Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Higher Asymptotics of Laplace's Approximation
by

William Kirwin

Higher Asymptotics of Laplace's Approximation

William D. Kirwin*

Abstract

We present an explicit asymptotic series for multiple integrals of Laplace type (the first term of which is known as Laplace's approximation) in terms of asymptotic series of the functions in the integrand.

Keywords: Laplace's approximation, Laplace integral, asymptotic expansion, Stirling series MSC: 41A60 (Primary); 41A63, 44A10 (Secondary)

Let $R \subset \mathbb{R}^{d}$ be a measurable set with 0 in the interior. Suppose f and g are measurable functions on R such that f has a unique minimum at 0 and such that both f and g admit asymptotic expansions near 0 . Laplace's approximation is concerned with the asymptotic behavior of integrals of the form

$$
\int_{R} e^{-k f} g d x
$$

as $k \rightarrow \infty$. There is a vast literature devoted to this subject; we refer the reader to the books [BH75], [dB81], and $[\operatorname{Erd} 56]$ for an introduction and further references.

It is a result of Fulks and Sather [FS61] that if $\int_{R} e^{-k f} g d^{d} x$ exists for some k_{0}, then it exists for all $k \geq k_{0}$ and moreover, for some $\nu, \lambda>0$ (depending on the expansions of f and g) there exists an asymptotic expansion

$$
\int_{R} e^{-k f} g d^{d} x=\sum_{j=0}^{N} \zeta_{j} k^{-(\lambda+j) / \nu}+o\left(k^{-(N+\lambda) / \nu}\right), k \rightarrow \infty
$$

Fulks and Sather also find the first coefficient. We will give an explicit expression for the coefficients $\zeta_{j}, j \geq 0$ in terms of the coefficients of the expansions of f and g. In the 1-dimensional case, our results reproduce recent results of Wojdylo [Woj06a], [Woj06b].

1 Main results.

Let $\left\{x^{1}, \ldots, x^{d}\right\}$ be coordinates on \mathbb{R}^{d}. Denote by $S^{d-1}=\{|x|=1\} \subset \mathbb{R}^{d}$ the unit sphere and introduce polar coordinates $\rho:=\sqrt{\left(x^{1}\right)^{2}+\cdots\left(x^{d}\right)^{2}}$ and $\Omega=x /|x| \in S^{d-1}$.

We can assume without loss of generality that $f(0)=0$. We adopt the hypotheses of Fulks-Sather [FS61]: let R, f, and g be as above and assume that there is an $N>0$ and

1. $N+1$ continuous functions $f_{j}(\Omega), j=0, \ldots, N$ with $f_{0}>0$ such that for some $\nu>0$

$$
\begin{equation*}
f(\rho, \Omega)=\rho^{\nu} \sum_{j=0}^{N} f_{j}(\Omega) \rho^{j}+o\left(\rho^{N+\nu}\right) \text { as } \rho \rightarrow 0, \text { and } \tag{1.1}
\end{equation*}
$$

2. $N+1$ functions $g_{j}(\Omega), j=0, \ldots, N$ such that for some $\lambda>0$

$$
\begin{equation*}
g(\rho, \Omega)=\rho^{\lambda-d} \sum_{j=0}^{N} g_{j}(\Omega) \rho^{j}+o\left(\rho^{N+\lambda-d}\right) \text { as } \rho \rightarrow 0 \tag{1.2}
\end{equation*}
$$

[^0]We will often omit the Ω-dependence of the coefficients, writing for example $f_{j}=f_{j}(\Omega)$, when the meaning is clear.

Theorem 1 With the hypotheses above, there exists an asymptotic expansion

$$
\begin{equation*}
\int_{B} e^{-k f} g d^{d} x=\sum_{j=0}^{N} \zeta_{j} k^{-(\lambda+j) / \nu}+o\left(k^{-(N+\lambda) / \nu}\right) \tag{1.3}
\end{equation*}
$$

where the coefficients are given by

$$
\zeta_{j}=\frac{1}{\nu} \Gamma\left(\frac{j+\lambda}{\nu}\right) \int_{S^{d-1}}\left[f_{0}^{-(j+\lambda) / \nu} \sum_{m=0}^{j} g_{j-m} \sum_{r=1}^{m}\binom{-\frac{j+\lambda}{\nu}}{r} \frac{f_{m}^{(r)}}{f_{0}^{r}}\right] d \Omega
$$

where $f_{m}^{(r)}$ is the sum of all ordered products ${ }^{1}$ of r elements of $\left\{f_{1}, f_{2}, \ldots, f_{N}\right\}$ such that the subscripts add to m, and $\binom{\alpha}{r}:=\alpha(\alpha-1) \cdots(\alpha-r+1) / r$. Empty sums are understood to be 1 .

The coefficients $f_{m}^{(r)}$ arise also in the 1-dimensional case studied by Wojdylo in [Woj06a], [Woj06b], where he calls them "partial ordinary Bell polynomials". They are relatively simple combinatorial objects to compute; for example, $f_{n}^{(r)}$ may be alternatively defined as the coefficient of x^{n} appearing in $\left(f_{1} x+f_{2} x^{2}+\right.$ $\left.f_{3} x^{3}+\cdots\right)^{r}$. The following result describes a simple recursive algorithm for their computation. Explicit algorithms suitable for computer implementation may be found in [Woj06a], [Woj06b].

Proposition 1 For $n>0$ we have $f_{n}^{(1)}=f_{n}$, and for $1<r \leq n$, the coefficients $f_{n}^{(r)}$ can be computed recursively via $f_{n}^{(r)}=\sum_{j=r-1}^{n-1} f_{n-j} f_{j}^{(r-1)}$.

For example, the first few coefficients in the asymptotic expansion are

$$
\begin{aligned}
& \zeta_{0}= \frac{1}{\nu} \Gamma\left(\frac{\lambda}{\nu}\right) \int_{S^{d-1}} g_{0} f_{0}^{-\lambda / \nu} d \Omega \\
& \zeta_{1}=\frac{1}{\nu} \Gamma\left(\frac{\lambda+1}{\nu}\right) \int_{S^{d-1}} f_{0}^{-(\lambda+1) / \nu}\left[g_{1}-\frac{\lambda+1}{\nu} g_{0} f_{1} f_{0}^{-1}\right] d \Omega \\
& \zeta_{2}= \frac{1}{\nu} \Gamma\left(\frac{\lambda+2}{\nu}\right) \int_{S^{d-1}} f_{0}^{-(\lambda+2) / \nu}\left[g_{2}-\frac{\lambda+2}{\nu}\left(g_{1} f_{1}+g_{0} f_{2}\right) f_{0}^{-1}+\binom{-\frac{\lambda+2}{\nu}}{2} g_{0} f_{1}^{2} f_{0}^{-2}\right] d \Omega \\
& \zeta_{3}=\frac{1}{\nu} \Gamma\left(\frac{\lambda+3}{\nu}\right) \int_{S^{d-1}} f_{0}^{-(\lambda+3) / \nu}\left[g_{3}-\frac{\lambda+3}{\nu}\left(g_{2} f_{1}+g_{1} f_{2}+g_{0} f_{3}\right) f_{0}^{-1}\right. \\
&\left.\quad+\binom{-\frac{\lambda+3}{\nu}}{2}\left(g_{1} f_{1}^{2}+2 g_{0} f_{1} f_{2}\right) f_{0}^{-2}+\binom{-\frac{\lambda+3}{\nu}}{3} g_{0} f_{1}^{3} f_{0}^{-3}\right] d \Omega .
\end{aligned}
$$

In the case that $\lambda=d$, so that g is continuous at the origin, and that $\nu=2$ and f is twice differentiable at the origin with positive definite Hessian, there is a more common expression for the first term in the expansion in terms of the determinant $H_{f}(0)$ of the Hessian $h=\left(\partial_{x^{j}} \partial_{x^{k}} f(0)\right)$ of f :

$$
\int_{B} e^{-k f} g d^{d} x \sim\left(\frac{2 \pi}{k}\right)^{d / 2} \frac{g(0)}{\sqrt{H_{f}(0)}}
$$

Indeed, this follows from the following strange-looking (though elementary) identity which we prove in Section 2.1.
Proposition 2 Let $A_{d}:=2 \pi^{d / 2} / \Gamma\left(\frac{d}{2}\right)$ denote the area of the unit S^{d-1} sphere in \mathbb{R}^{d}. Then

$$
\int_{S^{d-1}} \frac{d \Omega}{f_{2}(\Omega)^{d / 2}}=\frac{2^{d / 2} A_{d}}{\sqrt{H_{f}(0)}}
$$

[^1]
Remarks.

1. We use results of Frame [Fra57] regarding power series of inverse functions to prove Theorem 1. There are several results in the literature equivalent to those of Frame in [Fra57], for example [Kam46] and [PS45]. We have chosen to use Frame's results because they are particularly simple to apply in the present situation.
2. With more restrictive hypotheses (smoothness and local form of f near 0), Bleistein and Handelsman [BH75, Sec 8.3] have given a complete asymptotic series for $\int_{R} e^{-k f} g d^{d} x$. The coefficients, though, are computed in terms of a Jacobian of a coordinate transformation that in general cannot be computed explicitly. Nevertheless, since the result is eventually evaluated at $x=0$, it is possible to proceed term by term, obtaining explicit formulas in terms of the derivatives of f and g.
The method of the proof of Proposition 2, applied to the coefficients $\zeta_{j}, j>0$, should yield identities, in the same vein as Proposition 2, relating the coefficients f_{j} and g_{j} to the explicit formulas arising from the approach of Bleistein and Handelsman, though we do not do this.
3. In dimension one, Wojdylo has recently derived expressions for the coefficients the complete asymptotic expansion of Laplace type integrals in terms of the coefficients of expansions of f and g [Woj06a], [Woj06b]. In this case, our Theorem 1 reduces to his results; we demonstrate this in more detail in the next section.

1.1 The 1-dimensional case.

We compute the coefficients of Theorem 1 in the 1-dimensional case, where several simplifications occur, thus rederiving the recent results of Wojdylo [Woj06a], [Woj06b, Thm 1.1]. As an application, we mention a closed form expression for the Stirling series (cf. [AS64, 6.1.37], [Sti30]).

Corollary 1 Suppose that for $x \rightarrow 0$, we have $f(x)=x^{\nu} \sum_{j=0}^{N} a_{j} x^{j}+o\left(x^{N+\nu}\right)$ for some $\nu>0$ and $g(x)=\sum_{j=0}^{N} b_{j} x^{j}+o\left(x^{N}\right)$. Then

$$
\int_{-a}^{b} e^{-k f} g d x=k^{-1 / \nu} \sum_{j=0}^{\lfloor N / 2\rfloor} \zeta_{2 j} k^{-2 j / \nu}+o\left(k^{-(2\lfloor N / 2\rfloor+1) / \nu}\right)
$$

where the coefficients are given by

$$
\zeta_{2 j}=\frac{2}{\nu} \Gamma\left(\frac{2 j+1}{\nu}\right) a_{0}^{-(2 j+1) / \nu}\left(\sum_{m=0}^{2 j} b_{2 j-m} \sum_{r=1}^{m}\binom{-\frac{2 j+1}{\nu}}{r} a_{0}^{-r} a_{m}^{(r)}\right)
$$

in which $a_{m}^{(r)}$ is the sum of all ordered products of r terms of the set $\left\{a_{1}, a_{2}, \ldots\right\}$ such that the subscripts add to $m,\lfloor N / 2\rfloor$ denotes the largest integer less than $N / 2$ and empty sums are understood to be 1 .

Proof. Introduce "polar coordinates" $\rho(x)=|x|$ and $\Omega(x)=x /|x|= \pm 1$ on \mathbb{R}. Note that $S^{0}=\{ \pm 1\}$ and since $\Omega^{j}=1$ if j is even and $=\Omega$ if j is odd,

$$
\begin{equation*}
\int_{S^{0}} \Omega^{j} d \Omega=2 \varepsilon_{j} \tag{1.4}
\end{equation*}
$$

where $\varepsilon_{j}=1$ if j is even and 0 otherwise.
The series for f in polar coordinates is $f(\rho, \Omega)=\rho^{\nu} \sum_{j=0}^{N} a_{j} \Omega^{j} \rho^{j}$, so that $f_{j}(\Omega)=a_{j} \Omega^{j}$, which is equal to a_{j} if j is even and $a_{j} \Omega$ if j is odd. Similarly, $g_{j}(\Omega)=b_{j}$ if j is even and $b_{j} \Omega$ if j is odd. Using these facts, and also the observation that the power of Ω in $f_{m}^{(r)}$ is m, we obtain from Theorem 1 that

$$
\zeta_{j}=\frac{1}{\nu} \Gamma\left(\frac{j}{\nu}\right) a_{0}^{-(j+1) / \nu} 2 \varepsilon_{j}\left(\sum_{m=0}^{j} b_{j-m} \sum_{r=1}^{m}\binom{-\frac{j+1}{\nu}}{r} a_{0}^{-r} a_{m}^{(r)}\right)
$$

from which it is clear that $\zeta_{j}=0$ for j odd, whence we obtain the desired result.

A nice application, which already appeared in a similar form in [Woj06a], results by applying the corollary to the Γ-function, thus obtaining a closed expression for the Stirling series [AS64, 6.1.37]

$$
k!\sim k^{k} e^{-k} \sqrt{2 \pi k}\left(1+\frac{1}{12 k}+\frac{1}{288 k^{2}}-\frac{139}{51840 k^{3}}-\frac{571}{2488320 k^{4}}+\frac{163879}{209018880 k^{5}}+\cdots\right), k \rightarrow \infty
$$

Corollary 2 The Stirling series is given by

$$
k!\sim k^{k} e^{-k} \sqrt{2 \pi k} \sum_{j=0}^{\infty} k^{-j} \sum_{r=0}^{2 j} \frac{(-1)^{r}}{r!}(2 j+2 r-1)!!a_{2 j}^{(r)}
$$

where $a_{m}^{(r)}$ is the sum of all ordered products of r terms of the set $\left\{a_{1}, a_{2}, \ldots\right\}$ in which the subscripts add to m, where $a_{j}=\frac{1}{j+2}$, and where $(-1)!!$ is understood to be 0 .

Proof. Write k ! in terms of the Γ-function as

$$
k!=\Gamma(k+1)=\int_{0}^{\infty} e^{-t} t^{k} d t=k^{k+1} e^{-k} \int_{-1}^{\infty} e^{-k(x-\ln (x+1))} d x
$$

where we have applied the change of variables $t=k(x+1)$ in the last equality. With $f:=x-\ln (x+1)$ and $g=1$, the last integral above satisfies the hypotheses of Theorem 1 with $d=1, \lambda=1$ and $\nu=2$. A short computation using Corollary 1 then yields the result.

2 Proof of Theorem 1.

We follow the existence proof of Fulks-Sather [FS61], applying the results of Frame to make it constructive. The required result of Frame [Fra57] is the following theorem. ${ }^{2}$

Theorem 2 [Fra57] For any nonzero integers ν and q, let $u=f(\rho)$ and $\rho=f^{-1}(u)$ be inverse functions defined for ρ near 0 by the convergent power series

$$
\begin{align*}
& u^{\nu}=\rho^{\nu} \sum_{j=0}^{\infty} a_{j} \rho^{j}, \text { with } a_{0}>0, \text { and } \tag{2.1}\\
& \rho^{q}=u^{q} \sum_{j=0}^{\infty} b_{j} u^{j} . \tag{2.2}
\end{align*}
$$

Then the coefficients b_{j} in the inverted power series (2.2) are given explicitly in terms of the coefficients a_{j} of (2.1) by the inversion formula

$$
\begin{align*}
& b_{0}=a_{0}^{-q / \nu}, \text { and } \tag{2.3}\\
& b_{j}=\frac{q}{j+q} a_{0}^{-(j+q) / \nu} \sum_{r=1}^{j}\binom{-\frac{j+q}{\nu}}{r} a_{0}^{-r} a_{k}^{(r)} \text { for } j>0,
\end{align*}
$$

where $\binom{\alpha}{r}:=\alpha(\alpha-1) \cdots(\alpha-r+1) / r!$ and $a_{k}^{(r)}$ is the sum of all ordered products of r terms of the set $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ in which the sum of subscripts is k.

Proof of Theorem 1. Our proof closely follows that of Fulks-Sather [FS61], but for completeness we provide an outline of the parts of the main argument which remain unchanged. Fulks and Sather show that it is enough to consider the case that $g \geq 0$, so we henceforth assume as much. ${ }^{3}$

[^2]Let

$$
I(k):=\int_{R} e^{-k f} g d^{d} x
$$

Denote by $B(r)$ the open ball of radius r centered at $0 \in \mathbb{R}^{d}$. Then Fulks and Sather show that there exist $A, \rho_{0}>0$ such that $B\left(\rho_{0}\right) \subset R$ and

$$
\begin{equation*}
I(k)=\int_{B\left(\rho_{0}\right)} e^{-k f} g d^{d} x+o\left(e^{-k A}\right)=: I_{1}(k)+o\left(e^{-k A}\right) \tag{2.4}
\end{equation*}
$$

Moreover, they show that for $\rho<\rho_{0}$

$$
\left|f(\rho, \Omega)-\rho^{\nu} \sum_{k=0}^{N} f_{k} \rho^{k}\right|<\varepsilon \rho^{N+\nu}, \quad\left|g(\rho, \Omega)-\rho^{\lambda-d} \sum_{k=0}^{N} g_{k} \rho^{k}\right|<\varepsilon \rho^{N+\lambda-d}
$$

and the two functions

$$
f_{ \pm}(\rho, \Omega):=\rho^{\nu} \sum_{k=0}^{N} f_{k} \rho^{k} \pm \varepsilon \rho^{N+\nu}
$$

are increasing in ρ for $0 \leq \rho \leq \rho_{0}$.
Let

$$
I_{ \pm}(k):=\int_{B\left(\rho_{0}\right)} e^{-k f_{ \pm}} g d^{d} x
$$

Then since $g \geq 0$,

$$
\begin{equation*}
I_{+}(k) \leq I_{1}(k) \leq I_{-}(k) \tag{2.5}
\end{equation*}
$$

We concentrate on $I_{+}(k)$. Fulks and Sather show that for any $a>0$,

$$
I_{+}(k)=k \int_{0}^{a} e^{-k t} G(t) d t+o\left(k^{-\infty}\right)
$$

where

$$
G(t):=\int_{R_{t}} g d^{d} x, \text { with } R_{t}:=\left\{x: f_{+}(x) \leq t\right\}
$$

Choose a so small that $R_{a} \subset B\left(\rho_{0}\right)$. Then for each t with $0 \leq t \leq a$, the equation $t=f_{+}(\rho, \Omega)$ has a unique solution for ρ which is continuous in Ω (since f_{+}is increasing in ρ). Substituting the series (1.2) for g and performing the integration over ρ yields

$$
G(t)=\int_{S^{d-1}} \int_{0}^{\rho(t, \Omega)} g(\rho, \Omega) \rho^{d-1} d \rho d \Omega=\int_{S^{d-1}}\left[\sum_{j=0}^{N} \frac{g_{j}(\Omega)}{j+\lambda} \rho^{j+\lambda}(t, \Omega)+o\left(\rho^{N+\lambda}\right)\right] d \Omega
$$

It is at this point that our proof deviates from that of Fulks and Sather; they show that the inverse function $\rho(t, \Omega)$ is of a form which is sufficient to allow them to conclude existence of the desired asymptotic expansion. We will rather use Theorem 2 to explicitly estimate the powers of the inverse function $\rho(t, \Omega)$, thus obtaining explicit estimates for $G(t)$ and hence for $I(k)$.

Let

$$
a_{j}:= \begin{cases}f_{j}(\Omega) & \text { for } j<N \\ f_{N}(\Omega)+\varepsilon & \text { for } j=N, \text { and } \\ 0 & \text { for } j>N\end{cases}
$$

Then $t:=f_{+}=\rho^{\nu} \sum_{j=0}^{\infty} a_{j} \rho^{j}$. With $u=t^{1 / \nu}$, Theorem 2 yields $\rho^{q}=u^{q} \sum_{j-0}^{\infty} b_{j}^{(q)} u^{j}$, where the coefficients $b_{j}^{(q)}$ are given by (2.3). (We have added the superscript label ${ }^{(q)}$ to the coefficients because we will need several instances of the theorem for various values of q.)

Clearly, $b_{j}^{(q)}$ depends only on $\left\{a_{0}, a_{1}, \ldots, a_{j}\right\}$. In particular, $b_{j}^{(q)}=b_{j}^{(q)}(\Omega)$ is independent of ε for $j<N$. Moreover,

$$
b_{N}^{(q)}=b_{N}^{(q)}(\Omega, \varepsilon)=\left[\frac{q}{N+q} \sum_{r=1}^{j} f_{0}(\Omega)^{-r-(j+q) / \nu}\binom{-\frac{j+q}{\nu}}{r} f_{j}^{(r)}(\Omega)\right]-\varepsilon\left[\frac{q}{\nu} f_{0}(\Omega)^{1+(N+q) / \nu}\right]
$$

where we define $f_{j}^{(r)}(\Omega)$ to be the sum of ordered products of r terms from the set $\left\{f_{1}(\Omega), \ldots, f_{N}(\Omega)\right\}$ such that the subscripts add to j. Notice that $b_{N}^{(q)}(\varepsilon, \Omega)$ is linear in ε and the constant term (with respect to ε) is of the same form as the $j<N$ terms.

Moreover, the remainder after N terms, $u^{q} \sum_{N+1}^{\infty} b_{j}^{(q)}(\Omega, \varepsilon) u^{j}$, is uniformly bounded for $\Omega \in S^{d-1}, 0 \leq$ $\varepsilon \leq 1$ and $0 \leq u \leq a^{1 / \nu}$; that is,

$$
u^{q} \sum_{N+1}^{\infty} b_{j}^{(q)}(\Omega, \varepsilon) u^{j}=O\left(u^{N+1+q}\right)=o\left(u^{N+q}\right)
$$

Putting this all together yields

$$
\begin{equation*}
\rho^{q}=t^{q / \nu} \sum_{j=0}^{N} \gamma_{j}^{(q)}(\Omega) t^{j / \nu}-\varepsilon\left[\frac{q}{\nu} f_{0}(\Omega)^{1+(N+q) / \nu}\right]+o\left(t^{(N+q) / \nu}\right) \tag{2.6}
\end{equation*}
$$

where the $\gamma_{j}^{(q)}$ are the coefficients, given by Theorem 2, of the q-th power of the inverse of the finite series $\rho^{\nu} \sum_{j=0}^{N} f_{j}(\Omega) \rho^{j}$ (that is, $\gamma_{j}^{(q)}=b_{j}^{(q)}$ for $\varepsilon=0$).

Substituting (2.6) into the expression (2.6) for $G(t)$, we obtain

$$
\begin{align*}
G(t)= & \sum_{j=0}^{N} \sum_{l=0}^{N} t^{\frac{l+j+\lambda}{\nu}}\left[\frac{1}{j+\lambda} \int_{S^{d-1}} g_{j}(\Omega) \gamma_{l}^{(j+\lambda)}(\Omega) d \Omega\right] \tag{2.7}\\
& -\varepsilon\left[\sum_{j=0}^{N} \frac{1}{\nu} \int_{S^{d-1}} g_{j}(\Omega) f_{0}(\Omega)^{-1-(N+j+\lambda) / \nu} d \Omega\right] t^{\frac{N+j+\lambda}{\nu}}+o\left(t^{\frac{N+\lambda}{\nu}}\right) . \tag{2.8}
\end{align*}
$$

After some rearrangement, ${ }^{4}$ one obtains

$$
\begin{equation*}
G(t)=\sum_{j=0}^{N} \eta_{j} t^{\frac{j+\lambda}{\nu}}-\varepsilon \eta_{N}^{\prime} t^{\frac{N+\lambda}{\nu}}+o\left(t^{\frac{N+\lambda}{\nu}}\right) \tag{2.9}
\end{equation*}
$$

where

$$
\eta_{j}=\sum_{l=0}^{j} \frac{1}{j-l+\lambda} \int_{S^{d-1}} g_{j-l}(\Omega) \gamma_{l}^{(j-l+\lambda)}(\Omega) d \Omega
$$

and

$$
\eta_{N}^{\prime}=\frac{1}{\nu} \int_{S^{d-1}} g_{0}(\Omega) f_{0}(\Omega)^{-1-(N+\lambda) / \nu} d \Omega
$$

Finally, recall that for $s>-1$

$$
k \int_{0}^{a} e^{-k t} t^{s} d t=k^{-s} \Gamma(s+1)+o\left(k^{-\infty}\right)
$$

We multiply $G(t)$ by $e^{-k t}$ and integrate termwise to get

$$
\begin{align*}
I_{+}(k) & =k \int_{0}^{a} e^{-k t}\left(\sum_{j=0}^{N} \eta_{j} t^{\frac{j+\lambda}{\nu}}-\varepsilon h_{N}^{\prime} t^{\frac{N+\lambda}{\nu}}+o\left(t^{\frac{N+\lambda}{\nu}}\right)\right) d t+o\left(k^{-\infty}\right) \tag{2.10}\\
& =\sum_{j=0}^{N} \zeta_{j} k^{-(j+\lambda) / \nu}-\varepsilon \zeta_{N}^{\prime} k^{-(N+\lambda) / \nu}+o\left(k^{-(N+\lambda) / \nu}\right)
\end{align*}
$$

[^3]where, since $\Gamma(s+1)=s \Gamma(s)$,
$$
\zeta_{j}=\frac{1}{\nu} \Gamma\left(\frac{j+\lambda}{\nu}\right) \int_{S^{d-1}}\left[f_{0}(\Omega)^{-(j+\lambda) / \nu} \sum_{m=0}^{j} g_{j-m}(\Omega) \sum_{r=1}^{m}\binom{-\frac{j+\lambda}{\nu}}{r} \frac{f_{m}^{(r)}(\Omega)}{f_{0}(\Omega)^{r}}\right] d \Omega
$$
and
$$
\zeta_{N}^{\prime}=\frac{1}{\nu} \Gamma\left(\frac{N+\lambda}{\nu}\right) \int_{S^{d-1}} g_{0}(\Omega) f_{0}(\Omega)^{-1-(N+\lambda) / \nu} d \Omega
$$

The proof now follows again the proof of Fulks and Sather. The only difference between f_{+}and f_{-}is the change in sign of ε, whence a similar argument yields the same estimate of $I_{-}(k)$ with ε replaced by $-\varepsilon$. Combining (2.5), (2.10) and its analogue for f_{-}, multiplying through by $k^{(N+\lambda) / \nu}$, and using (2.4) we obtain for each $\varepsilon>0$ that

$$
-\varepsilon \zeta_{N}^{\prime} \leq \limsup _{k \rightarrow \infty}\left(I(k)-\sum_{j=0}^{N} \zeta_{j} k^{-(j+\lambda) / \nu}\right) k^{(N+\lambda) / \nu} \leq \varepsilon \zeta_{N}^{\prime}
$$

and similarly for $\lim \inf _{k \rightarrow \infty}$.

2.1 The first coefficient in terms of the Hessian.

We conclude with a proof of Proposition 2, from which one recovers the usual formula for the first term in the asymptotic expansion (1.3). Note that our assumption that f attains a unique minimum at 0 implies that the Hessian of f at 0 is positive definite.
Proof of Proposition 2. A short computation using $\rho=\sqrt{\left(x^{1}\right)^{2}+\cdots+\left(x^{d}\right)^{2}}$ and the Leibniz rule yields

$$
\frac{\partial^{2}}{\partial \rho^{2}}=\sum_{j, k=1}^{d} \frac{x^{j} x^{k}}{\rho^{2}} \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{k}}
$$

Since h is symmetric, there exists an orthonormal change of coordinates $y^{j}=P_{k}^{j} x^{k}$ such that $P h P^{-1}$ is diagonal. Note that the quantity y^{j} / ρ is independent of ρ, so

$$
\begin{equation*}
f_{2}(\Omega)=\frac{1}{2} \sum_{j=1}^{d} \eta_{j} \frac{\left(y^{j}\right)^{2}}{\rho^{2}} \tag{2.11}
\end{equation*}
$$

where η^{j} are the eigenvalues of h.
Introduce spherical coordinates $\left(\rho, \phi_{1}, \phi_{2}, \ldots, \phi_{d-1}\right)$ on \mathbb{R}^{d}; these are related to the $\left\{y^{j}\right\}$ via

$$
\begin{align*}
& y^{1}=\rho \cos \phi_{1}, y^{2}=\rho \sin \phi_{1} \cos \phi_{2}, \ldots \\
& y^{d-1}=\rho \sin \phi_{1} \sin \phi_{2} \cdots \sin \phi_{d-2} \cos \phi_{d-1} \tag{2.12}\\
& y^{d}=\rho \sin \phi_{1} \sin \phi_{2} \cdots \sin \phi_{d-2} \sin \phi_{d-1}
\end{align*}
$$

The coordinate ranges are $0 \leq \rho<\infty, 0 \leq \phi_{j} \leq \pi$ for $j=1, \ldots, d-2$ and $0 \leq \phi_{d-1} \leq 2 \pi$. The solid angle element in these spherical coordinates is $d \Omega=\sin ^{d-2} \phi_{1} \sin ^{d-3} \phi_{2} \cdots \sin \phi_{d-2} d \phi_{1} \cdots d \phi_{d-1}$.

Substituting (2.11) and (2.12) into the integral $\int_{S^{d-1}} f_{2}(\Omega)^{-d / 2} d \Omega$, one may then use the identity (assuming $a, b>0$)

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\sin ^{m-2} \phi d \phi}{\left(a \cos ^{2} \phi+b \sin ^{2} \phi\right)^{m / 2}}=\sqrt{\frac{\pi}{a}} \frac{\Gamma\left(\frac{m-1}{2}\right)}{\Gamma\left(\frac{m}{2}\right)} \frac{1}{b^{(m-1) / 2}} \tag{2.13}
\end{equation*}
$$

to integrate with respect to ϕ_{1}, then again with respect to ϕ_{2}, etc... At each step, our assumption that h is positive definite insures that (2.13) is valid. After $d-2$ integrations, one is left with an integral over ϕ_{d-1} which may be evaluated directly to yield the desired formula.

Acknowledgements

The author would like to thank Rémi Leclercq for useful discussions regarding Proposition 2.

References

[AS64] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.
[BH75] Norman Bleistein and Richard A. Handelsman, Asymptotic expansions of integrals, Dover Publications, Inc., New York, 1975.
[dB81] N. G. de Bruijn, Asymptotic methods in analysis, third ed., Dover Publications Inc., New York, 1981.
[Erd56] A. Erdélyi, Asymptotic expansions, Dover Publications Inc., New York, 1956.
[Fra57] J. S. Frame, Power series expansions for inverse functions, Amer. Math. Monthly 64 (1957), 236-240.
[FS61] W. Fulks and J. O. Sather, Asymptotics. II. Laplace's method for multiple integrals, Pacific J. Math. 11 (1961), 185-192.
[Kam46] Franz Kamber, Formules exprimant les valeurs des coefficients des séries de puissances inverses, Acta Math. 78 (1946), 193-204.
[PS45] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Dover Publications, New York, N. Y., 1945.
[Sti30] J. Stirling, Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium, London, 1730, English translation by Holliday, J. The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series. 1749.
[Woj06a] John Wojdylo, Computing the coefficients in Laplace's method, SIAM Rev. 48 (2006), no. 1, 76-96 (electronic).
[Woj06b] , On the coefficients that arise from Laplace's method, J. Comput. Appl. Math. 196 (2006), no. 1, 241-266.

[^0]: ${ }^{*}$ Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany. Email: kirwin@mis.mpg.de

[^1]: ${ }^{1}$ For example, $f_{6}^{(3)}=6 f_{1} f_{2} f_{3}+3 f_{1}^{2} f_{4}+f_{2}^{3}$.

[^2]: ${ }^{2}$ The result we quote is a bit less than what Frame actually proves. Also, the version we give is slightly modified since Frame implicitly normalizes the first term of the original series to 1 , which will not generally be the case for our application.
 ${ }^{3}$ Indeed, since the coefficients of the desired asymptotic expansion (Theorem 1) depend linearly on the coefficients of the expansion (1.2) for g, one may split g and its expansion into positive and negative parts, obtain the result for each part separately, and then subtract, thus obtaining the general case.

[^3]: ${ }^{4}$ To obtain (2.9), define $h_{j, l}:=\frac{1}{j+\lambda} \int_{S^{d-1}} g_{j}(\Omega) \gamma_{l}^{(j+\lambda)}(\Omega) d \Omega$. Then the double sum in (2.7) is $\sum_{j=0}^{N} \sum_{l=0}^{N} h_{j, l} t^{\frac{j+l+\lambda}{\nu}}$. Of course, if both j and l are large, then the corresponding term is absorbed into the error term. So in fact we only need consider

 $$
 \sum_{j=0}^{N} \sum_{l+j \leq N} h_{j, l} t^{\frac{j+l+\lambda}{\nu}}=\sum_{j=0}^{N} \sum_{l=0}^{N-j} h_{j, l} t^{\frac{j+l+\lambda}{\nu}}=\sum_{m=0}^{N} \sum_{l+j=m} h_{j, l} t^{\frac{m+\lambda}{\nu}}=\sum_{m=0}^{N} \sum_{l=0}^{m} h_{m-l, l} t^{\frac{m+\lambda}{\nu}}
 $$

 Putting $h_{m-l, l}$ into this expression then yields the first sum of (2.9).
 The h_{N}^{\prime} term arises more simply: all of the $j>0$ terms in the coefficient of ε in (2.7) are absorbed into the error term.

