be an admissible domain and let(a1, . . . , am) be admissible data.

Then the Dirichlet integral (1.6) is finite for all possible solutions of problem (1.1), (1.2).
Proof. It is based on a special construction of the virtual drain, which generalizes the

Fujita construction [9].
According to conditions of Lemma 2, boundary of domain Ω consists of m ≥ 2 dis-

joint smooth simply connected components Σ1, . . . ,Σm. We assume that surface Σm

encloses the other components Σ1, . . . ,Σm−1. Each of surfaces Σ1, . . . ,Σm−1 is a surface
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of revolution. Let us denote as S1, . . . , Sm plane domains, which are meridian sections of
Σ1, . . . ,Σm−1. Further, we notice that the ray r > 0 in semi-plane {r, z : r > 0, z ∈ R}
and each Si intersects orthogonally at two different points Pi = (yi, 0) and P ∗

i = (y∗i , 0)
of which we can assume that yi > y∗i (i = 1, . . . ,m). Moreover, we may assume that
ym > ym−1 > . . . > y1 > 0.

Now we define the domain Ω+ = {r, θ, z : r > 0, z > 0, (r, θ, z) ∈ Ω}. In other words,
Ω+ is ”a half of Ω ”. It should mark that the domain Ω+ has a simply connected boundary
∂Ω+, as domain Ω is admissible. Let designate Cδ = {r, θ, z : r ∈ R

+, 0 < z < δ}. Then
we choose a small positive number δ so that the domain Ω+ ∩ Cδ consists of m disjoint
components Ki. Each of domains Ki will be support of the i-th component of the virtual
drain.

Let us consider domain K1. Its boundary consists of two basements, belonging to
planes z = 0, z = δ, and two lateral parts Ll

1 and Lr
1, which are surfaces of revolution.

Lower basement of K1 is a ring y1 < r < y∗2, z = 0. First virtual drain ci(x) we take in
the form

c1 = −
1

4πr
q1(η(z), 0, 0), (3.2)

where η(t) = η(t; δ, κ) is the Hopf-type cutting function [16] and κ ∈ (0, 1/2) is a free
parameter. Here we use a small modification of function η(t) construction given in [9],
namely:

η(t) =
1

γκδ
ζk(

1

δ
), ζκ ∈ C∞

0 (R), ζκ(t) ≥ 0 (∀t ≥ 0), ζκ(−t) = ζκ(t), ζκ(t) = 0 (t ≥ 1),

ζκ(t) ≤
1

t
(0 < t <∞), ζκ(t) =

1

t
(κ ≤ t ≤

1

2
), γk =

1
∫

−1

ζk(t)t dt, γk ≥ 2

1/2
∫

k

dt

t
→ ∞ (κ→ 0),

∞
∫

−∞

η(t)t dt =

δ
∫

−δ

η(t)t dt = 1. (3.3)

If m = 2, the structure of a virtual drain is completed. In fact, vector ci(x) is solenoidal
and smooth. In view of (3.2), (3.3), the equality

∫

Ll

2

n1 · c1 dL
l
2 =

1

2
q1 (3.4)

holds (we remind that n1 is unit vector of an exterior normal to the surface Σ1). Taking
into account (3.4) and extending function c1(x) on negative values of z as an even function
of these variables, we guarantee fulfillment of equality (2.1) as i = 1. At last, choosing
parameter small, we can provide sup(|z||c1(z)|), x ∈ K̄1, k = 1, 2, arbitrary small. In
view of (1.4), q2 = −q1 if m = 2 . Replacing y∗2 by y2 in the case m = 2 and identifying
c2 with c1 , we arrive to relation

∫

Lr

2

n2 · c2 dL
r
2 =

1

2
q2,

which ensures (2.1) for i = 2.
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Let now m = 3. In this case, we consider domain K2 connecting surfaces Σ2 and Σ3.
We define as before function c1(x) by formula (3.2). Further, let denote as Ll

2 and Lr
2 the

left and right lateral sides of surface ∂K2, which intersects orthogonally the plane z = 0,
and set

c2 = −
1

4πr
(q1 + q2)(η(z), 0, 0).

By (3.4), the liquid surface Ll
1 equals to q1/2 , hence the flux through surface Lr

2 ⊂ Σ2

is −q1/2. At the same time, the flux through surface Ll
2 ⊂ Σ2 is (q1 + q2)/2. It implies

equality (2.1) for i = 2. Thus, second component of virtual drain in the case m = 3 is
constructed. The third component is defined by relation

c3 =
1

4πr
q3(η(z), 0, 0) (3.5)

in an annular layer K2 and by continuation of function given by (3.5) on negative values
of z. Relation (2.1) for i = 3 will be satisfied on account of equality q1 + q2 + q3 = 0 (1.4).
When m > 3 , we continue described procedure until its completion for m− 1 steps.

Due to the symmetry condition, this is sufficient to estimate the following integral

I+ =

∫

Ω+

∇v : ∇v dx (3.6)

to prove Lemma 2 since I = 2I+ where I is Dirichlet integral (1.6). To this end, we
represent v(x) in the form

v = u +
m

∑

i=1

(bi + ci). (3.7)

Here u ∈ H(Ω), {ci}, is the set of virtual drains, each of the solenoidal vector-functions
bi (i = 1, . . . ,m) satisfies zero flux condition

∫

Σi

ni · bi dΣi = 0 (3.8)

and
ai(x) = bi(x) + ci(x), x ∈ Σi, i = 1, . . . ,m. (3.9)

Moreover, the support of each function bi(x) is a narrow strip near the surface Σi. Func-
tions ci (virtual drains) are determined previously. Equality (3.9) means that vector
bi + ci is a solenoidal continuation of vector ai into domain Ω. As far as (a1, . . . , am)
are admissible data and vectors ci (i = 1, . . . ,m) satisfy the symmetry condition we can
consider that vectors bi (i = 1, . . . ,m) satisfy the same condition too. Then (3.7) implies
that vector u is symmetric also. There is a freedom in the choice of these vectors. In
view of (3.8) we can apply Lemma 1 and realize the construction of functions bi so that
inequalities (1.7) hold with a positive constant ε, which will be chosen lower.

To provide symmetry properties of vectors bi, we define their components in the form

bi,r = −
1

r

∂(η(n)Ψi)

∂z
, bi,z = −

1

r

∂(η(n)Ψi)

∂r
, (i = 1, . . . ,m).

Here n is the distance of current point (r, z) ∈ Ω from ∂Ω, η(n) is the cutting function
defined by formulas (3.3) and Ψi(r, z) is the stream function of an axially symmetric
solenoidal vector field admitted given boundary values bi = ai − ci on the surface Σi.
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For any smooth axially symmetric vector h we can define its strain tensor D = D(h)
with elements

Drr =
∂hr

∂r
, Dθθ =

hr

r
, Dzz =

∂hz

∂z
, Drz =

1

2

(

∂hr

∂z
+
∂hz

∂r

)

, Drθ = Dθz = 0.

If function h is symmetric about the planes {z = 0} then the following equalities take
place:

hz = 0, Drz = 0, (r, z) ∈ ∂Ω+ ∩ {z = 0}. (3.10)

Next step of our consideration is obtaining an integral relation for the sought vector u.
To get it, we substitute representation (3.7) into system (3.1), multiply its first equation
by u and integrate result over domain Ω+. We note that each of functions in right side
of (3.7) satisfies conditions (3.10). Having applied this conditions and well-known Green
identity for the Stokes operator [3], we come after simple calculations to the required
relation:

2ν

∫

Ω+

D(u) : D(u) dx−
m

∑

i=1

∫

Ω+

bi · u · ∇u dx−

m
∑

i=1

∫

Ω+

ci · u · ∇u dx =

= −2ν
m

∑

i=1

∫

Ω+

D(bi + ci) : D(u) dx+
m

∑

i=1

∫

Ω+

u · (bi + ci) · ∇(bi + ci) dx. (3.11)

Since function u is symmetric, the following equalities are valid:
∫

Ω

∇u : ∇u dx = 2

∫

Ω+

∇u : ∇u dx,

∫

Ω

D(u) : D(u) dx = 2

∫

Ω+

D(u) : D(u) dx,

∫

Ω

|u2| dx = 2

∫

Ω+

|u|2 dx. (3.12)

For any u ∈ H(Ω) , the Korn inequality [7, 17]
∫

Ω

D(u) : D(u) dx ≥M1

∫

Ω

∇u : ∇u dx, (3.13)

and the Poincare inequality [3, 7]
∫

Ω

|u2| dx ≤M2

∫

Ω

∇u : ∇u dx (3.14)

are true with positive constants Mk = Mk(Ω), k = 1, 2. Relations (3.12) allow us to
replace the integration domain Ω in inequalities (3.13), (3.14) by domain Ω+. This gives
desired estimates of right side in relation (3.11) (upper estimate) and first term of its
left side (lower estimate). To estimate second term in left side of (3.11) above, we apply
Lemma 1 with ε = νM1/2m that gives

∣

∣

∣

∫

Ω+

bi · u · ∇u dx
∣

∣

∣
≤
νM1

2m

∫

Ω+

∇u : ∇u dx, i = 1, . . . ,m. (3.15)

The most crucial point of our examination is derivation of the same estimate for third
term in left side of (3.11),

∣

∣

∣

∫

Ω+

ci · u · ∇u dx
∣

∣

∣
≤
νM1

2m

∫

Ω+

∇u : ∇u dx, i = 1, . . . ,m. (3.16)
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Integral in left side of (3.16) can be written as

∫

Ω+

ci · u · ∇u dx = J1 + J2, (3.17)

where

J1 = 2π

∫

Ki

ci1ur
∂ur

∂x1

rdrdz,

J2 = 2π

∫

Ki

ci1uz
∂ur

∂z
rdrdz.

Here we took into account that vector ci has only nonzero component ci1 and its support
is Ki. Evaluating integrals J2, we note that

sup
t

|t|η(t) → 0 as κ→ 0 (3.18)

as follows from (3.3). Next, component uz of the symmetric vector u vanishes on the
plane z = 0 in the sense of trace. Hence, we can apply the Hardy-type inequality [3, 7]

∫

Ki

u2
z

z2
dx ≤ 4

∫

Ki

|∇uz|
2 dx. (3.19)

Remembering the expressions for virtual drains (3.1), (3.4) and similar to them, we obtain
inequality

|J2| ≤
1

8π
(m− 1)q∗

∫

Ki

sup
Ki

(zη(z))
|uz|

z

∣

∣

∣

∂ur

∂z

∣

∣

∣
dx,

where q∗ = max|qi|, i = 1, . . . ,m. Choosing sufficiently small κ, we arrive from this
inequality and (3.18), (3.19) to the desired estimate (3.16). As for integral J1, it is equal
to zero because rci1 does not depend on r and function u1 vanishes on the end-wall parts
of Ki boundary, which belongs to ∂Ω.

Combining equalities (3.12), inequalities (3.13), (3.14) and estimates (3.15), (3.16) we
conclude from (3.11) that

∫

Ω+

∇u : ∇u dx ≤
1

ν
M3, (3.20)

where M3 = M3(Ω, ||bi||H1) is a positive constant. Inequality (3.20) and representation
(3.7) lead to the required estimates of integral I+ (3.6) and consequently of Dirichlet
integral I = 2I+,

∫

Ω+

∇v : ∇v dx ≤M4 (3.21)

with constant M4 = M4(Ω, ν, ||bi||H1 , ||ci||H1) > 0. This completes the proof of Lemma
2.

Theorem 3. Under assumptions as in Lemma 2, there exists a solution v(x) ∈
C2+α(Ω̄), p(x) ∈ C1+α(Ω̄) of the problem (1.1), (1.2).

The proof of Theorem 3 is omitted here. It is based on estimate (3.20) and follows
the classical scheme given in [3] or [18]. Another important corollary of Lemma 2 is the
existence theorem for an axially symmetric problem.
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4. Flow in a curvilinear ring

Here we return to the problem mentioned in Section 2. Let Ω ∈ R2 be a curvilinear
ring bounded by smooth curves Σ1 (interior boundary) and Σ2 (exterior boundary). All
previous results on the solvability of problem (1.1), (1.2) for this case had either a local
character or dealt with an annular geometry of Ω [5-8, 12-15]. The point is to obtain
an a priori estimate of the Dirichlet integral for an arbitrary large flux. This problem
is still open. We postpone a discussion on the next section and now we propose some
construction, which can be useful for the problem treatment.

This is well known that any plane flow of an incompressible liquid is characterized
by the stream function ψ defined by relations (2.2). Level lines of function ψ coincide
with trajectories of liquid particles in the case of steady-state flow. If domain Ω is simply
connected, stream function is a single-valued one. In the opposite case, this property takes
place only under condition (1.5). We consider situation when this condition is violated.
If Ω is a curvilinear ring, it means that q1 = −q2 6= 0. In this case, function ψ(x1, x2) is a
multi-valued one, which receives the increment q1 after going around Σ1. If q1 6= 0, there
is at least one stream line l1 which intersects both components Σ1 and Σ2 of ∂Ω. This
assertion can be proved by contradiction. We assume that the line about the mentioned
above intersection is transversal and denote by P1 and P2 the points of intersection of l1
with Σ1 and Σ2, respectively.

Further, we assume that there exists another stream line l2 , which also intersects
curves Σ1 and Σ2. Thus, both curves Σi (i = 1, 2) are divided by lines li on two parts
Σ−

i and Σ+
i . Respectively, the domain Ω is divided on two simply connected domains Ω+

and Ω−. We suppose additionally that the flux through components Σ−

1 and Σ+
1 are equal

to q1/2 . Choosing a single-valued branch of function ψ and denoting it by Ψ(x1, x2) we
can consider that Ψ → q1/2 when one tends to point P1 along curve Σ+

1 and Ψ → −q1/2
when one tends to point P2 along curve Σ−

1 . Now we will construct a virtual drain for
the flow in domain Ω. Idea of construction is close to the structure proposed in the paper
[11] for symmetric flow, but we are not able to apply this structure word for word. Our
idea consists in construction of a virtual drain with support in a narrow curvilinear strip
near the line l1. To this end, we pass in system (1.1) to curvilinear orthogonal coordinates
following [19].

Let us denote the curvilinear orthogonal coordinates as s1 and s2, and the correspond-
ing Lame coefficients as H1 and H2. We preserve notations v1 and v2 for projections of
velocity vector on the axes s1 and s2 because this will not bring to misunderstanding.
System (1.1) written in curvilinear coordinates takes the form

v1

H1

∂v1

∂s1

+
v2

H2

∂v1

∂s2

+
v2

H1H2

(

v1

∂H1

∂s2

− v2

∂H2

∂s1

)

= −
1

H1

∂p

∂s1

+ ν

[

1

H2
1

∂2v1

∂s2
1

+
1

H2
2

∂2v1

∂s2
2

+

+
1

H1H2

∂(H−1
1 H2)

∂s1

∂v1

∂s1

+ +
1

H1H2

∂(H−1
2 H1)

∂s2

∂v1

∂s2

+
2

H2
1H2

∂H1

∂s2

∂v2

∂s1

−
2

H1H2
2

∂H2

∂s1

∂v2

∂s2

+

+
1

H1

∂

∂s1

(

1

H1H2

∂H2

∂s1

)

v1 +
1

H2

∂

∂s2

(

1

H1H2

∂H1

∂s2

)

v1+

+
1

H1

∂

∂s1

(

1

H1H2

∂H1

∂s2

)

v2 −
1

H2

∂

∂s2

(

1

H1H2

∂H2

∂s1

)

v2

]

,

9



v1

H1

∂v2

∂s1

+
v2

H2

∂v2

∂s2

−
v1

H1H2

(

v1

∂H1

∂s2

− v2

∂H2

∂s1

)

= −
1

H2

∂p

∂s2

+ ν

[(

1

H2
1

∂2v2

∂s2
1

+
1

H2
2

∂2v2

∂s2
2

+

+
1

H1H2

∂(H−1
1 H2)

∂s1

∂v2

∂s1

+
1

H1H2

∂(H−1
2 H1)

∂s2

∂v2

∂s2

−
2

H2
1H2

∂H1

∂s2

∂v1

∂s1

+
2

H1H2
2

∂H2

∂s1

∂v1

∂s2

+

+
1

H1

∂

∂s1

(

1

H1H2

∂H2

∂s1

)

v2 +
1

H2

∂

∂s2

(

1

H1H2

∂H1

∂s2

)

v2−

−
1

H1

∂

∂s1

(

1

H1H2

∂H1

∂s2

)

v1 +
1

H2

∂

∂s2

(

1

H1H2

∂H2

∂s1

)

v1

]

,

∂(H2v1)

∂s1

+
∂(H1v2)

∂s2

= 0. (4.1)

Let us choose now a special coordinates system proposed at first by R. von Mises in
the paper [20] devoted to boundary layer theory (see also [19]). Taking point P1 as the
origin, we will determine position of point P ∈ Ω by coordinates s1 = s and s2 = n,
where s is the arc length of line l1 and n is the length of normal to this line taken with
an appropriate sign. Then the first quadratic form is written as

dσ2 = [1 +
n

ρ(s)
]2ds2 + dn2

and therefore
H1 = 1 +

n

ρ(s)
, H2 = 1. (4.2)

Here ρ(s) is the curvature radius of curve l1 in the point with coordinate s. We will
suppose that the curve l1 is smooth enough so that ρ(s) ∈ C1[0, L] where L is length of
l1.

Let us denote as Sδ the strip Sδ = {s, n : s ∈ R, |n| < δ} and define the domain K1

by relation K1 = Ω ∩ Sδ . The virtual drain c1 is defined by formula

c1 = −λq1(η(n), 0) (4.3)

where η(n) is the cutting function introduced in [10] and λ = λ(Ω, l1, δ) is a positive
constant. In view of (4.2) and last equation of (4.1), vector c1 is smooth and solenoidal.
Choosing a suitable correcting multiplier λ, we are able to provide the required flux q1/2
through the curves Σ+

1 and Σ−

1 .
Having available two simply connected domains Ω+, Ω− and the virtual drain (4.3), we

can repeat almost literally the procedure described in the proof of Lemma 2. It consists in
obtaining the identity like (3.10) for vector u ∈ H(Ω) defined by an analogue of formula
(3.6). As a result, we come to an a priory estimate of type (3.20). Unfortunately, now
constant M4 depends not only on Ω, v, ||b1||H1 and ||c1||H1 but also on C3 – norm of the
function, which parametrizes curve l1. Because of this reason, our result has a conditional
character.

5. Discussion

a) An a priori estimate of the Dirichlet integral (1.6) for the solution of problem (1.1),
(1.2) has not only a theoretical interest but also allows us to justify approximate methods,
in particular, Galerkin method [18]. The result of Lemma 2 guarantees such justification
for symmetric flows in R

3.
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b) Detailing the proof of Lemma 2, we may conclude that dependence of value M4

in (3.20) on norms ||ci||H1 (i = 1, . . . ,m) is not more than a linear one. It means that
norm ||v||H1 of has maximum linear growth in q∗ = max|qi| (i = 1, . . . ,m) because norms
||bi||H1 (i = 1, . . . ,m) and value M3 in (3.19) do not depend on q∗. This assertion is
compatible with results of article [13] where there are studied a number of exact solutions
to the problem.

c) During our treatment of the problem, functions ai in boundary condition (1.2)
were supposed to be smooth. This is possible to relax this condition up to inclusion
ai ∈ H1/2(Σi), (i = 1, . . . ,m) as it was done in [10, 11]. The statement of Lemma 2 holds
in this case.

d) We restrict our analysis by the case of absence of external body force acting on a
liquid. The case of potential force is reduced to previous case with the help of pressure
transform. Let us consider the general situation where an acceleration of body force is
f(x), where f is a given admissible function. Following the arguments of [10, 11], we can
prove an analogue of Lemma 2 if f ∈ L2(Ω) and analogues of Theorem 3 and Theorem 4
if f ∈ Cα(Ω̄).

e) The conditional result declared in Section 4 stimulates the study of stream lines
structure in two-dimensional stationary incompressible viscous flows. For classical sym-
metric solutions of the problem (1.1), (1.2) in admissible domain Ω ∈ R

2 , we can apply
the Kronrod theorem [21]. In particular, this theorem implies the following conclusion.

Let us consider a set of level lines

ψ(x1, x2) = c (5.1)

where ψ ∈ C2(Ω̄) and c ∈ R. There exists a set N of zero measure such that for any
c ∈ R \N the corresponding level line (5.1) outcomes on ∂Ω or this line is closed.

This illuminates situation with the structure of stream lines in a plane symmetric case.
On the base of Theorem 4, a similar statement is true for axially symmetric flows. As for
a general two-dimensional flow, we know almost nothing about the structure of stream
lines set.

Let consider a flow in a curvilinear ring Ω under additional conditions

a1 · n1 < 0, x ∈ Σ1; a2 · n2 > 0, x ∈ Σ2 (5.2)

or
a1 · n1 > 0, x ∈ Σ1; a2 · n2 < 0, x ∈ Σ2. (5.3)

In other words, each point of curve Σ1 is an input (output) point of a stream line inside
(outside) domain Ω and the same property is valid for curve Σ2. The following conjecture
(C) seems to be likely.

Let v, p be a solution to problem (1.1), (1.2), (5.2) or (1.1), (1.2), (5.3) in a curvilinear
ring Ω. Then each stream line connects Σ1 with Σ2 and intersects transversally these
curves.

This conjecture is the most plausible if the Reynolds number Re = |q1|/ν is sufficiently
large.

f) Let us consider the flow in a curvilinear ring assuming that the Reynolds number
Re → ∞. In this case, a formal asymptotic solution of the problem (1.1), (1.2) solution
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can be constructed by a certain modification of the Vishik-Lyusternik method [22]. In
contrast to a boundary layer near a solid wall, the thickness of boundary layer in problem
(1.1), (1.2) has an order of Re−1. This boundary layer is localized near the curve Σ1 if
q1 > 0 and near the curve Σ2 in the opposite case.

Unfortunately, we are not able to establish closeness of approximate and exact so-
lutions of the problem as Re → ∞. A natural approach based on the linearization of
the problem in the approximate solution and consequent application of the Kantorovich
theorem on convergence of Newton method does not lead to success since we have no
sufficient information concerning the linearized operator.

g) In the conclusion, we discuss briefly how to weaken symmetry assumptions in the
solution to problem (1.1), (1.2). One of the reasonable ways is to preserve the symmetry
of flow domain but to cancel the symmetry property of boundary conditions.

For simplicity, let us consider a curvilinear ring Ω, which is symmetric about the line
{x2 = 0}. Now we will not suppose the symmetry of functions ai (1 = 1, 2) in boundary
condition (1.2). Let decompose functions ai on symmetric and antisymmetric parts,

ai = hi + gi, i = 1, 2. (5.4)

Here hi is a symmetric function with respect to the line {x2 = 0} in the sense of definition
1, while gi is an antisymmetric one with respect to this line. The latter means that g1 is
an odd function of x2 while g2 is an even function of x2.

The solution to problem (1.1), (1.2) is sought in the form

v = u + w, p = ps + pa. (5.5)

Here u is symmetric function, w is antisymmetric function, ps is even in variable x2 and
pa is odd in this variable. Substituting (5.4), (5.5) into the system (1.1) and boundary
condition (1.2) we obtain as a result of decomposition procedure:

u · ∇u + w · ∇w = −∇ps + ν∆u, ∇ · u = 0, x ∈ Ω, (5.6)

u = hi(x), x ∈ Σ, (i = 1, 2), (5.7)

u · ∇w + w · ∇u = −∇pa + ν∆w, ∇ · w = 0, x ∈ Ω, (5.8)

w = gi(x), x ∈ Σ, (i = 1, 2). (5.9)

At given u, function w is determined as the solution of linear problem (5.8), (5.9). If
the corresponding linear operator is convertible and an appropriate norm of gi is small,
we can prove the solvability of problem (5.6), (5.7). Unfortunately, there are no sufficient
conditions for existence of the unique solvability to the problem (5.8), (5.9). It would be
interesting to prove the following statement in view of the result, obtained in paper [12]:

Let Ω is a symmetric curvilinear ring with a smooth boundary Σ1 ∪ Σ2. Let hi ∈
C2+α(Σi) are symmetric functions while gi ∈ C2+α(Σi) are antisymmetric functions (i =
1, 2). There is a countable subset N of R such that if q1 /∈ N and ||gi||C2+α are small,
then problem (5.6)-(5.9) has at least one classical solution.
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