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Theta functions on the Kodaira–Thurston manifold

William D. Kirwin1 and Alejandro Uribe2

Abstract

The Kodaira–Thurston manifold M is a compact, 4-dimensional nilmanifold which is sym-
plectic and complex but not Kähler. We describe a construction of ϑ-functions associated to
M which parallels the classical theory of ϑ-functions associated to the torus (from the point
of view of representation theory and geometry), and yields pseudoperiodic complex-valued
functions on R4

.

There exists a three-step nilpotent Lie group G̃ which acts transitively on the Kodaira–
Thurston manifold, and on the universal cover of M in a Hamiltonian fashion. The ϑ-functions
discussed in this paper are intimately related to the representation theory of G̃ in much the
same way that the classical ϑ-functions are related to the Heisenberg group. One aspect of our
results is a connection between the representation theory of G̃ and the existence of Lagrangian
and special Lagrangian foliations and torus fibrations in M ; in particular, we show that G̃-
invariant special Lagrangian foliations can be detected by a simple algebraic condition on
certain subalgebras of the Lie algebra of G̃.

Crucial to our generalization of ϑ-functions is the spectrum of the Laplacian ∆ acting
on sections of certain line bundles over M . One corollary of our work is a verification of a
theorem of Guillemin–Uribe describing the structure (in the semiclassical limit) of the low-
lying spectrum of ∆.

1 Introduction

The classical theory of ϑ-functions is a rich and beautiful subject that weaves threads from a
diverse set of mathematical disciplines. From the point of view of complex-variable theory, they
are the closest thing to Z2n-periodic entire functions on Cn. No nonconstant holomorphic peri-
odic functions exist, so one has to settle for a quasi-periodicity condition. It turns out that this
condition, which defines ϑ-functions, identifies them with holomorphic sections of tensor powers
ℓ⊗k, k ∈ Z>0 of a certain hermitian line bundle ℓ over the n-torus, Cn/Z2n.

From the point of view of geometric quantization of symplectic manifolds, these bundles are
“Kähler-quantizing line bundles,” meaning that they are holomorphic and hermitian, and that the
curvature of their natural connection is equal (up to a suitable constant, depending on normaliza-
tions) to the Kähler form on the base, Cn/Z2n, induced by the one on Cn. In this sense classical
theta functions (with fixed characteristics) are a geometric quantization of complex torii. (The
line bundles ℓ⊗k → M are not unique, as they can be twisted by flat line bundles, corresponding
to circle representations of the fundamental group of M . This corresponds to the “characteristics”
of the theta functions.)

Sections of the line bundles ℓ⊗k → Cn/Z2n can be naturally identified with certain functions
on the unit circle bundle P ⊂ ℓ∗, namely those that transform according to the k-th character of
the circle group. If the characteristics are zero, P = Γ\Heis(2n + 1), where Heis(2n + 1) is the
Heisenberg group of dimension 2n + 1 and Γ the integral lattice. From this point of view, classical
ϑ-functions arise when one decomposes L2(P ) into isotypical representations of the circle action
on P , and then each isotype into (copies of) irreducible representations of Heis(2n + 1).
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In this paper we consider an analogue of ϑ-functions, where we have replaced the standard
Kähler four-dimensional torus with a “twisted” relative—the Thurston-Kodaira manifold, a certain
compact nilmanifold which is symplectic but not Kähler. Just as in the classical theory, ϑ-functions
associated to the Kodaira–Thurston manifold M arise when studying a spectral decomposition of
the L2-space of sections of certain line bundles over M . The construction we give is intimately
related to the symplectic structure of M , and the space of sections of interest is a particular case
of the “almost-Kähler quantization” procedure of [BU96]. It is the authors’ hope that this work
will not only illustrate interesting new connections between ϑ-functions and symplectic geometry,
but also clarify some aspects of the classical theory by comparison.

Although we have restricted our analysis to the 4-dimensional Kodaira-Thurston manifold,
it is clear that our constructions are not unique to this situation and could be extended to all
dimensions and adapted to other compact nilmanifolds.

We will now state our main results (though we leave some technical details for later). Next, we
give an overview of the classical theory of ϑ-functions so that the analogy of our results with the
classical theory is apparent. We then briefly review the tool which we use to generalize ϑ-functions
to our situation: a generalization of geometric quantization to the symplectic category which is
known as almost Kähler quantization. We conclude §1 with a summary of the rest of the paper.

1.1 Main results

The universal cover of the Kodaira–Thurston manifold M is the Lie group G = Heis(3) × R, the
direct product of the three-dimensional Heisenberg group with the real line. Specifically, if Γ0 is
the integer lattice in G, then M := Γ0\G. It can be equipped with a left G-invariant integral
symplectic form ω and complex structure (see Kodaira’s work [Kod64]), but, as Thurston was the
first to observe [Thu76], it is not a Kähler manifold. In fact, though it is both symplectic and
complex, there exist no positive Kähler metrics (although there do exist indefinite Kähler metrics)
[FGG88]. In this paper, we will primarily be interested in the symplectic structure of M .

There exist left-invariant symplectic forms on G; we will make a specific choice, denoted ω,
which then descends to the symplectic form on M . Then the right-invariant vector fields on G
are Hamiltonian with respect to ω. In analogy with the Euclidean case (where, instead of G,
one has R4 with its standard symplectic form), the Hamiltonians of right-invariant vector fields
form a Lie algebra, g̃, which is a central extension of the Lie algebra, g, of G. The corresponding
simply-connected Lie group is a semi-direct product G̃ = G ⋊ R, which is three-step-nilpotent and
a central extension of G by R:

1 → R → G̃ → G → 1

such that G̃ acts on M in a Hamiltonian fashion. (In some sense G̃ is “the Heisenberg group on
G”).

Picking a suitable lattice Γ̃ covering Γ, the quotient Γ̃\G̃ is a principal circle bundle

P := Γ̃\G̃ → M

with a natural connection whose curvature is the symplectic form on M . We denote by ℓ → M
the associated line bundle.

The Hamiltonian action of G̃ on M lifts to the line bundles P and therefore ℓ⊗k, and induces
the right (quasi)regular representation ρ of G̃ on L2(M, ℓ), the space of L2-sections of ℓ, given by
(ρ(g̃)s) (m) = g̃−1s(m · g̃). This representation is unitary with respect to the Liouville measure on
M . In Section 5, we will see that the quasiregular representation (for k 6= 0) decomposes into a

direct sum of unitary irreducible representations πk : G̃ → End(Vk) as (Corollary 5.7)

L2(M, ℓ⊗k) ≃ 4k2Vk. (1.1)
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More precisely, adapting a general construction due to Richardson [Ric71], we obtain in §5.1
concrete formulae for the maps θj

k of the theorem below:

Theorem 1.1. Let k ∈ Z \ {0}. For each j = 1, ..., 4k2, there exists a map3 θj
k : Vk → L2(M, ℓ⊗k)

such that

1. θj
k is unitary, up to a constant,

2. θj
k(Vk) is orthogonal to θj′

k (Vk) whenever j 6= j′, and

3. θj
k intertwines the actions of G̃ on L2(M, ℓ⊗k) and Vk.

The maps θj
k are generalizations of maps introduced by Weil in [Wei64]. In [Bre70], Brezin

considered in detail these maps in the case of Heisenberg groups. In the same paper, Brezin
also described an inductive procedure to obtain decompositions of the form (1.1) for a general
nilmanifold, though his procedure is somewhat different from ours.

Each of the representation spaces Vk is isomorphic to L2(H\G̃), where H is any choice of a

certain family of subgroups of G̃: those with Lie algebra subordinate to certain coadjoint orbits,
described in Theorem 3.3. Both G̃ and H are nilpotent, hence exponential, groups. The group
G̃ is diffeomorphic to R5 while H\G̃ is diffeomorphic to R2, so that Vk ≃ L2(R2). An element of

L2(H\G̃) is already constant along H-cosets, and we will see in Section 5 that θj
k is essentially

a sum over the remaining lattice directions, much like a Poincaré series. For this reason, we call
the θj

k periodizing maps, even though they are not quite what one usually means by the term (the
reason is, again, because we are really dealing with sections of a nontrivial line bundle rather than
functions).

Let h = Lie(H) and set h0 = h ∩ Lie(G), where G →֒ G̃ as the zero section. Note that
T1G ≃ TΓ0M. The next theorem (a concatenation of Theorem 3.3, Lemma 3.4, and Theorems

4.4 and 4.5) exposes the symplectic structure of M in terms of the algebraic structure of G̃. We
recall the definitions related to Lagrangian subspaces in Section 4. The notion we use of special
Lagrangian, a generalization of the usual one to the nonCalabi–Yau case, appears in the work of
Tomassini and Vezzoni [TV06], although it has appeared elsewhere in the literature under differing
names; see §4 for details.

Theorem 1.2. The left G-invariant distribution on M induced by the subspace h0 ⊂ TΓ0
M is

integrable and Lagrangian, hence defines a Lagrangian foliation of M . Moreover, the set of ideal
subordinate subalgebras can be parameterized by e ∈ R ∪ {±∞}, and the foliation induced by he, e ∈
R is special Lagrangian. Finally, the foliations induced by the subordinate subalgebras he, e =
0,±∞ are Lagrangian torus fibrations.

We should remark that connections between representation theory, Lagrangian fibrations, and
sections of ℓ⊗k have appeared before; see for example [Mum91], [Noh05], or [Pol03].

Denote by Γ(M, ℓ) the space of smooth sections4 of ℓ. Since G ≃ R4 is contractible, the
bundle ℓ → M lifts to a trivializable line bundle ℓ̌ → G. Upon trivializing ℓ̌ ≃ G × C, a section
s ∈ Γ(M, ℓ) yields a function fs : G → C. Such a function is necessarily pseudoperiodic, that is, it
admits transformation rules associated to the lattice elements of the form fs(γ0g) = e(g, γ0)fs(g),

for some multiplier e(g, γ0) which is independent of fs. In particular, given φ ∈ L2(H\G̃), the
periodized image θj

kφ ∈ Γ(M, ℓ⊗k) lifts to a pseudoperiodic function ϑj
kφ : G → C. In Section 5,

we prove the following pseudoperiodicity relations.

3We will actually construct maps Θj
k : Vk → L2

k(P ), where L2
k(P ) is a space of S1-equivariant functions on the

circle bundle associated to ℓ; each such function can be identified with a section of ℓ⊗k.
4We will sometimes omit M from the notation, writing simply Γ(ℓ), when there is no danger of confusion.
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Theorem 5.7. Let γ0 ∈ Γ0. Then

(ϑj
kφ)(γ0g) = exp{−4πikψ(γ−1

0 , g)}(ϑj
kφ)(g).

where ψ(g̃1, g̃2) is defined by the group multiplication of G̃ ≃ G ⋊ R :

g̃1 · g̃2 = (g1, x1) · (g2, x2) = (g1 · g2, x1 + x2 + ψ(g1, g2)).

Classical theta functions are not only pseudoperiodic, but also complex-analytic. The previous
results do not address the question of how to replace the notion of holomorphicity for sections of
ℓ⊗k. Our final result addresses this issue with a description of the almost Kähler quantization of
M , one aspect of which yields a direct proof, in our case, of a general theorem of Guillemin and
Uribe [GU88].

Choose a left-invariant metric on G. Associated to the resulting metric on M is a Laplacian
∆(k) acting on Γ(ℓ⊗k). Since it is comprised of some appropriate combination of left-invariant

vector fields (lifting the action of G̃ to ℓ), ∆(k) can be expressed in terms of the right regular

representation of G̃ and hence the Laplacian ∆(k) induces a Laplacian ∆k acting on Vk.

Theorem 1.4. There exist constants a,C > 0 such that for k sufficiently large, the lowest eigen-
value λ0 of ∆k − 4πk has multiplicity one (i.e. there is a unique ground state) and is contained
in (−a, a). Moreover, the next largest eigenvalue λ1 is bounded below by Ck. The spectrum of
∆(k) − 4πk is identical to the spectrum of ∆k − 4πk, except that each eigenvalue is repeated with
multiplicity 4k2.

It is natural to replace “holomorphicity” by “belonging to the span of the ground states of
∆k − 4πk,” at least for k sufficiently large. Just as in the classical theory, the sign of k 6= 0 plays
no special role from the point of view of representation theory. It is only when holomorphicity is
introduced that one detects a difference between positive and negative values of k (see the end of
Section §1.2 for details).

Note: Throughout the rest of the paper, we will present specific computations exhibiting the
above theorems (for specific choices of the relevant structures) in an effort to illustrate the simi-
larities and differences with the classical theory of ϑ-functions. These computations will appear
under the heading of Example, though they should be understood as instances of the main results
and techniques we discuss.

Example 1.5. In Section 4, we will see that there exists a subgroup H0 < G̃ such that the left-
invariant Lagrangian foliation of M induced by h0 = Lie(H0) ∩ Lie(G) is a fibration of M by

special Lagrangian tori. After choosing a matrix realization of G̃ (listed in the Appendix) we can

identify G ≃ R4 and H\G̃ ≃ R2 (equipped with the Lebesgue measure).
Associated to this data, for each k ∈ Z≥0 there is a family of maps

{θm,n
k : L2(R2) → L2(M, ℓ⊗k), m, n = 0, 1, . . . , 2k − 1}

such that

L2(M, ℓ⊗k) ≃
2k−1⊕

m,n=0

θm,n
k (L2(R2))

is an orthogonal decomposition of L2(M, ℓ⊗k) into irreducible G̃-spaces (Section 5.1).
Identifying sections of ℓ⊗k with sections of the pullback bundle ℓ̌⊗k → G ≃ R4 and hence with

functions on R4, we obtain, in Section 5.2, for each square-integrable function f : R2 → C and for
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each m,n = 0, 1, . . . , 2k − 1 a function ϑm,n
k f ∈ L2(R4, C) given by

(ϑm,n
k f)(x, y, z, t) = e−2πi[my−n(z+xy)]e−4πikzx

×
∑

a,b∈Z

e2πinyae−4πik(by−za−y(x+a)2/2)f(x + a, t + b).

Since f is square-integrable, the series converges absolutely for almost all x, y. One may also
show that ‖ϑm,n

k f‖2
L2(R2/Z2) = const.× ‖f‖2

L2(R2) (the constant of proportionality was computed by

Richardson in [Ric71], see equation (5.5)). These functions satisfy the pseudoperiodicity conditions

(ϑm,n
k f)(x + 1, y, z, t) = (ϑm,n

k f)(x, y, z, t),

(ϑm,n
k f)(x, y + 1, z − x, t) = e−2πikx2

(ϑm,n
k f)(x, y, z, t),

(ϑm,n
k f)(x, y, z + 1, t) = e4πikx(ϑm,n

k f)(x, y, z, t), and

(ϑm,n
k f)(x, y, z, t + 1) = e4πiky(ϑm,n

k f)(x, y, z, t).

Moreover, we show in Section 6 that if ψ0 is the (unique) ground state of the second-order
elliptic differential operator

∆k := −∂xx − ∂tt + 16k2π2(x2 + t2) + 16k2π2x2

(
x2

4
− t

)

then the images ϑm,n
k ψ0, m, n = 0, 1, . . . , 2k − 1 are the ϑ-functions associated to the Kodaira–

Thurston manifold and form a basis for the almost Kähler quantization of M .

1.2 The classical theory of ϑ-functions

We give here a short description of the classical theory of ϑ-functions. Of course, we cannot
hope do more than scratch the surface of this vast subject, so we will content ourselves here
with recalling those pieces which suit our present interests (and even these points will be given a
succinct treatment). There are many excellent references in the literature dealing with ϑ-functions;
too many, in fact, for us to give any sort of inclusive list. Nevertheless, we would refer the interested
reader to the Tata Lectures of Mumford [Mum83], [Mum84], for a treatment of ϑ-functions from
both the algebraic and geometric point of view; in particular, the point of view taken in the
third volume of the series [Mum91] (Mumford–Nori–Norman) is very much in the same vein as
the approach taken in this paper. For connections with representation theory, and in particular
the deep connections of the theory of ϑ-functions with the theory of nilpotent Lie groups, we
recommend the work of Auslander and Tolimieri [AT75]. Let us emphasize that the following
account of the classical theory of ϑ-functions consists entirely of well-known material that may be
found in the references mentioned above.

In his Fundamenta Nova Theoriae Functionum Ellipticarum [Jac29], Jacobi gave the first treat-
ment of what is now known as the ϑ-function, defined as the series

ϑ(z, τ) =
∑

n∈Z

eiτπn2+2πinz

where z ∈ C and τ ∈ H+ := {z ∈ C : Im z > 0}. This series converges absolutely, and uniformly
on compact sets. Hence, it defines an entire holomorphic function.

Of course, there are no nonconstant entire holomorphic functions, but ϑ(z, τ) is, in some sense,
as close to periodic as an entire holomorphic function can be; it is easy to verify that

ϑ(z + 1, τ) = ϑ(z, τ)
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and, more interestingly,
ϑ(z + τ, τ) = e−iπτ−2πizϑ(z, τ).

Because of these relations, ϑ(z, τ) is said to be pseudoperiodic with respect to the lattice Z+τZ ⊂ C.
If ϑ(z, τ) were periodic with respect to the lattice Z + τZ, then it would descend to a function on
the torus T 2 = C/(Z + τZ). The geometric interpretation of ϑ(z, τ) which we will generalize arises
from the fact that because of the pseudoperiodicity conditions, ϑ(z, τ) descends to a section of a
(nontrivial) line bundle over the torus, rather than a function.

We momentarily shift our point of view and recall some basic symplectic geometry. An action
of a Lie group G on a symplectic manifold (M, ω) is said to be weakly Hamiltonian if each 1-
parameter subgroup is infinitesimally generated by the symplectic gradient of some Hamiltonian
function, that is, if for each ξ ∈ g := Lie(G) there exists a function φξ : M → R such that

dφξ = Xξ
y ω,

where Xξ is infinitesimal action of ξ on M. Such an action is Hamiltonian if the linear map ξ → φξ

is a Poisson–Lie homomorphism, that is, if

{φξ, φη} = φ[ξ,η].

Consider R2 with coordinates (x, y) equipped with the standard symplectic form ω = dx ∧ dy.
The Abelian group R2 acts on itself by translations which are infinitesimally generated by the
vector fields ∂x and ∂y. Moreover, this action is weakly Hamiltonian; indeed ∂x is the Hamiltonian
flow of the function φx := y and ∂y is the Hamiltonian flow of φy := −x. A quick calculation,
though, shows that {φx, φy} = 1, whereas [∂x, ∂y] = 0 implies φ[∂x,∂y] = 0. Hence, the action of R2

on itself by translations is not Hamiltonian.
Let us reflect on this situation for minute. On the one hand, [∂x, ∂y] = 0 defines the Lie algebra

structure of R2. On the other hand, we would like a Lie algebra structure which is reflected as a
Poisson algebra satisfying {∂x, ∂y} = 1 (if we want a Hamiltonian action, that is). The resolution,
it seems, is to take a central extension of R2 whose Lie algebra structure is given by [∂x, ∂y] = Z
and assign the Hamiltonian function φZ := 1. This means that Z acts trivially on R2, but the
new group acts in a Hamiltonian fashion. This new group is, of course, the well-known Heisenberg
group described by the short exact sequence

0 → R → Heis(3) → R2 → 0.

The Heisenberg group can be realized in many equivalent ways. For what comes later, we will
find it convenient to make the definition

Heis(3) :=
{
a ∈ R3

}

equipped with the group law

a · b = (a1 + b1, a2 + b2, a3 + b3 − a2b1).

Note that the first two components give the action of R2 on itself by translations as claimed. That
the Lie algebra of this Lie group satisfies the bracket relations [X, Y ] = Z, with X = ∂R

a1 , Y = ∂R
a2 ,

and Z = ∂R
a3 , is an exercise left for the reader5.

Let Γ := {a ∈ Heis(3) : a ∈ Z3} denote the integer lattice in the Heisenberg group. The
quotient

Q := Γ\Heis(3)

5We use right invariant vector fields because they are the generators of the left action by translations.
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is a compact manifold. In fact, the center {(0, 0, z)} ⊂ Heis(3) of the Heisenberg group acts (on
the right) as S1 on Q, and this action gives Q the structure of a principal S1-bundle over the torus
T 2 whose Chern class is the class of the symplectic form (appropriately normalized).

The circle S1 acts on C by multiplication, and this action induces a Hermitian line bundle ℓ →
T 2 associated to Q. It turns out that this bundle has a unique (up to normalization) holomorphic
section. Pulling back ℓ by the quotient map R2 → T 2 yields a trivializable line bundle over R2,
and up to factors arising from the choice of trivialization, ϑ(z) is this unique holomorphic section
represented as a section of the pullback bundle. We will see this much more explicitly in a moment.

We can view this appearance of ϑ(z) as a section of a line bundle over T 2 through the lens
of the representation theory of the Heisenberg group (the utility of this approach is that we can
generalize it to the Kodaira–Thurston manifold).

The Heisenberg group acts on Q transitively on the right, and this action induces a unitary
action on L2(Q) (with respect to the Lebesgue measure) via

[ρ(g)f ](x) = f(x · g)

which is known as the right (quasi-)regular representation. Thus, L2(Q) can be decomposed into
unitary irreducible representations of Heis(3).

The unitary irreducible representations of Heis(3) are well-known (and easily computed, see
for example [Kir04, Sec. 2.3]). For our purposes, it is sufficient to know that for each λ ∈ R \ {0}
there exists a unitary irreducible representation πλ of Heis(3) on Vλ ≃ L2(R, dx) given by

[πλ((a, b, c))f ](x) = e2πiλ(c+bx)f(x + a).

The decomposition of L2(Q) into unitary irreducible representations of Heis(3) is then

L2(Q) = L2(T 2) ⊕
⊕

k∈Z

|k|Vk (1.2)

where each invariant subspace |k|Vk can be decomposed into |k| copies of the irreducible space Vk

(see [AB73, Theorem 1] for one proof).
Indeed, a very fruitful (at least in this paper) question to ask is: how is the decomposition

(1.2) achieved? That is, given a function f ∈ L2(R, dx), how does one obtain a function in
|k|Vk ⊂ L2(Q), and moreover, is there some systematic way to achieve the decomposition of an
invariant subspace of L2(Q) into |k| orthogonal copies of Vk?

The answer to both of these questions is achieved by the Weil–Brezin Θ-map [Bre70], [Wei64].
Let x, y and φ be coordinates on Q induced by the coordinates a1, a2 and a3 on Heis(3). For each
k ∈ Z \ {0}, define a map Θk : L2(R, dx) → L2(Q) by

(Θkf)(Γ0(x, y, φ)) = e−2πikφ
∑

m∈Z

f(y + m)e2πimx.

Each Θk is unitary and intertwines the action of the Heisenberg group. Define a function6 ϑkf :
R2 → C by

(ϑkf)(x, y) =
∑

m∈Z

f(y + m)e2πimx.

The function ϑkf is square-integrable on any fundamental domain of T 2 = R2/Z2, though not on
R2 itself.

6Each function Θkf can be identified with a section of ℓ⊗k → T 2. The universal cover of T 2 is R2, and so ℓ
can be lifted to a trivializable line bundle ℓ̌ → R2. So the section associated to Θkf induces a section of the lifted
bundle ℓ̌⊗k → R2. After choosing a certain trivialization of ℓ̌, and hence identifying sections with functions, one
obtains ϑkf .
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Since it will make no difference for our purposes, we will henceforth take τ = i and write
ϑ(z) := ϑ(z, i). To see how ϑ(z) arises from the Weil–Brezin map requires one more piece of the
puzzle. The basic fact of the matter is that ϑ(z) is, up to exponential factors, the image of the
standard Gaussian under the Weil–Brezin map with k = 1, after ℓ → T 2 has been lifted to a trivial
line bundle ℓ̌ ≃ R2 × C :

[ϑ1(e
−πt2)](x, y, φ) = ϑ(x + iy) × e−πy2

. (1.3)

Equation (1.3) is not as ad hoc as it seems at first sight: the factor e−πy2

arises from the choice
of trivialization of ℓ̌. Why ϑ arises as the image of the standard Gaussian requires a bit more
explanation.

Sections of ℓ⊗k can be identified with functions f : Q → C which satisfy the S1-equivariance
condition

f((0, 0, c) · (x, y, φ)) = e−2πikcf((x, y, φ)). (1.4)

Denote the space of such functions by L2
k(Q).

Consider the Hodge Laplacian7 acting on sections of ℓ. It induces a second order elliptic dif-
ferential operator ∆(1) acting on L2

1(Q) which can be written in terms of the right quasi-regular
representation as

∆(1) = −1

4

[
ρ∗(X)2 + ρ∗(Y )2 + 2π

]
.

Since a function which transforms according to (1.4) satisfies the same S1-equivariance as V1,
the Weil–Brezin map Θ1 restricts to an S1-equivariant map Θ1 : V1 → L2

1(Q). The Hodge Laplacian
∆(1) then yields a differential operator ∆1 acting on V1 which is given by

∆1 = −1

4

[
(π1)

2
∗(X) + (π1)

2
∗(Y ) + 2π

]

= −1

4

[
∂2

T − 4π2t2 + 2π
]
.

On ℓ → T 2, the kernel of the Hodge Laplacian consists exactly of holomorphic sections (Hodge’s
theorem). On the other side, the kernel of ∆1, acting on V1 ≃ L2(R), is spanned by the Gaussian

e−πt2 . Hence, we see that (1.3) is simply an expression of the kernel of the Hodge Laplacian acting
on S1-equivariant functions on Q from two different points of view.

We conclude by noting that L2
k(Q) decomposes into irreducible representations for all nonzero

integers k, not just positive integers. The classical ϑ-fuctions appear only for k positive because
it is exactly in these cases that the kernel of the Hodge Laplacian yields holomorphic sections.
Indeed, for k negative, it is the antiholomorphic sections which furnish the representations of the
Heisenberg group.

1.3 Quantization

Classical ϑ-functions, and also the ϑ-functions constructed in this paper, are related to a construc-
tion in mathematical physics known as geometric quantization. We will not go into detail about
geometric quantization (the interested reader may refer to [Woo91] for comprehensive account),
but since it will eventually provide the structure which we generalize, we now describe the relevant
pieces.

Geometric quantization provides a systematic recipe which associates to each symplectic man-
ifold (M, ω) a Hilbert space HM and a map Q from (some subalgebra of) C∞(M) to the set of
(usually unbounded) operators on HM . This association is rigged in such a way as to be nontriv-
ial and approximately functorial. The construction works best when M is actually Kähler (for
example, on the torus).

7We take the connection on ℓ induced by the connection on Q whose connection 1-form is dual to Z via the
left-invariant metric which makes {X, Y, Z} an orthonormal basis.
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Suppose M is a compact Kähler manifold with integral symplectic form ω. Then there is a
Hermitian line bundle ℓ → M with compatible connection with first Chern class the class of ω,
called a prequantum line bundle. In this situation, for each k ∈ Z+ one defines the quantum Hilbert
space to be the L2-space of holomorphic sections of ℓ⊗k:

HM := H0(M, ℓ⊗k).

By Hodge’s theorem, the quantum Hilbert space is precisely the kernel of the Hodge Laplacian
∆k acting on sections of ℓ⊗k. Hence, we see that the geometric quantization of the torus consists
exactly of ϑ-functions.

In order to generalize the construction of ϑ-functions, one should study the geometric quan-
tization of other manifolds8. The description we have given, though, makes critical use of the
assumption that M is Kähler (otherwise, we either have no notion of “holomorphic” if M is not
complex, or there might be no nonzero holomorphic sections if M is complex but the line bundle
ℓ is not positive).

We will consider one possible generalization of the basic program of geometric quantization,
known as almost Kähler quantization. Although the general theory has been around for some
time, no nonKähler examples of this method have been worked out. (It was part of the original
motivation of the current work to produce such an example.)

Suppose that (M2n, ω) is a compact symplectic manifold and that the class [ω/2π] is integral,
whence there exists a prequantum line bundle ℓ → M . Choose a metric g on M , and construct
the rescaled metric Laplacian ∆(k) − 2πnk acting on sections of ℓ⊗k.

If M is Kähler, and g is the Kähler metric, then ∆(k) − 2πnk is equal to the Hodge Laplacian.
So the geometric quantization of M consists of the kernel of ∆(k) − 2πnk. In the nonKähler case,
even though there is no Hodge Laplacian, it still makes sense to study ∆(k) − 2πnk. The difficulty
is that its kernel is generically empty.

The basic foundation on which almost Kähler quantization rests is that there is an approximate
kernel of the rescaled metric Laplacian, described by the following theorem of Guillemin and Uribe
[GU88]. Denote the spectrum of ∆(k) − 2πnk by

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → ∞.

Theorem 1.6. There exist constants a ≥ 0 and C > 0 such that for k sufficiently large,

1. λj ∈ (−a, a) for j = 1, 2, . . . , dk, and

2. λdk+1 > Ck,

where dk := RR(M ; ℓ⊗k) is the Riemann–Roch number of M twisted by ℓ⊗k.

The important point is that the constants a and C are independent of k. Thus, the span of the
eigenfunctions of ∆(k) − 2πnk with bound eigenvalues constitutes an approximate kernel. Indeed,
if M is Kähler, then these bound eigenvalues are all exactly zero, and the span of the corresponding
eigenfunctions is the kernel of the Hodge Laplacian.

Following this line of reasoning, Borthwick and Uribe [BU96] defined the almost Kähler quan-
tization of (M, ω) to be the span of the bound eigenfunctions of the rescaled metric Laplacian:

HM := spanC{ψ ∈ Γ(ℓ⊗k) : (∆(k) − 2πnk)ψ = λψ with λ ∈ (−a, a)}.

These bound eigenfunctions, in the case of the Kodaira–Thurston manifold, are the desired gener-
alization of ϑ-functions.

8In fact, this idea leads to many interesting examples for different choices of Kähler manifold M. For example,
if M is taken to be a Riemann surface of genus g ≥ 2, then geometric quantization yields modular forms.
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1.4 Summary

In Section 2, we provide specific formulae for ω, G̃ and its group law, a principal circle bundle
P → M (analogous to Q → C/Z2), and prove basic statements about their geometry.

Section 3 begins an analysis of the representation theory of G̃; we use Kirillov’s orbit method
to construct the unitary irreducible representations of G̃. After a brief review of the induction
procedure (the basis of the orbit method), we discuss the set of subordinate subalgebras (the
choice of which is the first step in the method).

The subordinate subalgebras provide the link with the symplectic geometry of M . In Section
4, we describe the correspondence between subordinate subalgebras and Lagrangian foliations.
We then show that a certain subfamily of subordinate subalgebras, consisting exactly of the ideal
subordinate subalgebras, correspond to special Lagrangian foliations. We also describe Lagrangian
torus fibrations of M .

In Section 5, we return to the representation theory of G̃. In this section, we find a decomposi-
tion of L2(P ) into unitary irreducible representations of G̃. We also describe the periodizing maps
Θj

k which realize this decomposition, and discuss the pseudoperiodicity of the images of Θj
k.

In the final Section 6 we consider the harmonic analysis of P . After discussing the various Lapla-
cians in the picture, we use semiclassical methods (in particular, the quantum Birkhoff canonical
form) to analyze their spectra. Finally, we are able to define the ϑ-functions associated to M and
hence the almost Kähler quantization of M .

2 Preliminaries

We begin by constructing the Kodaira–Thurston manifold (M, ω). We will normalize ω so that
[ω/2π] is an integral cohomology class.

Let G = Heis(3) × R be the product of the three dimensional Heisenberg group with R. Con-
venient faithful matrix representations of this group, as well as those defined below, are given in
the Appendix. We will write g ∈ G as

g = (a, r) := (a1, a2, a3, r), a ∈ Heis(3), r ∈ R.

The group law is given by

(a, r) · (b, s) = (a · b, r + s) =
(
a1 + b1, a2 + b2, a3 + b3 − a2b1, r + s

)
. (2.1)

Fix a basis {X1, X2, X3, T} of g = Lie(G) = Lie(Heis(3)) ⊕ R which satisfies the usual com-
mutation relation [X1, X2] = X3. The coordinates (a, r) on G may be expressed in terms of this
basis:

(a, r) = exp(a1X1) exp(a2X2) exp(a3X3) exp(rT ).

Such coordinates on G are called canonical coordinates.
Let Γ0 ⊂ G be the integral lattice

Γ0 = {(a, r) : aj , r ∈ Z}.

It is easy to check that Γ0 is a subgroup (not normal) of G. The Kodaira–Thurston manifold is

M := Γ0\G.

It is compact and symplectic, as we will see below, but not Kähler [Thu76].
A left invariant coframe on G is

β1
L = da1, β2

L = da2, β3
L = da3 + a2da1, βT

L = dr. (2.2)
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There is a right invariant frame which corresponds to the dual of the above frame at the identity:

XR
1 =

∂

∂a1
, XR

2 =
∂

∂a2
− a1 ∂

∂a3
, XR

3 =
∂

∂a3
, TR =

∂

∂r
. (2.3)

Recall that it is the right invariant frame that generates the left action of G on itself.
A left invariant symplectic form, normalized so that

∫
M

[ ω
2π ] = 1, is

ω = 2π
(
β1

L ∧ β3
L + β2

L ∧ βT
L

)
= 2π (da1 ∧ da3 + da2 ∧ dr).

For easy reference and to fix sign conventions, recall that the Hamiltonian vector field Xf associated
to f ∈ C∞(G) is given by

Xf y ω := ω(Xf , ·) = df

⇒ Xf =
1

2π

(
∂f

∂a1

∂

∂a3
− ∂f

∂a3

∂

∂a1
+

∂f

∂a2

∂

∂r
− ∂f

∂r

∂

∂a2

)
.

The corresponding Poisson brackets are {f, g} = Xf (g) = ω(Xf , Xg).

Lemma 2.1. The right invariant vector fields XR
1 , XR

2 , XR
3 , TR are Hamiltonian with respect to

ω. A choice of Hamiltonians is

φ1 = −2πa3, φ2 = −2π

(
r +

(a1)2

2

)
, φ3 = 2πa1, φT = 2πa2.

The induced linear map g → C∞(G) is, however, not a Lie algebra homomorphism.

Proof. The first part is an easy computation. For the rest, observe that

{φ1, φ2} = −φ3, {φ1, φ3} = 2π = {φ2, φT }. (2.4)

With the conventions thus far, writing 0 = (0, 0, 0, 0) ∈ G, we have

[XL
1 , XL

2 ]0 = X3 = [X1, X2]

[XR
1 , XR

2 ]0 = −X3 = −[X1, X2].
(2.5)

The fact that the Poisson brackets above do not close in g is an analogy of what happens in the
case of translations on R2 (see Section 1.2).

Therefore, we are lead to consider the analogue of the Heisenberg group associated with G;
namely, a specific central extension g̃ = spanR{X1, X2, X3, T, U} of g subject to the relations

[X1, X2] = X3, [X1, X3] = −U = [X2, T ]. (2.6)

The central extension g̃ is a three step nilpotent Lie algebra whose center is spanned by U.
Observe that we are not using the bracket relations (2.4). This is because we want the restriction

of the Lie algebra of G̃ = exp(g̃) to the standard embedded copy of G to coincide with the algebra
of left invariant vector fields along that embedded copy of G. Hence, due to (2.5), we need the
change of signs.
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2.1 Prequantization

The Lie group G̃ with Lie algebra

g̃ = span
R

{X1, X2, X3, T, U}

subject to the relations (2.6) is a central extension

0 → R → G̃ → G → 0.

In fact G̃ = G ⋊ R with the group product

(g, v) · (g′, w) = (g · g′, v + w + ψ(g,g′)),

where ψ : G × G → R is given in (2.8) below. An element (g, v) of G̃ can be written in canonical
coordinates as

(g, v) = exp(a1X1) exp(a2X2) exp(a3X3) exp(rT ) exp(vU).

The group law in these coordinates, which can be worked out either with the Baker–Campbell–
Hausdorff formula or the faithful matrix representation given in the Appendix, is

(a, r, v) · (b, s, w) = ((a, r) · (b, s), v + w + a3b1 − 1
2a2(b1)2 + rb2) (2.7)

= (a1 + b1, a2 + b2, a3 + b3 − a2b1, r + s,

v + w + a3b1 − 1
2a2(b1)2 + rb2).

In particular,

ψ((a, r), (b, s)) = a3b1 − 1

2
a2(b1)2 + rb2. (2.8)

A left G̃-invariant frame which corresponds to {X1, X2, X3, T, U} at the origin is given by

XL
1 =

∂

∂a1
− a2 ∂

∂a3
+ a3 ∂

∂v
, XL

2 =
∂

∂a2
+ r

∂

∂v
, XL

3 =
∂

∂a3
,

XL
T =

∂

∂r
, XL

U =
∂

∂v
.

The dual left G̃-invariant coframe is

β1
L = da1, β2

L = da2, β3
L = da3 + a2da1, βT

L = dr,

βU
L = dv − a3da1 − rda2.

(2.9)

Throughout the paper, if we need to make reference to a metric (for example in Section 6), we

will choose the left G̃-invariant metric

g =
(
β1

L

)2
+

(
β2

L

)2
+

(
β3

L

)2
+ (βT

L )2 + (βU
L )2.

At the origin in G̃, this metric yields a symmetric bilinear quadratic form, and orthogonal projection
from g̃ to g with respect to this form is given by (with the summation convention)

xjXj + tT + uU 7→ xjXj + tT. (2.10)

Moreover, the restriction of the metric g to G yields a metric (which we denote by the same symbol)

g =
(
β1

L

)2
+

(
β2

L

)2
+

(
β3

L

)2
+

(
βT

L

)2
.

The fundamental importance of G̃ to our analysis is due to the following.
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Lemma 2.2. The group G̃ acts on (G,ω) in a Hamiltonian fashion, provided we associate to U
the constant Hamiltonian φU = 2π.

The center of G̃ is exp(R · U) and can be identified with R if we set exp(U) 7→ 1. Denote by

Z ⊂ G̃ the subgroup of the center corresponding to the half-integers9, that is, Z = {(g, n
2 ) : n ∈ Z}.

Then K = G̃/Z is a group with center S1 ≃ R/ 1
2Z. Indeed, K is an S1-central extension of G

[0] → S1 → K → G → 0.

K is the group of elements (a, r, [v]), where [v] is the class of v modulo 1
2Z.

The group homomorphism F : G̃ → G covering the Lie algebra homomorphism U 7→ 0 is

F ((a, r, v)) = (a, r).

The homomorphism F induces a homomorphism from K to G which we continue to denote by F :

F ((a, r, [v])) = (a, r).

Let us denote by Γk = {(γ0, [0]) ∈ K : γ0 ∈ Γ0}. Then F (Γk) = Γ0, Γk is a lattice in K, and F
induces a map

π : P := Γk\K → M = Γ0\G.

The projection π and the S1-action given by right multiplication by the center of K, i.e.,

Γk(g, [v]) · e2πiθ := Γk(g, [v + θ/2]),

give P the structure of a principal S1 bundle.
Equivalently, we can define an integral lattice in G̃

Γ̃ = {(γ0, v) ∈ G̃ : γ0 ∈ Γ0, v ∈ 1

2
Z}

and then identify P = Γk\K = Γ̃\G̃.

Lemma 2.3. P is a prequantum circle bundle over X, that is, a circle bundle with connection
whose curvature10 is ω.

Proof. By (2.2), we have
dβU

L = da1 ∧ da3 + da2 ∧ dr.

The right hand side above is exactly 1/2π times the pullback to g̃ of the symplectic form on g.
Hence we can take 2πβU for a connection 1-form. This means π : P → M is indeed a prequantum
circle bundle.

Since the universal cover of M is G, the circle bundle P lifts to a circle bundle over G, and this
circle bundle is just K.

We define the prequantum line bundle ℓ → M to be the Hermitian line bundle associated to P
equipped with the connection induced by the connection 1-form 2πβU . Recall that for a principal
G-bundle P → M, if ρ : G → End(E) is a representation of G, then the vector bundle associated
to P with fiber E is defined by

P ×ρ E := {[(p, v)]},
9We are forced to consider half-integers because of the 1

2
that appears in ψ (2.8).

10From the geometric point of view, it would be more natural to define U ′ = −
√
−1U and then identify the center

of K with S1 via exp(2π
√
−1U ′) 7→ 1. The fiber of the S1-bundle P would then have tangent space 2π

√
−1R. But

since G̃ (and hence K) is a real Lie group, we omit the algebraically wieldy factors of 2π
√
−1. This is responsible

for the fact that P has curvature ω instead of the more standard −
√
−1ω.
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where the equivalence is given by (p, v) ∼ (p · g, ρ(g−1)v).
Let

ρ(k)(e2πiθ) = e4πikθ. (2.11)

Observe that this is not the standard action of S1 on C; we have introduced an extra factor of 2 to
compensate for the fact that the center of K is isomorphic to R/1

2Z. The line bundles associated
to P by this action are, for k ∈ Z>0,

ℓ⊗k = P ×ρ(k) C.

The line bundle ℓ⊗k is equipped with a covariant derivative induced by the connection 1-form
2πβU . The curvature of this connection is therefore 4πkω and so the Chern class of ℓ⊗k is [2kω];
again, the factor of 2 arises because of the 1

2 that appears in (2.8).
The lattice Γ0 acts on K ×ρ(k) C by

γ0 · [((g, [v]), z)] = [((γ0, [0]) · (g, [v]), z)].

Hence, there is a canonical isomorphism of line bundles

(Γk\K) ×ρ(k) C ≃ Γ0\(K ×ρ(k) C) → Γ0\G = M.

The lift of ℓ⊗k to G is therefore the line bundle ℓ̌⊗k → G associated to K:

ℓ̌⊗k := K ×ρ(k) C.

The computations in this paper are greatly simplified by identifying sections of the prequantum
line bundle ℓ (resp. ℓ̌) with S1-equivariant functions on the total space of the associated prequan-
tum circle bundle P (resp. K). The following lemma is standard, see for example [BGV04, Prop.
1.7].

Lemma 2.4. Let L2
k(P ) denote the space of square-integrable C-valued maps on P which satisfy

the equivariance f(pe2πiθ) = e−4πikθf(p). There is a natural isomorphism between L2
k(P ) and

the space L2(M, ℓ⊗k) given by associating s̃ ∈ L2
k(P ) to the section s ∈ L2(M, ℓ⊗k) defined by

s(x) = [(p, s̃(p))] where p is any point in Px (i.e. π(p) = x).

3 Representation theory of G̃ (Part I): subordinate subal-
gebras

We now begin the analysis of the representation theory of G̃ using Kirillov’s orbit method, which
is ideally suited to our situation since G̃ is nilpotent (see [Kir04]). As it turns out, a connection

between the algebraic structure of G̃ and the symplectic geometry of M is established by a piece
of the orbit method: the choice of subordinate subalgebras. In this section we describe explicitly
the relevant subordinate subalgebras. Their connection with the symplectic geometry of M will
be taken up in the next section. The orbit method analysis will then be completed in Section 5,
where we return to the idea of ϑ-functions on M .

The unitary dual of G̃ is parameterized by the set of coadjoint orbits. The orbit method is
(among other things) an explicit algorithm which constructs a unitary irreducible representation

of G̃ for each coadjoint orbit. The first step in the orbit method algorithm is to find the coadjoint
orbits and associated subordinate subalgebras; we recall their definition.

Definition 3.1. If Ω ⊂ g̃∗ is a coadjoint orbit, a subalgebra h < g̃ is subordinate to Ω (or is
Ω-subordinate) if for any (and hence every) λ ∈ Ω,

λ|[h,h] = 0,

and dim h is maximal among subalgebras with this property.
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We will be interested in a family of 4-dimensional orbits Ωµ := Ad(G̃)∗(µβU ) parameterized by
µ ∈ R\{0}. Each choice of subalgebra subordinate to Ωµ=k, k ∈ 2Z leads to a different orthogonal
decomposition L2

k(P ) = 4k2L2(R2). This fact will become clear after we study periodizing maps
in Section 5.

3.1 Subordinate subalgebras

As mentioned, equivalence classes of unitary irreducible representations of G̃ are in one-to-one
correspondence with the coadjoint orbits of G̃. Let h be a Ω-subordinate subalgebra for some
coadjoint orbit Ω. A character λ̄Ω of the connected analytic subgroup H of G̃ with Lie algebra h

is
h ∈ H 7→ λ̄Ω(h) = exp (2πi 〈λ, log h〉) ∈ U(1) (3.1)

where λ ∈ Ω is any point in the coadjoint orbit, and 〈·, ·〉 denotes the canonical pairing of g̃∗ with
g̃.

Since G̃ is nilpotent, all of the unitary irreducible representations of G̃ are induced from the
characters of the analytic subgroups of G̃ corresponding to the subordinate subalgebras; that is,
given a subalgebra h subordinate to Ω and the corresponding Lie subgroup H, a unitary irreducible
representation of G̃ is defined on L2(H\G̃) by

[IndG̃
H(g)f ](x) = λ̄Ω(h(x, g))f(xg), (3.2)

where h(x, g) is the solution to the so-called master equation

s(x)g = h(x, g)s(xg) (3.3)

for some choice of section s : H\G̃ → G̃ (see [Kir04, Chap. 3] for details). It follows from (3.3)
that h satisfies the cocycle condition

h(x, g1g2) = h(xg1, g2)h(x, g1). (3.4)

Assumption: We will always choose s : H\G̃ → G̃ so that s(H) = 0.

The task now is to enumerate the space of coadjoint orbits.

Theorem 3.2. The space of coadjoint orbits of G̃ consists of:

• for each µ ∈ R \ {0} a four-dimensional orbit through (0, 0, 0, 0, µ),

• for each α3 ∈ R \ {0}, ρ ∈ R a two-dimensional orbit through (0, 0, α3, ρ, 0), and

• for each (α1, α2, ρ) ∈ R3 a zero-dimensional orbit through (α1, α2, 0, ρ, 0).

Topologically, this space is R with the origin removed and replaced by a copy of R2 in which one
axis is removed, each point of which is replaced by another copy of R2.

Proof. Using the formula
Ad∗((a, r, v)) = T Ad((a, r, v))

−1

in the coordinates with respect to {X1, X2, X3, T, U} on g, and the dual coordinates (α1, α2, α3, ρ, µ)

defined by {β1, β2, β3, βT , βU} on g∗, the coadjoint action of G̃ is

Ad∗((a, r, v))(α1, α2, α3, ρ, µ)

= (α1 + a2α3 − a3µ, α2 − a1α3 − (r + 1
2 (a1)2)µ, α3 + a1µ, ρ + a2µ, µ). (3.5)
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The first statement of the theorem follows from the fact that if µ 6= 0, then the choice

a1 = −α3/µ, a2 = −ρ/µ, a3 =
µα1 − ρα3

µ2
, r =

α2
3 + 2α2µ

2µ2

yields Ad∗((a, r, v))(α1, α2, α3, ρ, µ) = (0, 0, 0, 0, µ). The rest of the computations are similar.

Observe that the center of G̃ acts nontrivially only on the 4-dimensional orbits. Since it is the
center of G̃ which acts as S1 on the fibers of the prequantum bundle P, we expect, and it is indeed
the case, that these orbits will play a prominent role in the harmonic analysis of P .

To construct the unitary irreducible representation associated to a coadjoint orbit Ω we must
find a corresponding Ω-subordinate subalgebra (Definition 3.1).

It is worth noting that any choice of subordinate subalgebra will do for the construction of
a representation corresponding to Ω, but there are many such choices. Although they induce
equivalent representations of G̃, different choices of subordinate subalgebra will induce different
decompositions of L2(P ) into irreducible factors, and so we will take some care to enumerate
here all such choices. Moreover, we will see in Section 4 that the different choices of subordinate
subalgebra reflect the symplectic geometry of the Kodaira–Thurston manifold.

We have three types of orbits to consider. The choice of subordinate subalgebra will only be
relevant for the four-dimensional orbits, and so it is only in that case that we enumerate all such
choices.

Theorem 3.3. (Subordinate Subalgebras)

• Corresponding to orbits of the form Ω = Ad(G̃)∗(α1, α2, 0, ρ, 0), there is a unique 5-
dimensional subordinate subalgebra: g̃.

• Associated to an orbit Ω = Ad(G̃)∗(0, 0, α3, ρ, 0), a choice of 4-dimensional subordinate sub-
algebra is

hα3,ρ = spanR{X2, X3, T, U}.

• To the orbits Ωµ = Ad(G̃)∗(0, 0, 0, 0, µ), µ 6= 0, the following subalgebras are subordinate:

hc := R(X1 + cX3) ⊕ RT ⊕ RU, c ∈ R ∪ {∞},

hb,d := R(X1 + bX2 + dT ) ⊕ R(X3 −
1

b
T ) ⊕ RU, b ∈ R ∪ {∞} \ {0}, d ∈ R ∪ {∞},

he := R(X2 + eT ) ⊕ RX3 ⊕ RU, e ∈ R ∪ {±∞}.

where he=±∞ ≃ hc=∞ := RX3 ⊕ RT ⊕ RU and he=0 ≃ hb=∞,d := RX2 ⊕ RX3 ⊕ RU. In
particular, the Ωµ-subordinate subalgebras are independent of µ.

Proof. To verify that the given subalgebras are indeed subordinate, use the fact that

〈(α1, α2, α3, ρ, µ), [(a, r, v), (b, s, u)]〉 = α3(a
1b2 − a2b1) + µ(a3b1 − a1b3 + b2r − a2s).

That all of the subalgebras subordinate to Ad(G̃)∗(0, 0, 0, 0, µ) are the ones given is a corollary of
Theorem 4.3. One simply enumerates all of the Lagrangian subspaces of g and intersects with the
set of subalgebras of g.

An important observation for what comes later (the proof is a straightforward computation
using Theorem 3.3 and is hence omitted):

Lemma 3.4. The family {he, e ∈ R ∪ {±∞}} consists of ideals, and these are the only ideal
subordinate subalgebras. Moreover, the subalgebras he are commutative.

For these reasons, computations work especially nicely if we choose one of the he subalgebras,
and so throughout the remainder, if we need to do a model computation, we will use h0 := he=0.
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4 Lagrangian foliations

We turn our attention now to Lagrangian and special Lagrangian foliations and fibrations of M .
First, we recall a generalization of the notion of special Lagrangian (see [TV06] for details). Then,
we will show that the Lagrangian distributions associated to he are in fact special Lagrangian
foliations, and for certain values of e, these foliations are fibrations by tori.

Definition 4.1. ([TV06]) A special symplectic structure on M is a triple (ω, J, ε) such that 1) J
is an ω-compatible almost complex structure, and 2) ε is a nonvanishing (2, 0)-form such that

ε ∧ ε̄ = ω2/2 and d(Re ε) = 0.

A submanifold p : L →֒ M is special Lagrangian with respect to a special symplectic structure
(ω, J, ε) if it is Lagrangian and

p∗(Im ε) = 0.

Special symplectic structures have appeared before in the literature under various names, for
example as generalized Calabi–Yau structures in [dBT06] and as a kind of generalized calibration
in [GIP03].

If J and ε are left G-invariant, then a special symplectic structure (ω, J, ε) induces an alge-
braic structure on the Lie algebra g (denoted by the same symbols), and vice versa. We can
therefore check that a left G-invariant Lagrangian foliation is special Lagrangian by checking the
corresponding conditions in g.

The connection between the representation theory and symplectic geometry of our setup is a
consequence of the following simple result.

Lemma 4.2. For X ∈ g̃, let X0 ∈ g be the g-orthogonal projection of X onto g (2.10). Then

µβU ([X,Y ]) = −2πµω(XL
0 , Y L

0 ).

Proof. Let X = xjXj + xT T + xUU and Y = yjYj + yT T + yUU . Then

µβU ([X,Y ]) = −µ(x1y3 − x3y1 + x2yT − xT y2) = −2πµω(XL
0 , Y L

0 ).

The Ωµ-subordinate subalgebras listed in Theorem 3.3 are 3-dimensional. It then follows from
the general theory of the orbit method that all Ωµ-subordinate subalgebras are 3-dimensional (to
avoid a circular argument, it is important that we do not assume here that Theorem 3.3 lists all
of the Ωµ-subordinate subalgebras).

Theorem 4.3. A subalgebra h ⊆ g̃ is Ωµ-subordinate if and only if h = L⊕RU for some Lagrangian
subspace L ⊂ g.

Proof. First, suppose h = L ⊕ RU is a subalgebra for some Lagrangian L. Then

µβU ([X0 + aU, Y0 + bU ]) = ω(X0, Y0) = 0

and h is of maximal dimension; hence h is subordinate.
In the other direction, suppose that h is subordinate. Then since [RU, g̃] = {0}, we must have

RU ⊆ h. Let L ⊂ g be the projection of h onto span{X1, X2, X3, T}. Then

ω(XL
0 , Y L

0 ) = − 1

2π
βU ([X, Y ]) = 0

so that L is Lagrangian as desired.
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Note that it is necessary that h is a subalgebra in either direction; in fact, there is a 3-
dimensional family of Lagrangian subspaces11 L such that L ⊕ RU is not a subalgebra, and so
the correspondence h 7→ L is only injective.

Each subspace L ⊂ g defines a left-invariant distribution on M . If L is a subalgebra, then this
distribution is integrable. If L is Lagrangian, then so is the corresponding left-invariant distribu-
tion, and hence each Ωµ-subordinate subalgebra h induces an integrable Lagrangian distribution
on M, that is, a Lagrangian foliation.

Theorem 4.4. The foliation induced by he is a fibration of M by Lagrangian tori if and only if
e = 0,±∞.

Proof. Let T e be the real analytic subgroup of G with Lie algebra L, where he = L ⊕ RU . Then
T e is diffeomorphic to R2. The leaves of the foliation induced by he are the orbits of T e. One
easily checks that if e = 0,±∞, the T e-orbits in M are all tori. Moreover, if e 6= 0,±∞ then the
T e-orbit through [x, y, z, t] is compact if and only if x and e are linearly dependent over Q.

Among the Ωµ-subordinate subalgebras h, there is a certain family he, e ∈ R ∪ {±∞} which is
distinguished by the following results.

Theorem 4.5. For each e ∈ R there exists a left-invariant special symplectic structure (ω, Je, εe)
on M with respect to which the left G-invariant Lagrangian foliation of M induced by the subordi-
nate subalgebra he is special Lagrangian.

Remark The special Lagrangian torus through the identity coset in M defined by he=0

appears already in the work of Tomassini and Vezzoni [TV06]. ¤

Proof. The set of ω-compatible complex structures on a symplectic vector space of real dimension
four can be parameterized by the generalized upper half-space [MS98, Sec. 2.5]

H+ := {Ω ∈ M2(C) : T Ω = Ω, ImΩ > 0}

by, for example, defining the (1, 0)-space with respect to a complex structure to be spanC

(
Ω
1

)
.

Given a point Ω ∈ H+, the corresponding ω-compatible complex structure is

JΩ =

(
Ω1Ω

−1
2 −Ω2 − Ω1Ω

−1
2 Ω1

Ω−1
2 −Ω−1

2 Ω1

)
.

Hence, the complex structure Je on g corresponding to the point

Ωe =

(
(1 + 2|e|)( −|e|

1+|e| + i)
√
|e|(−1 + i)√

|e|(−1 + i) 1
1+2|e| (−e + i(1 + e))

)

is

Je =




0 −
√

|e|(1+2|e|)
1+|e| −4|e| − 1

1+|e| −
√

e(1+2|e|)
1+|e|

−
√

|e|
1+2|e| 0 −

√
|e|(1+2|e|)
1+|e| −1

1+|e|
1+2|e| −

√
|e| 0

√
|e|

1+2|e|

−
√

|e| 1 + 2|e|
√

|e|(1+2|e|)
1+|e| 0




.

11The family is {L = R(X1 + aX3 + bT ) ⊕ R(X2 + bX3 + cT ) : a, b, c,∈ R}.
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Define the (2, 0)-form (with respect to Je)

εe = πi(β1 ∧ β2 +
√

|e|(1 + i)β1 ∧ β3 +

( |e| + i(1 + |e|)
1 + 2|e|

)
β1 ∧ β4

+

(−|e|(1 + 2|e|)
1 + |e| − i(1 + 2|e|)

)
β2 ∧ β3

−
√
|e|(1 + i)β2 ∧ β4 −

(
1 + 2|e|
1 + |e|

)
β3 ∧ β4)

It is now routine (though somewhat tedious) to check that the foliation of M induced by he

is special Lagrangian; we leave the details to the reader (who may find it useful to recall that
dβ3 = −β1 ∧ β2 and dβj = 0, j 6= 3).

At e = ±∞, the complex structure degenerates; this is a geometric feature of the foliation
induced by he=±∞. Indeed, given an arbitrary Ω ∈ H+, one may write any left-invariant (2, 0)-

form α (with respect to JΩ) in terms of the components of Ω =

(
a b
b d

)
: for some f ∈ C∞(M),

we obtain

α = πif
(
β1 ∧ β2 + (ad − b2)β3 ∧ β4 − b̄β1 ∧ β3 − d̄β1 ∧ β4 + āβ2 ∧ β3 + b̄β2 ∧ β4

)
.

The condition that p∗(Im ε) = 0 then implies the vanishing of the imaginary part of the coefficient
of β3 ∧β4, that is, Im(detΩ) = 0. Hence, Ω lies on the boundary of H+ so that the foliation is not
special Lagrangian with respect to any special symplectic structure.

Corollary 4.6. The foliation induced by he is by special Lagrangian tori if and only if e = 0.

5 Representation theory of G̃ (Part II) : ϑ-functions and
the decomposition of L2(M, ℓ⊗k)

We return now to the study of the unitary dual of G̃, and in particular the decomposition of L2(P )

into unitary irreducible representations of G̃. We begin by showing that only those representations
corresponding to certain integral 4-dimensional coadjoint orbits contribute to the decomposition.
Next, we will compute the multiplicities appearing in the decomposition of L2(P ). Finally, we will
construct periodizing maps—the analogues for the Kodaira–Thurston manifold of the Weil–Brezin
map—which, for each choice of subordinate subalgebra, achieve an orthogonal decomposition of
each invariant subspace of L2(P ) into irreducible factors.

We are interested in the space of L2-sections of the k-th tensor power of the prequantum circle
bundle P := Γ̃\G̃ over M, for k ≥ 1. Such a section is equivalent to a k-equivariant function
f ∈ L2(P ), that is, one which is equivariant with respect to the circle action on the fibers of P :

f
(
pe2πiθ

)
= e−4πikθf(p). (5.1)

The isotypical subspace of L2(P ) consisting of k-equivariant functions is denoted by L2
k(P ).

Of course, the circle action on the fibers of P is just the action of the center of G̃ (or, more
precisely, K) on P .

Lemma 5.1. The representations πµ of G̃ corresponding to the coadjoint orbits Ad(G̃)∗(0, 0, 0, 0, µ), µ 6=
0, are the only unitary irreducible representations which are nontrivial on the center of G̃. The
equivalence class of such unitary irreducible representation is uniquely determined by its value on
the center of G̃, which is

[πµ]((0, v))f = e2πiµvf. (5.2)
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Proof. We first show that the representations πµ have the desired properties. We will compute in
the model case he=0 = RX2 ⊕ RX3 ⊕ RU . By definition (3.2),

[πµ((0, v))f ] (H0g) =
[
IndG̃

H0((0, v))f
]
(H0g)

= exp {2πiµ 〈(0, 0, 0, 0, µ), (0, 0, 0, 0, v)〉} f(H0g)

= e2πiµvf(H0g).

Similar computations show that the representations associated to the other coadjoint orbits are
trivial on the center; for example, the representation associated to Ad(G̃)∗(0, 0, α3, ρ, 0), evaluated
at the point (0, v), yields

exp {2πiµ 〈(0, 0, α3, ρ, 0), (0, 0, 0, 0, v)〉} f = f.

Hence, the isotypical subspace L2
k(P ), k ∈ Z \ {0} is also isotypical with respect to the action

of G̃, and decomposes as a direct sum of unitary irreducible representations corresponding to
µ = −2k. There is no canonical way of choosing a decomposition of the isotypical subspace L2

k(P )
into irreducible representations. On the other hand, we may compute the multiplicity with which
the representation π−2k appears in L2

k(P ) unambiguously. Also, it will turn out that each choice
of subalgebra subordinate to (0, 0, 0, 0,−2k) ∈ g∗ will induce a decomposition of L2

k(P ).
Each Ωµ-subordinate subalgebra h is 3-dimensional, so H := exp(h) is also 3-dimensional. The

unitary irreducible representation induced by h is

IndG̃
H : G̃ → End(Vk = L2(H\G̃)).

But H\G̃ ≃ R2, and since G̃ is unimodular the measure on H\G̃ is identified with the Lebesgue

measure on R2, so Vk ≃ L2(R2, dx dt) [Kir04, Sec. V.2.2]. We compute IndG̃
H in detail in the

example at the end of this section.
First, we consider the isotypical subspace more precisely. Let Vk = L2(R2, dx dy) denote the

representation space for π−2k : G̃ → End(Vk), and consider the evaluation map

HomG̃(Vk, L2
k(P )) ⊗ Vk → L2(P )

where HomG̃(Vk, L2
k(P )) is the space of G̃-equivariant maps from Vk to L2(P ). The image of this

map is the isotypical subspace corresponding to π−2k. Since π−2k is uniquely determined by its

value on the center of G̃ (Lemma 5.1), which by (5.2) is exactly the k-equivariance condition (5.1),
this image is precisely the isotypical subspace L2

k(P ).
The isotypical subspace L2

k(P ) therefore decomposes into copies of Vk, that is,

L2
k(P ) ≃ Vk ⊕ · · · ⊕ Vk = m(π−2k, L2

k(P ))Vk, (5.3)

where m(πk, L2
k(P )) denotes the multiplicity with which (πk, Vk) appears in L2

k(P ). As remarked
in the Introduction, Brezin proved the existence of the decomposition (5.3)) in [Bre70], where he
also gives a procedure for achieving the decomposition. Brezin’s procedure is somewhat different
from our approach, which is based on Richardson’s periodizing maps [Ric71].

Theorem 5.2. For k ∈ Z \ {0}, the multiplicity with which (π−2k, Vk) appears in L2
k(P ) is

m(π−2k, L2
k(P )) = 4k2.
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A multiplicity formula for the decomposition of the L2-space of a general nilmanifold was
discovered by Moore [Moo73] and independently by Richardson [Ric71]. Richardson’s proof of this
formula will have important consequences later, so we recall the setup here.

As described in Section 3, to each λ ∈ g̃∗ and choice of λ-subordinate subalgebra hλ there is
associated a character λ̄ : Hλ = exp(hλ) → U(1) given by

λ̄(h) = e2πi〈λ,log(h)〉.

The pair (λ̄,Hλ), called a maximal character, induces a unitary irreducible representation πλ =

IndG̃
Hλ

given by equation (3.2).

The group G̃ acts on the set of pairs {(λ̄, Hλ)} by (λ̄,Hλ) · g = (λ̄g,g
−1

Hλ), where

g−1

Hλ := g−1Hg and λ̄g(h) := λ(ghg−1).

A pair (λ̄,Hλ) is called a rational maximal character if dimR hλ = dimQ(hλ ∩ log(Γ̃)) and λ :

hλ ∩ log(Γ̃) → Q. A rational maximal character is called an integral point if λ̄(Γ̃ ∩ Hλ) = 1.
The keys to the proof of the Moore–Richardson formula (Theorem 5.3, below) are

1. πλ appears with multiplicity m(πλ, L2(P )) > 0 if and only if the orbit (λ̄,Hλ) · G̃ contains
and integral point, and

2. if γ ∈ Γ̃ and (λ̄,Hλ) is an integral point, then (λ̄, Hλ) · γ is also an integral point.

Moreover, Richardson associates to each integral point (λ̄, Hλ) an invariant subspace of L2(P ).
Both (λ̄,Hλ) and (λ̄,Hλ) · γ induce the same invariant subspace, and if (λ̄,Hλ) and (λ̄′,Hλ′)

are integral points in different Γ̃-orbits, then the induced invariant subspaces are orthogonal.
These subspaces are described in the next section. We may now deduce the Moore–Richardson
multiplicity formula [Moo73],[Ric71].

Theorem 5.3. Let
[
(λ̄,Hλ) · G̃

]

Z
denote the set of integral points in the G̃-orbit (λ̄, Hλ) ·G̃. Then

m(πλ, L2(P )) = #
{[

(λ̄,Hλ) · G̃
]

Z

/
Γ̃
}

.

To use the Moore–Richardson formula, we first need a lemma (for which we also find a use in

Section 6.1). Recall that he=0 := RX2 ⊕ RX3 ⊕ RU is Ad(G̃)∗(0, 0, 0, 0, µ)-subordinate for every

µ 6= 0 (Theorem 3.3). The corresponding analytic subgroup of G̃ is

H0 = {(0, h2, h3, 0, h5) ∈ G̃}.

Let λ̄k : H0 → U(1) be the character

λ̄k(0, h2, h3, 0, h5) = exp{−4πikh5}.

Then (λ̄k, H0) is an integral point if and only if λ̄k(Γ̃ ∩ H0) = 1, which implies k ∈ Z.

Lemma 5.4. The integral points of the orbit Ω = Ad(G̃)∗(0, 0, 0, 0,−2k), k ∈ Z\{0}, with respect
to the Ω-subordinate subalgebra he=0, are (λ̄m,n

k ,H0), where m,n ∈ Z and

λ̄m,n
k ((0, y, z, 0, v)) := exp{−4πi kv − 2πi(my − nz)}.

Proof. We need first the action of G̃ on the maximal characters. The situation is quite simple
here: he=0

k is an ideal, which implies g−1

H0 = H0 for all g ∈ G̃. With h = (0, h2, h3, 0, h5) and
g = (x0, y0, z0, t0, u0), we only need to compute λ̄g

k, where λ̄k(h) = exp{−4πikh5}:

λ̄g
k(h) = exp

{
−4πi k

(
h5 + h2

(
t0 −

x2
0

2

)
− h3x0

)}
. (5.4)
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The G̃-orbit through (λ̄k,H0) is

(λ̄k,H0) · G̃ =
{
(h 7→ exp {−4πik (h5 + δh2 − εh3)} ,H0) : δ, ε ∈ R

}
.

The set of integral points in this orbit is

{(h 7→ e−4πik(h5+δh2−εh3),H0) : e−4πik(h5+δh2−εh3) = 1 for all h ∈ H0 ∩ Γ̃}.

But exp {−4πik (h5 + δh2 − εh3)} = 1 for all h2, h3 ∈ Z and h5 ∈ 1
2Z if and only if k ∈ Z and

δ, ε ∈ 1
2k Z, i.e., if and only if there exist integers m,n ∈ Z such that δ = m

2k and ε = n
2k . Hence,

[
(λ̄k,H) · G̃

]

Z
=

{
(λ̄m,n

k ,H0) : m,n ∈ Z
}

.

Proof of Theorem 5.2. For simplicity, we will compute the multiplicity of πe=0
−2k. Let λk =

(0, 0, 0, 0,−2k) for k 6= 0. We need to count the number of Γ̃-orbits in the set
[
(λ̄k,Hλk

) · G̃
]

Z
of

integral points.
To find the Γ̃-orbits in [(λ̄k,H) · G̃]Z, let γ = (x0, y0, z0, t0, u0) ∈ Γ̃ and h = (0, y, z, 0, v). Then

(λ̄m,n
k · γ)(h) = exp

{
−4πikv − 2πi

[
y

(
m − nx0 + 2k(t0 −

x2
0

2
)

)
+ z(n + 2kx0)

]}

= λ̄
m−nx0+2k(t0−x2

0/2),n+2kx0

k (h).

This defines an action of Z2 on
[
(λ̄k,H) · G̃

]

Z
≃ ( 1

2k Z)2:

(x0, t0) · (m, n) = (m − nx0 + 2k(t0 − x2
0/2), n + 2kx0).

It is not hard to show that a fundamental domain is

{
(λ̄m,n

k ,H0) : m,n = 0, 1, . . . , 2k − 1
}

.

In particular, #
{[

(λ̄k,H) · G̃
]

Z

/
Γ̃
}

= #
{
( 1
2k Z)2/Z2

}
= 4k2. Figure 1 depicts the Z2-orbits in

(
1
2k Z

)2
and the images of the fundamental domain under this Z2-action for k = 3.

Example 5.5. We will find it useful to have explicit expressions for the representations induced
by the integral points (λ̄m,n

k ,H0), m, n = 0, 1, . . . , 2k − 1, k ∈ Z \ {0}. To compute the induced
representation, we need to solve the master equation (3.3). Recall that he=0 = RX2 ⊕ RX3 ⊕ RU

and hence that H0 = {(0, y, z, 0, v) ∈ G̃}. Since each coset in H0\G̃ can be written in the form

H∞(x, 0, 0, t, 0), we can identify H0\G̃ with R2.

In the induction procedure, we use the section s : H0\G̃ → G̃ given by

s(H∞(x, 0, 0, t, 0)) = (x, 0, 0, t, 0).

The master equation is then

(x, 0, 0, t, 0) · (a, b, c, r, v) = (0, h2, h3, 0, h5) · (x′, 0, 0, t′, 0).
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Figure 1: Γ̃-orbits of integral points and the fundamental domain for k = 3

The solution is

h2 = b, h3 = c + b(x + a), h5 = v + bt − c(x + a) − abx − b

2
(x2 + a2),

x′ = x + a, t′ = t + r.

Again using the section s, we identify (H0 ∩ Γ̃) ≃ Z2. The Haar measure on G̃ descends to the

Lebesgue measure on R2 ≃ H0\G̃.

The unitary irreducible representation πm,n
−2k : G̃ → L2(H0\G̃) ≃ L2(R2, dx dt) associated to the

coadjoint orbit Ad(G̃)∗(0, 0, 0, 0,−2k) and the subordinate subalgebra he=0 = RX2 ⊕ RX3 ⊕ RU ,
induced from the character λ̄m,n

k (h) described in Lemma 5.4, is

(
πm,n
−2k(a, b, c, r, v)

)
f(x, t) = λ̄m,n

k (0, h2, h3, 0, h5)f(x + a, t + r)

= e−4πik(v+bt−c(x+a)−abx− b
2 (x2+a2))

× e−2πi(mb−n(c+b(x+a)))f(x + a, t + r).

5.1 Periodizing Maps

In this section, we describe the analogue Θj
k : L2(R2) → L2

k(P := Γ̃\G̃) of the Weil–Brezin map
(discussed in the Introduction) for the Kodaira–Thurston manifold; both maps are instances of a
general construction due to Richardson which we now describe.

Let (λ̄,Hλ) be an integral point for λ ∈ Ω = Ad(G̃)∗(0, 0, 0, 0, µ), which is possible only
if µ = −2k ∈ 2Z. To prove the multiplicity formula (Theorem 5.3), Richardson constructs a

periodizing map12 Θ
(λ)
k : L2(Hλ\G̃) → L2

k(P ) from the induced representation space to the k-

isotypical subspace of L2(P ). The image of Θ
(λ)
k is an irreducible subspace, and two integral

points in the same G̃-orbit induce periodizing maps with the same image. Moreover, the images
of two periodizing maps are orthogonal in L2

k(P ) if the associated integral points lie in distinct

G̃-orbits.
Since each function in L2

k(P ) corresponds to a section of ℓ⊗k, each map Θ
(λ)
k corresponds to a

map

θ
(λ)
k : L2(Hλ\G̃) → L2(M, ℓ⊗k).

12Richardson’s construction, in the case of T 2 = R2/Z2, is the classical ϑ-map (see, for example, [AT75] for the
relevant definitions).
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The prequantum line bundle ℓ⊗k lifts to a line bundle ℓ̌⊗k → G ≃ R4. After trivializing ℓ̌, to each

f ∈ L2(Hλ\G̃) there is associated a section θ
(λ)
k f and hence a function

ϑ
(λ)
k f : G → C.

The function ϑ
(λ)
k f is square-integrable on any fundamental domain FDΓ0\G of Γ0\G; denote the

set of such maps by

L2(FDΓ0\G) =

{
f : G → C :

∫

FDΓ0\G

|f |2 d4x < ∞
}

.

The maps θ
(λ)
k were the maps referred to in the Introduction, but we will henceforth find it easier

to work with Θ
(λ)
k and later with ϑ

(λ)
k .

Although Richardson does not use the language of induced representations to do so, the pe-

riodizing maps Θ
(λ)
k can be described succinctly in terms of induced representations, where it

becomes transparent that a periodizing map is essentially a sum over the remaining nonperiodic
directions (i.e., over that portion of Γ̃ which lies outside of Γ̃ ∩ H).

Definition 5.6. Let (λ̄,H0) be an integral point of a coadjoint orbit

Ω = Ad(G̃)∗(0, 0, 0, 0,−2k).

The periodizing map Θ
(λ)
k : L2(H0\G̃) → L2

k(P ) associated to (λ̄,H0) is
(
Θ

(λ)
k (f)

)
(g) :=

∑

[γ]∈(Γ∩Hλ)\Γ

[
IndG̃

Hλ
([γ]g)f

]
(H).

It is not hard to show that IndG̃
Hλ

is constant on right (Γ ∩ Hλ)-cosets, so that Θ
(λ)
k is well-

defined. In [Ric71], Richardson also shows that Θ
(λ)
k is unitary up to a constant; specifically,

that
〈f, g〉L2(Hλ\G̃) = vol((Γ̃ ∩ H0)\H0)

〈
Θj

kf, Θj
kg

〉

L2(P )
, (5.5)

and moreover that Θ
(λ)
k intertwines the right actions of G̃ on L2(H0\G̃) and L2

k(P ).

Combining the multiplicities given by Theorem 5.2 with the fact that the images of Θ
(λ)
k and

Θ
(λ′)
k are orthogonal if λ and λ′ lie in distinct G̃-orbits, we have the following result.

Corollary 5.7. For each k ∈ Z \ {0}, and each choice of Ad(G̃)∗(0, 0, 0, 0,−2k)-subordinate sub-

algebra inducing an integral point (λ̄,H0), there exist 4k2 periodizing maps Θj
k : L2(Hλ\G̃) →

L2
k(P ), j = 1, . . . , 4k2 which achieve an orthogonal decomposition

L2
k(P ) ≃

4k2⊕

j=1

Θj
k(L2(Hλ\G̃)) ≃ 4k2L2(Hλ\G̃)

of the k-isotypical subspace L2
k(P ) into irreducible representations of G̃.

Example 5.8. For each k ∈ Z\{0} and each m,n = 0, 1, . . . , 2k−1, the periodizing map associated
to the integral point (λ̄m,n

k , H0) (Lemma 5.4) is: for13 f ∈ L2(R2)

(Θm,n
k f) (x, y, z, t, u) =

∑

a,b∈Z

[
πm,n
−2k((a, 0, 0, b, 0) · (x, y, z, t, u))f

]
(0, 0)

= e−2πi(my−n(z+xy))e−4πik(u−zx)
∑

a,b∈Z

e2πinyae−4πik(by−za− y
2 (x+a)2)f(x + a, t + b). (5.6)

13Since we have identified H0\G̃ ≃ R2 via the section H0(x, 0, 0, t, 0) 7→ (x, 0, 0, t, 0), the coset H0 ∈ H0\G̃
corresponds to the point (0, 0) ∈ R2.
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5.2 Transformation rules

The periodizing maps Θj
k are constructed so that the the resulting function is equivalent to a

section of the nontrivial line bundle ℓ⊗k. Hence, when ℓ is lifted to a trivializable line bundle
ℓ̌ → G and then trivialized, the function which corresponds to Θj

kf is pseudoperiodic, that is, the

functions ϑj
kf satisfy transformation rules associated to the integral lattice Γ0.

Remark In the classical theory, there is another aspect of the pseudoperiodicity of ϑ-
functions: polarizations (complex structures). That is, the classical ϑ-functions are holomorphic
sections of a line bundle over the torus. Different trivializations of the lifted line bundle express
the covariant notion of holomorphic differently. For example, in (1.3), the line bundle ℓ̌ → R2 was

trivialized in such a way that a holomorphic section takes the form f(z)e−πy2

. In the current situ-
ation, there is no relevant complex structure (polarization) with respect to which our ϑ-functions
will be holomorphic. ¤

Let s̃ ∈ L2
k(P ). By definition, ℓ = P ×ρ C = (Γk\K) ×ρ C, and s̃ determines a section

s ∈ L2(M, ℓ⊗k) by the correspondence14

s(Γ0g) = [(Γk(g, [v]), s̃(Γk(g, [v])))].

This section induces a section š ∈ Γ(ℓ̌⊗k = K ×ρ(k) C) given by

š(g) = [(g, [v]), s̃(Γk(g, [v]))].

Now, there are many reasonable ways to trivialize ℓ̌. For example, one could use the global
section s0(g) = [(g, [0]), 1]. An approach which is common to geometric quantization is to choose a
global symplectic potential θ (which trivializes ℓ̌ in a standard way). Yet another approach would
be to define an action of G on ℓ̌ and use it to map ℓ̌g → ℓ̌1 ≃ C.

We will take the first approach because it is the simplest and the particular trivialization we
choose is basically irrelevant for our purposes. In this trivialization, the function on G associated
to the function s̃ ∈ L2

k(P ) is
g 7→ s̃(Γk(g, [0])).

Hence, the function ϑj
kf ∈ L2(FDΓ0\G) associated to Θj

kf ∈ L2
k(P ) is

(ϑj
kf)(g) = (Θj

kf)(Γk(g, [0]))

=
∑

[γ]∈(Γ∩Hk)\Γ

[
IndG̃

Hk
([γ](g, [0]))f

]
(Hk).

We can now state the pseudoperiodicity of the images ϑj
kf .

Theorem 5.9. Let γ0 ∈ Γ0. Then

(ϑj
kf)(γ0g) = exp{2πikψ(γ−1

0 ,g)}(ϑj
kf)(g).

where ψ(g̃1, g̃2) is defined by the group multiplication (2.8).

Proof. First, observe that

(γ−1
0 , [0]) · (γ0g, [0]) = (g,

[
ψ(γ−1

0 ,g)
]
) = (g, [0]) · (0,

[
ψ(γ−1

0 ,g)
]
). (5.7)

14The equivariance of s̃, combined with the definition of the equivalence class (see Section 2.1), insures that the
correspondence is well-defined (i.e., independent of choice of [v]).
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(Recall that we write 0 = (0, 0, 0, 0) ∈ G.) Then

(ϑj
kf)(γ0g) = (Θj

kf)(Γk(γ0g, [0]))

=
∑

[γ]∈(Γk∩Hk)\Γk

[
IndG̃

Hk
([γ](γ0g, [0]))f

]
(Hk)

=
∑

λ̄k(h(Hk, [γ](γ0g, [0]))) f(Hk[γ](γ0g, [0])).

Now, let γ̃−1
0 := (γ−1

0 , [0]) ∈ Γk. Then γ̃−1
0 · (γ0g, [0]) = (g, [0]) · (0,

[
ψ(γ−1

0 ,g)
]
). Relabel the sum

[γ] 7→ [γ]γ̃−1
0 . Using equation (5.7), the above equation becomes

(ϑj
kf)(γ0g) =

∑
λ̄k(h(Hk, [γ](g, [0]) · (0,

[
ψ(γ−1

0 ,g)
]
)))

× f(Hk[γ](g, [0]) · (0,
[
ψ(γ−1

0 ,g)
]
)).

The cocycle property (3.4) of h and the observation that (0,
[
ψ(γ−1

0 ,g)
]
) is central and in Hk then

imply

h(Hk, [γ](g, [0])(0,
[
ψ(γ−1

0 ,g)
]
)) = h(Hk, (0, ψ(γ−1

0 ,g))[γ](g, [0]))

= h(Hk, [γ](g, [0]))h(Hk, (0, ψ(γ−1
0 ,g))).

Again using that (0, ψ(γ−1
0 ,g)) is central and in Hk, we obtain

(ϑj
kf)(γ0g) =

∑
λ̄k(h(Hk, [γ](g, [0])))λ̄k(h(Hk, (0,

[
ψ(γ−1

0 ,g)
]
))) f(Hk[γ](g, [0]))

= λ̄k(h(Hk, (0,
[
ψ(γ−1

0 ,g)
]
)))(ϑj

kf)(g).

The final step is to simplify the first term above: recall that h is defined by

h(x, g) = s(x) · g · s(x · g)−1

for some section s : Hk\G̃ → G̃ which we assume normalized so that s(Hk) = 0 ∈ G̃ (ff. (3.3)). In
particular, for g ∈ Hk,

h(Hk, g) = s(Hk) · g · s(Hk)−1 = g,

whence
λ̄k(h(Hk, (0, ψ(γ−1

0 ,g)))) = exp{4πikψ(γ−1
0 ,g)}

as desired.

Example 5.10. Each of the periodizing maps Θm,n
k (5.6) constructed from the subordinate subal-

gebra he=0 yields a map ϑm,n
k : L2(R2) → L2(FDΓ0\G) given by

(ϑm,n
k f)(x, y, z, t) = e−2πi[my−n(z+xy)]e−4πikzx

×
∑

a,b∈Z

e2πinyae−4πik(by−za− y
2 (x+a)2)f(x + a, t + b).

By Theorem 5.9, for each f ∈ L2(R2) the functions ϑm,n
k f satisfy the pseudoperiodicity conditions

(ϑm,n
k f)(x + 1, y, z, t) = (ϑm,n

k f)(x, y, z, t),

(ϑm,n
k f)(x, y + 1, z − x, t) = e−2πikx2

(ϑm,n
k f)(x, y, z, t),

(ϑm,n
k f)(x, y, z + 1, t) = e4πikx(ϑm,n

k f)(x, y, z, t), and

(ϑm,n
k f)(x, y, z, t + 1) = e4πiky(ϑm,n

k f)(x, y, z, t)

(this can also be easily checked by direct calculation). These are the pseudoperiodicity conditions
given in the Introduction.
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6 The Laplacian on P

We now study the spectrum of the Laplacian on M acting on the k-th tensor power ℓ⊗k of the
prequantum line bundle associated to P . Using the representation theory of previous sections we
will give model operators for the Laplacian acting on k-equivariant functions on P , and hence, via
the usual identification, we will describe the Laplacian acting on sections of ℓ⊗k.

Although we do not obtain an exact description of the spectrum, a straightforward semiclassical
analysis (quantum Birkhoff canonical form) proves that, as k → ∞, the bottom of the spectrum of
the Laplacian consists of a multiple eigenvalue that splits off from the rest of the spectrum. The
multiplicity of the eigenvalue is equal to the Riemann–Roch number of ℓ⊗k → M .

This is an example of the main theorem in [GU88], which gave rise to a notion of “almost
Kähler quantization”. In the present case, the almost Kähler quantization of M is defined to be
the eigenspace associated with the lowest eigenvalue of the Laplacian acting on ℓ⊗k. If the complex
structure on M were integrable, this would be the vector space of holomorphic sections of ℓ⊗k.

In the torus case, the analogous sections are completely determined by their pseudoperiodicity
and analyticity. Here, there does not exist any complex structure with respect to which the sections
in the almost Kähler quantization of M are holomorphic. Consequently, we cannot reconstruct
them from their pseudoperiodicity alone; we are forced to try to solve for the approximate kernel
directly.

As we have done throughout this paper, we identify a section s ∈ L2(M, ℓ⊗k) with a k-
equivariant function (Lemma 2.4) s̃ ∈ L2

k(P ) in the standard way, i.e.,

s(x) = [(p, s̃(p))]

for π(p) = x, where s̃ is k-equivariant if s̃(p · e2πiθ) = e−4πikθ s̃(p). We will find the computations
are simpler when stated in terms of L2

k(P ).
As we will see in Section 6.1, the Laplacian on M acting on ℓ⊗k can be written in terms of the

standard Euclidean Laplacian ∆E acting on P . Recall our left-invariant metric15 on G̃ and hence
on P = Γ̃\G̃:

g = (β1
L)2 + (β2

L)2 + (β3
L)2 + (βT

L )2 + (βU
L )2. (6.1)

Since right translation is generated by the left-invariant vector fields, the Euclidean Laplacian on
P is given by

∆E = −
3∑

j=1

[ρ∗(Xj)]
2 − [ρ∗(T )]2 − [ρ∗(U)]2,

where ρ is the right regular representation of G̃ on L2(P ), which is given by (ρ(g)f)(x) = f(xg).

The right regular representation ρ decomposes into unitary irreducible representations of G̃,
and hence so does the Laplacian ∆E . We can study the harmonic analysis of ∆E by studying the
action of the summands in the representation spaces of G̃.

6.1 Laplacians

In the Kähler case, the Hodge Laplacian is equal to a rescaled metric Laplacian. Here, since the
Kodaira–Thurston manifold does not admit any (positive) Kähler structure, any Hodge Laplacian
will be badly behaved. But we can still write the metric (and rescaled metric) Laplacian (on M)
acting on the k-th tensor power of the prequantum bundle.

We have chosen a left-invariant metric on G defined by

g = (β1
L)2 + (β2

L)2 + (β3
L)2 + (βT

L )2.

Since g is left-invariant, it descends to a metric, denoted also by g, on Γ0\G.

15{βj
L}j=1,2,3,T,U is the left-invariant coframe which is dual to {X1, X2, X3, T, U} at the origin.
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The connection on P := Γ̃\G̃ defined by the connection 1-form 2πβU induces a connection
on ℓ⊗k and hence a covariant derivative acting on sections of ℓ⊗k. The corresponding covariant
derivative on L2

k(P ) is (see [BGV04, pp. 22], for example)

∇̃ = d − 4πkβU
L

since ρ(e2πiθ) = e2πi(−2θ). The coframe {β1
L, β2

L, β3
L, βT

L} is dual to {XL
1 , XL

2 , XL
3 , TL}, so we im-

mediately have
∇̃XL

1
= XL

1 , ∇̃XL
2

= XL
2 , ∇̃XL

3
= XL

3 , ∇̃T L = TL.

The left-invariant frame {XL
1 , XL

2 , XL
3 , TL, UL} is given by

XL
1 =

∂

∂a1
− a2 ∂

∂a3
+ a3 ∂

∂v
, XL

2 =
∂

∂a2
+ r

∂

∂v
, XL

3 =
∂

∂a3
,

TL =
∂

∂r
, UL =

∂

∂v
.

Hence, the metric Laplacian acting on k-equivariant functions on the prequantum circle bundle is

∆(k) = −
[(

XL
1

)2
+

(
XL

2

)2
+

(
XL

3

)2
+

(
TL

)2
]

= −
[
(∂a1 − a1∂a3 + a3∂v)2 + (∂a2 + r∂v)2 + ∂2

a3 + ∂2
r

]
.

The rescaled metric Laplacian acting on k-equivariant functions on P (which, if M where Kähler,
would be equal to the Hodge Laplacian) is then

∆
(k)
• := ∆(k) − 1

2
dim(M) · 2πk = ∆(k) − 4πk.

Associated to the metric (6.1) is the Euclidean (i.e., standard) Laplacian acting on P :

∆E = −
[(

XL
1

)2
+

(
XL

2

)2
+

(
XL

3

)2
+

(
TL

)2
+

(
UL

)2
]
.

Using the fact that, when applied to a k-equivariant function, ∂v = −4πik, we see that the three
Laplacians are related by

∆
(k)
• = ∆(k) − 8πk = (∆E − 16π2k2) − 8πk.

We define the filtered Laplacian ∆k ∈ O
(
L2(Hk\G̃)

)
by

∆k = −
[
((π−2k)∗ (X1))

2
+ ((π−2k)∗ (X2))

2
+ ((π−2k)∗ (X3))

2
+ ((π−2k)∗ (T ))

2
]

Recall that Θk intertwines the G̃-action, whence

Θk∆k = ∆(k)Θk.

where [(π−2k)∗(X)f ] ([g]) := d
dt

∣∣
t=0

(
π−2k

(
etX

))
f([g]).

We have used the representation π0,0
−2k of Section 5 and its associated periodizing map Θ0,0

k to
compute the filtered Laplacian. The result is

∆k = −∂xx − ∂tt + 16k2π2

[
x2 + (t − 1

2
x2)2

]
. (6.2)

This is of the form: ∆k = −∂xx−∂tt +V , where the potential V is a non-negative perturbation (in
the sense of Taylor series) of the harmonic oscillator. The Laplacian −∂xx − ∂tt is a nonnegative
operator, and therefore

〈∆kf, f〉 ≥ 〈V f, f〉 ≥ 0, ∀f ∈ C∞
0 (R2).
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Hence, the spectrum of ∆k is nonnegative.
The metric Laplacian ∆(k) commutes with the right action of G̃ on P , and hence preserves

any decomposition of L2(P ) into invariant subspaces. In particular, for each k ∈ Z \ {0} and each

choice of representatives of the orbits
[
(λ̄,Hλ) · G̃

]

Z

/
Γ̃, there exist periodizing maps Θj

k, j =

1, . . . , 4k2 whose images are orthogonal irreducible subspaces of L2
k(P ). Indeed, each Θj

k identifies

an irreducible subspace with L2(Hk\G̃), and under this identification, the restriction of ∆(k) to
the irreducible subspace acts as ∆k. We have therefore proved the following.

Theorem 6.1. For each k ∈ Z\{0}, the spectrum of the metric Laplacian on M acting on sections
of k-th tensor power ℓ⊗k is equal to the spectrum of ∆k, repeated with multiplicity 4k2.

6.2 Almost Kähler quantization of M

In order to study the spectrum of the family of operators ∆k, we introduce a formal deforma-
tion parameter. In geometric quantization, the tensor power of the prequantum line bundle is
interpreted as 1/4π~, that is,

4πk = 1/~.

The work of Charles and Vu Ngoc [CVN06] yields estimates on the spectrum of ∆k from the
quantum Birkhoff normal form of ∆1/~ for small ~; in particular, the estimates will hold for k
sufficiently large (i.e. in the semiclassical limit). The main result is that the spectrum of ∆k is an
order ~2 correction to the spectrum of the simple harmonic oscillator, that is, there are spectral
bands around each eigenvalue of the simple harmonic oscillator whose widths are order ~2. The
separation of the eigenvalues of the simple harmonic oscillator, on the other hand, is order ~. Hence,
the separation between the lowest spectral bands of ∆k is order ~—this is the simple verification
of the expected spectral band gap.

In this section, we will find it useful to use a certain conjugation of our filtered Laplacian; let
ε =

√
~ and U : L2(R2) → L2(R2) be the unitary map U(f)(x) = ~1/4f(

√
~x). Then we define16

H = ~U∆1/~U−1

= −(∂2
x + ∂2

t ) + x2 + t2 + ε
(
x2t

)
+ ε2

(
x4

4

)
.

In this form, it is clear that ∆k can be regarded as a perturbation of the simple harmonic oscillator.
As is usually the case when dealing with the simple harmonic oscillator, computations are

greatly simplified by the introduction of ladder operators. Let x1 = x, x2 = t, and define

ai =
∂xi

+ xi√
2

, bi := a∗
i =

−∂xi
+ xi√
2

, i = 1, 2.

The standard commutators are then [ai, bj ] = δij and [ai, aj ] = [bi, bj ] = 0.
We now recall the Birkhoff canonical form (see [CVN06] for details). Consider the graded

algebra of (formal power series of) differential operators D[[ε]] :=
⊕∞

j=2 εj−2Dj where17

Dj =





∑

k≤j
k≡j mod 2

∑

|α|+|β|=k

cαβaαbβ





.

16This transformation is natural for semiclassical analysis; for example, one way to compute the semiclassical

asymptotics of
∫

e−x2/~f(x)dx is to begin with the change of variables x 7→ x/
√

~.
17We use standard multi-index notation.
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A convenient basis for Dj is {aαbβ : |α| + |β| ≤ j and |α| + |β| ≡ mod 2}, since

H2 =
∑

i=1,2

(
aibi −

1

2

)

and
[aibi, a

αbβ ] = (βi − αi)a
αbβ , (6.3)

imply that H2—the simple harmonic oscillator—is diagonal:

[H2, a
αbβ ] = (|β| − |α|)aαbβ .

The grading of H is given by H = H2 + εH3 + ε2H4, where

H3 =
1

2
√

2
(a1 + b1)

2(a2 + b2), and

H4 =
1

16
(a1 + b1)

4.

Let adA(·) = [A, ·] for A ∈ D[[ε]]. Each Dj can be decomposed as

Dj = ker adH2 |Dj
⊕ im adH2 |Dj

. (6.4)

The following is an easy computation using (6.3).

Lemma 6.2. We have ker adH2 = span{aαbβ : |α| = |β|} and ker adH2 |Dj
= {0} if and only if j

is odd.

The quantum Birkhoff normal form is summarized in the following theorem.

Theorem 6.3. There exist A(ε), K(ε) ∈ D[[ε]] such that

exp(ad(A(ε)))H(ε) = K(ε),

where A(ε) = εA3+ε2A4+· · · , and K(ε) = H2+εK3+· · · is such that ad(H2)Kj = 0, j = 3, 4, . . . ,
that is, Kj ∈ ker adH2 |Dj

.
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It is possible to compute the terms Aj and Kj inductively18. The first few are

K2 = H2, A2 = 0,

K3 = 0, A3 =
1

2
√

2

(
−1

3
a2
1a2 − a2

1b2 + b2
1a2 +

1

3
b2
1b2 − 2a1b1a2 + 2a1b1b2 + a2 − b2

)
,

K4 =
1

24

(
−1

2
+ 10a1b1 + 8a2b2 − a2

1b
2
1 − 12a2

1b
2
2 − 16a1a2b1b2 − 12a2

2b
2
1

)

A4 =
1

192

(
−4a2

1 − 16a2
2 + 4b2

1 + 16b2
2 − 5a4

1 − 8a3
1b1 − 8a2

1a
2
2 + 32a2

1a2b2 + 32a1a
2
2b1

+8a1b
3
1 − 32a1b1b

2
2 − 32a2b

2
1b2 + 5b4

1 + 8b2
1b

2
2

)
.

The utility of the quantum Birkhoff normal form for us is a result of Charles and Vu Ngoc in
[CVN06] which says the spectrum of ∆k is a perturbation of the spectrum of H2. In particular,
around each eigenvalue of H2 there is a spectral band of ∆k whose width is O(~) (for large ε =

√
~,

these spectral bands widen and eventually overlap, but we are mainly interested in the lowest band,
centered at 1). Charles and Vu Ngoc prove the following theorem.

Theorem 6.4. There exists ε0 > 0 and C > 0 such that for each ε ∈ (0, ε0]

spec(∆k) ∩ (−∞, Cε) ⊂
⋃

EN∈spec(H2)

[EN − ε2

3
, EN +

ε2

3
].

In our case, though, since K3 = 0, the width of the spectral bands is O(ε4 = ~2) (that is,
the Birkhoff canonical form of our operator is an O(ε4) correction). Since the separation of the
eigenvalues of the harmonic oscillator is O(ε2), we see that as ε → 0, a spectral gap of width O(ε2)
appears between the ground state band (centered at 1) and the first excited band. This is the
direct verification of the spectral band gap described in Theorem 1.4.

Remark Although it is not directly relevant to the almost Kähler quantization of the
Kodaira–Thurston manifold, we note that the spectrum of the metric Laplacian on M acting
on functions (i.e., the k = 0 case) can be computed exactly since the filtered Laplacians for the
functional dimension-0 and -1 representations can be inverted explicitly. ¤

The almost Kähler quantization of the Kodaira–Thurston manifold M is defined to be the C-

span of the set of low-lying eigenstates of the rescaled metric Laplacian ∆
(k)
• which acts on sections

of the k-th tensor power ℓ⊗k of the prequantum line bundle. The dimension of this space is, for k
sufficiently large, the Riemann–Roch number of M twisted by ℓ⊗k; a routine computation shows

18Expanding and matching terms, one sees that we must choose Aj , j = 3, 4, ... so that

A2 = 0, K2 = H2,

K3 = H3 + [A3, H2] ∈ ker ad(H2)|D3
,

K4 = H4 + [A3, H3] +
1

2
[A3, [A3, H2]] + [A4, H2] ∈ ker ad(H2)|D4

,

Indeed, we see that at each step we must write

[H2, Aj ] + Kj = Hj + ....

which is possible because of (6.4). Hence, we can find Kj by computing

Kj = proj ker ad(H2)|Dj
(Hj + ...).

Then, to find Aj , compute

Aj = ad(H2)−1(Hj + ... − Kj),

which, since ad(H2) is diagonal in our basis of ladder operators, is straightforward.
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that this Riemann–Roch number is 4k2. As we have seen in Section 6, the rescaled Laplacian ∆
(k)
•

decomposes as a direct sum of 4k2 copies of the filtered Laplacian ∆k acting on L2(R2). We have
therefore proved that:

Corollary 6.5. The rescaled filtered Laplacian ∆k − 4πk, for k sufficiently large, has a unique
ground state which separates from the excited spectrum by a gap of order k.

It then follows that if ψ0 denotes the unique ground state of ∆k − 4πk, the almost Kähler
quantization of M , at level 4πk = 1/~, consists of the images of ψ0 under the periodizing maps
(for any choice of subordinate subalgebra), that is,

H(k)
M := spanC{Θ1

kψ0,Θ
2
kψ0, ...,Θ

4k2

k ψ0}.

7 Appendix: Faithful matrix representations

For computational convenience, we record here faithful matrix representations of the Lie groups
and algebras studied in this paper. We begin with the product G = Heis(3) × R of the three-
dimensional Heisenberg group with R, which we realize as the group of 5 × 5 matrices of the
form

[a1, a2, a3, r] =




1 a1 a2 2a3 + a1a2 0
0 1 0 a2 0
0 0 1 −a1 0
0 0 0 1 0
0 0 0 0 er




.

The group law (2.1) is then obtained from the usual matrix product.
A basis for h = Lie(Heis(3)) is

X1 =




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 X2 =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 X3 =




0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0


 .

These satisfy [X1, X2] = X3. The canonical coordinates on G are then expressed in terms of the
matrix exponential as

[a1, a2, a3, r] = exp(a1X1) exp(a2X2) exp(a3X3) ⊕ er.

Next, a matrix representation of the Lie algebra g̃ of the central extension G̃:

X1 =




0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 1
0 0 0 0 0




, X2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




, X3 =




0 0 0 2 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




,

T =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 −3
0 0 0 0 0
0 0 0 0 0




, U =




0 0 0 0 3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




.
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Again, the canonical coordinates on G̃ can be expressed, using the matrix exponential, in terms of
the above matrices:

[a1, a2, a3, r, v] = exp(a1X1) exp(a2X2) exp(a3X3) exp(rT ) exp(vU)

=




1 a1 a2 2a3 + a1a2 3v − 3ra2 + 1
2 (a2)2 − a1a3

0 1 0 a2 −a3

0 0 1 −a1 −3r + 1
2 (a1)2 + a2

0 0 0 1 a1

0 0 0 0 1




.

The group law (2.7) can be worked out explicitly using the above matrices.
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