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Abstract. We study the equivalence of the static and dynamic point of view for
di�usions in a random environment in dimension one. First we prove that the static
and dynamic distributions are equivalent if and only if either the speed in the law of
large numbers does not vanish, or b/a is a.s. the gradient of a stationary function, where
a and b are the covariance coe�cient resp. the local drift attached to the di�usion.
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characterized by the existence of so-called �almost linear coordinates�.
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1. Introduction

The process of the �environment viewed from the particle� is an important tool in
the study of many models in random motions in random media. A key property is the
existence of an invariant measure for this process, that is absolutely continuous with
respect to the static law of the environment. It implies the equivalence of the static and
dynamic distributions of the environment, and is the starting point in the analysis of
the environment viewed from the particle. For applications of these techniques, we refer
to Bolthausen and Sznitman [2], Kipnis and Varadhan [18], Kozlov [20], Lawler [22], de
Masi et al. [9], Molchanov [24], Olla [25],[26], Papanicolaou and Varadhan [27], Rassoul-
Agha [28] and also the overviews [32],[33],[35],[36] and the references therein. The main
purpose of this work is to characterize the equivalence of the static and dynamic point
of view in the speci�c setting of one-dimensional di�usions in random environment.

Before explaining our results in detail, let us de�ne the setting. The random envi-
ronment is described by a probability space (Ω,A,P). We assume that there exists a
group {tx : x ∈ R} of transformations on Ω, jointly measurable in x, ω, that preserve the
probability P, and that act ergodically on Ω, see the beginning of section 2 for details.
On (Ω,A,P) we consider random variables a and b and we write

(1.1) a(x, ω) = a(txω), b(x, ω) = b(txω) .
1
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We assume that there are positive constants ν, β such that for all ω ∈ Ω, all x ∈ R,

(1.2) 1
ν ≤ a(x, ω) ≤ ν, |b(x, ω)| ≤ β .

We further assume that a and b are Lipschitz continuous, i.e. there is a constant K such
that for all ω ∈ Ω, x, y ∈ R,

(1.3) |a(x, ω) − a(y, ω)| + |b(x, ω) − b(y, ω)| ≤ K|x− y| .
We denote by (C(R+),F ,W ) the canonical Wiener space, and with (Bt)t≥0 Brownian
motion (which is independent from (Ω,A,P)). The di�usion process in the random
environment ω is described by the family of laws (Px,ω)x∈R (we call them the quenched
laws) on (C(R+),F) of the solution of the stochastic di�erential equation

{

dXt = σ(Xt, ω)dBt + b(Xt, ω)dt,

X0 = x, x ∈ R, ω ∈ Ω,
(1.4)

where σ =
√
a. The attached di�erential operator is de�ned through

(1.5) Lω = 1
2a(x, ω)∂2

x + b(x, ω)∂x .

To restore some stationarity to the problem, it is convenient to introduce the annealed
laws Px, which are de�ned as the semi-direct products:

(1.6) Px = P × Px,ω, for x ∈ R.

Observe that the Markov property is typically lost under the annealed laws.
Our model can be regarded as a continuous space-time analogue of random walks in
random environment, that has been extensively studied in dimension one, see section
3 in Sznitman [33] for an abundant list of references. Another one-dimensional model
studied recently deals with di�usions in a Brownian environment; loosely speaking, the
drift term b is given by white noise. We refer to Brox [6], and to Tanaka [34] and the
references therein.

Let us now de�ne the relevant objects. The �environment viewed from the particle� is
the Ω-valued Markov process

(1.7) ω̄t = tXtω, t ≥ 0.

It describes the environment seen from an observer sitting on top of the di�using particle.
An invariant measure Q for this process satis�es Pt Q = Q, where Pt is the semigroup
associated to ω̄t. Q describes the e�ective environment that governs the asymptotic
behaviour of the particle. A key assumption is the

(1.8) existence of an invariant measure Q that is absolutely continuous w.r.t. P.

Under (1.8) holds the following well known fact (valid in all dimensions):
(1.9)
There is at most one measure Q that satis�es (1.8). Moreover Q and P are equivalent,

and the process ω̄t with initial distribution Q is stationary ergodic.

A proof of (1.9) is contained in the proof of Theorem 2.1 in Papanicolaou and Varadhan
[27] when b ≡ 0. The same argument applies for a local drift b that satis�es (1.2) and
(1.3). As a consequence of (1.9), roughly speaking, the �static� and the �dynamic� point
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of view are comparable, and moreover, (1.9) allows the use of ergodic theory in the study
of the di�usion in random environment.

(1.10) We are thus naturally led to ask under when (1.8) holds?

The main object of this work is to answer this question in dimension one.
Let us incidentally mention that the answer to this question is still widely open in higher
dimensions. A measure Q that satis�es (1.8) in higher dimensions is only known in few
speci�c cases, see section 4 in Sznitman [33]. We also refer to Bolthausen and Sznitman
[3] for examples of non-nestling walks in high dimensions that satisfy (1.8) in the pres-
ence of low disorder. Recent progress in higher dimensions is thus rather built up on
new techniques, see again [33] for an overview.

In dimension one the situation is di�erent. Here the method of the environment viewed
from the particle applies for a large class of environments, and enables us to prove a strong
law of large numbers, cf. Proposition 3.3. In particular the law of large numbers shows
that a non-vanishing speed implies (1.8). Theorem 4.1 provides a complete answer to the
question (1.10). It shows that when the speed vanishes, then (1.8) holds if and only if
b/a is P-a.s. the gradient of a stationary random variable. This result is compatible with
its discrete counterpart proved by Conze and Guivarc'h [8] for random walk in a random
environment on Z (see also Brémont [4], [5] for generalizations to �nite range random
walks on Z), and our proof is inspired by the methods used in [8]. When b/a = ∇V P-
a.s., where ∇V is de�ned as the pointwise limit limx→0

1
x(V ◦ tx − V ), then E[b/a] = 0,

and Proposition 3.1 shows that the di�usion in a random evironment is recurrent. In
particular (1.10) has a negative answer for di�usions that are transient with vanishing
speed.
It is interesting to notice that, if E[b/a] = 0 and suitable mixing assumptions hold, then
b/a is P-a.s. the gradient of a stationary random variable if and only if the P-variance of
the additive functional

(1.11) A(x, ω)
def
=

∫ x

0
(b/a)(u, ω) du, x ∈ R,

is a bounded function of x, see Theorem 4.5. Loosely speaking, large �uctuations of
A create powerful traps for the di�using particle, and as a consequence, the dynamic
distributions fail to be absolutely continuous w.r.t. the static distributions.

Moreover we provide a further characterization of (1.8), that has, up to our knowledge,
no corresponding counterpart in the discrete setting. Assume that (1.8) holds, and that
P-a.s.,

(1.12) Xt − vt = X(t,Xt, ω) + χ(Xt, ω),

where v denotes the speed in the law of large numbers, X(t, x, ω) is a parabolic function
so that the �rst term in the right-hand side of (1.12) is a martingale, and the second
term is a corrector term. We show that (1.8) is equivalent to the existence of a cor-
rector χ, de�ned through (1.12), such that ∂xχ is stationary and E[∂xχ] = 0 (under
some additional assumption in the recurrent setting, see below). In particular sublinear
growth of the corrector χ at in�nity follows from the ergodic theorem, see remark 4.3. In
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this case the coordinates X are sometimes called �almost linear coordinates�, and when
v = 0, they are also known as �almost linear harmonic coordinates�. Theorem 4.2 covers
the transient setting, whereas Theorem 4.5 deals with the recurrent setting under the
additional assumption of an exponential mixing property with rate γ > 2βν.
If in addition one can prove that χ exhibits at most di�usive growth at in�nity, then
a central limit theorem for martingales with stationary ergodic increments can be ap-
plied to prove di�usive behavior for the di�usion in random environment. This explains
the interest in almost linear coordinates. This approach can for instance be found in
Kozlov[20], Kipnis and Varadhan[18], Molchanov[24], Kozlov and Molchanov[21], section
2.2 in Zeitouni[35] and section 4 in Brémont[4].

This article is organised as follows. After some preliminaries in Section 2, we prove
a recurrence-transience dichotomy and a strong law of large numbers in Section 3. In
Section 4 we show the dynamic and static point of view are equivalent if and only if the
speed does not vanish, or P-a.s., b/a is the gradient of a stationary random variable, see
Theorem 4.1. We then provide an additional characterization of the equivalence of the
dynamic and static distributions in terms of almost linear coordinates, see Theorem 4.2
for the transient case, and Theorem 4.5 for the recurrent case.

2. Preliminaries

We provide some details about the group (tx)x and its generator. tx, x ∈ R, is a
group of transformations tx : Ω → Ω, i.e. t0 = Id and tx ◦ ty = tx+y, x, y ∈ R. The
mapping (x, ω) 7→ txω is (B ⊗ A,A)-measurable, with B denoting the Borel σ-�eld on
R. For a measure µ on Ω, we write txµ(·) = µ(t−x·). We assume that tx preserves the
measure P and is ergodic, i.e. txP = P, x ∈ R, and if A ∈ A is such that P-a.s., for all x,
txA = A, then P[A] = 0 or 1. When there is no source of confusion, Lp always denotes
Lp(Ω,A,P), 1 ≤ p ≤ ∞. tx induces a group of operators on L1:

(2.1) (Txf)(ω)
def
= f(txω), f ∈ L1.

(Tx)x is a strongly continuous group of isometric operators on L1, see [15] p.223 (the proof
given there works for all Lp spaces, 1 ≤ p < ∞). We denote with D the in�nitesimal
generator of (Tx)x on L1. D is closed and its domain D(D) is dense in L1 ([12] p.10).
For f ∈ D(D) it holds that

(2.2) Df = lim
x→0

1
x(Txf − f) in L1.

We de�ne the pointwise limit ∇f(ω) = limx→0
1
x(Txf(ω) − f(ω)) for all f and ω ∈ Ω

where this limit exists. The invariance of P implies that

(2.3)

∫

Ω
Df dP = 0, f ∈ D(D).

It follows from the product rule for D, and from (2.3), that

(2.4)

∫

Ω
Df · g dP = −

∫

Ω
f ·Dg dP ,
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for suitable f, g such that both integrals are well-de�ned. To the environment process
de�ned in (1.7) is attached a strongly continuous semigroup on L∞ with generator

(2.5) Lf(ω) = 1
2a(ω)D2f(ω) + b(ω)Df(ω), f ∈ D(L).

The martingale problem for L is well-posed, and hence proposition 9.2 in [12] shows that
a measure Q is invariant for L if and only if

(2.6)

∫

Lf dQ = 0 for all f ∈ D(L).

We conclude this section by introducing some notation. Form ∈ R, we de�ne the (Ft)t≥0-
stopping time ((Ft)t≥0 denotes the canonical right-continuous �ltration on (C(R),F))

Sm = inf{t ≥ 0 : Xt = m} .
For ω ∈ Ω, x1, x2 ∈ R, we de�ne (recall A in (1.11))

(2.7) sx1,x2(ω) =

∫ x2

x1

exp(−2A(u, ω)) du .

For �xed x1, sx1,·(ω) is a scale function for the quenched di�usion in the environment ω,
cf. [16] p.339.

3. Asymptotic Behavior

We start by characterizing recurrence and transience. The discrete counterpart of the
following proposition is due to Solomon [31], see also [35] p.196.

Proposition 3.1. There are three cases:

(i) If E[b/a] > 0, then P0-a.s., limt→∞Xt = +∞.
(ii) If E[b/a] = 0, then P0-a.s., −∞ = lim inft→∞Xt < lim supt→∞Xt = +∞.
(iii) If E[b/a] < 0, then P0-a.s., limt→∞Xt = −∞.

Remark 3.2. In the setting of �nite range dependence, the result of Proposition 3.1
follows from Proposition 2.7 in Goergen [13] together with equation (2.77) therein.

Proof. We introduce the random variables (recall (1.11))

(3.1) S+(ω)
def
=

∫ ∞

0
e−2A(u,ω) du, S−(ω)

def
=

∫ 0

−∞
e−2A(u,ω) du.

We start by showing that

(3.2) P − a.s. S+ <∞ ⇐⇒ E[b/a] > 0, and P − a.s. S− <∞ ⇐⇒ E[b/a] < 0.

When E[b/a] > 0, then the ergodic theorem implies that P − a.s. S+ < ∞. On {S+ <
∞} one has that limx→∞A(x, ω) = ∞. From Lemma 5.3 in the Appendix applied to

f(ω) =
∫ 1
0 b/a(u, ω) du, we deduce that E[b/a] > 0 (alternatively, one might invoke

Kesten's lemma, see [17], or [36] p.197, together with the ergodic theorem). The second
equivalence in (3.2) is entirely similar. Further notice that for all x,

(3.3) TxS+(ω) = e2A(x,ω)
(

S+(ω) −
∫ x

0
e−2A(u,ω) du

)

.
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Thus the event {S+ <∞} is invariant under tx, and by ergodicity, P[S+ <∞] = 0 or 1.
A similar argument applies to S−, and then (3.2) can be re�ned to

(3.4)
P − a.s. S+ <∞, S− = ∞ ⇐⇒ E[b/a] > 0,

P − a.s. S− <∞, S+ = ∞ ⇐⇒ E[b/a] < 0.

Let us now show statement (i) of the Proposition. The scale function s0,·(ω) is Lω-
harmonic, and hence s0,Xt(ω) is a martingale under P0,ω. The equivalences (3.4), together
with the martingale convergence theorem, imply that P0,ω-a.s. s0,Xt(ω) converges to a
�nite limit, so that, necessarily, P0-a.s., limt→∞Xt = +∞. The case (iii) is similar.
Let us now turn to case (ii). When E[b/a] = 0, the equivalences (3.2) show that P-a.s.,
S+ = ∞, S− = ∞. But then, for m < 0,

(3.5) P − a.e. ω, lim
M→∞

P0,ω[Sm < SM ] = lim
M→∞

s0,M (ω)

s0,M (ω) − s0,m(ω)
= 1,

since S+(ω) = limM→∞ s0,M (ω). Similarly P − a.s. limm→−∞ P0,ω[SM < Sm] = 1, and
the claim follows. �

Throughout the remainder of this article, we use the following notation:

(3.6) φ+(ω)
def
= 1

a(ω)

∫ ∞

0
e−2A(u,ω) du, φ−(ω)

def
= 1

a(ω)

∫ 0

−∞
e−2A(u,ω) du.

We now derive a strong law of large numbers with the help of the method of the �envi-
ronment viewed from the particle�. The same method has been applied in the discrete
setting, cf. Kozlov [20], and also Molchanov [24] and Sznitman [32]. Our proof uses
similar arguments as the exposition in [32].

Proposition 3.3.

(3.7) P0 − a.s. lim
t→∞

Xt

t
= v =











1
2E[φ+] , if E[φ+] <∞,

− 1
2E[φ−] , if E[φ−] <∞,

0, if E[φ+] = E[φ−] = ∞.

Proof. Assume that E[φ+] < ∞. We show that Q = φP, where φ = φ+/E[φ+], is
invariant for L by checking (2.6). Since E[b/a] > 0 (see (3.2)), by dominated convergence,

(3.8) ∇(aφ) = 2bφ− 1/E[φ+].

By Lemma 5.4, aφ ∈ D(D) and D(aφ) = ∇(aφ) P-a.s. (1.2) and (1.3) imply that for all
ω ∈ Ω, ∂x(b/a)(x, ω) exists and is bounded by K for a.e. x. Hence ∇(b/a) exists and is
bounded by K P-a.s. (by the ergodic theorem). It follows from bφ = b/a · aφ and from
Lemma 5.4 that bφ ∈ D(D) and D(bφ) = ∇(bφ) P-a.s. Thus, we obtain that

(3.9) 1
2D

2(aφ) −D(bφ) = 0.

It follows from (2.4) that for f ∈ D(L),

(3.10)

∫

Lf dQ =

∫

Lf φ dP =

∫

f (1
2D

2(aφ) −D(bφ)) dP = 0 ,
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which implies that Q is invariant. Then Q is also ergodic, see (1.9). With Mt =
∫ t
0 σ(Xs, ω) dBs = Xt −X0 −

∫ t
0 b(Xs, ω) ds, we have 〈M〉t =

∫ t
0 a(Xs, ω) ds ≤ νt, and we

�nd with the help of Bernstein's inequality, cf. [29] p. 153:

(3.11)
P0,ω[ 1

n |Mn| > ε/2] ≤ 2 exp(− ε2

8ν n) , n ≥ 1,

sup
x
Px,ω[1t sup

0≤s<1
|Ms −M0| > ε

2 ] ≤ 2 exp(− ε2

8ν t
2).

We obtain from (3.11) and from the Markov property and the lemma of Borel-Cantelli
that P0,ω-a.s. limt→∞Mt/t = 0. The ergodic theorem implies that Q × P0,ω-a.s., and
hence P0-a.s.,

(3.12)
1

t

∫ t

0
b(Xs, ω) ds =

1

t

∫ t

0
b(ω̄s) ds

t→∞−→
∫

b dQ .

By (3.8) and the invariance of P we �nd that

(3.13)

∫

b dQ =

∫

b φ dP = 1
2

∫

∇(aφ) dP +
1

2E[φ+]
=

1

2E[φ+]
.

Collecting the above facts, we obtain the �rst claim in (3.7). The case E[φ−] < ∞ is
treated similarly. It thus remains to consider the case E[φ+] = E[φ−] = ∞. In a �rst
step, we show that

(3.14) lim sup
t→∞

Xt/t ≤ 0.

With the help of Proposition 3.1, we see that (3.14) only needs a proof when E[b/a] > 0.
In the latter case, we will prove that (3.14) follows from E[φ+] = ∞. We do a comparison
argument. We de�ne the auxiliary drift term

(3.15) bη(x, ω) = (1 − η)b(x, ω) + ηβ, η ≥ 0 ,

where β was introduced in (1.2). Let X denote the di�usion from (2.3) attached to the
local characteristics a, b, and Xη the di�usion, de�ned similarly as X in (2.3), but with
a, b replaced by a, bη. We assume that both di�usions are driven by the same Brownian
motion, in the same environment ω, and that P0,ω-a.s. X0 = Xη

0 = 0. Since bη ≥ b,
Proposition 2.18 p.293 in [16] shows that for all ω ∈ Ω,

(3.16) P0,ω[Xt ≤ Xη
t for all 0 ≤ t <∞] = 1 .

We de�ne φη
+ similarly as φ+ in (3.6), with b replaced by bη, and set η0 = sup{η ∈ [0, 1] :

E[φη
+] = ∞}. Since b1 = β > 0, and b0 = b, it holds that 0 ≤ η0 ≤ 1. For η > η0, it

holds that E[φη
+] <∞, and hence, P0-a.s.,

(3.17) lim sup
t→∞

Xt

t
≤ lim

t→∞

Xη
t

t
=

1

E[φη
+]
.

Notice that the map η 7→ φη
+ is decreasing. By monotone convergence, limη↓η0 E[φη

+] =
E[φη0

+ ]. Hence, in view of proving (3.14), it is enough to show that

(3.18) E[φη0
+ ] = ∞ .
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It su�ces to consider η0 > 0, since otherwise (3.18) holds by assumption. We de�ne for
η ≥ 0, and x > 0,

(3.19) Fω(η, x)
def
= 1

x

∫ x

0
dy φη

+(tyω) =

∫ ∞

0
du 1

x

∫ x

0
dy 1

a(tyω)e
−2

R y+u
y

bη

a (v,ω) dv.

Recall that we assumed E[b/a] > 0, and notice that for 0 ≤ η ≤ 1, E[bη/a] ≥ E[b/a] > 0.
By the ergodic theorem, there is a constant C(ω) that is P-a.s. �nite such that

(3.20) 1
x

∫ x

0
dy 1

a(tyω)e
−2

R y+u
y

bη

a (v,ω) dv ≤ C(ω)ν 1
x

∫ x

0
dy e−E[bη/a]u ≤ C(ω)νe−E[b/a]u.

Hence we �nd by dominated convergence, and by the ergodic theorem, that P-a.s.,

(3.21)

lim
η↑η0

lim
x→∞

Fω(η, x) =

∫ ∞

0
du lim

η↑η0

lim
x→∞

1
x

∫ x

0
dy 1

a(tyω)e
−2

R y+u
y

bη

a (v,ω) dv

=

∫ ∞

0
du lim

η↑η0

E[ 1
a(ω)e

−2
R u
0

bη

a (v,ω) dv]

=

∫ ∞

0
duE[ 1

a(ω)e
−2

R u
0

bη0

a (v,ω) dv]

=E[φη0
+ ] .

Observe that the ergodic theorem applied to ϕn = φη
+ ∧ n, implies P-a.s.

(3.22) lim inf
x→∞

Fω(η, x) ≥ lim inf
x→∞

1
x

∫ x

0
dy ϕn(tyω) = E[ϕn].

It follows from monotone convergence, and the de�nition of η0, that limx→∞ Fω(η, x) =
∞ for η < η0. Using (3.21), we �nally obtain E[φη0

+ ] = limη↑η0 limx→∞ Fω(η, x) = ∞.
This shows (3.18), and thus (3.14) holds. A completely analogous argument shows
that lim inft→∞Xt/t ≥ 0. Hence we have shown that E[φ+] = E[φ−] = ∞ implies
limt→∞Xt/t = 0, and the proof of the proposition is �nished. �

4. Invariant measures

Recall that E[φ+] < ∞ resp. E[φ−] < ∞ characterize positive resp. negative speed, see
Proposition 3.3.

Theorem 4.1. We have the equivalences:

I. There is an invariant probability measure Q that is absolutely continuous w.r.t. P.
II. Exactly one of the following conditions hold:

(i) E[φ+] <∞ (and hence E[b/a] > 0)
(ii) E[φ−] <∞ (and hence E[b/a] < 0)
(iii) There is V stationary with E[e2V ] <∞ and such that P-a.s., x 7→ V (txω) is

absolutely continuous and b/a = ∇V (and hence E[b/a] = 0).

Proof of I.⇒ II.
The proof consists of several steps.
Step 1: Reduction argument
We start by showing that it su�ces to prove the claim for the environment process ω̄t

attached to L̃ = 1
2D

2 + b
aD (= 1

aL). The reason for this step becomes clear in (4.4).
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Notice that condition II.(iii) remains unchanged. If II.(i) or (ii) hold, denote the density
of Q w.r.t. P with φ. Since Q is invariant, it holds that

(4.1)

∫

L̃f aφ dP =

∫

Lf φ dP =

∫

Lf dQ = 0 , f ∈ D(L),

so that the measure aφP is invariant for L̃, see [12] p.239. We de�ne φ̃± as in (3.6),
with the covariance coe�cient being the identity, and the drift term b/a, and observe

that φ̃± = aφ±. By (1.2), E[φ±] < ∞ is equivalent to E[φ̃±] < ∞. The claim I. ⇒
II. thus follows once we have shown that the existence of an invariant measure for L̃
implies E[φ̃±] <∞. In the subsequent steps of the proof I. ⇒ II., we thus assume that

(4.2) ω̄t is attached to the operator 1
2D

2 + b
aD.

Further one can interpret the continuous map x 7→ Tx(b/a)(ω) as a realization of the
environment ω. In the remainder of the proof of I. ⇒ II. we therefore work with the
sample space Ω = C(R) endowed with the canonical σ-�eld σ(b/a).

Step 2: Discretization
We �rst introduce some further notation. For integers i, j and for δ > 0, we de�ne
sδ
i,j(ω) = siδ, jδ(ω). We write tδk = tkδ, T

δ
k = Tkδ, k ∈ Z, for the induced group of

transformations resp. operators on the discrete lattice δZ. We introduce discrete jump
probabilities attached to the lattice δZ in the following natural way:

(4.3) pδ(ω) = P0,ω[Sδ < S−δ] =
sδ
−1,0(ω)

sδ
−1,1(ω)

, and qδ(ω) = P0,ω[Sδ > S−δ] =
sδ
0,1(ω)

sδ
−1,1(ω)

.

We de�ne the σ-�eld Aδ = σ(pδ), and note that tδ1 is Aδ-measurable. Notice that
limδ→0

1
4δ (pδ/T δqδ − 1) = b/a. As a result,

(4.4) σ(b/a) =
∨

δ>0

Aδ.

We now consider the discrete-time Markov chain with transition kernel

(4.5) Rδf(ω) = pδ(ω)T δ
1 f(ω) + qδ(ω)T δ

−1f(ω), f bounded and Aδ-measurable.

We denote with Qδ the restriction of Q to Aδ.

Step 3: invariance and quasi-invariance of Qδ

We denote with P̃ω the canonical law of ω̄t started at ω, and with Ẽω resp. ẼQ the

expectation w.r.t. the measure P̃ω resp. Q × P̃ω. We show that Qδ is invariant for Rδ,

(4.6) ẼQδ
[Rδf ] = EQδ

[f ], for all f bounded Aδ-measurable.

Further we denote with Uδ = Sδ∧S−δ the exit time of the interval (−δ, δ). The invariance
of Qδ for Rδ is equivalent to

(4.7) ẼQ[f(ω̄Uδ
)] = EQ[f(ω)] .



10 T. SCHMITZ

Applying the martingale problem at the time t ∧ Uδ, we obtain for f ∈ D(L) that

(4.8) Ẽω[f(ω̄t∧Uδ
)] − f(ω) = Ẽω[

∫ t∧Uδ

0
Lf(ω̄s) ds].

Since E0,ω[Uδ] < ∞ (Lemma 7.4 p.365 in [16]), we apply dominated convergence and
�nd, after Q-integration:

(4.9) ẼQ[f(ω̄Uδ
)] − EQ[f ] = ẼQ[

∫ Uδ

0
Lf(ω̄s) ds].

Moreover, by Fubini's theorem,

(4.10) ẼQ[

∫ Uδ

0
Lf(ω̄s) ds] = EQ

[

∫ ∞

0
Ẽω[Lf(ω̄s), Uδ > s] ds

]

= EQ[GLf ],

in the notation introduced above Lemma 5.5 in the Appendix. Lemma 5.5 and the
invariance of Q imply that EQ[GLf ] = EQ[LGf ] = 0. Now (4.7) follows from (4.9).
(4.6), and the fact that pδ, qδ > 0, imply that Qδ is quasi-invariant, i.e. tδ1Qδ and tδ−1Qδ

are absolutely continuous w.r.t. Qδ. In particular tδ−1Qδ and Qδ are equivalent,

(4.11) tδ−1Qδ = βδ Qδ for some βδ > 0 P-a.s.

Combining (4.6) with (4.11), we obtain that

(4.12) T δ
−1p

δ T δ
−1β

−1
δ + T δ

1 q
δ βδ = 1 Qδ − a.s.

With the notation γδ = βδ T
δ
1 q

δ/pδ, we obtain from (4.12) that

(4.13) pδ γδ + qδ T δ
−1γ

−1
δ = 1 Qδ − a.s.

This implies that Qδ-a.s. the sets {γδ > 1}, {γδ = 1}, {γδ < 1} are invariant under tδ−1.
Q is ergodic under tx since P is, and hence exactly one of the above sets has full Qδ-
measure. We accordingly distinguish between three cases.

Step 4: γδ = 1 Q-a.s. implies II.(iii)
First notice that there is φ such that Q = φP, and (1.9) implies that φ > 0 P-a.s. From
the invariance of P we obtain

(4.14) t−xQ = TxφP =
Txφ

φ
Q .

In particular t−xQ and Q are equivalent. From the de�nition of γδ, see below (4.12),
and from (4.11),

(4.15) tδ−1Qδ =
pδ

T δ
1 q

δ
Qδ Qδ − a.s.

For x > 0 �xed we choose δn = 2−nx, and we observe that by (4.15) and (4.3), Qδn-a.s.,

(4.16) Mx
n

def
=

d t−xQδn

dQδn

=
d tδn

−2nQδn

dQδn

=

2n−1
∏

k=0

T δn

k pδn

T δn

k+1 q
δn

=
sδn
−1,0 s

δn
0,1 s

δn
2n−1,2n+1

sδn
−1,1 s

δn
2n−1,2n s

δn
2n,2n+1

.
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We compute the limit of the (Aδn)-martingale Mx
n and �nd that Q-a.s.,

(4.17) Mx def
= lim

n→∞
Mx

n = exp( 2A(x, ·)) .

Since supω M
x(ω) < ∞, it follows from (4.4) and from theorem 3.3 p.242 in [10] that

d t−xQ/dQ = Mx. Comparing with (4.14) we obtain that Q-a.s., Txφ = exp( 2A(x, ·))φ.
The de�nition of A in (1.11) shows that P-a.s.,

(4.18) 2

∫ x

0
(b/a)(tvω) dv = log φ(txω) − log φ(ω) .

By continuity, we obtain that (4.18) holds for all x > 0 outside a P-null set. We obtain
a similar result for x < 0 by using the equivalent reformulation of (4.11)

(4.19) tδ1Qδ = tδ−1β
−1
δ Qδ .

Hence, with V = 1
2 log φ, we have that P-a.s., x 7→ V (txω) is absolutely continuous, and

b/a = ∇V . Clearly E[e2V ] = E[φ] = 1. Hence condition II.(iii) holds.

Step 5: The case γδ < 1 Qδ-a.s. implies II.(i)
The lines between (4.20) and (4.22) are taken from the proof of Theorem 3.1 in Conze and
Guivarc'h [8]. By assumption, the function zδ = 1/(1 − γδ) satis�es 1 < zδ <∞ Qδ-a.s.
Applying T δ

1 to the equation (4.13), and substituting γδ = (zδ − 1)/zδ, we obtain

(4.20) zδ = 1 +
T δ

1 q

T δ
1 p

T δ
1 zδ Qδ − a.s.

We introduce the notation aδ
k =

∏k
i=1(T

δ
i q

δ/T δ
i p

δ), k ≥ 1, and iterating (4.20), we obtain
that for n ≥ 2,

(4.21) zδ = 1 +

n−1
∑

k=1

aδ
k + aδ

nT
δ
nzδ Qδ − a.s.

Since zδ < ∞ Qδ-a.s., the sum
∑n

k=1 a
δ
k, and aδ

n T
δ
nz converge Qδ-a.s. to �nite limits.

Since tδ1 acts ergodically on Ω under Qδ, we can �ndM �nite such that Qδ-a.s., the orbit
{tδnω}n≥0 visits the set {zδ ≤ M} i.o. In particular, along a suitable subsequence nj

tending to ∞, limj a
δ
nj
T δ

nj
zδ = 0 Qδ-a.s., and hence, limn a

δ
n T

δ
nzδ = 0 Qδ-a.s. It follows

that

(4.22) zδ = 1 +

∞
∑

k=1

aδ
k Qδ − a.s.

The de�nition of pδ, qδ in (4.3) shows that aδ
k = sδ

k,k+1/s
δ
0,1, and hence (recall (3.1))

(4.23) zδ(ω) =

∫ ∞
0 e−2A(u,ω) du

sδ
0,1(ω)

=
φ+(ω)

sδ
0,1(ω)

Qδ − a.s.

By (1.2), there is c(δ, ν, β) such that 0 < 1/c ≤ sδ
0,1 ≤ c <∞. Since Q-a.s. 0 < z−1

δ < 1,

the measure P̂ = φ−1
+ Q is �nite, and equivalent to Q and P. The ergodic theorem implies

that there is at most one invariant ergodic probability measure that is equivalent to P.
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P̂ is ergodic since it is equivalent to P. Once we have shown that P̂ is invariant under tx,
then E[φ+] <∞ will follow from Ê[φ+] = 1, and hence condition II.(i) holds.

We now show that P̂ is invariant using a discretisation argument. Notice that the re-
striction of P̂ to Aδ is given by P̂δ = EQ[φ−1

+ |Aδ] Qδ. Using that φ+ = sδ
0,1zδ, and that

zδ, βδ, p
δ, qδ are Aδ-measurable, we �nd that

tδ−1 P̂δ = EQ[T δ
1φ

−1
+ |Aδ] · βδ Qδ = T δ

1 z
−1
δ EQ[(T δ

1 s
δ
0,1)

−1|Aδ] ·
pδ

T δ
1 q

δ

zδ − 1

zδ
Qδ .

With the help of (4.20), and with the de�nition of pδ, qδ, see (4.3), we rewrite the r.h.s. of
the last line as
(4.24)

pδ

T δ
1 p

δ
EQ[(T δ

1 s
δ
0,1)

−1|Aδ]
1

zδ
Qδ =

sδ
−1,0

sδ
−1,1

sδ
0,2

sδ
1,2

EQ[exp(−2A(δ, ·))|Aδ] P̂δ
def
= αδ P̂δ ,

so that tδ−1 P̂δ = αδP̂δ. As a next step, we show that

(4.25) P̂ − a.s. lim
δ↓0

1
δ

(

αδ − 1
)

= 0 .

First we expand f(x, ω) =
∫ x
0 e

−2A(u,ω) du in a Taylor polynomial around 0. Observe
that the map x 7→ (b/a)(x, ω) is Lipschitz continuous, and thus its derivative exists for
a.e. x. By the ergodic theorem, ∇(b/a)(ω) exists P-a.s. Hence we �nd for P-a.e. ω,
and for x in a neigborhood of 0, that f(x, ω) = x− b

a(ω) +Rω(x), with supω |Rω(x)| ≤
1
3 supω |∇( b

a)(ω)|x3 ≤ c1(ν, β,K)x3, where we used (1.2) and (1.3) in the last inequality.
We obtain the following expansions

(4.26)
1
δ s

δ
−1,0(ω) = 1 + b

a(ω)δ +R1,ωδ
2, 1

2δs
δ
0,2(ω) = 1 − 2 b

a(ω)δ +R2,ωδ
2,

1
2δs

δ
−1,1(ω) = 1 +R3,ωδ

2, 1
δ s

δ
1,2(ω) = 1 − 3 b

a(ω)δ +R4,ωδ
2,

with supω Ri,ω ≤ c2(ν, β,K) < ∞, 1 ≤ i ≤ 4. After inserting these expansions in the
de�nition of αδ, we see that

(4.27)
∣

∣

∣

sδ
−1,0

sδ
−1,1

sδ
0,2

sδ
1,2

exp(−2A(δ, ω)) − 1
∣

∣

∣
≤ c3(ν, β,K)

1
2δs

δ
−1,1

1
δ s

δ
1,2

δ2,

and (4.25) follows from dominated convergence for conditional expectations. We now

use (4.25) to show that P̂ is invariant. The group (Tx)x is strongly continuous on L1(P̂),

see Lemma 5.6 in the Appendix. We write D̂ for its generator and D(D̂) for the domain

of D̂. Proposition 1.5 p.9 in [12] shows that for A ∈ σ(b/a),
∫ x
0 Ty1A dy ∈ D(D̂), and

(4.28) P̂[txA] − P̂[A] = Ê[ D̂

∫ x

0
Ty1A dy ],

where Ê denotes expectation w.r.t. P̂. It follows from (4.4) that limδ→0 Ê[Ty1A|Aδ] =

Ty1A P̂-a.s. and in L1(P̂). Since D̂ is closed in L1(P̂) ([12] p.10), it follows that

(4.29) Ê[D̂

∫ x

0
Ty1A dy ] = lim

δ→0
Ê[D̂

∫ x

0
Ê[Ty1A|Aδ] dy ].
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Fix δ > 0, and set f =
∫ x
0 Ê[Ty1A|Aδ] dy. Hence f is Aδ-measurable. By L1-convergence,

and by (4.25) and dominated convergence, we �nd that for δn = δ2−n, n ≥ 1,

(4.30)

Ê[D̂f ] = lim
n→∞

∫

1
δn

(Tδnf − f) dP̂ = lim
n→∞

− 1
δn

(

∫

f d tδn
−1 P̂δn −

∫

f dP̂
)

= −
∫

f · lim
n→∞

1
δn

(

αδn − 1
)

dP̂ = 0.

Hence the left-hand side of (4.29) vanishes, and the invariance of P̂ now follows from
(4.28). Hence condition II.(ii) holds.

Step 6: The case γδ > 1 Q-a.s. implies II.(ii)
The proof is similar to step 5. We de�ne zδ = 1/(1− T δ

−1γ
−1), and apply T δ

−1 to (4.13).
We then �nd that Qδ-a.s.

zδ = 1 +

∞
∑

k=1

aδ
k, where a

δ
k =

k
∏

i=1

(T δ
−ip

δ/T δ
−iq

δ), k ≥ 1,

which yields zδ = φ−/s
δ
−1,0 Qδ-a.s. We then conclude by similar considerations as above.

This �nishes the proof of I. ⇒ II. �

Proof of II. ⇒ I.
Assume that II.(i) holds. From (3.9)-(3.10), we see that Q = φP is invariant for L,
with φ = φ+/E[φ+], and similarly when II.(ii) holds. When II.(iii) holds, then L can be
written in divergence form: L = 1

2ae
−2VD(e2VD). We de�ne Q = 1

ae
2V P, and observe

that, by (1.2) and the assumption E[e2V ] <∞, the measure Q is �nite. Using (2.3), we
�nd for f ∈ D(L)

(4.31)

∫

Lf dQ = 1
2

∫

D(exp(2V )Df) dP = 0 .

This shows that Q is invariant, cf. [12] p.239. �

4.1. The transient case. Recall φ+, φ− in (3.6), and recall that transience is charac-
terized by E[b/a] 6= 0, see Proposition 3.1.

Theorem 4.2. (transient case)
Under the assumption E[b/a] 6= 0, we have the following equivalences:

I. There is an invariant probability measure Q that is absolutely continuous w.r.t. P.
II. The speed in the law of large numbers (3.7) does not vanish.
III. Either E[φ+] <∞ or E[φ−] <∞.
IV. (existence of �almost linear coordinates�)

There is a function X that P-a.s. solves the heat equation

(4.32) (∂t + Lω)X(t, x, ω) = 0, t and x real,

and there is a constant v, and a function χ(x, ω), such that for all ω ∈ Ω,
(i) X(t, x, ω) = x− vt+ χ(x, ω)
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(ii) χ(0, ω) = 0, and there is ψ(ω) with E[ψ] = 0 such that ∂xχ(x, ω) = ψ(txω)
(i.e. ∂xχ is stationary)

If any of the above statements holds true, then the measure Q from condition I. is given,
up to normalization, by Q = φ± P, depending on E[φ+] < ∞ or E[φ−] < ∞, and the
constant v in condition IV. is equal to the speed in the law of large numbers (3.7).

Remark 4.3. χ is usually called the corrector. Under condition IV. the ergodic theorem
implies sublinear growth of χ at in�nity:

(4.33) P − a.s. lim
|x|→∞

χ(x, ω)/x = lim
|x|→∞

1
x

∫ x

0
ψ(tyω) dy = E[ψ] = 0.

This explains the name �almost linear coordinates�. It also follows from the stationarity
of ∂xχ that χ is additive:

(4.34) χ(x+ y, ω) − χ(x, ω) = χ(y, txω), x, y ∈ R.

�

Remark 4.4. Harmonic coordinates are unique: Assume that X1, X2 are harmonic

coordinates, with χ1 resp. χ2 denoting the correctors. Then χ
def
= χ1 − χ2 = X1 − X2

satis�es a.s. Lωχ = 0 and χ(0, ω) = 0 a.s. Hence χ(x, ω) = cs0,x(ω) a.s. (recall (2.7)),
and since lim|x|→∞ χ(x, ω)/x = 0 a.s., the ergodic theorem implies χ = 0 a.s.

Proof of Theorem 4.2. The equivalence of II. and III. follows from Proposition 3.3, and
the equivalence of I. and II. follows from Theorem 4.1. It thus remains to prove III.⇔ IV.

IV. ⇒ III.
De�ne Z(ω) = 1+ψ(ω), and set Z(x, ω) = Z(txω). It follows from (4.32) and IV.(i) that

P-a.s., 1
2a(x, ω)∂xZ(x, ω)+b(x, ω)Z(x, ω) = v. Multiplying both sides with 1

a(·,ω)e
2A(·,ω),

and integrating leads to

(4.35) Z(ω) = Z(x, ω)e2A(x,ω) − 2v

∫ x

0

1
a(u,ω)e

2A(u,ω) du.

First case: v 6= 0
We �rst assume that v > 0. We de�ne A = {Z ≥ 0}, and observe that (4.35) implies
A ⊆ t−xA, x > 0. Notice that the images of t−xA \ A under t−kx, k ≥ 1, are disjoint.
The stationarity of P implies that P[t−xA \ A] = 0, and hence, for P-a.e. ω, and all
positive rational x (and hence all rational x), t−xA = A. Since the right-hand side of
(4.35) is a continuous function of x, it holds that for P − a.e. ω, and all x, t−xA = A.
Since E[Z] = 1, we conclude by ergodicity that P[A] = 1. Taking expectations in (4.35),
and using that Z ≥ 0, we �nd that, for x < 0,

(4.36) 0 ≤ 2 v E[

∫ 0

x

1
a(u,ω)e

2A(u,ω) du] ≤ 1.

By monotone convergence, and using stationarity, we obtain from (4.36) that

(4.37) 1
2v ≥ E[

∫ 0

−∞

1
a(u,ω)e

2A(u,ω) du] = E[ 1
a(ω)

∫ ∞

0
e−2A(u,ω) du] = E[φ+].
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Hence E[φ+] <∞, and a similar argument shows that v < 0 implies E[φ−] <∞.

Second case: v = 0
(4.35) shows that the events {Z > 0}, {Z = 0}, {Z < 0} are invariant under t−x for all
x, and since E[Z] = 1, by ergodicity, Z > 0 P-a.s. It follows again from (4.35) that

(4.38) 2

∫ x

0
(b/a)(v, ω) dv = − logZ(txω) + logZ(ω) P-a.e. ω,

so that P-a.s., b/a is the gradient of the stationary function V = −1
2 logZ. But then the

stationarity of P implies E[b/a] = 0, a contradiction. �

III. ⇒ IV.
We assume that E[φ+] <∞, we �x v = 1

2 E[φ+] (so that v is the speed in the law of large

numbers (3.7)), and we de�ne

(4.39) Z(ω) = 2v

∫ 0

−∞

1
a(u,ω)e

2A(u,ω) du .

Notice that stationarity and the choice of v imply

(4.40) E[Z] = 2v E[ 1
a(ω)

∫ ∞

0
e−2A(u,ω) du] = 2v E[φ+] = 1.

(1.1) shows that A(u, txω) = A(u + x, ω) − A(x, ω). Hence, with Z(x, ω) = Z(txω), it
holds that

(4.41) Z(x, ω) = 2v e−2A(x,ω)

∫ 0

−∞

1
a(u+x,ω)e

2A(u+x,ω) du .

By (1.3) ∂xa(·, ω) exists a.e. Hence, for �xed x, we �nd for a.e. u,

(4.42) ∂x

(

1
a(u+x,ω)e

2A(u+x,ω)
)

= 1
a(u+x,ω)e

2A(u+x,ω)
(

2 b
a − ∂xa

a

)

(u+ x, ω).

In particular, by (1.2),(1.3), and by the ergodic theorem, there is a constant c(ν, β,K)
such that for u + x < 0, the modulus of right-hand side of (4.42) is P-a.s. bounded by

c e−E[b/a]|u+x|. We di�erentiate (4.41), and �nd, using �rst dominated convergence and
(4.42), then partial integration, the P-a.s. equalities

(4.43)
∂xZ(x, ω) = − 2 b

a(x, ω)Z(x, ω) + 2ve−2A(x,ω) · e2A(·+x,ω)

a(·+x,ω) |
0
−∞

= − 2 b
a(x, ω)Z(x, ω) + 2v

a(x,ω) ,

where the last equality follows from the ergodic theorem. With the de�nition

(4.44) X(t, x, ω) =

∫ x

0
Z(tuω) du− vt, x and t real,

we see that (4.32) is P-a.s. satis�ed. Set χ(x, ω) =
∫ x
0 Z(tuω) du − x. Clearly IV.(i)

holds, and IV.(ii) follows from (4.40). The case E[φ−] < ∞ is similar. This �nishes the
proof. �
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4.2. The recurrent case. We recall that recurrence is characterized by E[b/a] = 0, see
Proposition 3.1. In this section we assume in addition to ergodicity that the dynamical
system (Ω,A,P, (tx)x) mixes exponentially. More precisely, for −∞ ≤ x1 < x2 ≤ ∞, we
de�ne the σ-�elds Hx2

x1
= σ{txa, txb : x ∈ (x1, x2)}, and we assume that

(4.45) lim sup
y→∞

y−1 log sup
A∈H0

−∞
, B∈H∞

y

|P(A ∩B) − P(A)P(B)| < −2βν.

Recall the functional A(x, ω) in (1.11).

Theorem 4.5. (recurrent case)
Under the assumption E[b/a] = 0, and under (4.45), one has the following equivalences:

I. There is an invariant probability measure Q that is absolutely continuous w.r.t. P.
II. lim supx→∞ Var[A(x, ω)] <∞
III. There is a stationary random variable V such that P-a.s. x 7→ V (txω) is absolutely

continuous and b/a = ∇V .
IV. (existence of almost linear harmonic coordinates)

There is a function X that is P-a.s. Lω-harmonic, i.e. for P − a.e. ω,

(4.46) LωX(x, ω) = 0,

and there is a function χ(x, ω) such that for all ω ∈ Ω
(i) X(x, ω) = x+ χ(x, ω)
(ii) χ(0, ω) = 0, and there is ψ(ω) with E[ψ] = 0 such that ∂xχ(x, ω) = ψ(txω)

(i.e. ∂xχ is stationary)

If any of the above equivalent statements holds true, then Q is, up to normalization, given
by Q = 1

ae
2V P.

Remark 4.6. (i) Of course the remarks 4.3 and 4.4 also apply here. To see the
uniqueness of harmonic coordinates, proceed as in remark 4.4, and use condition
III. before applying the ergodic theorem.

(ii) Condition II. is very interesting, since it directly relates the existence of an abso-
lutely continuous invariant measure resp. the existence of almost linear harmonic
coordiantes to the occurence of traps. The �uctuations of the functional A(x, ω)
are responsible for the creation of traps, and condition II. roughly states that
there are no strong traps.

(iii) The uniqueness of harmonic coordinates and (4.48) show that E[e−2V ] <∞ and
E[e2V ] < ∞ is a necessary condition for the existence of almost linear harmonic
coordinates, resp. the existence of an absolutely continuous and invariant mea-
sure. This is the reason for the assumption (4.45), and remark 5.2 shows that
(4.45) is nearly optimal.

(iv) Brémont [4] (see also Letchikov[23], Bulycheva and Molchanov [7]) characterises
the existence of a quenched functional CLT for recurrent random walks (with
�nite range) in an ergodic random environment on Z. We believe that a similar
statement holds in our setting, which would read as: when E[b/a] = 0, then
a quenched CLT holds if and only if condition III. in Theorem 4.5 hold, and
E[e2V ] <∞, E[e−2V ] <∞. Under the mixing assumption (4.45), it would follow
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from Theorem 4.5 and Lemma 5.1 that a quenched functional CLT is charac-
terised by either condition I.-IV. in Theorem 4.5. But we will not address this
question here. �

Proof. I. ⇔ III. follows from Theorem 4.1 (in particular this equivalence holds without
the assumption (4.45)).

III. ⇔ II.
It follows from (4.45) and from Theorem 17.2.1 p.306 in [14] that the autocovariance
function satis�es

lim
x→∞

E[(b/a)(ω)(b/a)(txω)] = 0 .

Theorem 18.3.2 p.331 in [14] then shows that II. holds if and only if there is a random
variable V such that

(4.47) b/a = lim
h→0

1
h(ThV − V ) in L2.

By applying Lemma 5.4 in the Appendix with p = 2, this is equivalent to P-a.s. x 7→
V (txω) being absolutely continuous and b/a = ∇V , which is condition III.

IV. ⇒ III.
The proof of this implication is contained in the proof of IV. ⇒ III. in Theorem 4.2, see
in particular the case v = 0.

III. ⇒ IV.
We can write the operator Lω in divergence form, similarly to the expression above (4.31)
(replace D by ∂x). Lemma 5.1 shows that exp(−2V ) ∈ L1(P), and it is then immediate
that for all ω ∈ Ω, the function

(4.48) X(x, ω) =
1

E[exp(−2V )]

∫ x

0
exp(−2V (u, ω)) du is Lω − harmonic.

We de�ne χ(x, ω) = X(x, ω) − x. Clearly all requirements on χ and ∂xχ are satis�ed.
This �nishes the proof of the theorem. �

5. Appendix

Lemma 5.1. Assume (4.45), and that P-a.s, b/a = ∇V for some random variable V on
Ω. Then

(5.1) E[e2|V |] <∞ .

Remark 5.2. We will now show that the mixing condition in (4.45) is optimal, in the
sense that if the left-hand side of (4.45) equals −2βν, then it is possible to construct
V stationary with ∇V bounded and globally Lipschitz such that E[e2V ] = ∞. We now
provide an example.
The random environment is given by a Poisson point process on the line with intensity
one, and we denote the Poisson cloud with ω = (ωi)i∈Z. We de�ne the stationary �eld
U(ω) = infi |ωi|, the distance of the origin to the Poisson cloud. Then TxU(ω) is the
distance from the point x to the Poisson cloud, and hence x 7→ TxU(ω) is a sawtooth
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function with slope 1 or -1. We choose a bounded Lipschitz continuous molli�er η

that is compactly supported on (−1, 1), and de�ne V (ω) =
∫ 1
−1 U(t−yω) η(y) dy. Since

x 7→ U(txω) is P-a.s. globally Lipschitz with constant one, it is di�erentiable a.e. and
‖∇U‖∞ = 1. Then for P-a.e. ω and every x,

(5.2) ∇V (txω) =

∫ 1

−1
∇U(tx−yω) η(y) dy =

∫ 1

−1
∇U(tyω) η(x− y) dy,

which shows that ‖∇V ‖∞ = 1 and x 7→ ∇V (txω) is P-a.s. globally Lipschitz continuous
with a Lipschitz constant that is independent of the environment ω. We then set a = 1
and b = ∇V , so that ν = β = 1, and hence the right-hand side of (4.45) equals -2.
For an interval I, denote with NI the number of Poisson points in the interval I. Then
P[V > u] ≥ P[N(−u−1,u+1) = 0] = e−2u−2, so that

E[e2V ] = 1 +

∫ ∞

0
2e2u P[V > u] du = ∞.

We now show that the onedimensional distributions of U mix exponentially:

(5.3) lim sup
x→∞

x−1 log sup
a,b>0

| P(TxU ≤ a, U ≤ b) − P(TxU ≤ a) P(U ≤ b) |= −2.

This can be extended to the �nite-dimensional distributions of U , so that the left-hand
side of (4.45) is equal to -2. Fix x > 0, choose a, b > 0, and write A = (0, a), B = (0, b).
We distinguish three cases according to the relative position of a, x − b, x + b. Assume
�rst that a ≥ x+ b. Then

(5.4)

P[U ∈ A, TxU ∈ B] − P[U ∈ A] P[TxU ∈ B]

=P[TxU ∈ B](1 − P[U ∈ A])

=(1 − P[N(x−b,x+b) = 0])P[N(−a,a) = 0]

=(1 − e−2b)e−2a.

Using that a > x+b, we �nd that the left-hand side of (5.3) equals -2. In the case x−b <
a < x+b, we �nd similarly that the left-hand side of (5.4) equals 1−e−2a−e−2b+e−x−a−b,
and using that a > x− b, we �nd again that the left-hand side of (5.3) equals 2. Finally,
in the case a ≤ x− b, the left-hand side of (5.4) vanishes. Hence (5.3) holds. �

Proof of Lemma 5.1. Notice �rst that P-a.s.,

(5.5) |TxV (ω) − V (ω)| ≤
∫ x

0
|∇V |(tuω) du ≤ βνx.

We de�ne δ
def
= P[V < 0], and w.l.o.g. we can assume that 0 < δ < 1 (the claim is clear

for constant V , and otherwise look at Ṽ = V ± c for a suitable c). By (4.45), and using
(5.5), we �nd for some constant γ > 2βν,

exp(−γx) ≥ P[V < 0] P[TxV > βνx] − P[V < 0, TxV > βνx] = δ P[TxV > βνx] ,

and hence, using stationarity,

P[V > u] ≤ δ−1 exp(− γ
βνu).
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Similarly, we obtain that P[V < −u] ≤ (1−δ)−1 exp(− γ
βνu). Since, by Fubini's theorem,

E[e2|V |] = 1 +

∫ ∞

0
2 exp(2u) P[|V | > u] du ,

the claim (5.1) follows from γ > 2βν. �

We cite the main result from Atkinson [1]:

Lemma 5.3. Let f : Ω → R be integrable, and de�ne (the empty sum is by convention
zero)

(5.6) af (n, ω)
def
=

{

∑n−1
0 f(tiω), n ≥ 0,

−
∑0

−n+1 f(tiω), n ≤ 0.

Then af is recurrent if and only if E[f ] = 0. �

Recall the generator D of the translation group Tx and the gradient ∇ in (2.2) and below.

Lemma 5.4. On Lp(P), 1 ≤ p <∞, it holds that D = ∇ with domain D(D) =
{f ∈ Lp(P) : x 7→ f(txω) is absolutely continuous P-a.s. and ∇f ∈ Lp(P)}.
Proof. Choose f ∈ D(D) = {h ∈ Lp(P) : limx→0

1
x(Txh − h) exists in Lp(P)}, let g =

Df ∈ Lp(P), and de�ne A = {h ∈ Lp(P) : x 7→ h(txω) is abs. cont. P-a.s. and ∇h ∈
Lp(P)}. Following the methods exposed in the proof of Proposition 1 p.66 in [11], it
su�ces to show that (D,D(D)) is a restriction of (∇, A).
For arbitrary a, b ∈ R, we obtain by dominated convergence that

∫ b

a
dy

∫

dP | 1x(Tx+yf − Tyf) −DTyf |p → 0 as x→ 0.

By Fubini's theorem, we obtain that, P-a.s., (Tx+yf − Tyf)/x converges in Lp
loc(R). In

particular the right-hand side of

(5.7) 1
x

∫ b+x

b
Tyf dy − 1

x

∫ a+x

a
Tyf dy =

∫ b

a

1
x(Tx+yf − Tyf) dy

converges P-a.s. to
∫ b
a Tyg dy as x ↓ 0. Since the left-hand side converges for almost all

a, b to Tbf − Taf , we obtain P-a.s., by rede�ning f on a Lebesgue null set, for all a, b,

(5.8) Tbf = Taf +

∫ b

a
Tyg dy.

By the ergodic theorem we have rede�ned f on a P-null set. Hence, for P-a.e. ω, the map
y 7→ Tyf is absolutely continuous. In particular, P-a.s., ∂yf exists for Lebesgue-a.e. y.
Again by the ergodic theorem, ∇f exists P-a.s. Of course (5.8) implies that Df = ∇f .
This shows that D(D) ⊆ A and ∇|D(D) = D, which is our claim. �

For f ∈ L∞(Ω), we de�ne the Green operator Gf =
∫ ∞
0 P δ

s f ds, where P
δ
s is the

semigroup attached to the di�usion stopped when exiting (−δ, δ), i.e. for ω ∈ Ω,

(5.9) P δ
s f(ω) = Ẽω[f(ω̄s), s < Uδ] = E0,ω[f(Xs, ω), s < Uδ]

(recall Uδ below (4.6)). This semigroup is strongly continuous, and, with a slight abuse
of notation, we denote its generator with L.
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Lemma 5.5. For f ∈ D(L), it holds that Gf ∈ D(L) and GLf = LGf .

Proof. We de�ne fn =
∫ n
0 P

δ
s f ds, and observe that

(5.10) ‖Gf − fn‖∞ ≤ ‖f‖∞ sup
ω

∫ ∞

n
P0,ω[Uδ > s] ds .

Observe that supω E0,ω[Uδ] <∞, as follows from Lemma 7.4 p.365 in [16], together with
(1.2). We conclude that limn ‖Gf − fn‖∞ = 0. Further, combining point (a) and (c) of
Proposition 1.5 p.9 in [12], we notice that fn ∈ D(L) and

(5.11) Lfn =

∫ n

0
LP δ

s f ds =

∫ n

0
P δ

sLf ds .

As in (5.10), this implies that limn→∞ ‖Lfn −GLf‖∞ = 0. Since L is closed ([12] p.10),
we conclude that Gf ∈ D(L) and LGf = GLf . �

Recall the measure P̂ below (4.23).

Lemma 5.6. The group (Tx)x is strongly continuous on L1(C(R), σ(b/a), P̂).

Proof. With a slight abuse of notation, we write Ω = C(R). σ(b/a) is generated by the
�nite-dimensional cylinder sets, and is therefore contained in the Borel σ-�eld generated
by the topology of uniform convergence on compacts. It follows that Ω is a Polish space
with metric d(ω1, ω2) =

∑∞
n=1 2−n sup−n≤t≤n(|ω1(t) − ω2(t)| ∧ 1) (cf. [16] p.60, problem

4.1 and 4.2). Notice that tx acts continuously on Ω. For f ∈ Cb(Ω), it follows from
dominated convergence that

(5.12) lim
x→0

Txf = f in L1(P̂).

P̂ is regular ([30] p.48), and then it follows that Cb(Ω) is dense in L1(P̂) ([30] p.69). The
claim of the lemma now follows from Proposition 5.3 p.38 in [11] (see also Ex. 5.9(5)
p.42), once we have shown that

(5.13) sup
0≤x≤1

‖Tx‖ <∞ .

Choose f ∈ L1(P̂) and σ(b/a)-measurable, and �x 0 ≤ x ≤ 1. It follows from (4.4) that

fn = Ê[f |Ax/n] converges to f in L1(P̂). Notice that (4.24) implies C = supω, x αx(ω) <

∞. This shows that ‖Txfn‖1 =
∫

|fn|αx dP̂ ≤ C‖fn‖1, and that Txfn converges to Txf

in L1(P̂). This implies (5.13), which �nishes the proof. �
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