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Abstract

The computational complexity of ab initio electronic structure methods can be de-
creased through the so-called density fitting scheme. The density fitting scheme is also
known as resolution of identity (RI). Density fitting schemes became a popular approach
to approximate the four-centre two-electron integrals which appear in the computation
of the Fock matrix in the Hartree-Fock (HF) method. In the HF method, the computa-
tional effort to compute the Fock matrix scales with the fourth power of the number of
basis functions, i.e., Njé - Therefore, we need to compute a huge number of integrals
for large molecules. This cost can be reduced by using density fitting schemes. In recent
years, density fitting schemes became a popular approach not only in the HF method,
but also in almost all post-HF methods, where the computation of the two-electron inte-
grals provides a major bottleneck. Traditionally quantum chemists consider the tensor
product approximation in terms of Gaussians. We propose a new look at the subject of
density fitting from the point of view of optimal tensor product approximation to han-
dle the two-electron integrals more efficiently. In order to improve the approximation
quality near the nuclei, we apply the density fitting scheme for pseudo-potentials. Us-
ing pseudo-potentials not only improves the quality of approximation in the immediate
neighbourhoods of the nuclei but also reduces the computational costs.

This article is dedicated to Prof. Dr. Dr. h.c. Wolfgang Hackbusch
in honour of his sixtieth birthday.

1 Density fitting schemes in electronic structure calcu-
lations

Gaussian-type orbital (GTO) basis functions are the most popular choice to deal with one-
and two-electron integrals that appear in HF and post-HF methods, where the computation
of the two-electron integrals

1
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provides a major bottleneck for all conventional methods in quantum chemistry. As basis
functions here are real, ¢7(x) = ¢,(x) holds. The products of two GTO basis functions are
approximated in an auxiliary GTO basis set of larger size

Qbu(X)?bu (X> ~ Z Cuv,a Q;a (X) (2)
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with #A < #A < #A(#A + 1)/2, where #A is the size of the original GTO basis set
and #A is the size of the auxiliary GTO basis set. The fitting GTO functions are termed
as “auxiliary GTO basis functions”. The coefficients c,, , are optimized with respect to the
squared Coulomb norm

/Rg - <¢p(x)¢y(x) — Zcuuaéa(X)) =] <¢u( Vo (y) — Zcﬂy,agga(y))dx dy, (3)
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which was found to be superior to the L?-norm commonly employed for least-squares prob-
lems. The solution of the bilinear least-squares problem (3) leads to an expression for the
approximation of four-centre integrals via three-centre integrals

(loX) = 3 (ula)(al8) (3o ()
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This kind of approaches have been successfully applied not only to fit the Coulomb part
[10, 11, 40] of the HF method, but also to fit the exchange part [12, 40] of it. HF algorithms
using the resolution of identity (density fitting) for Coulomb and exchange integrals were
studied and implemented by Friichtl et al. [12] and also by Weigend [40]. Using these
approaches, the computational complexity of conventional HF method can be reduced.
Numerous successful applications [30, 1, 38, 10, 22, 23, 26] have been reported in quantum
chemistry to reduce the computational effort in HF and Kohn-Sham (KS) equations, where
the density is approximated in an auxiliary GTO basis. The density is required to compute the
Hartree potential in HF and KS equations and it plays a major role concerning computational
expenses. Approximation of the density p(y) in an auxiliary GTO basis {@a, a € A} yields

N/2
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This method was originally introduced by Baerends, Ellis and Ros [2, 14] in density functional
theory (DFT) for Slater-type orbital (STO) basis sets. Approximation of the density in
auxiliary GTO basis has a great advantage in DFT.

Recently an interesting variant has been proposed by Manby and Knowles [22, 23], where
basis functions with vanishing multipoles ¢, := —1 /47 V2¢, have been considered. For such
kind of basis functions the two- and three-centre Coulomb integrals reduce to simple overlap
or kinetic energy integrals, i.e.,

/Rs /Rs Gy )d><dy——4i Pa(X) VZd5(x) dx, (7)
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This allows us to reduce the number of Coulomb integrals in density fitting by a factor around
10. In fact, most of the integrals are overlap integrals in this variant and these overlap integrals
are much faster to evaluate than two-electron integrals (1).

Within the last few years density fitting methods became of widespread use in post-HF
methods like second-order Mgller-Plesset perturbation theory (MP2) [13, 3, 41, 42], coupled-
cluster (CC) theory [29, 31] and 72-methods [18, 24, 39] where individual orbital product
densities pgi(x) = 1,(x)1;(x) have to be approximated instead of the total electron density
(6). In MP2 theory, we need two-electron integrals K = (ai|bj) with two occupied orbitals
Yq, ¥ and two virtual orbitals v, 1; [42]. These two-electron integrals Kffb describe the
electrostatic repulsion between two one-electron orbital product densities

K= [ [ putormty) dxdy o)

Pai (%) = 1a(x)1hi(x) (10)

is one-electron orbital product density. Here orbitals are assumed to be real. The density
fitting scheme applied to the second-order Mgller-Plesset perturbation theory is denoted by
RI-MP2 or density fitted MP2 (DF-MP2). In the DF-MP2 method, one-electron orbital
product densities p,;(x) are approximated as in (6). Then four-centre two-electron integrals
(9) are transformed to two- and three-centre integrals. Even if we apply the density fitting to
MP2, the cost of this method scales with the fifth power of the number of basis functions, i.e.,
N3 as in the conventional MP2 method. Therefore the range of applicability of DF-MP2
is limited up to medium sized molecules. In order to overcome this limitation, Werner and
his coworker [42] applied local approximations to remove the O(Nj, ;) bottleneck in DF-MP2.
This method is denoted as DF-LMP2.

The density fitting approaches were also used in CC theory for efficient computations
with high accuracy. CC theory is considered to be one of the most successful models to deal
with many-electron wavefunctions at high accuracy. The disadvantage of CC theory is an
unfavourable scaling of the computational cost with the number of basis function Nggr. The
computational cost of CC with single and double excitations (CCSD) scales as O(NS.). If
the triple excitations are included, then the computational cost rises to O(Njy). By using
the local correlation approach of Pulay and Saebg [27, 28, 34, 35], Hampel and Werner [16]
and Schiitz [32] achieved linear scaling for local CCSD (LCCSD) theory. Even for triple
excitations in CC theory, linear scaling was obtained [33]. Later Schiitz and Manby [31]
applied the density fitting approach to deal with the most expensive class of two-electron
integrals in LCCSD. In the context of density fitting approximation to LCCSD, locality was
exploited for the fitting functions in order to achieve the linear scaling. It means that the
range of fitting functions used to fit the one-electron orbital product density p,; has to be
confined to the spatial vicinity of p,;. It was demonstrated by Schiitz and Manby [31] that
the approximate calculation of two-electron integrals via density fitting in LCCSD is 10-100
times faster than exact calculation via the O(Npp) 4-index transformation in LCCSD.

The density fitting approaches were also successfully applied even in explicitly correlated
[24] calculations. Highly accurate correlation energies can be obtained by introducing an
explicit dependence on interelectronic distances into the wavefunction. Such kind of methods
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are called explicitly correlated methods. These methods provide highly accurate energies and
properties for light atoms and small molecules. But there are some difficulties for large systems
due to computation of four-centre two-electron integrals in the explicitly correlated methods
like MP2-R12. Manby [24] showed that density fitting applied to the explicitly correlated
MP2 method, termed as DF-MP2-R12, requires only 2- and 3-centre integrals for Coulomb
and exchange operators and is extremely efficient.

2 Density fitting with the best tensor rank « approxi-
mations

We propose a new look at the subject of density fitting from the point of view of “opti-
mal” tensor product approximations [4, 5. The “optimal” tensor product approximation is
performed in the sense that for a given accuracy an approximate tensor representation with
minimal rank is determined. The rank of a tensor A is defined as the minimum number of
products that are used to represent the tensor A,

rank(A) = mz’n{/i EN: A= Zv,(:) . ® v(d)}. (11)
k=1

Tensor product decompositions with “optimal” rank provide an interesting alternative to tra-
ditional GTO basis functions. The basic idea behind the representation of certain quantities
in terms of tensor products is to factorize expensive parts of the calculation. This reduces the
dimensionality and thereby computational complexity. This is demonstrated for the evalua-
tion of two-electron integrals.

Starting from a given tensor product in 3-dimension, i.e., a linear combination of GTOs,
we obtain the best tensor rank s approximations for densities of small molecules by using
variations of the Newton method. We know that the product of two Gaussians is again a
Gaussian. Using the Cartesian Gaussian representation of orbitals [4, 5] with coefficients ¢y,
the density of a molecule is given by

K K
1 2 3
p(y) =D ewew pi(yn) oo (y2) o (), (12)
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A,gzg,:% for i =1,2,3.

Here A,(f) for i = 1,2, 3 are the centres of the Gaussians, l,(;) are the degrees of polynomials,
¢, are the coefficients including normalization constants and o are the exponents of the
Gaussians. It is our goal to obtain the best tensor rank s approximations of the density p(y).
The initial rank of the density p(y) is K(K + 1)/2 due to symmetry. The best tensor rank
approximation of the density is

Z ol () o (1) 07 (ys), K < K(K +1)/2, (14)



where Q](gl) (y1), Q,(C )( 5), and Qk (yg) are the optimized one-dimensional components of the den-

sity p(y) along the y;-, yo- and ys-directions respectively. These optimized one-dimensional
density components allow us to evaluate Coulomb integrals efficiently. The error of the ap-
proximations with fixed rank x may be defined via

ox(p):= inf Zg ® Qk ) ® g(3) (15)

g](j) cl2(R)

12(R3)

and is minimized with respect to the [>norm. More details have already been discussed in
our previous article [4] and also in [5].

3 Density fitting for pseudo-potentials

It has been shown in our previous paper [4] that large errors in total electron density are
located within the immediate neighbourhoods of the nuclei of atoms. These errors also prop-
agate into the Hartree potential and finally into the HF energy. Various modifications to
our approach seem to be possible in order to improve the approximation quality in the im-
mediate neighbourhoods of nuclei. In this paper, we therefore study the density fitting for
pseudo-potentials. The application of pseudo-potentials is also an obvious way to improve
the efficiency. Using pseudo-potentials is a standard procedure to reduce the computational
costs in electronic structure calculations and it becomes more important with increasing num-
ber of electrons. The basic idea of pseudo-potentials is to divide the electrons in an atom
into two parts, i.e., core electrons and valence electrons. The core electrons remain essen-
tially unchanged from the atom and provide the effective field for valence electrons [19]. The
valence electrons participate strongly in interactions between atoms and are important for
the calculation of many quantities. Therefore core electrons are assumed to be fixed and a
pseudo-potential is constructed for each atomic species which takes the effect of nucleus and
core electrons into account [19]. Therefore the use of pseudo-potentials reduces the many-
electron problem to the valence electron problem. There are many different methods which
have been proposed for the generation of pseudo-potentials [6, 17, 20, 7, 8, 15, 21]. The
pseudo-potentials V(r) are of the form

lmaz n

== + Z chz exp(—ayr?) - P, (16)
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where

m=—I

Here @ is the core charge, P is the projector with the spherical harmonics Y; ,, with angular
momentum [, and n is the number of valence electrons. There is a slightly different approach
the so-called model potentials [36, 37, 9]. For both pseudo-potentials and model potentials,
core electrons are replaced by approximate potentials. Orbitals corresponding to the pseudo-
potentials are the so-called pseudo-orbitals. Pseudo-potentials and associated pseudo-orbitals
have been derived for many elements in such a way that the calculation of specific properties
by using pseudo-potentials and pseudo-orbitals yields the same result as in the all-electron
case. The pseudo-potential matches the true potential outside a given radius. Similarly,



the pseudo-orbital must match the corresponding true wavefunction beyond this distance.
Pseudo-potentials are characterized by the number of core electrons and highest angular
momentum /,,,, and corresponding pseudo-orbitals are then given by GTO basis functions.
In order to improve the approximation quality in the immediate neighbourhood of nuclei, we
study the possibility of applying pseudo-potentials. By using the pseudo-orbitals for CHy, we
obtain the reference pseudo-density and then the best tensor rank s approximations of it.

Fig. 1 shows the reference pseudo-density on a plane passing through the C atom and
two H atoms for CH,. Relative L? errors of the best tensor rank s approximations of the
pseudo-density are presented in Fig. 2 and these relative L? errors are also compared with
the relative L? errors of the best tensor rank x approximations of the total electron density
for CHy. It can be seen from Fig. 2 that relative L? errors are almost the same for both
cases. We present in Fig. 3 the absolute errors of the best tensor rank x approximations of
the pseudo-density. Here we plot the absolute errors of the best tensor rank x approximations
of the pseudo-density in a plane contain the C atom and two H atoms. As we can see from
Fig. 3, the absolute error decreases very fast if we go to higher tensor ranks. It should be
mentioned that the scale of our plots from Fig. 3 b) to Fig. 3 ¢) changes by an order of
magnitude.
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Figure 1: Reference pseudo-density on the plane passing through the C atom and two H
atoms for CH, molecule.

10" & O—=CO Total electron density -
*k—— Pseudo-density

2
error
RN
\ o
~
T

Relative L

0O 10 20 30 40 50 60 70 80 90 100
Tensor rank

Figure 2: Relative L? errors of the best tensor rank s approximations of the pseudo-density
and the total electron density for CH,.
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Figure 3: Absolute errors in the pseudo-density at best tensor rank a) k = 20, b) k = 25, ¢)
k = 45 approximations for CH4 molecule.



4 Density fitting of the Hartree potential

The Hartree potential is one of the most complicated quantities in the Fock-operator and is a
basic building block for the HF method and DFT. The Hartree potential plays an important
role in computational expenses in electronic structure calculations and is given as

1

Val) = | ply) dy. (18)
B [X — Y|

For an efficient treatment of the Hartree potential, we consider the tensor product representa-

tion of the Coulomb interaction and its convolution with the best tensor rank x approximation

of the density (14). The standard integration schemes for the evaluation of Coulomb integrals

for GTO basis sets are based on the Gaussian transform of the Coulomb interaction

1 2 (™ l
P v AT DR (19)
m=—M

By using the Gaussian transform of the Coulomb interaction, we end up with

M K
VETx) = D0 Y V() Vid () Vi (as). (20)
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It represents the Hartree potential from the best tensor rank s approximation of the pseudo-
density and is called the pseudo-density fitted Hartree potential. It has the initial rank
(2M + 1)k, where (2M + 1) is the total number of terms used to approximate the Coulomb
interaction (19). It is more interesting from a practical point of view to take a look at the
error distribution with respect to the Coulomb matrix elements. Therefore we compute the
Coulomb matrix elements

T = [ 9.0 VA () i) dx @

for all g, and g, of a GTO basis set.

5 Accuracy of the approximations

In Section 3, we have seen the best tensor rank x approximation of the pseudo-density for CHy.
Now we see how errors in the pseudo-density propagate into the Hartree potential and then to
the Coulomb matrix elements. For this, we first compute the reference Hartree potential (18)
by using the GTO basis sets. We use the total electron density, valence density and pseudo-
density to compute the reference Hartree potential (18). Fig. 4 shows the reference Hartree
potential along the diagonal for the CH4 molecule from the total, valence and pseudo-density.
As we can see, there are two peaks at the origin where the C atom is located. The large peak
corresponds to the Hartree potential from the total electron density. Small peaks correspond
to the Hartree potential from the valence and pseudo-density. The Hartree potential from the
pseudo-density is smoother even at the origin. The small picture in the right upper corner
of Fig. 4 shows the tip of the Hartree potential from the valence density (red solid line) and
from the pseudo-density (green dotted line).



Reference Hartree potential (hartree)

Figure 4: The reference Hartree potential Vi (x) of CH, obtained from GTO basis set. The
reference Hartree potential is computed from the total electron density (blue long dashed
line), valence density (red solid line) and pseudo-density (green dotted line).
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Figure 5: Pseudo-density fitted Hartree potential along the C-H bond axis for CH,. The
pseudo-density fitted Hartree potential (squares) is computed from the best tensor rank x = 10
approximation of the pseudo-density. It is compared with the reference Hartree potential
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Fig. 5 shows the pseudo-density fitted Hartree potential along the C-H bond axis near the
C nucleus of CHy;. We use the best tensor rank x = 10 approximation of the pseudo-density
and 2M + 1 quadrature points to compute the the Hartree potential and then compare with
the reference pseudo-density. As we can see from Fig. 5, the Hartree potential from the
pseudo-density is smoother even near the C nucleus of CHy.

Fig. 6 shows the errors of Coulomb matrix elements J,, corresponding to the pseudo-
density fitted Hartree potential for CH4 molecule. As we can see from Fig. 6 a) and Fig. 6
b), errors are uniformly distributed with the slightly larger peaks along the diagonal. This is
due to the large exponents of Gaussians along the diagonal. Even though these peaks seem
to be rather large their effect on the HF energy is fairly small.
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Figure 6: Errors of Coulomb matrix elements J,;, corresponding to the pseudo-density fitted
Hartree potential at best tensor rank a) x = 20, and b) x = 25 for CH, molecule.
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6 Hartree-Fock energy

To compute the Hartree-Fock energy corresponding to the pseudo-density fitted Hartree po-
tential, we choose a slightly simplified approach in order to avoid multiple compressions of the
pseudo-density within the iterative solution of the HF equation. We take the best tensor rank
k approximations from already self-consistent pseudo-density and then compute the Hartree
potential (20) and corresponding Coulomb matrix elements (21) in a GTO basis set. In the
HF calculation, the Coulomb part of the Fock matrix is kept fixed and only the exchange part
is treated in a self-consistent manner. The HF calculations are carried out with the MOLPRO
program package [25] using the MATROP program for matrix operations.

As discussed in Section 3, using pseudo-potentials not only decreases the computational
costs but also improves the quality of approximation near the nuclei. It is useful in most
cases because only the valence electrons determine many chemical properties such as bond
strengths, electron affinities and ionization potentials. Orbitals corresponding to the pseudo-
potential are the so-called pseudo-orbitals and orbitals corresponding to the model potentials
[36, 37, 9] are nearly same as valence orbitals. In the case of pseudo-potentials, the pseudo-
orbitals are not matched to the all-electron orbitals in the core region, i.e., the region below
the cut-off radius r. whereas the corresponding orbitals of the model potentials are matched
to the all-electron orbitals even in the core region.

In the present work, we use only pseudo-potentials for electronic structure calculations be-
cause they are more appropriate for our approach. By using the pseudo-orbitals, we compute
the best tensor rank x approximation of the pseudo-density (14) and corresponding Hartree
potential (20) and Coulomb matrix elements (21). We then perform SCF iterations and obtain
the HF energy. Table 1 shows the HF energy and its error obtained from the pseudo-density
fitted Hartree potential for CH, molecule. The absolute error in the HF energy for CHy,
obtained from the best tensor rank x = 45 approximation of the pseudo-density is 3.9 x 107°
hartree. This is roughly 1.5 times smaller than the absolute error of HF energy corresponding
to the best tensor rank approximation of the total electron density at the same tensor rank,
cf. [4]. We could not gain much from pseudo-potentials because relative L? errors of the best
tensor rank k approximations of the pseudo-density are almost the same as those in the case
of the total electron density, as shown in Fig. 2. We also compute the HF energy from the
pseudo-density fitted Hartree potential for the SiH; molecule. The HF energy and its error
obtained from the pseudo-density fitted Hartree potential for the SiH, molecule are presented
in Table 2. As we can see from Table 1 and Table 2, the accuracy of the HF energy obtained
from the pseudo-density increases as tensor rank increases.
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Table 1: HF energy and absolute error in the HF energy obtained from the pseudo-density
fitted Hartree potential for CH4 molecule. The original HF energy obtained from pseudo-
potentials is -7.84226746 hartree.

Tensor rank | HF energy of CHy | Error in HF energy
K (hartree) (hartree)
10 -7.85096218 8.6947x1073
15 -7.84418853 1.9211x1073
20 -7.84293113 6.6367x10~*
25 -7.84287270 6.0524x10~*
30 -7.84240592 1.3846x1074
35 -7.84236794 1.0048x1074
40 -7.84235443 8.6970x107°
45 -7.84230634 3.8880x107°
50 -7.84231368 4.6220x107°
55 -7.84230847 4.1010x107°
60 -7.84230634 3.8880x107°

Table 2: HF energy and absolute error in the HF energy obtained from the pseudo-density
fitted Hartree potential for SiH, molecule. The original HF energy obtained from pseudo-
potentials is -6.07679941 hartree.

Tensor rank | HF energy of SiH4 | Error in HF energy
K (hartree) (hartree)
10 -6.08820559 1.141x1072
15 -6.07549743 1.302x1073
20 -6.07731587 5.165x10~*
25 -6.07670708 9.233x107°
30 -6.07681921 1.980x107°
35 -6.07682314 2.373x107°
40 -6.07681491 1.550x107°
45 -6.07681329 1.388x107°
50 -6.07680532 5.910x1076
59 -6.07679322 6.190x10~°
60 -6.07679656 2.850x107°
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