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Abstract

We present an explicit asymptotic series for multiple integrals of Laplace type (the first term of which
is known as Laplace’s approximation) in terms of asymptotic series of the functions in the integrand.
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Let R ⊂ R
d be a measurable set with 0 in the interior. Suppose f and g are measurable functions on R

such that f has a unique minimum at 0 and such that both f and g admit asymptotic expansions near 0.
Laplace’s approximation is concerned with the asymptotic behavior of integrals of the form

∫

R

e−kfg dx

as k → ∞. There is a vast literature devoted to this subject; we refer the reader to the books [BH75], [dB81],
and [Erd56] for an introduction and further references.

It is a result of Fulks and Sather [FS61] that if
∫

R
e−kfg ddx exists for some k0, then it exists for all

k ≥ k0 and moreover, for some ν, λ > 0 (depending on the expansions of f and g) there exists an asymptotic
expansion

∫

R

e−kfg ddx =

N
∑

j=0

ζjk
−(λ+j)/ν + o(k−(N+λ)/ν), k → ∞.

Fulks and Sather also find the first coefficient. We will give an explicit expression for the coefficients ζj , j ≥ 0
in terms of the coefficients of the expansions of f and g. In the 1-dimensional case, our results reproduce
recent results of Wojdylo [Woj06a], [Woj06b].

1 Main results.

Let {x1, . . . , xd} be coordinates on R
d. Denote by Sd−1 = {|x| = 1} ⊂ R

d the unit sphere and introduce
polar coordinates ρ :=

√

(x1)2 + · · · (xd)2 and Ω = x/|x| ∈ Sd−1.
We can assume without loss of generality that f(0) = 0. We adopt the hypotheses of Fulks–Sather [FS61]:

let R, f , and g be as above and assume that there is an N > 0 and

1. N + 1 continuous functions fj(Ω), j = 0, . . . , N with f0 > 0 such that for some ν > 0

f(ρ,Ω) = ρν
N

∑

j=0

fj(Ω)ρj + o(ρN+ν) as ρ → 0, and (1.1)

2. N + 1 functions gj(Ω), j = 0, . . . , N such that for some λ > 0

g(ρ,Ω) = ρλ−d
N

∑

j=0

gj(Ω)ρj + o(ρN+λ−d) as ρ → 0 (1.2)
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We will often omit the Ω-dependence of the coefficients, writing for example fj = fj(Ω), when the
meaning is clear.

Theorem 1 With the hypotheses above, there exists an asymptotic expansion

∫

B

e−kfg ddx =

N
∑

j=0

ζjk
−(λ+j)/ν + o(k−(N+λ)/ν) (1.3)

where the coefficients are given by

ζj =
1

ν
Γ

(

j+λ
ν

)

∫

Sd−1

[

f
−(j+λ)/ν
0

j
∑

m=0

gj−m

m
∑

r=1

(− j+λ
ν

r

)

f
(r)
m

fr
0

]

dΩ,

where f
(r)
m is the sum of all ordered products1 of r elements of {f1, f2, . . . , fN} such that the subscripts add

to m, and
(

α
r

)

:= α(α − 1) · · · (α − r + 1)/r!. Empty sums are understood to be 1.

The coefficients f
(r)
m arise also in the 1-dimensional case studied by Wojdylo in [Woj06a], [Woj06b],

where he calls them “partial ordinary Bell polynomials”. They are relatively simple combinatorial objects to

compute; for example, f
(r)
n may be alternatively defined as the coefficient of xn appearing in (f1x + f2x

2 +
f3x

3 + · · · )r. The following result describes a simple recursive algorithm for their computation. Explicit
algorithms suitable for computer implementation may be found in [Woj06a], [Woj06b].

Proposition 1 For n > 0 we have f
(1)
n = fn, and for 1 < r ≤ n, the coefficients f

(r)
n can be computed

recursively via f (r)
n =

n−1
∑

j=r−1

fn−jf
(r−1)
j .

For example, the first few coefficients in the asymptotic expansion are

ζ0 = 1
ν Γ

(

λ
ν

)

∫

Sd−1

g0f
−λ/ν
0 dΩ,

ζ1 = 1
ν Γ

(

λ+1
ν

)

∫

Sd−1

f
−(λ+1)/ν
0

[

g1 − λ+1
ν g0f1f

−1
0

]

dΩ,

ζ2 = 1
ν Γ

(

λ+2
ν

)

∫

Sd−1

f
−(λ+2)/ν
0

[

g2 − λ+2
ν (g1f1 + g0f2) f−1

0 +

(−λ+2
ν

2

)

g0f
2
1 f−2

0

]

dΩ,

ζ3 = 1
ν Γ

(

λ+3
ν

)

∫

Sd−1

f
−(λ+3)/ν
0

[

g3 − λ+3
ν (g2f1 + g1f2 + g0f3)f

−1
0

+

(−λ+3
ν

2

)

(g1f
2
1 + 2g0f1f2)f

−2
0 +

(−λ+3
ν

3

)

g0f
3
1 f−3

0

]

dΩ.

In the case that λ = d, so that g is continuous at the origin, and that ν = 2 and f is twice differentiable
at the origin with positive definite Hessian, there is a more common expression for the first term in the
expansion in terms of the determinant Hf (0) of the Hessian h = (∂xj ∂xkf(0)) of f :

∫

B

e−kfg ddx ∼
(

2π

k

)d/2
g(0)

√

Hf (0)
.

Indeed, this follows from the following strange-looking (though elementary) identity which we prove in
Section 2.1.

Proposition 2 Let Ad := 2πd/2/Γ(d
2 ) denote the area of the unit Sd−1 sphere in R

d. Then

∫

Sd−1

dΩ

f2(Ω)d/2
=

2d/2Ad
√

Hf (0)
,

1For example, f
(3)
6 = 6f1f2f3 + 3f2

1 f4 + f3
2 .
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Remarks.

1. We use results of Frame [Fra57] regarding power series of inverse functions to prove Theorem 1. There
are several results in the literature equivalent to those of Frame in [Fra57], for example [Kam46] and
[PS45]. We have chosen to use Frame’s results because they are particularly simple to apply in the
present situation.

2. With more restrictive hypotheses (smoothness and local form of f near 0), Bleistein and Handelsman
[BH75, Sec 8.3] have given a complete asymptotic series for

∫

R
e−kfg ddx. The coefficients, though, are

computed in terms of a Jacobian of a coordinate transformation that in general cannot be computed
explicitly. Nevertheless, since the result is eventually evaluated at x = 0, it is possible to proceed term
by term, obtaining explicit formulas in terms of the derivatives of f and g.

The method of the proof of Proposition 2, applied to the coefficients ζj , j > 0, should yield identities,
in the same vein as Proposition 2, relating the coefficients fj and gj to the explicit formulas arising
from the approach of Bleistein and Handelsman, though we do not do this.

3. In dimension one, Wojdylo has recently derived expressions for the coefficients the complete asymptotic
expansion of Laplace type integrals in terms of the coefficients of expansions of f and g [Woj06a],
[Woj06b]. In this case, our Theorem 1 reduces to his results; we demonstrate this in more detail in the
next section.

1.1 The 1-dimensional case.

We compute the coefficients of Theorem 1 in the 1-dimensional case, where several simplifications occur,
thus rederiving the recent results of Wojdylo [Woj06a], [Woj06b, Thm 1.1]. As an application, we mention
a closed form expression for the Stirling series (cf. [AS64, 6.1.37], [Sti30]).

Corollary 1 Suppose that for x → 0, we have f(x) = xν
∑N

j=0 ajx
j + o(xN+ν) for some ν > 0 and

g(x) =
∑N

j=0 bjx
j + o(xN ). Then

∫ b

−a

e−kfg dx = k−1/ν

⌊N/2⌋
∑

j=0

ζ2jk
−2j/ν + o(k−(2⌊N/2⌋+1)/ν),

where the coefficients are given by

ζ2j = 2
ν Γ

(

2j+1
ν

)

a
−(2j+1)/ν
0

(

2j
∑

m=0

b2j−m

m
∑

r=1

(− 2j+1
ν

r

)

a−r
0 a(r)

m

)

in which a
(r)
m is the sum of all ordered products of r terms of the set {a1, a2, . . . } such that the subscripts add

to m, ⌊N/2⌋ denotes the largest integer less than N/2 and empty sums are understood to be 1.

Proof. Introduce “polar coordinates” ρ(x) = |x| and Ω(x) = x/ |x| = ±1 on R. Note that S0 = {±1} and
since Ωj = 1 if j is even and = Ω if j is odd,

∫

S0

ΩjdΩ = 2εj (1.4)

where εj = 1 if j is even and 0 otherwise.

The series for f in polar coordinates is f(ρ, Ω) = ρν
∑N

j=0 ajΩ
jρj , so that fj(Ω) = ajΩ

j , which is equal
to aj if j is even and ajΩ if j is odd. Similarly, gj(Ω) = bj if j is even and bjΩ if j is odd. Using these facts,

and also the observation that the power of Ω in f
(r)
m is m, we obtain from Theorem 1 that

ζj = 1
ν Γ

(

j
ν

)

a
−(j+1)/ν
0 2εj

(

j
∑

m=0

bj−m

m
∑

r=1

(− j+1
ν

r

)

a−r
0 a(r)

m

)

from which it is clear that ζj = 0 for j odd, whence we obtain the desired result.
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A nice application, which already appeared in a similar form in [Woj06a], results by applying the corollary
to the Γ-function, thus obtaining a closed expression for the Stirling series [AS64, 6.1.37]

k! ∼ kke−k
√

2πk

(

1 +
1

12k
+

1

288k2
− 139

51840k3
− 571

2488320k4
+

163879

209018880k5
+ · · ·

)

, k → ∞.

Corollary 2 The Stirling series is given by

k! ∼ kke−k
√

2πk

∞
∑

j=0

k−j

2j
∑

r=0

(−1)r

r!
(2j + 2r − 1)!! a

(r)
2j

where a
(r)
m is the sum of all ordered products of r terms of the set {a1, a2, . . . } in which the subscripts add to

m, where aj = 1
j+2 , and where (−1)!! is understood to be 0.

Proof. Write k! in terms of the Γ-function as

k! = Γ(k + 1) =

∫ ∞

0

e−ttkdt = kk+1e−k

∫ ∞

−1

e−k(x−ln(x+1))dx,

where we have applied the change of variables t = k(x + 1) in the last equality. With f := x− ln(x + 1) and
g = 1, the last integral above satisfies the hypotheses of Theorem 1 with d = 1, λ = 1 and ν = 2. A short
computation using Corollary 1 then yields the result.

2 Proof of Theorem 1.

We follow the existence proof of Fulks–Sather [FS61], applying the results of Frame to make it constructive.
The required result of Frame [Fra57] is the following theorem.2

Theorem 2 [Fra57] For any nonzero integers ν and q, let u = f(ρ) and ρ = f−1(u) be inverse functions
defined for ρ near 0 by the convergent power series

uν = ρν
∞
∑

j=0

ajρ
j , with a0 > 0, and (2.1)

ρq = uq
∞
∑

j=0

bju
j . (2.2)

Then the coefficients bj in the inverted power series (2.2) are given explicitly in terms of the coefficients aj

of (2.1) by the inversion formula

b0 = a
−q/ν
0 , and (2.3)

bj =
q

j + q
a
−(j+q)/ν
0

j
∑

r=1

(− j+q
ν

r

)

a−r
0 a

(r)
k for j > 0,

where
(

α
r

)

:= α(α − 1) · · · (α − r + 1)/r! and a
(r)
k is the sum of all ordered products of r terms of the set

{a1, a2, a3, . . . } in which the sum of subscripts is k.

Proof of Theorem 1. Our proof closely follows that of Fulks–Sather [FS61], but for completeness we
provide an outline of the parts of the main argument which remain unchanged. Fulks and Sather show that
it is enough to consider the case that g ≥ 0, so we henceforth assume as much.3

2The result we quote is a bit less than what Frame actually proves. Also, the version we give is slightly modified since Frame
implicitly normalizes the first term of the original series to 1, which will not generally be the case for our application.

3Indeed, since the coefficients of the desired asymptotic expansion (Theorem 1) depend linearly on the coefficients of the
expansion (1.2) for g, one may split g and its expansion into positive and negative parts, obtain the result for each part
separately, and then subtract, thus obtaining the general case.
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Let

I(k) :=

∫

R

e−kfg ddx.

Denote by B(r) the open ball of radius r centered at 0 ∈ R
d. Then Fulks and Sather show that there exist

A, ρ0 > 0 such that B(ρ0) ⊂ R and

I(k) =

∫

B(ρ0)

e−kfg ddx + o(e−kA) =: I1(k) + o(e−kA). (2.4)

Moreover, they show that for ρ < ρ0

∣

∣

∣

∣

∣

f(ρ, Ω) − ρν
N

∑

k=0

fk ρk

∣

∣

∣

∣

∣

< ερN+ν ,

∣

∣

∣

∣

∣

g(ρ, Ω) − ρλ−d
N

∑

k=0

gkρk

∣

∣

∣

∣

∣

< ερN+λ−d,

and the two functions

f±(ρ, Ω) := ρν
N

∑

k=0

fkρk ± ερN+ν

are increasing in ρ for 0 ≤ ρ ≤ ρ0.
Let

I±(k) :=

∫

B(ρ0)

e−kf±g ddx.

Then since g ≥ 0,
I+(k) ≤ I1(k) ≤ I−(k). (2.5)

We concentrate on I+(k). Fulks and Sather show that for any a > 0,

I+(k) = k

∫ a

0

e−ktG(t) dt + o(k−∞)

where

G(t) :=

∫

Rt

g ddx, with Rt := {x : f+(x) ≤ t}.

Choose a so small that Ra ⊂ B(ρ0). Then for each t with 0 ≤ t ≤ a, the equation t = f+(ρ, Ω) has a
unique solution for ρ which is continuous in Ω (since f+ is increasing in ρ). Substituting the series (1.2) for
g and performing the integration over ρ yields

G(t) =

∫

Sd−1

∫ ρ(t,Ω)

0

g(ρ, Ω)ρd−1dρ dΩ =

∫

Sd−1





N
∑

j=0

gj(Ω)

j + λ
ρj+λ(t , Ω) + o(ρN+λ)



 dΩ

It is at this point that our proof deviates from that of Fulks and Sather; they show that the inverse
function ρ(t, Ω) is of a form which is sufficient to allow them to conclude existence of the desired asymptotic
expansion. We will rather use Theorem 2 to explicitly estimate the powers of the inverse function ρ(t, Ω),
thus obtaining explicit estimates for G(t) and hence for I(k).

Let

aj :=











fj(Ω) for j < N,

fN (Ω) + ε for j = N, and

0 for j > N.

Then t := f+ = ρν
∑∞

j=0 ajρ
j . With u = t1/ν , Theorem 2 yields ρq = uq

∑∞
j−0 b

(q)
j uj , where the coefficients

b
(q)
j are given by (2.3). (We have added the superscript label (q) to the coefficients because we will need

several instances of the theorem for various values of q.)

Clearly, b
(q)
j depends only on {a0, a1, . . . , aj}. In particular, b

(q)
j = b

(q)
j (Ω) is independent of ε for j < N .

Moreover,

b
(q)
N = b

(q)
N (Ω, ε) =

[

q

N + q

j
∑

r=1

f0(Ω)−r−(j+q)/ν

(− j+q
ν

r

)

f
(r)
j (Ω)

]

− ε
[ q

ν
f0(Ω)1+(N+q)/ν

]
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where we define f
(r)
j (Ω) to be the sum of ordered products of r terms from the set {f1(Ω), . . . , fN (Ω)} such

that the subscripts add to j. Notice that b
(q)
N (ε, Ω) is linear in ε and the constant term (with respect to ε) is

of the same form as the j < N terms.

Moreover, the remainder after N terms, uq
∑∞

N+1 b
(q)
j (Ω, ε)uj , is uniformly bounded for Ω ∈ Sd−1, 0 ≤

ε ≤ 1 and 0 ≤ u ≤ a1/ν ; that is,

uq
∞
∑

N+1

b
(q)
j (Ω, ε)uj = O(uN+1+q) = o(uN+q).

Putting this all together yields

ρq = tq/ν
N

∑

j=0

γ
(q)
j (Ω)tj/ν − ε

[ q

ν
f0(Ω)1+(N+q)/ν

]

+ o(t(N+q)/ν) (2.6)

where the γ
(q)
j are the coefficients, given by Theorem 2, of the q-th power of the inverse of the finite series

ρν
∑N

j=0 fj(Ω)ρj (that is, γ
(q)
j = b

(q)
j for ε = 0).

Substituting (2.6) into the expression (2.6) for G(t), we obtain

G(t) =

N
∑

j=0

N
∑

l=0

t
l+j+λ

ν

[

1

j + λ

∫

Sd−1

gj(Ω)γ
(j+λ)
l (Ω)dΩ

]

(2.7)

− ε





N
∑

j=0

1

ν

∫

Sd−1

gj(Ω)f0(Ω)−1−(N+j+λ)/νdΩ



 t
N+j+λ

ν + o(t
N+λ

ν ). (2.8)

After some rearrangement,4 one obtains

G(t) =

N
∑

j=0

ηjt
j+λ

ν − εη′
N t

N+λ
ν + o(t

N+λ
ν ) (2.9)

where

ηj =

j
∑

l=0

1

j − l + λ

∫

Sd−1

gj−l(Ω)γ
(j−l+λ)
l (Ω)dΩ

and

η′
N =

1

ν

∫

Sd−1

g0(Ω)f0(Ω)−1−(N+λ)/νdΩ.

Finally, recall that for s > −1

k

∫ a

0

e−kttsdt = k−sΓ(s + 1) + o(k−∞).

We multiply G(t) by e−ktand integrate termwise to get

I+(k) = k

∫ a

0

e−kt





N
∑

j=0

ηjt
j+λ

ν − εh′
N t

N+λ
ν + o(t

N+λ
ν )



 dt + o(k−∞) (2.10)

=

N
∑

j=0

ζjk
−(j+λ)/ν − εζ ′Nk−(N+λ)/ν + o(k−(N+λ)/ν)

4To obtain (2.9), define hj,l := 1
j+λ

∫

Sd−1 gj(Ω)γ
(j+λ)
l

(Ω)dΩ. Then the double sum in (2.7) is
∑N

j=0

∑N
l=0 hj,lt

j+l+λ
ν . Of

course, if both j and l are large, then the corresponding term is absorbed into the error term. So in fact we only need consider

N
∑

j=0

∑

l+j≤N

hj,lt
j+l+λ

ν =
N

∑

j=0

N−j
∑

l=0

hj,lt
j+l+λ

ν =
N

∑

m=0

∑

l+j=m

hj,lt
m+λ

ν =
N

∑

m=0

m
∑

l=0

hm−l,lt
m+λ

ν .

Putting hm−l,l into this expression then yields the first sum of (2.9).
The h′

N term arises more simply: all of the j > 0 terms in the coefficient of ε in (2.7) are absorbed into the error term.
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where, since Γ(s + 1) = sΓ(s),

ζj =
1

ν
Γ( j+λ

ν )

∫

Sd−1

[

f0(Ω)−(j+λ)/ν

j
∑

m=0

gj−m(Ω)

m
∑

r=1

(− j+λ
ν

r

)

f
(r)
m (Ω)

f0(Ω)r

]

dΩ

and

ζ ′N =
1

ν
Γ(N+λ

ν )

∫

Sd−1

g0(Ω)f0(Ω)−1−(N+λ)/νdΩ.

The proof now follows again the proof of Fulks and Sather. The only difference between f+ and f− is
the change in sign of ε, whence a similar argument yields the same estimate of I−(k) with ε replaced by −ε.
Combining (2.5), (2.10) and its analogue for f−, multiplying through by k(N+λ)/ν , and using (2.4) we obtain
for each ε > 0 that

−εζ ′N ≤ lim sup
k→∞



I(k) −
N

∑

j=0

ζjk
−(j+λ)/ν



 k(N+λ)/ν ≤ εζ ′N

and similarly for lim infk→∞ .

2.1 The first coefficient in terms of the Hessian.

We conclude with a proof of Proposition 2, from which one recovers the usual formula for the first term in
the asymptotic expansion (1.3). Note that our assumption that f attains a unique minimum at 0 implies
that the Hessian of f at 0 is positive definite.

Proof of Proposition 2. A short computation using ρ =
√

(x1)2 + · · · + (xd)2 and the Leibniz rule yields

∂2

∂ρ2
=

d
∑

j,k=1

xjxk

ρ2

∂

∂xj

∂

∂xk
.

Since h is symmetric, there exists an orthonormal change of coordinates yj = P j
kxk such that PhP−1 is

diagonal. Note that the quantity yj/ρ is independent of ρ, so

f2(Ω) =
1

2

d
∑

j=1

ηj
(yj)2

ρ2
, (2.11)

where ηj are the eigenvalues of h.
Introduce spherical coordinates (ρ, φ1, φ2, . . . , φd−1) on R

d; these are related to the {yj} via

y1 = ρ cos φ1, y2 = ρ sin φ1 cos φ2, . . .

yd−1 = ρ sin φ1 sin φ2 · · · sin φd−2 cos φd−1, (2.12)

yd = ρ sin φ1 sinφ2 · · · sin φd−2 sin φd−1.

The coordinate ranges are 0 ≤ ρ < ∞, 0 ≤ φj ≤ π for j = 1, . . . , d − 2 and 0 ≤ φd−1 ≤ 2π. The solid angle
element in these spherical coordinates is dΩ = sind−2 φ1 sind−3 φ2 · · · sinφd−2dφ1 · · · dφd−1.

Substituting (2.11) and (2.12) into the integral
∫

Sd−1 f2(Ω)−d/2 dΩ, one may then use the identity (as-
suming a, b > 0)

∫ π

0

sinm−2 φdφ

(a cos2 φ + b sin2 φ)m/2
=

√

π

a

Γ(m−1
2 )

Γ
(

m
2

)

1

b(m−1)/2
. (2.13)

to integrate with respect to φ1, then again with respect to φ2, etc... At each step, our assumption that h is
positive definite insures that (2.13) is valid. After d − 2 integrations, one is left with an integral over φd−1

which may be evaluated directly to yield the desired formula.
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