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1 The main Results

In this work we prove sharp interpolatory estimates that exhibit a new link between Riesz
transforms and directional projections of the Haar system in Rn. To a given direction ε ∈
{0, 1}n, ε 6= (0, . . . , 0), we let P (ε) be the orthogonal projection onto the span of those Haar
functions that oscillate along the coordinates {i : εi = 1}. When εi0 = 1 the identity operator
and the Riesz transform Ri0 provide a logarithmically convex estimate for the Lp norm of
P (ε), see Theorem 1.1. Apart from its intrinsic interest Theorem 1.1 has direct applications
to variational integrals, the theory of compensated compactness, Young measures, and to the
relation between rank one and quasi convex functions. In particular we exploit our Theorem 1.1
in the course of proving a conjecture of L. Tartar on semi-continuity of separately convex
integrands; see Theorem 1.5.

1.1 Interpolatory Estimates

We first recall the definitions of the Haar system in Rn, indexed and supported on dyadic cubes,
its associated directional Haar projections and the usual Riesz transforms; thereafter we state
the main theorem of this paper.

Let D denote the collection of dyadic intervals in the real line. Thus I ∈ D if there exists
i ∈ Z and k ∈ Z so that I = [i2k, (i+ 1)2k[. Define the Haar function over the unit interval as

h[0,1[ = 1[0,1/2[ − 1[1/2,1[.

The L∞ normalized Haar system {hI : I ∈ D} is obtained from h[0,1[ by rescaling. Let I ∈ D,
let lI denote the left endpoint of I, thus lI = inf I. Then put

hI(x) = h[0,1[

(
x− lI
|I|

)
, x ∈ R.

Thus defined, the Haar system {hI : I ∈ D} is a complete orthogonal system in L2(R). Next
we recall its n dimensional analog. Let I1, . . . , In be dyadic intervals so that |Ii| = |Ij |, where
1 ≤ i, j ≤ n. Define the dyadic cube Q ⊂ Rn,

Q = I1 × · · · × In.

Let S denote the collection of all dyadic cubes in Rn. To define the associated Haar system
consider first A = {ε ∈ {0, 1}n : ε 6= (0, . . . , 0)}. For Q = I1×· · ·×In ∈ S and ε = (ε1, . . . , εn) ∈
A let

h
(ε)
Q (x) =

n∏

i=1

hεi

Ii
(xi), x = (x1, . . . , xn). (1.1)

We call {h(ε)
Q : Q ∈ S, ε ∈ A} the Haar system in Rn. It is a complete orthogonal system in

L2(Rn). Hence for u ∈ L2(Rn),

u =
∑

ε∈A, Q∈S

〈u, h(ε)
Q 〉h(ε)

Q |Q|−1, (1.2)

where the series on the right hand side converges unconditionally in L2(Rn). For ε ∈ A define
the associated directional projection on L2(Rn) by

P (ε)(u) =
∑

Q∈S

〈u, h(ε)
Q 〉h(ε)

Q |Q|−1, u ∈ L2(Rn).
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The operators P (ε), ε ∈ A, project onto orthogonal subspaces of L2(Rn) so that

u =
∑

ε∈A

P (ε)(u) and ‖u‖2
2 =

∑

ε∈A

‖P (ε)(u)‖2
2. (1.3)

Let F denote the Fourier transformation on Rn given as

F(u)(ξ) =

∫

Rn

e−i〈x,ξ〉u(x)dx, ξ ∈ R
n, x ∈ R

n.

The Riesz transform Ri (1 ≤ i ≤ n) is a Fourier multiplier defined by

Ri(u)(x) = −
√
−1F−1

(
ξi
|ξ|F(u)(ξ)

)
(x) where ξ = (ξ1, . . . , ξn).

The analytic backbone of this paper is the following theorem showing that the norm in Lp(Rn)
of P (ε)(u) is dominated through a logarithmically convex estimate by Ri0(u), provided that a
carefully analyzed relation holds between i0 (appearing in the Riesz transform) and ε defining
the directional projections P (ε).

Theorem 1.1 Let 1 < p <∞ and 1/p+ 1/q = 1. For 1 ≤ i0 ≤ n define

Ai0 = {ε ∈ A : ε = (ε1, . . . εn) and εi0 = 1}.
Let u ∈ Lp(Rn). If ε ∈ Ai0 then P (ε) and Ri0 are related by interpolatory estimates in Lp(Rn),

||P (ε)(u)||p ≤ Cp‖u‖1/2
p ‖Ri0(u)‖1/2

p if p ≥ 2,

and
||P (ε)(u)||p ≤ Cp‖u‖1/p

p ‖Ri0(u)‖1/q
p if p ≤ 2.

The exponents (1/2, 1/2) for p ≥ 2 and (1/p, 1/q) for p ≤ 2 appearing in Theorem 1.1 are sharp.
We show in Section 7 that for η > 0, 1 < p < ∞ and N >> 1 there exists u = uη,p,N ∈ Lp so
that

||P (ε)(u)||p ≥ N‖u‖1/2−η
p ‖Ri0(u)‖1/2+η

p if p ≥ 2,

and
||P (ε)(u)||p ≥ N‖u‖1/p−η

p ‖Ri0(u)‖1/q+η
p if p ≤ 2.

A first consequence of Theorem 1.1. In the next subsection we will show how Theorem
1.1 is used in problems originating in the theory of compensated compactness. To this end we
formulate here a concise inequality that follows from the above interpolatory estimates, and
record its immediate consequences. See (1.5)–(1.7).

Let 1 ≤ j ≤ n. Let ej ∈ A denote the unit vector in R
n pointing in the positive direction of

the j − th coordinate axis, ej = (0, . . . , 1, . . . , 0), where 1 appears in the j − th entry. By (1.3)

u− P (ej)(u) =
∑

ε∈A\{ej}

P (ε)(u).

The above identity and the estimates of Theorem 1.1 combined yield the inequality

||u− P (ej)(u)||p ≤ Cp,n‖u‖1/2
p



∑

1≤i≤n
i6=j

‖Ri(u)‖p




1/2

, p ≥ 2. (1.4)
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On Lp(Rn,Rn) define the vector valued projection P by

P (v) =
(
P (e1)(v1), . . . , P

(en)(vn)
)
,

where v : R
n → R

n, v = (v1, . . . , vn). Applying (1.4) to each component of v yields

‖v − P (v)‖p ≤ Cp,n‖v‖1/2 ·
(

n∑

i=1

n∑

j=1,j 6=i

‖Ri(vj)‖p

)1/2

(1.5)

Assume now that (vr,1, . . . , vr,n) is a sequence in Lp(Rn,Rn) so that

lim
r→∞

‖Ri(vr,j)‖p = 0 for 1 ≤ i ≤ n, i 6= j. (1.6)

The assumption (1.6) and the estimate (1.5) imply that

lim
r→∞

‖(vr,1, . . . , vr,n) − P ((vr,1, . . . , vr,n)) ‖p = 0. (1.7)

Being able to draw the conclusion (1.7) from the hypothesis (1.6) provided the main impetus
for proving Theorem 1.1.

1.2 Lower semi-continuity and compensated compactness

Here we provide a frame of reference for the problems considered in this paper. We review
briefly some of the ideas of the theory of compensated compactness which has been developed
by F. Murat and L. Tartar [12, 14, 16, 17].

Weak lower-semicontinuity and differential constraints. Fix a system of first-order,
linear differential operators A. It is given by matrices A(i) ∈ Rp×d, i ≤ n, so that

A(v) =
n∑

i=1

A(i)∂i(v),

where v : Rn → Rd and ∂i denotes the partial differentiation with respect to the i−th coordinate.
To A we associate the cone Λ ⊆ Rd of “dangerous” amplitudes. It consists of those a ∈ Rd for
which there is a vector of frequencies ξ ∈ R

n, ξ 6= 0, so that for any smooth h : R → R the
function

w(x) = ah(〈ξ, x〉),
satisfies

A(w) = 0.

Thus, to a ∈ Λ there exists a non-zero ξ ∈ Rn, so that A(wm) = 0 for the increasingly oscillatory
sequence

wm(x) = a sin(m〈ξ, x〉), m ∈ N.

Since ξ 6= 0 there is i0 ≤ n so that the sequence of partial derivatives ∂i0wm is unbounded while
A(wm) = 0. In other words, the linear differential constraint A(w) = 0 does not imply any
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control on the partial derivative ∂i0 . Expressed formally, the cone of “dangerous” amplitudes is
given as

Λ =

{
a ∈ R

d : ∃ξ ∈ R
n \ {0} such that

n∑

i=1

ξiA
(i)(a) = 0

}
.

The methods of compensated compactness allow one to exploit a given set of information
on the differential constraints A(v) (respectively on Λ) to analyze the limiting behaviour of
non-linear integrands acting on v under weak conmvergence Consider a sequence of functions
vr : R

n → R
d so that

vr ⇀ v weakly in Lp(Rn,Rd), (1.8)

and
A(vr) precompact in W−1,p(Rn,Rd). (1.9)

The following comments are included to clarify the relation between the hypotheses (1.8) and
(1.9).

1. Had we imposed, instead of (1.8), that vr → v strongly in Lp(Rn,Rd), then (1.9) would
hold automatically.

2. More subtle aspects of the interplay between (1.8) and (1.9) are depending on the structure
of A or Λ. For instance, in the special case when A(v) controls all partial derivatives of
v, we use Sobolev’s compact embedding theorem to see that (1.9), implies that vr → v
strongly in Lp(Rn,Rd). This case occurs when Λ = {0},

3. The generic (and most interesting) case arises when A(v) fails to control some of the
partial derivatives of v. This occurs when Λ 6= {0}.

In the generic case one goal of the theory is to isolate sharp conditions on a given f : Rd → R

that compensate for the lack of compactness provided by A, and ensure that (1.8) and (1.9)
imply

lim inf
r→∞

∫

Rn

f(vr(x))ϕ(x)dx ≥
∫

Rn

f(v(x))ϕ(x)dx, ϕ ∈ C+
o (Rn). (1.10)

Here (and below) C+
o (Rn) denotes the set of non-negative compactly supported continous func-

tions on Rn. Note that up to growth conditions on f and up to passing to subsequences of vr,
the condition (1.10) states that

weak limit f(vr) ≥ f(v).

In summary, based on knowledge of A or Λ one goal of the theory of compensated compactness
aims at describing and classifying those non-linearities f : Rd → R for which (1.8) and (1.9)
imply (1.10).

Classical results on compensated compactness. We assume now that (1.8) and (1.9)
hold and that the differential operator A satisfies the so called constant rank hypothesis; for
its definition see below. The classical results of compensated compactness, as developed by F.
Murat and L. Tartar [12, 14, 16, 17] assert that a general non-linearity f satisfies (1.10) precisely
when it is A−quasi-convex. Furthermore, in the special case of a quadratic integrand f(a) =
〈Ma, a〉 the constant rank hypothesis is not needed and the conclusion (1.10) is equivalent to
Λ−convexity of f(a) = 〈Ma, a〉.We state now explictely the characterizations mentioned above,
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and recall the notions of Λ−convexity, A−quasi-convexity, and the constant rank hypothesis
on A.

A function f : Rd → R is Λ− convex if

f(λa+ (1 − λ)b) ≤ λf(a) + (1 − λ)f(b), a− b ∈ Λ, 0 < λ < 1.

The following result is due to F. Murat [12], [13] and L. Tartar [17].

Proposition 1.2 If for every sequence vr : Rn → Rd , the hypotheses (1.8) and (1.9) imply
(1.10), then f : R

d → R is Λ−convex.

Thus Λ−convexity is a necessary condition on f for (1.8) and (1.9) to imply (1.10). If, moreover
f is quadratic,

f(a) = 〈Ma, a〉, M ∈ R
d×d, a ∈ R

d,

then Λ−convexity is already sufficient. This is the content of the following result by L. Tartar
[17].

Theorem 1.3 Assume that f is quadratic and Λ−convex. Then, for every sequence vr : R
n →

Rd , (1.8) and (1.9) imply (1.10).

We next review the results beyond the case of quadratic integrands. They involve the
notion of A−quasi-convexity and the constant rank hypothesis. We define f : Rd → R to be
A−quasi-convex if ∫

[0,1]n
f(a+ u(x))dx ≥ f(a), (1.11)

for each smooth and [0, 1]n periodic u : Rn → Rd, that satisfies
∫
[0,1]n

u = 0 and A(u) = 0. Note

that (1.11) asks for Jensen’s inequality to hold under the decisive restriction that A(w) = 0.
It was proved essentially by C.B. Morrey [8] that A−quasi-convexity implies Λ−convexity (see
[3]). The linear differential operator A satisfies the constant rank hypothesis if there exists
r ≤ n so that

rk(A(ξ)) = r, ξ ∈ S
n−1,

where

A(ξ) =
n∑

i=1

ξiA
(i).

The next theorem provides a full characterization of those integrands f for which (1.8) and
(1.9) imply (1.10).

Theorem 1.4 ([14]) Let 0 ≤ f(a) ≤ C(1+ |a|p) and assume that A satisfies the constant rank
hypothesis. Then f : Rd → R is A− quasi-convex if and only if (1.8) and (1.9) imply (1.10).

A crucial component in the proof of Theorem 1.4 links the constant rank hypothesis and A−
quasi-convexity as follows:

1. Let v : Rn → Rd be [0, 1]n periodic and of mean zero in [0, 1]n. Under the constant rank
hypothesis, there exists a decomposition of v as

v = u+ w,

where
A(u) = 0 and ‖w‖Lp([0,1]n) ≤ C‖A(v)‖W−1,p([0,1]n).

The decomposition can be expressed in terms of an explicit Fourier multiplier, for which
standard Lp estimates are available, provided that the constant rank hypothesis holds.
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2. Let now vr ∈ Lp([0, 1]n,Rd) be a sequence of [0, 1]n periodic, mean zero functions so that
A(vr) → 0 in W−1,p. Then, by the foregoing remark, we may split vr as vr = ur + wr so
that

A(ur) = 0 and ‖wr‖p → 0. (1.12)

3. Assume moreover that f is A−quasi-convex. The decomposition

vr = ur + wr (1.13)

with the properties (1.12) satisfies then
∫

[0,1]n
f(a + ur(x))dx ≥ f(a), and ‖wr‖p → 0. (1.14)

Separately convex integrands. Wide ranging applications illustrate the power of Theo-
rem 1.4, yet there are important linear differential constraints A, for which the constant rank
hypothesis does not hold and the classical proof does not apply. Among the earliest examples
considered is the following A0, defined as

(A0(v))i,j =

{
∂ivj i 6= j;

0 i = j,

where v : Rn → Rn. Observe that for v = (v1, . . . , vn) the condition A0(v) = 0 holds precisely
when vi : Rn → R is actually a function of the variable xi alone, that is vi(x) = vi(xi). By a
direct calculation, the cone of dangerous amplitudes associated to A0 is given as

Λ0 =
n⋃

i=1

Rei,

where {ei} denotes the unit vectors in Rn. It follows that the Λ0−convex functions are just
separately convex functions on Rn.

For the operator A0 the constant rank hypothesis, does not hold, since kerA0(ξ) = 0 for
ξ ∈ {e1, . . . , en} and kerA0(ei) = Rei, i ≤ n. As a result the classical theory of compensated
compactness for non quadratic functionals does not apply to the operator A0. Nevertheless
it is an important consequence of the interpolatory estimates in Theorem 1.1 that separately
convex functions yield weakly semi-continuous integrands on sequences vr : Rn → Rn for which
A0(vr) is precompact in W−1,p(Rn,Rd). The following theorem verifies a conjecture formulated
by L.Tartar [19].

Theorem 1.5 Let 1 < p <∞. Assume that f : Rn → R is Λ0− convex and satisfy 0 ≤ f(a) ≤
C(1 + |a|p). Let vr : Rn → Rn satisfy

vr ⇀ v weakly in Lp(Rn,Rn), (1.15)

and
A0(vr) precompact in W−1,p(Rn,Rn). (1.16)

Then,

lim inf
r→∞

∫

Rn

f(vr(x))ϕ(x)dx ≥
∫

Rn

f(v(x))ϕ(x)dx, ϕ ∈ C+
o (Rn). (1.17)
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As discussed in [10] this result implies that gradient Young measures supported on diagonal
entries are laminates, and this in turn gives an interesting relation between rank-one convexity
and quasi-convexity on subspaces with few rank-one directions.

In the approach of the present paper we fully exploit the methods introduced in [10]. We
base the proof of Theorem 1.5 on the decomposition given by the directional Haar projection

v = P (v) + {v − P (v)},

invoke the interpolatory estimates of Theorem 1.1, and use the fact that Λ0−convexity yields
Jensen’s inequality on the range of P :

1. By inequality (1.5), the norm of {v − P (v)} in Lp is controlled by the norm of A0(v) in
W−1,p.

2. The operator A0 does not exert any control over P (v). It is Λ0−convexity that compen-
sates for that. Indeed when f is separately convex we have the following form of Jensen’s
inequality

f

(∫

[0,1]n
P (v)dx

)
≤
∫

[0,1]n
f(P (v))dx. (1.18)

By rescaling of (1.18) we get

f(EM(P (v))) ≤ EM (f(P (v))), v ∈ Lp(Rn,Rn), M ∈ Z, (1.19)

where EM denotes the conditional expectation operatpor given as

EM(g)(x) =
∑

{R∈S:|R|=2−Mn}

∫

Rn

g(y)
dy

|R|1R(x), g ∈ Lp(Rn).

We verify (1.18) below. The proof is based on the observation that Haar functions are
exactly localized, three-valued martingale differences.

3. Assume that f is separately convex and that vr ∈ Lp([0, 1]n,Rn) is a sequence of [0, 1]n

periodic, mean zero functions so that A0(vr) → 0 in W−1,p. With ur = P (vr) and wr =
{vr − P (vr)}, the decomposition

vr = ur + wr (1.20)

satisfies the central properties

∫

[0,1]n
f(a + ur(x))dx ≥ f(a), and ‖wr‖p → 0. (1.21)

The splitting (1.20) with the property (1.21) is parallel to the classical decomposition
(1.13) and (1.14) based on Fourier multipliers and the constant rank hypothesis.

Jensen’s inequality on the range of P . We prove (1.18) by induction over the levels of
the Haar system. Fix ej , the unit vector in Rn pointing along the j−th coordinate axis and a

dyadic cube Q = I1 × · · · × In. The restriction of h
(ej)
Q to the cube Q is a function of xj alone,

indeed
h

(ej)
Q (x) = hIj

(xj), x ∈ Q.
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Hence for a = (a1, . . . , an) and c = (c1, . . . , cn) we have the identity

∫

Q

f(a1 + c1h
(e1)
Q (x), . . . , an + cnh

(en)
Q (x))dx

=

∫

Q

f(a1 + c1hI1(x1), . . . , an + cnhIn
(xn))dx.

(1.22)

Using (1.22) and applying Jensen’s inequality to each of the variables x1, . . . , xn of the separately
convex integrand f gives

∫

Q

f(a1 + c1h
(e1)
Q (x), . . . , an + cnh

(en)
Q (x))dx ≥ |Q|f(a). (1.23)

Next we fix v = (v1, . . . , vn) ∈ Lp(Rn,Rn) and assume that vj is finite linear combination of
Haar functions and not constant over the unit cube. Define

Ak,j =
∑

{Q∈S:|Q|=2−kn}

cQ,jh
(ej)
Q , cQ,j = 〈vj, h

(ej)
Q 〉|Q|−1.

Choose M ∈ N and put

SM,j =
M∑

k=−∞

Ak,j.

By our assumption on vj the sum defining SM,j is actually finite, and there exists M0 with
M0 ≥ 0 so that

SM0,j = P (ej)(vj), 1 ≤ j ≤ n.

Choose now M ≤ M0. Fix a dyadic cube Q contained in [0, 1]n with |Q| = 2−Mn. Note that
SM−1,j is constant onQ, and put aj = SM−1,j(y) where y ∈ Q is chosen arbitrarily. Furthermore,

AM,j(x) = cQ,jh
(ej)
Q (x), x ∈ Q.

Then, using SM,j = SM−1,j + AM,j and (1.23) we obtain

∫

Q

f (SM,1(x), . . . , SM,n(x)) dx =

∫

Q

f
(
a1 + cQ,1h

(e1)
Q (x), . . . , an + cQ,nh

(en)
Q (x)

)
dx

≥ |Q|f (SM−1,1(y), . . . , SM−1,n(y)) .

(1.24)

It follows from (1.24) by taking the sum over Q ⊂ [0, 1]n with |Q| = 2−Mn, that

∫

[0,1]n
f (SM,1(x), . . . , SM,n(x)) dx ≥

∫

[0,1]n
f (SM−1,1(y), . . . , SM−1,n(y))dy.

We next replace M by M − 1 and repeat. Starting the process with M = M0 and stopping at
M = 1 yields the claimed inequality

∫

[0,1]n
f (SM0,1(x), . . . , SM0,n(x)) dx ≥ f

(∫

[0,1]n
P (v)

)
.
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Proof of Theorem 1.5 : Choose v ∈ Lp(Rn,Rn) and a sequence vr ∈ Lp(Rn,Rn) so that
(1.15) and (1.16) hold. Let C+

0 ((0, 1)n) denote the continuous, non-negative and compactly
supported functions on the open unit cube (0, 1)n. We first show the conclusion (1.17) under
the additional restriction that

v|(0,1)n = const, and ϕ ∈ C+
0 ((0, 1)n). (1.25)

Clearly we may then assume that v|(0,1)n = 0, since otherwise we replace f by f(·+ c). Next we
choose a smooth function α ∈ C+

0 ((0, 1)n) so that α(x) = 1 for x ∈ supp ϕ. By considering the
sequence (αvr) instead of (vr) we may further assume that

vr ⇀ 0 weakly in Lp and A0(vr) → 0 in W−1,p. (1.26)

By (1.26) we obtain for vr = (vr,1, . . . , vr,n) that

lim
r→∞

‖Ri(vr,i)‖Lp(Rn) = 0, i 6= j.

Hence by (1.7),
lim
r→∞

‖vr − P (vr)‖Lp(Rn,Rn) = 0. (1.27)

Since f is separately convex and satisfies f(t) ≤ C(1 + |t|p) we get

|f(s) − f(t)| ≤ C(1 + |s| + |t|)p−1|s− t|. (1.28)

Using (1.28) and 1/p+ 1/q = 1 gives

∫

Rn

f(vr)ϕdx =

∫

Rn

f(P (vr))ϕdx+

∫

Rn

(f(vr) − f(P (vr))ϕdx

≥
∫

Rn

f(P (vr))ϕdx− C‖1 + |vr| + |P (vr)|‖p/q
p ‖vr − P (vr)‖p.

(1.29)

Next fix M and rewrite by adding and subtracting the conditional expectation operator EM ,

∫

Rn

f(P (vr))ϕdx =

∫

Rn

f(P (vr))EM(ϕ)dx+

∫

Rn

f(P (vr))(ϕ−EM (ϕ))dx. (1.30)

Clearly the conditional expectation EM satisfies

∫

Rn

f(P (vr))EM(ϕ)dx =

∫

Rn

EM (f(P (vr)))EM(ϕ)dx.

Now we may invoke (1.19), Jensen’s inequality on the range of P. This gives,

∫

Rn

EM (f(P (vr)))EM(ϕ)dx ≥
∫

Rn

f (EM (P (vr))EM(ϕ)dx

Hence adding and subtracting f(0) to the leading term in the right hand side of (1.30) gives

∫

Rn

f(P (vr))EM(ϕ)dx ≥
∫

Rn

f(0)EM(ϕ)dx+

∫

Rn

(f (EM(P (vr)) − f(0))EM(ϕ)dx. (1.31)
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It remains to specify how the above estimates are to be combined: Given ǫ > 0 choose M
large enough so that

|ϕ− EMϕ| ≤ ǫ.

Next, depending on M, and ǫ select r0 ∈ N so that for r ≥ r0,

|EM(P (vr))| ≤ ǫ and ‖vr − P (vr)‖p ≤ ǫ.

Combining now (1.28) – (1.31) with our choice of M and r we get
∫

Rn

f(vr)ϕdx ≥
∫

Rn

f(0)ϕdx− Cǫ.

It remains to show how to remove the additional restriction (1.25). In view of the Lipschitz
condition (1.28) it suffices to prove the theorem for those weak-limits v that are contained in a
suitable dense set D where dense refers to the Lp

loc topology. We take

D = {v ∈ Lp(Rn,Rn) : v is a finite sum of Haar functions} .

Let v ∈ D. Since the estimate (1.17) is invariant under dilations x→ λx it suffices to consider
the case

v(x) =
∑

k∈Zn

bk1k+(0,1)n(x), (1.32)

and only finitely many of the bk are different from zero.
Let η ∈ C+

0 ((0, 1)n) and extend η to a (0, 1)n periodic continous function on Rn. Since we
proved (1.17) already under the restriction (1.25) we obtain for functions v satisfying (1.32)
and ϕ ∈ C+

0 (Rn) that

lim inf
r→∞

∫

Rn

f(vr(x))(ϕ · η)(x)dx ≥
∫

Rn

f(v(x))(ϕ · η)(x)dx. (1.33)

Finally we remove η from the estimate (1.33). To this end let ηk ∈ C+
0 ((0, 1)n) be a sequence

that converges pointwise to 1[0,1]n and extend each ηk periodically. Then for each k by (1.33)

lim inf
r→∞

∫

Rn

f(vr(x))ϕ(x)dx ≥ lim inf
r→∞

∫

Rn

f(vr(x))(ϕ · ηk)(x)dx

≥
∫

Rn

f(v(x))(ϕ · ηk)(x)dx.

(1.34)

Apply now the monotone convergence theorem to conclude that (1.17) holds true.

2 Multiscale Analysis of directional Haar Projections

In this section we outline the proof of Theorem 1.1. We start by performing a multiscale analysis
of P (ε) with the purpose of successively resolving the discontinuities of the Haar system. We
expand P (ε) in a series of operators, where each summand corresponds to a dyadic length scale.
Thereafter we state the estimates of Theorem 2.1 and Theorem 2.2 that quantify the interplay
between the resolving operators and the inverse of the Riesz transform Ri0 . Finally we show
how the assertions of Theorem 1.1 follow.
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Recall that A = {ε ∈ {0, 1}n : ε 6= (0, . . . , 0)}. We decompose the projection P (ε), ε ∈ A,
using a smooth compactly supported approximation of unity. To this end we choose b ∈ C∞(R),
supported in [−1, 1], so that for t ∈ R,

b(t) = b(−t), 0 ≤ b(t) ≤ 4, Lip(b) ≤ 8, and

∫ +1

−1

b(t)dt = 1.

Let
d(x) = b(x1) · · · · · b(xn) − 2nb(2x1) · · · · · b(2xn), x = (x1, . . . , xn).

Since b was chosen to be even around 0, we have
∫ +1

−1
tb(t)dt = 0 hence also

∫

R

d(x1, . . . , xi, . . . , xn)xidxi = 0, (1 ≤ i ≤ n). (2.1)

Let ∆ℓ, ℓ ∈ Z be the self adjoint operator defined by convolution as

∆ℓ(u) = u ∗ dℓ, where dℓ(x) = d(2ℓx)2nℓ. (2.2)

For u ∈ Lp(Rn) we get u =
∑∞

ℓ=−∞ ∆ℓ(u). Convergence holds almost everywhere and in Lp(Rn).
Recall that S denotes the collection of all dyadic cubes in Rn. Let j ∈ Z and put

Sj = {Q ∈ S : |Q| = 2−nj}. (2.3)

Let ℓ ∈ Z, ε ∈ A, define T
(ε)
ℓ as

T
(ε)
ℓ (u) =

∞∑

j=−∞

∑

Q∈Sj

〈u,∆j+ℓ(h
(ε)
Q )〉h(ε)

Q |Q|−1.

Since the operators ∆j+ℓ are self adjoint,

P (ε)(u) =
∞∑

ℓ=−∞

T
(ε)
ℓ (u).

Let 1 ≤ i0 ≤ n. Recall that Ai0 = {ε ∈ A : ε = (ε1, . . . , εn) and εi0 = 1}. Let ǫ ∈ Ai0. In
Section 3 we verify that

T
(ε)
ℓ R−1

i0
= T

(ε)
ℓ Ri0 +

n∑

i=1
i6=i0

T
(ε)
ℓ Ei0∂iRi,

where Ri denotes the i−th Riesz transform, ∂i denotes the differentiation with respect to the
xi variable and Ei0 the integration with respect to the xi0 − th coordinate,

Ei0(f)(x) =

∫ xi0

−∞

f(x1, . . . , s, . . . , xn)ds, x = (x1, . . . , xn).

The following two theorems record the norm estimates for the operators T
(ε)
ℓ and T

(ε)
ℓ R−1

i0
by

which we obtain the upper bounds for P (ε)(u) stated in Theorem 1.1.
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Theorem 2.1 Let 1 < p < ∞ and 1/p + 1/q = 1 and ℓ ≥ 0. For ε ∈ A the operator T
(ε)
ℓ

satisfies the norm estimates,

‖T (ε)
ℓ ‖p ≤

{
Cp2

−ℓ/2 if p ≥ 2;

Cp2
−ℓ/q if p ≤ 2.

(2.4)

Let 1 ≤ i0 ≤ n, and ε ∈ Ai0 then

‖T (ε)
ℓ R−1

i0
‖p ≤

{
Cp2

+ℓ/2 if p ≥ 2;

Cp2
+ℓ/p if p ≤ 2.

(2.5)

Theorem 2.2 Let 1 < p < ∞. Let ℓ ≤ 0. Then for ε ∈ A the operator T
(ε)
ℓ satisfies the norm

estimates,

‖T (ε)
ℓ ‖p ≤

{
Cp2

−|ℓ|/p if p ≥ 2;

Cp2
−|ℓ| if p ≤ 2.

(2.6)

If moreover 1 ≤ i0 ≤ n, and ε ∈ Ai0, then

‖T (ε)
ℓ R−1

i0
‖p ≤

{
Cp2

−|ℓ|/p if p ≥ 2;

Cp2
−|ℓ| if p ≤ 2.

(2.7)

We show how Theorem 2.1 and Theorem 2.2 yield the proof of Theorem 1.1.

Proof of Theorem 1.1. Let 1 ≤ i0 ≤ n. Define M ∈ N by the relation

2M−1 ≤ ||u||p||Ri0||p
||Ri0(u)||p

≤ 2M . (2.8)

Consider first p ≥ 2. Let ε ∈ Ai0. Theorem 2.1 and Theorem 2.2 imply that

∞∑

ℓ=M

||T (ε)
ℓ ||p ≤ Cp2

−M/2 and

M−1∑

ℓ=−∞

||T (ε)
ℓ R−1

i0
||p ≤ Cp2

M/2.

Since P (ε)(u) =
∑∞

ℓ=−∞ T
(ε)
ℓ (u) triangle inequality gives that

‖P (ε)(u)‖p ≤
∞∑

ℓ=M

||T (ε)
ℓ ‖p‖u||p +

M−1∑

ℓ=−∞

||T (ε)
ℓ R−1

i0
||p ||Ri0(u)||p

≤ Cp2
−M/2||u||p + Cp2

M/2||Ri0(u)||p.
(2.9)

Inserting the value of M specified in (2.8) gives

Cp2
−M/2||u||p + Cp2

M/2||Ri0(u)||p ≤ Cp||u||1/2
p ||Ri0(u)||1−1/2

p .

Assume next that p ≤ 2. Let q be the Hölder conjugate index to p so that 1/p + 1/q = 1.
By Theorem 2.1 and Theorem 2.2, for ε ∈ Ai0,

∞∑

ℓ=M

||T (ε)
ℓ ||p ≤ Cp2

−M/q and

M−1∑

ℓ=−∞

||T (ε)
ℓ R−1

i0
||p ≤ Cp2

M/p.
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Triangle inequality applied to P (ε)(u) =
∑∞

ℓ=−∞ T
(ε)
ℓ u gives

‖P (ε)(u)‖p ≤
∞∑

ℓ=M

||T (ε)
ℓ ‖p‖u||p +

M−1∑

ℓ=−∞

||T (ε)
ℓ R−1

i0
||p ||Ri0(u)||p

≤ Cp2
−M/q||u||p + Cp2

M/p||Ri0(u)||p.
(2.10)

With M defined as in (2.8) above we obtain

Cp2
−M/q||u||p + Cp2

M/p||Ri0u||p ≤ Cp||u||1/p
p ||Ri0u||1−1/p

p .

3 Tooling up

In this section we prepare the tools provided by the Calderon Zygmund School of Harmonic
Analysis. They simplify our tasks and save the reader time and effort. We exploit the Haar
system indexed by (and supported on) dyadic cubes, its unconditionality in Lp(1 < p < ∞),
projections onto block bases of the Haar system, the connection of singular integral operators
to wavelet systems, and interpolation theorems for operators on dyadic H1 and dyadic BMO.

The Haar system in Rn. We base this review on the work of T. Figiel [4] and Z. Ciesielski
[2]. Denote by D the collection of all dyadic interval in the real line R, and let {hI : I ∈ D} be
the associated L∞ normalized Haar system. It forms a complete orthogonal system in L2(R).
Analogs of the Haar system in the multi-dimensional case were developed by Z. Ciesielski in
[2]. For our purposes the mere tensor products of the one dimensional Haar system is not quite
sufficient. Instead we employ the Haar system supported on dyadic cubes.

Recall that S denotes the collection of dyadic cubes in Rn. and that A = {ε ∈ {0, 1}n : ε 6=
(0, . . . .0)}. The system

{h(ε)
Q : Q ∈ S, ε ∈ A}

is a complete orthogonal system in L2(Rn) with ‖h(ε)
Q ‖2

2 = |Q|. It is also an unconditional basis
in Lp(Rn) (1 < p <∞). Given f ∈ Lp(Rn) define its dyadic square function S(f) as

S
2(f) =

∑

ε∈A, Q∈S

〈f, h(ε)
Q 〉21Q|Q|−2 (3.1)

The norm of f ∈ Lp(Rn) and that of its square function S(f) are related by the estimate

C−1
p ‖f‖Lp(Rn) ≤ ‖S(f)‖Lp(Rn) ≤ Cp‖f‖Lp(Rn), (3.2)

where Cp ≤ Cp2/(p− 1). Repeatedly we exploit the unconditionality of the Haar system in the

following form. Let {c(ε)Q : Q ∈ S, ε ∈ A} be a bounded set of coefficients and f ∈ Lp(Rn).
Then

g =
∑

ε∈A, Q∈S

c
(ε)
Q 〈f, h(ε)

Q 〉h(ε)
Q |Q|−1,

satisfies the square function estimate S(g) ≤
(
sup |c(ε)Q |

)
S(f), hence by (3.2)

‖g‖Lp(Rn) ≤ Cp

(
sup |c(ε)Q |

)
· ‖f‖Lp(Rn). (3.3)
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Wavelet systems. We refer to Y. Meyer and R. Coifman [7] for the unconditionality of the
wavelet systems and the fact that they are equivalent to the Haar system. Recall that S denotes
the collection of dyadic cubes in Rn. We say that

{ψ(ε)
Q : Q ∈ S, ε ∈ A}

is a wavelet system if {ψ(ε)
Q /
√
|Q| : Q ∈ S, ε ∈ A} is an orthonormal basis in L2(Rn) satisfying∫

ψ
(ε)
Q = 0 and there exists C > 0 so that for Q ∈ S, and ε ∈ A the following structure condition

holds,
supp ψ

(ε)
Q ⊆ C ·Q, |ψ(ε)

Q | ≤ C, Lip(ψ
(ε)
Q ) ≤ C diam(Q)−1. (3.4)

The wavelet system {ψ(ε)
Q : Q ∈ S, ε ∈ A} is an unconditional basis in Lp(Rn) (1 < p <∞) and

equivalent to the Haar system {h(ε)
Q : Q ∈ S, ε ∈ A} : Indeed there exists Cp ≤ Cp2/(p− 1), so

that for any choice of finite sums,

f =
∑

ε∈A, Q∈S

a
(ε)
Q h

(ε)
Q and g =

∑

ε∈A, Q∈S

a
(ε)
Q ψ

(ε)
Q ,

the following norm estimates hold,

C−1
p ‖f‖Lp(Rn) ≤ ‖g‖Lp(Rn) ≤ Cp ‖f‖Lp(Rn) . (3.5)

Notational convention. Given a dyadic cube Q ∈ S we write hQ as shorthand for any of
the functions

h
(ε)
Q , ε ∈ A. (3.6)

If a statement in this paper involves hQ where Q ∈ S then that statement is meant to hold

true with hQ replaced by any of the functions h
(ε)
Q , ε ∈ A.

Square function estimates and integral operators. In this (and the following) paragraph
we isolate a class of integral operators for which boundedness in Lp(Rn) (1 < p < ∞) can be
obtained directly from the unconditionality of the Haar system. (Naturally we discuss those
operators here because they will appear in later sections.) Let {cQ, Q ∈ S} be a set of bounded
coefficients where (for convenience) only finitely many of them are 6= 0. Let u ∈ Lp(Rn). Then

K(u)(x) =

∫

Rn

k(x, y)u(y)dy with kernel k(x, y) =
∑

Q∈S

cQhQ(x)hQ(y)|Q|−1, (3.7)

satisfies the square function estimate S(K(u)) ≤
(
sup |cQ|

)
S(u). Hence by (3.3),

‖K(u)‖Lp(Rn) ≤ Cp

(
sup |cQ|

)
· ‖u‖Lp(Rn), (3.8)

where Cp ≤ C max{p2, p/(p− 1)}.
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Projections onto block bases. Our reference to projections onto block bases of the Haar
system is [6] by P. W. Jones. Let B be a collection of dyadic cubes. For Q ∈ B let U(Q) denote
a collection of pairwise disjoint dyadic cubes. We assume that the collections U(Q) are disjoint
as Q ranges over the cubes in B. More precisely we assume the following conditions throughout:

If W ∈ U(Q), W ′ ∈ U(Q′), and Q 6= Q′ then W 6= W ′. (3.9)

If W,W ′ ∈ U(Q) and W 6= W ′ then W ∩W ′ = ∅. (3.10)

Consider the block bases
dQ =

∑

W∈U(Q)

hW , Q ∈ B.

Given scalars cQ we are interested in the operator

K1(u) =
∑

Q∈B

cQ〈u, hQ〉dQ|Q|−1 (3.11)

that maps
∑

Q∈B aQhQ to
∑

Q∈B aQcQdQ. Similarly, given a wavelet system {ψK} as above and
scalars bW we consider the block bases

ψ̃Q =
∑

W∈U(Q)

bWψW

and the operator

K2(u) =
∑

Q∈B

cQ 〈u, hQ〉 ψ̃Q|Q|−1.

We shall see below that K2 can be controlled by K1. To estimate K1(u) it is sometimes conve-
nient to use a different collection of cubes as follows. Let U(Q) =

⋃
Q∈U(Q)W denote the pointset

covered by the collection U(Q). Suppose that there exist dyadic cubes E1(Q), . . . , Ek(Q) , where
k may depend on Q, so that

U(Q) ⊆ E1(Q) ∪ · · · ∪Ek(Q).

Assume that the collections {E1(Q), . . . , Ek(Q)} are disjoint as Q ranges over the cubes in B.
Let

gQ =

k∑

i=1

hEi(Q), Q ∈ B, (3.12)

put γ = sup |cQ|, and define the integral operator

K0(u) = γ
∑

Q∈B

〈u, hQ〉gQ|Q|−1.

Our construction gives the square function estimate

S(K1(u)) ≤ S(K0(u)),

hence ‖K1(u)‖p ≤ Cp‖K0(u)‖p. Consequently, Lp − Lq duality gives the norm estimate

‖K∗
1‖p ≤ Cp‖K∗

0‖p. (3.13)

Note that the transposed operators K∗
1 and K∗

0 are given as,

K∗
1(u) =

∑

Q∈B

cQ〈u, dQ〉hQ|Q|−1 and K∗
0(u) = γ

∑

Q∈B

〈u, gQ〉hQ|Q|−1.
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Exchanging Haar functions and wavelets. The equivalence of the wavelet system to the
Haar basis allows us to write down further examples of Lp bounded integral operators. We use
again the notational convention to write ψQ denoting any of the wavelet functions ψ

(ε)
Q , ε ∈ A.

Assume that U(Q), Q ∈ B satisfies (3.9) and (3.10). Let bW ,W ∈ U(Q) be scalars, and
assume that |bW | ≤ B. Recall that

K2(u) =
∑

Q∈B

cQ 〈u, hQ〉 ψ̃Q|Q|−1, ψ̃Q =
∑

W∈U(Q)

bWψW ,

and that K1 was defined in (3.11). Since K2 can be viewed as the composition of K1 with the
map hW → bWψW it follows from (3.3) and (3.5) that

‖K2(u)‖Lp(Rn) ≤ CpB · ‖K1(u)‖Lp(Rn). (3.14)

Duality gives estimates for the transposed operator as,

‖K∗
2‖p ≤ CpB‖K∗

1‖p, (3.15)

where
K∗

2 (u) =
∑

Q∈B

cQ〈u, ψ̃Q〉hQ|Q|−1 and K∗
1 (u) =

∑

Q∈B

cQ〈u, dQ〉hQ|Q|−1. (3.16)

Calderon Zygmund kernels. We use the book by Y. Meyer and R. Coifman [7] as our
source for singular integral operators and their relation to wavelet systems. Let {kQ : Q ∈ S}
be a family of functions satisfying

∫
kQ = 0 and these standard estimates: There exists C > 0

so that for Q ∈ S,

supp kQ ⊆ C ·Q, |kQ| ≤ 1, Lip(kQ) ≤ C diam(Q)−1. (3.17)

Let {cQ : Q ∈ S} be a bounded sequence of scalars. Assume for simplicity that only finitely
many of the cQ are different from zero. Then

k3(x, y) =
∑

cQψQ(x)kQ(y)|Q|−1,

defines a standard Calderon-Zygmund kernel (see [7]) so that

K3(u)(x) =

∫
k3(x, y)u(y)dy

satisfies the norm estimate
‖K3(u)‖p ≤ Cp sup |cQ| · ‖u‖p.

By (3.5), the operator

K4(u)(x) =

∫
k4(x, y)u(y)dy with kernel k4(x, y) =

∑
cQhQ(x)kQ(y)|Q|−1,

satisfies
‖K4(u)‖p ≤ Cp sup |cQ| · ‖u‖p. (3.18)
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We will apply (3.18) in the following specialized situation. Let W be a dyadic cube and let
V be a cube in Rn (not necessarily dyadic) so that

V ⊇ C1 ·W, |V | ≤ C2|W |. (3.19)

Let Q ⊆W be a dyadic cube. Since
∫
kQ = 0 and supp kQ ⊆ V we have

〈u, kQ〉 = 〈1V (u−mV (u)), kQ〉,

where mV (u) =
∫

V
u/|V |. This yields the identity

∑

Q⊆W

〈u, kQ〉hQ|Q|−1 =
∑

Q⊆W

〈1V (u−mV (u)), kQ〉hQ|Q|−1.

To the kernel
∑

Q⊆W hQ(x)kQ(y)|Q|−1 we apply the estimate (3.18) with p = 2. Since the Haar
system is orthogonal we obtain

∑

Q⊆W

〈u, kQ〉2|Q|−1 = ‖
∑

Q⊆W

〈u, kQ〉hQ|Q|−1‖2
2

= ‖
∑

Q⊆W

〈1V (u−mV (u))hQ〉|Q|−1‖2
2

≤ ‖1V (u−mV (u))‖2
2.

(3.20)

With (3.20) we obtain BMO estimates for operators with Calderon Zygmund kernels as above.

The Riesz Transforms. We review basic facts about Riesz transforms and base the discus-
sion on chapter III of [15] by E. M. Stein. Let F denote the Fourier transformation on Rn. The
Riesz transform Ri is a Fourier multiplier defined by

F(Ri(u))(ξ) = −
√
−1

ξi
|ξ|F(u)(ξ) where 1 ≤ i ≤ n, ξ = (ξ1, . . . , ξn). (3.21)

Riesz transforms, satisfy the estimates ‖Rju‖p ≤ Cp‖u‖p (1 < p < ∞), hence define bounded
linear operators on the reflexive Lp(Rn) spaces. The defining relation (3.21) yields a convenient
formula for the inverse of Ri, again by Fouriermultipliers. Consider for simplicity i = 1. Let
u be a smooth and compactly supported test function such that F−1(|ξ|/ξ1F(u)(ξ)) is well
defined. Then compute F(R−1

1 (u))(ξ) as

F(R−1
1 (u))(ξ) = −

√
−1F(u)(ξ)

|ξ|
ξ1

= F(u)(ξ)
−
√
−1

ξ1

n∑

i=1

ξ2
i

|ξ|

= −
√
−1F(u)(ξ)

[
ξ1
|ξ| +

n∑

i=2

ξi
ξ1

· ξi|ξ|

]
.

Taking the inverse Fourier transform yields

R−1
1 = R1 +

n∑

i=2

E1∂iRi, (3.22)
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where E1(f)(x1, . . . , xn) =
∫ x1

−∞
f(s, x2, . . . , xn)ds and ∂i denotes the partial differentiation with

respect to the i− th coordinate.
Next fix 1 ≤ i0 ≤ n and ε ∈ Ai0. After permuting the coordinates the above calculation

gives the formula for R−1
i0

as follows

R−1
i0

= Ri0 +

n∑

i=1
i6=i0

Ei0∂iRi. (3.23)

Dyadic BMO, H1
d and Interpolation. We use [1] by C. Bennett and R. Sharply as basic

reference to interpolation theorems. Recall first the definition of dyadic BMO. Let f ∈ L2(Rn)
with Haar expansion given by (1.2) We say that f belongs to dyadic BMO and write f ∈ BMOd

if the norm defined by (3.24) is finite

‖f‖2
BMOd

=

∣∣∣∣
∫
f

∣∣∣∣
2

+ sup
Q∈S

1

|Q|
∑

ε∈A

∑

W⊆Q

〈
f, h

(ε)
W

〉2

|W |−1. (3.24)

Given a dyadic cube Q the system

{1Q} ∪ {h(ε)
W : W ∈ S,W ⊆ Q, ε ∈ A}

is a complete orthogonal system in the Hilbert space L2(Q, dt). This yields the identity

1Q(f −mQ(f)) =
∑

ε∈A

∑

W⊆Q

〈f, h(ε)
W 〉h(ε)

W |W |−1,

where mQ(f) = (
∫

Q
f)/|Q|. Hence the BMOd norm of f can be rewritten as

‖f‖2
BMOd

=

∣∣∣∣
∫
f

∣∣∣∣
2

+ sup
Q

∫

Q

|f(t) −mQ(f)|2 dt|Q| . (3.25)

Given f ∈ BMOd with
∫
f = 0. Let G = {W ∈ S : ∃ε 〈f, h(ε)

W 〉 6= 0}. It is well known that
in order to evaluate the BMOd norm of f it suffices to consider the cubes in G. Put

A0 = sup
Q∈G

1

|Q|
∑

ε∈A

∑

W⊆Q

〈f, h(ε)
W 〉2|W |−1.

We claim that
A0 = ‖f‖2

BMOd
. (3.26)

It suffices to observe that A0 ≥ ‖f‖2
BMOd

, since A0 ≤ ‖f‖2
BMOd

, by definition. To this end we
fix a dyadic cube K ∈ S so that K 6∈ G. Let M ⊆ G denote the collection of maximal cubes
of G that are contained in K. (Maximality is with respect to inclusion.) Thus M consists of
pairwise disjoint dyadic cubes, ∑

Q∈M

|Q| ≤ |K|,

and, ∑

ε∈A

∑

W⊆K

〈f, h(ε)
W 〉2|W |−1 =

∑

Q∈M

∑

ε∈A

∑

W⊆Q

〈f, h(ε)
W 〉2|W |−1.
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Since M ⊆ G, for Q ∈ M, ∑

ε∈A

∑

W⊆Q

〈f, h(ε)
W 〉2|W |−1 ≤ A0|Q|.

Consequently we have the following estimates
∑

ε∈A

∑

W⊆K

〈f, h(ε)
W 〉2|W |−1 = A0

∑

Q∈M

|Q|

= A0|K|.
Taking the supremum over all such K implies that A0 ≥ ‖f‖2

BMOd
.

We review the definition of dyadic H1, its relation to the scale of Lp spaces and to BMOd.
Let K be a dyadic cube in Rn. We say that a : Rn → R is a dyadic atom if

‖a‖L2(Rn) ≤ |K|−1/2, supp a ⊆ K, and

∫
a = 0. (3.27)

By definition a function f ∈ L1(Rn) belongs to dyadic H1 if there exists a sequence of dyadic
atoms {ai} and a sequence of scalars {λi} so that

f =
∑

λiai and
∑

|λi| <∞. (3.28)

We denote
‖f‖H1

d
= inf{

∑
|λi|} (3.29)

where the infimum is extended over all representations (3.28). For the resulting space of func-
tions we write H1

d . Recall also that the dual Banach space to H1
d is identifiable with BMOd.

Interpolation of operators links the spaces H1
d , BMOd on the one hand and the scale of Lp

spaces on the other hand. Assume that T is a bounded operator on H1
d and on L2. Let A1

denote the the norm of T on H1
d and let A2 denote the norm of T on L2. Then for 1 < p < 2

and θ = 2 − 2/p
‖T‖p ≤ CA1−θ

1 Aθ
2.

If on the other hand the operator T is bounded on BMOd with norm equal to A∞ then for
2 < p <∞ and θ = 2/p

‖T‖p ≤ CA1−θ
∞ Aθ

2.

In addition to dyadic BMO at one point of the proof we employ the continuous analog of
BMOd. Let f ∈ L2(Rn). Let W ⊆ R

n be a cube (not necessarily dyadic). Write

mW (f) =

∫

W

f(t)
dt

|W | .

We say that f ∈ BMO(Rn) if

‖f‖2
BMO(Rn) =

∣∣∣∣
∫
f

∣∣∣∣
2

+ sup
W

∫

W

|f(t) −mW (f)|2 dt

|W | <∞,

where the supremum is extended over all cubes W ⊆ R
n (not just dyadic ones). Clearly for

a given function ‖f‖BMO(Rn) ≥ ‖f‖BMOd
. In Section 4 we use BMO(Rn) and interpolation as

follows. Let T : L2(Rn) → L2(Rn) and T : BMOd → BMO(Rn) be bounded. Let A2 be the
operator norm of T on L2(Rn) and put

A∞ = ‖T : BMO(Rn) → BMOd‖.
Then for 1 < p <∞ and θ = 2/p,

‖T‖p ≤ CA1−θ
∞ Aθ

2.

20



4 Basic Dyadic Operations

The norm estimates for the operators T
(ε)
ℓ reflect boundedness of two basic dyadic operations.

These are rearrangement operators of the Haar basis and averaging projections onto block bases
of the Haar system. In this section we isolate the basic dyadic models and prove estimates in
the spaces H1, L2 and BMO. In later sections the boundedness properties of T

(ε)
ℓ , ℓ ≤ 0, are

reduced to the case of rearrangement operators. The estimates for T
(ε)
ℓ , ℓ ≥ 0, are harder and

involve rearrangements as well as orthogonal projections onto certain ring domains, surrounding
the discontinuity set of Haar functions.

4.1 Projections and Ring Domains

The following definitions enter in the construction of the orthogonal projection (4.5). Recall
the set of directions A = {ε ∈ {0, 1}n : ε 6= (0, . . . .0)}. Let B be a collection of dyadic cubes.

For Q ∈ B and ε ∈ A let D(ε)(Q) denote the set of discontinuities of the Haar function h
(ε)
Q .

Fix λ ∈ N and define

D
(ε)
λ (Q) = {x ∈ R

n : dist(x,D(ε)(Q)) ≤ C2−λ diam(Q)}.

ThusD
(ε)
λ (Q) is the set of points that have distance ≤ C2−λ diam(Q) to the set of discontinuities

of h
(ε)
Q . Let k(Q) ≤ C2λ(n−1) and let E1(Q), . . . , Ek(Q)(Q) be the collection of all dyadic cubes

satisfying
diam(Ek(Q)) = 2−λ diam(Q), Ek(Q) ∩D(ε)

λ (Q) 6= ∅. (4.1)

We assume throughout this chapter that B is such that the collections {E1(Q), . . . , Ek(Q)(Q)}
are pairwise disjoint as Q ranges over B.

Thus we defined a covering of D
(ε)
λ (Q) with dyadic cubes {E1(Q), . . . , Ek(Q)(Q)} satisfying

these conditions:

1. There holds the measure estimate

|E1(Q) ∪ · · · ∪ Ek(Q)(Q)| ≤ C2−λ|Q|. (4.2)

2. Let Q,Q0 ∈ B, k ≤ k(Q) and k0 ≤ k(Q0).

If Ek(Q) ⊂ Ek0(Q0) then Q ⊂ Q0. (4.3)

3. Let Q,Q0 ∈ B, k ≤ k(Q), k0 ≤ k(Q0) and Q ⊂ Q0.

If Ek(Q) ∩Ek0(Q0) 6= ∅ then Ek(Q) ⊂ Ek0(Q0). (4.4)

Note that our hypothesis (4.2)–(4.4) are modeled after Jones’s compatibility condition in [6].
With U(Q) = {E1(Q), . . . , Ek(Q)(Q)} we define the block bases as gQ =

∑
E∈U(Q) hE . The

associated projection operator is given by the equation

S(u) =
∑

Q∈B

〈u, hQ〉gQ|Q|−1. (4.5)
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Recall that hQ is shorthand for any of the Haar functions h
(ε)
Q , where ε ∈ A. Moreover, if a

statement in this paper involves hQ then that statement is meant to hold true with hQ replaced

by any of the functions h
(ε)
Q .

The norm estimates for the operator S are recorded in the next theorem. For its use in the
later sections of this paper the relation between the spaces, on which the operator acts, and
the dependence of the operator norm on the value of λ becomes crucial.

Theorem 4.1 There exists C0 = C0(C, n) so that the orthogonal projection given by (4.5)
satisfies these estimates

‖S‖H1
d
≤ C02

−λ/2, ‖S‖2 ≤ C02
−λ/2, and ‖S‖BMOd

≤ C0.

Proof. The proof splits canonically into three parts. The first part treats L2, the second part
H1

d , and the last part the BMOd estimate of the operator S.

Part 1. We start with L2. Since |E1(Q) ∪ · · · ∪ Ek(Q)(Q)| ≤ Cn2−λ|Q|, we have ‖gQ‖2
2 ≤

Cn2−λ|Q|. As we assume that the collections {E1(Q), . . . , Ek(Q)(Q)} are pairwise disjoint as Q
ranges over B, the induced block bases {gQ : Q ∈ B} are orthogonal. Hence

‖S(u)‖2
2 =

∑

Q∈B

〈u, hQ〉2‖gQ‖2
2|Q|−2

≤ C2−λ‖u‖2
2.

(4.6)

Part 2. The H1
d estimate. Let a be a dyadic atom supported on a dyadic cube K so that

‖a‖2
2 ≤ |K|−1. If 〈a, hQ〉 6= 0, then Q ⊆ K and supp gK ⊆ C ·K. Hence

supp S(a) ⊆ C ·K.
The L2 estimate (4.6) gives ‖S(a)‖2

2 ≤ Cn2−λ|K|−1. As supp S(a) ⊆ C ·K, we obtain the H1
d

estimate, ‖S(a)‖H1
d
≤ 2−λ/2C.

Part 3. The BMOd estimate. Define

G =
⋃

Q∈B

{E1(Q), . . . , Ek(Q)(Q)}.

Given u ∈ BMOd, by (3.26), it is sufficient to test the BMOd norm of S(u) using only the cubes
K ∈ G. Indeed,

‖S(u)‖2
BMOd

= sup
K∈G

1

|K|

∫

K

|S(u) − 1

|K|

∫

K

S(u)|2.

Let K ∈ G. Note that, 1
|K|

∫
K
|S(u) − 1

|K|

∫
K
S(u)|2 coincides with

∑

Q∈B

〈
u,
hQ

|Q|

〉2 ∑

{k:Ek(Q)⊆K}

|Ek(Q)|. (4.7)

Choose Q0 ∈ B, k0 ≤ k(Q0) so that K = Ek0(Q0). By (4.3), if Q ∈ B and Ek(Q) ⊆ Ek0(Q0),
then Q ⊆ Q0 and if moreover Ek(Q) ∩Ek0(Q0) 6= ∅ then, by (4.4), Ek(Q) ⊆ Ek0(Q0). Hence if
Q ⊆ Q0 then ∑

{k:Ek(Q)⊆K}

|Ek(Q)| =

∫

K

g2
Q,
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and (4.7) equals,
∑

Q∈B, Q⊆Q0

〈
u,
hQ

|Q|

〉2 ∫

K

g2
Q. (4.8)

To get estimates for (4.8) consider s ∈ N ∪ {0} such that s ≤ λ. Split the (effective) index
set in (4.8) into

Hs =

{
Q ∈ B : Q ⊆ Q0, diam(Q) = 2−s diam(Q0),

∫

K

g2
Q 6= 0

}
, s ≤ λ,

and

H∞ =

{
Q ∈ B : Q ⊆ Q0, diam(Q) < 2−λ diam(Q0),

∫

K

g2
Q 6= 0

}
.

First estimate the contribution to (4.8) coming from H∞. If Q ∈ H∞ then by (4.2),
∫

K
g2

Q ≤
C2−λ|Q|. Since clearly the pointset covered by H∞ is contained in C ·K, we get

∑

Q∈H∞

〈
u,
hQ

|Q|

〉2 ∫

K

d2
Q ≤ C2−λ

∑

Q∈H∞

〈u, hQ〉2 |Q|−1

≤ C2−λ‖u‖2
BMOd

|K|.
(4.9)

Next turn to the Hs, s ≤ λ. The analysis is parallel to the previous case. The cardinality of Hs

is bounded by Cn with Cn independent of s or λ. For Q ∈ Hs we get
∫

K
g2

Q ≤ C2−s|K|. Hence

∑

Q∈Hs

〈
u,
hQ

|Q|

〉2 ∫

K

g2
Q ≤ C2−s‖u‖2

BMOd
|K|.

Taking the sum over 0 ≤ s ≤ λ, gives

λ∑

s=0

∑

Q∈Hs

〈
u,
hQ

|Q|

〉2 ∫

K

g2
Q ≤ C‖u‖2

BMOd
|K|. (4.10)

Adding (4.9) and (4.10) gives the BMOd estimate ‖S(u)‖BMOd
≤ C‖u‖BMOd

.

4.2 Rearrangement Operators

We next turn to defining the rearrangement operator S given by (4.12) below. Let λ ∈ N and
let Q ∈ S be a dyadic cube. The λ− th dyadic predecessor of Q, denoted Q(λ), is given by the
relation

Q(λ) ∈ S, |Q(λ)| = 2nλ|Q|, Q ⊂ Q(λ).

Let τ : S → S be the map that associates to each Q ∈ S its λ− th dyadic predecessor. Thus

τ(Q) = Q(λ), Q ∈ S.

Clearly τ : S → S is not injective. We canonically split S = Q1 ∪ · · · ∪ Q2nλ such that the
restriction of τ to each of the collections Qk, is injective: Given Q ∈ S, form

U(Q) =
{
W ∈ S : W (λ) = Q

}
.
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Thus U(Q) is a covering of Q and contains exactly 2nλ pairwise disjoint dyadic cubes. We
enumerate them, rather arbitrarily, as W1(Q), . . . ,W2nλ(Q). For 1 ≤ k ≤ 2nλ, define

Qk = {Wk(Q) : Q ∈ S} .

Note that τ : Qk → S is a bijection, and

τ(Wk(Q)) = Q, Wk(Q) ∈ Qk, Q ∈ S.

Let 1 ≤ k ≤ 2nλ. Let {ϕ(k)
Q : Q ∈ S} be a family of functions for which

∫
ϕ

(k)
Q = 0 and which

satisfy the following structural conditions: There exists C > 0 so that for each Q ∈ S

supp ϕ
(k)
Q ⊆ C ·Q, |ϕ(k)

Q | ≤ C, Lip(ϕ
(k)
Q ) ≤ C diam(Q)−1. (4.11)

We emphasize that the actual function ϕ
(k)
Q may depend on k, by contrast the structural con-

ditions (4.11) are independent of the value of k. Define the operator S by the equation

S(g) =

2nλ∑

k=1

∑

Q∈Qk

〈
g, ϕ

(k)
τ(Q)

〉
hQ|Q|−1. (4.12)

The action of S is best understood by viewing it as the transposition of the rearrangement
operator defined by τ followed by a Calderon Zygmund Integral. The next theorem records the
operator norm of S, particularly its joint (n, λ)−dependence, on the spaces H1

d , L
2 and BMOd.

Theorem 4.2 The operator S defined by (4.12) is bounded on the spaces H1
d , L

2 and from
BMO(Rn) to BMOd. The norm estimates depend on the value of λ ∈ N and the dimension of
the ambient space Rn as follows:

‖S‖2 ≤ C02
nλ, ‖S‖H1

d
≤ C02

nλ, ‖S : BMO(Rn) → BMOd ‖ ≤ C0λ
1/22nλ. (4.13)

Proof. The three parts of the proof correspond to the three operator estimates in (4.13). The
first part treats L2, the second part H1

d and the third part BMOd.

Part 1. We start with L2. Let u ∈ L2. Then

‖S(u)‖2
2 =

2nλ∑

k=1

∑

Q∈Qk

〈
u, ϕ

(k)
τ(Q)

〉2

|Q|−1.

Let 1 ≤ k ≤ 2nλ. Since τ : Qk → S is bijective, the standard conditions (4.11) and the L2

estimates for Calderon Zygmund operators (3.18) yield,

∑

Q∈Qk

〈
u, ϕ

(k)
τ(Q)

〉2

|τ(Q)|−1 ≤ C‖u‖2
2. (4.14)

Recall that |τ(Q)| = 2nλ|Q|. On the left hand side of (4.14) replace |τ(Q)|−1 by 2−nλ|Q|−1 then
take the sum over 1 ≤ k ≤ 2nλ. This gives

2nλ∑

k=1

∑

Q∈Qk

〈
u, ϕ

(k)
τ(Q)

〉2

|Q|−1 ≤ C22nλ‖u‖2
2.

Hence ‖S‖2 ≤ C02
nλ, as claimed.
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Part 2. The H1
d estimate. Let a be a dyadic atom supported on a dyadic cube K. Define

H =
{
Q ∈ S : diam(τ(Q)) ≥ diam(K), 〈a, ϕ(k)

τ(Q)〉 6= 0
}
.

Then put S(a) = b1 + b2 where

b1 =
∑

Q∈H

〈S(a), hQ〉hQ|Q|−1,

and b2 = S(a) − b1. We treat separately the norm of b1 and b2. First we estimate ‖b1‖H1
d
. Fix

s ∈ N ∪ {0} and put

Hs = {Q ∈ H : diam(τ(Q)) = 2s diam(K)} .

Let Q ∈ Qk ∩ Hs and let q ∈ Q. As
∫
a = 0 we obtain

∣∣∣
〈
a, ϕ

(k)
τ(Q)

〉∣∣∣ =
∣∣∣
〈
a, ϕ

(k)
τ(Q) − ϕ

(k)
τ(Q)(q)

〉∣∣∣

≤ C‖a‖L1 diam(Q)Lip(ϕ
(k)
τ(Q))

By the structural conditions (4.11), Q ∈ Qk ∩Hs implies Lip(ϕ
(k)
τ(Q)) ≤ C2−s diam(K)−1. Hence

|〈a, ϕ(k)
τ(Q)〉| ≤ C2−s. Note that the cardinality of Qk ∩ Hs is bounded by an absolute constant

C. Hence,
∞∑

s=0

2nλ∑

k=1

∑

Q∈Qk∩Hs

|〈a, ϕ(k)
τ(Q)〉| ≤ C2nλ. (4.15)

Since hQ/|Q| is of norm one in H1
d , the triangle inequality and (4.15) give ‖b1‖H1

d
≤ C2nλ. It

remains to consider ‖b2‖H1
d
. Here the estimates are a direct consequence of the operator L2

norm of S. First
‖b2‖2

2 ≤ ‖S(a)‖2

≤ C22nλ‖a‖2
2

≤ C22nλ|K|.
Second, a moments reflection shows that the Haar support of b2 is contained in C ·K. Let

M = {W ∈ S : W ∩ supp b2 6= 0, |W | = |K|}

Clearly the union of the cubes in M covers supp b2. The cardinality of M is bounded by a
constant Cn, and

∫
W
b2 = 0 for W ∈ M. Hence the functions

C−12−nλ1W b2, W ∈ M,

are dyadic atoms, and ‖b2‖H1
d
≤ C2nλ. Since ‖S(a)‖H1

d
≤ ‖b1‖H1

d
+ ‖b2‖H1

d
it follows that

‖S‖H1
d
≤ C02

nλ.
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Part 3. Let u ∈ BMO(Rn). We obtain the BMOd estimate for S(u) by verifying that for
every dyadic cube W,

2nλ∑

k=1

∑

Q∈Qk,Q⊆W

〈u, ϕ(k)
τ(Q)〉2|Q|−1 ≤ C|W | · λ · 22nλ · ‖u‖2

BMO(Rn). (4.16)

To this end fix a dyadic cube W. Split {Q ∈ S, Q ⊆ W} = G ∪H, where

H = {Q ∈ S : Q ⊆W, diam(Q) ≥ diam(W )2−λ} and G = {Q ∈ S, Q ⊆W} \ H.

Fix 1 ≤ k ≤ 2nλ, put Gk = G ∩ Qk and observe that

⋃

Q∈Gk

τ(Q) ⊆W.

Recall further that τ : Gk → S is injective. Hence the standard conditions (4.11), the Calderon-
Zygmund estimate (3.20), and (3.19) yield

∑

Q∈Gk

〈u, ϕ(k)
τ(Q)〉2|τ(Q)|−1 ≤ C|W | · ‖u‖2

BMO(Rn). (4.17)

Next replace |τ(Q)|−1 by 2−nλ|Q|−1, then take the sum of (4.17) over 1 ≤ k ≤ 2nλ. We obtain
that

2nλ∑

k=1

∑

Q∈Gk

〈u, ϕ(k)
τ(Q)〉2|Q|−1 ≤ C|W | · 22nλ · ‖u‖2

BMO(Rn).

We turn to estimating the contribution to (4.16) coming from H. Let 0 ≤ s ≤ λ. Write

Hs = {Q ∈ H : diam(Q) = 2−s diam(W )}.

The cardinality of Hs equals 2ns. It is useful to observe that, since s ≤ λ, there exists exactly
one dyadic cube Ks so that

τ(Q) = Ks, for all Q ∈ Hs.

Hence the following identity holds

2nλ∑

k=1

∑

Q∈Hs∩Qk

〈u, ϕ(k)
τ(Q)〉2|Q|−1 = 〈u, ϕ(k)

Ks
〉2
[
∑

Q∈Hs

|Q|−1

]
. (4.18)

Each Q ∈ Hs satisfies |Q| = |W |2−ns. As Hs has cardinality equal to 2ns, it follows that

∑

Q∈Hs

|Q|−1 = 22ns|W |−1.

By definition |Ks| = 2−ns+nλ|W |. Squaring and regrouping gives

22ns|W |−1 = 22nλ|Ks|−2|W |.
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Hence the right hand side of (4.18) equals

22nλ|W |
〈
u, ϕ

(k)
Ks

〉2

|Ks|−2. (4.19)

By (4.11), ‖ϕ(k)
Ks
‖2 ≤ |Ks|1/2. Let Bs be a cube in Rn so that supp (ϕ

(k)
Ks

) ⊆ Bs and diam(Bs) ≤
C diam(Ks). Let mBs

(u) = 1
|Bs|

∫
Bs
u(x)dx. As

∫
ϕ

(k)
Ks

= 0 we get

|〈u, ϕ(k)
Ks
〉| = |〈u−mBs

(u), ϕ
(k)
Ks
〉|

≤ C‖1Bs
· (u−mBs

(u))‖2|Ks|1/2

≤ C|Ks| · ‖u‖BMO(Rn).

(4.20)

Inserting (4.20) into (4.19) gives that the latter is bounded by

C22nλ|W | · ‖u‖2
BMO(Rn). (4.21)

Thus we showed that the left hand side of (4.18) equals (4.19) which in turn is bounded by
(4.21). Hence

2nλ∑

k=1

∑

Q∈Hs∩Qk

〈u, ϕ(k)
τ(Q)〉2|Q|−1 ≤ C22nλ|W | · ‖u‖2

BMO(Rn). (4.22)

Finally in (4.22) we take the sum over 0 ≤ s ≤ λ and obtain (4.16)

5 The Proof of Theorem 2.1.

In this section we prove Theorem 2.1. The sub-sections 5.1 – 5.3 are devoted to the estimates
for the operator T

(ε)
ℓ , ℓ ≥ 0. In sub-section 5.4 we discuss the reduction of the estimates for

T
(ε)
ℓ R−1

i0
, ε ∈ Ai0, to those of T

(ε)
ℓ . Recall that

Ai0 = {ε ∈ A : ε = (ε1, . . . εn) and εi0 = 1}.

Let ε ∈ Ai0. Let ℓ ≥ 0. Recall that for j ∈ Z we let Sj be the collection of all dyadic cubes in
Rn with measure equal to 2−nj. Let Q ∈ Sj and define

f
(ε)
Q,ℓ = ∆j+ℓ(h

(ε)
Q ). (5.1)

With the abbreviation (5.1) we have

T
(ε)
ℓ (f) =

∑

Q∈S

〈f, f (ε)
Q,ℓ〉h

(ε)
Q |Q|−1. (5.2)

The functions f
(ε)
Q,ℓ have vanishing mean and satisfy the basic estimates

supp f
(ε)
Q,ℓ ⊆ D

(ε)
ℓ (Q), |f (ε)

Q,ℓ| ≤ C, Lip(f
(ε)
Q,ℓ) ≤ C2ℓ( diam(Q))−1, (5.3)
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where D
(ε)
ℓ (Q) is the set of points that have distance ≤ C2−ℓ diam(Q) to the set of discontinu-

ities of h
(ε)
Q . Based only on the expansion (5.2) and the scale invariant conditions (5.3) we prove

in the following subsections that T
(ε)
ℓ , ℓ ≥ 0 satisfies the norm estimates

‖T (ε)
ℓ ‖p ≤

{
Cp2

−ℓ/2 for p ≥ 2;

Cp2
−ℓ/q for p ≤ 2.

(5.4)

To this end we decompose the operator T
(ε)
ℓ , ℓ ≥ 0 into a series of operators Tℓ,m, m ∈ Z

using a wavelet system {ψ(α)
K : K ∈ S, α ∈ A} so that {ψ(α)

K /
√
|K|} is an orthonormal basis in

L2(Rn), satisfying
∫
ψ

(α)
K = 0 and the structure conditions,

supp ψ
(α)
K ⊆ C ·K, |ψ(α)

K | ≤ C, Lip(ψ
(α)
K ) ≤ C diam(K)−1.

To simplify expressions below we suppress the superindeces (α) and, with a slight abuse of

notation, in place of {ψ(α)
K } we write just {ψK}. Then expanding a function f along the wavelet

basis we get

f =
∑

K∈S

〈
f,
ψK

|K|

〉
ψK .

Fix m ∈ Z and define Tℓ,m by the equation

Tℓ,m(f) =
∞∑

j=−∞

∑

Q∈Sj

∑

K∈Sj+ℓ+m

〈
f,
ψK

|K|

〉
〈∆j+ℓ(h

(ε)
Q ), ψK〉h(ε)

Q |Q|−1. (5.5)

Then

T
(ε)
ℓ (f) =

∞∑

m=−∞

Tℓ,m(f). (5.6)

In this section we prove that

−ℓ−1∑

m=−∞

||Tℓ,m||p ≤ Cp2
−ℓ, and

∞∑

m=−ℓ

‖Tℓ,m‖p ≤
{
Cp2

−ℓ/2 for p ≥ 2;

Cp2
−ℓ/q for p ≤ 2.

(5.7)

The bounds of (5.7) imply the norm estimates for T
(ε)
ℓ , ℓ ≥ 0 as stated in (5.4).

There are three relevant length scales in the series (5.5).

1. The scale 2−j. This is the sidelength of Q ∈ Sj , the cube under consideration.

2. The scale 2−(j+ℓ). This is the scale of ∆j+ℓ(h
(ε)
Q ). More precisely, since ∆j+ℓ is given by a

convolution kernel of zero mean, the function ∆j+ℓ(h
(ε)
Q ) is supported in a strip of width

proportional to 2−(j+ℓ) around the discontinuity set of h
(ε)
Q .

3. The scale 2−(j+ℓ+m). This is the scale of the test functions ψK , K ∈ Sj+ℓ+m.

The estimate (5.7) follows from Proposition 5.1, Proposition 5.2 and Proposition 5.3 below
which deal with the regimes

1. 2−(j+ℓ+m) > 2−j,
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2. 2−(j+ℓ+m) < 2−(j+ℓ),

3. 2−(j+ℓ+m) ∈ [2−(j+ℓ), 2−j],

respectively. Accordingly we treat separately the following three cases, m > 0, 0 ≥ m ≥ −ℓ,
and m < −ℓ.

5.1 Estimates for Tℓ,m, ℓ ≥ 0, m < −ℓ.
In the case when m < −ℓ and ℓ ≥ 0 we have 2−(j+ℓ+m) > 2−j . Thus the length scale of the test
function ψK is larger than the scale of h

(ε)
Q when Q ∈ Sj.

We obtain in Proposition 5.1 the estimates for Tℓ,m from those of the rearrangement opera-
tors treated in the previous section, and from the fact that the wavelet bases in Lp(1 < p <∞)
are equivalent to the Haar basis. The fruitful idea of exploiting rearrangements of the Haar
system in the analysis of singular integral operators originates in T. Figiel’s work [4]. (See also
[9] for an exposition of T. Figiel’s approach.)

Proposition 5.1 Let 1 < p <∞ and 1/p+ 1/q = 1. For ℓ ≥ 0, and m < −ℓ the operator

Tℓ,m(f) =

∞∑

j=−∞

∑

Q∈Sj

∑

K∈Sj+ℓ+m

〈
f,
ψK

|K|

〉
〈∆j+ℓ(h

(ε)
Q ), ψK〉h(ε)

Q |Q|−1

satisfies the norm estimate

‖Tℓ,m‖p ≤
{
Cp2

m
√
−m− ℓ for p ≥ 2;

Cp2
m for p ≤ 2.

(5.8)

and consequently
−ℓ−1∑

m=−∞

||Tℓ,m||p ≤ Cp2
−ℓ.

Proof. Fix ℓ ≥ 0 and −∞ < m < −ℓ. Let j ∈ Z and fix a dyadic cube Q ∈ Sj . Then form
the collection of dyadic cubes

Uℓ,m(Q) = {K ∈ Sj+ℓ+m : 〈ψK ,∆j+ℓ(h
(ε)
Q )〉 6= 0}.

Clearly for Tℓ,m(f) holds the identity

Tℓ,m(f) =
∞∑

j=−∞

∑

Q∈Sj

∑

K∈Uℓ,m(Q)

〈
f,
ψK

|K|

〉
〈∆j+ℓ(h

(ε)
Q ), ψK〉h(ε)

Q |Q|−1. (5.9)

Observe that for −∞ < m < −ℓ the cardinality of the collection Uℓ,m(Q) is uniformly bounded.
Next for K ∈ Uℓ,m(Q) we prove that

|〈∆j+ℓ(h
(ε)
Q ), ψK〉| ≤ C2m|Q|. (5.10)

Since ∫

Rn

|∆j+ℓ(h
(ε)
Q )|dx ≤ C2−ℓ|Q|,
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and since ∆j+ℓ(h
(ε)
Q ) has vanishing mean, we get for q ∈ Q

|〈∆j+ℓ(h
(ε)
Q ), ψK〉| = |〈∆j+ℓ(h

(ε)
Q ), (ψK − ψK(q))〉|

≤ CLip(ψK) diam(Q)

∫

Rn

|∆j+ℓ(h
(ε)
Q )|dx

≤ C
diam(Q)

diam(K)
2−ℓ|Q|.

Next recall that Q ∈ Sj and K ∈ Sj+ℓ+m. Hence diam(Q) =
√
n2−j and diam(K) =√

n2−j−m−ℓ. Inserting these values gives (5.10).
By (3.8), in combination with (5.9) and (5.10) we obtain that

‖Tℓ,m(f)‖p ≤ Cp2
m

∥∥∥∥∥∥

∑

Q∈S

∑

K∈Uℓ,m(Q)

〈
f,
ψK

|K|

〉
hQ

∥∥∥∥∥∥
p

. (5.11)

Recall K ∈ Uℓ,m(Q) satisfies |K| = |Q|2n(−ℓ−m). Hence |K|−1|Q|2m = 2(n+1)m+nℓ. Thus the right
hand side of (5.11) is bounded by

Cp2
(n+1)m+nℓ

∥∥∥∥∥∥

∑

Q∈S

∑

K∈Uℓ,m(Q)

〈f, ψK〉hQ|Q|−1

∥∥∥∥∥∥
p

. (5.12)

Given Q ∈ S let Ks(Q) be a cube in Uℓ,m(Q). As there exist at most C = Cn cubes in Uℓ,m(Q),
the expression in (5.12) is bounded by

Cp2
(n+1)m+nℓ max

s≤C

∥∥∥∥∥
∑

Q∈S

〈f, ψKs(Q)〉hQ|Q|−1

∥∥∥∥∥
p

. (5.13)

Fix s ≤ C so that the maximum in the right hand side is assumed. We invoke rearrangement
operators to obtain good upper bounds for (5.13). Let τ : S → S be the map that associates
to Q ∈ S its (−m− ℓ) − th dyadic predecessor, denoted Q(−m−ℓ). Thus

τ(Q) = Q(−m−ℓ).

In sub-section 4.2 we defined the canonical splitting of S as

S = Q1 ∪ · · · ∪ Q2n(−m−ℓ) ,

so that for each fixed k ≤ 2n(−m−ℓ), the map τ : Qk → S is a bijection. Fix now k ≤ 2n(−m−ℓ)

and define the family of functions {ϕ(k)
W : W ∈ S} by the equations

ϕ
(k)
τ(Q) = ψKs(Q), Q ∈ Qk.

Let A = 2n(−m−ℓ) and define the rearrangement operator S by

S(f) =
A∑

k=1

∑

Q∈Qk

〈
f, ϕ

(k)
τ(Q)

〉
hQ|Q|−1.
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What we have obtained so far can be summarized in one line as follows

‖Tℓ,m(f)‖p ≤ Cp2
(n+1)m+nℓ‖S(f)‖p. (5.14)

It remains to find estimates for ‖S(f)‖p. To this end observe that the family of functions

{ϕ(k)
W : W ∈ S} satisfies the structural conditions (4.11): There exists C > 0 so that for each

W ∈ S
supp ϕ

(k)
W ⊆ C ·Q, |ϕ(k)

W | ≤ C, Lip(ϕ
(k)
W ) ≤ C diam(W )−1.

Hence Theorem 4.2 applied to the operator S, with λ = −m− ℓ, gives

‖S‖p ≤
{
Cp2

n(−m−ℓ)
√
−m− ℓ for p ≥ 2;

Cp2
n(−m−ℓ) for p ≤ 2.

Inserting the norm estimate for S into (5.14) and simple arithmetic implies (5.8).

5.2 Estimates for Tℓ,m, ℓ ≥ 0, m > 0.

In this subsection we treat the case m > 0 and ℓ ≥ 0 or equivalently 2−(j+ℓ+m) < 2−(j+ℓ). Here
the length scale of the test function ψK is finer than the scale of ∆j+ℓ(h

(ε)
Q ). We estimate the

norm of Tℓ,m by reduction to the projections onto ring domains.

Proposition 5.2 Let 1 < p <∞. and 1/p+ 1/q = 1. For m ≥ 0 and ℓ ≥ 0, the operator

Tℓ,m(f) =
∞∑

j=−∞

∑

Q∈Sj

∑

K∈Sj+ℓ+m

〈
f,
ψK

|K|

〉
〈∆j+ℓ(h

(ε)
Q ), ψK〉h(ε)

Q |Q|−1.

satisfies the norm estimate

‖Tℓ,m‖p ≤
{
Cp2

−m2−ℓ/2 for p ≥ 2;

Cp2
−m2−ℓ/q for p ≤ 2.

(5.15)

Proof. We divide the proof into three parts. First we rewrite the operator by isolating the
cubes Q ∈ Sj and K ∈ Sj+ℓ+m that contribute to the series defining Tℓ,m. Second we define
auxiliary operators that dominate Tℓ,m. These turn out to be projections onto ring domains as
considered in sub-section 4.1. Finally we invoke norm estimates for the resulting projections
onto ring domains.

Part 1. Here we rewrite Tℓ,m by making explicit the index set {K ∈ Sj+ℓ+m} that actually
contributes to the series defining Tℓ,m. Fix Q ∈ Sj and define the collection of dyadic cubes

Uℓ,m(Q) = {K ∈ Sj+ℓ+m : 〈∆j+ℓ(h
(ε)
Q ), ψK〉 6= 0}.

Let Uℓ,m(Q) be the pointset that is covered by the collection Uℓ,m(Q). Note that Uℓ,m(Q) is
contained in the ring domain of points that have distance ≤ C2−ℓ−j to the set of discontinuities
of h

(ε)
Q . Thus Uℓ,m(Q) can be covered by at most C2(n−1)ℓ dyadic cubes of diameter

√
n2−ℓ−j.
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We denote these cubes (that are pairwise disjoint) by E1, . . . , EA where A = C2(n−1)ℓ. If we
wish to emphasize the dependence on Q we write Ek = Ek(Q). Thus

Uℓ,m(Q) ⊆
A⋃

k=1

Ek(Q), diam(Ek(Q)) =
√
n2−ℓ−j, A = C2(n−1)ℓ.

With Uℓ,m(Q) as index set we define the block bases of wavelet functions

ψ̃Q =
∑

K∈Uℓ,m(Q)

〈
∆j+ℓ(h

(ε)
Q ), ψK

〉
ψK |K|−1,

by which we rewrite the operator Tℓ,m as follows,

Tℓ,m(f) =
∑

Q∈S

〈
f, ψ̃Q

〉
h

(ε)
Q |Q|−1. (5.16)

Part 2. Here we exploit (5.16) and relate the representation Tℓ,m to its dyadic counterpart,
the projection onto ring domains. To this end we start by giving pointwise estimates for the
function ψ̃Q. Fix K ∈ Uℓ,m(Q). Use that ψK has mean zero and that diam(K) =

√
n2(−j−ℓ−m)

to obtain,

|〈∆j+ℓ(h
(ε)
Q ), ψK〉| · |K|−1 ≤ C diam(K)Lip(∆j+ℓ(h

(ε)
Q ))

≤ C diam(K)2j+ℓ

= C2−m.

(5.17)

Recall that
dist(Uℓ,m(Q), Q) ≤ C · diam(Q) Q ∈ S.

Hence there exists a universal A0 ∈ N so that for j ∈ Z the collection Sj may split as

S(1)
j , . . . ,S(A0)

j ,

so that for s ≤ A0 the sets {Uℓ,m(Q) : Q ∈ S(s)
j } are pairwise disjoint. Fix s ≤ A0 and form the

collections
Bs =

⋃

j∈Z

S(s)
j .

As s ≤ A0 is fixed, the collections {Uℓ,m(Q) : Q ∈ Bs} satisfy the conditions (3.9) and (3.10).
Define

dQ =
∑

K∈Uℓ,m(Q)

hK ,

and put

Fs(g) =
∑

Q∈Bs

〈g, dQ〉hQ|Q|−1.

By (5.17) and (3.15), (3.16),

‖Tℓ,m‖p ≤ Cp2
−m

A0∑

s=1

‖Fs‖p.
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Next we replace the operator Fs by a related one that is easier to analyze. To this end we
define for Q ∈ Bs,

gQ =
A∑

k=1

hEk(Q), A = C2(n−1)ℓ,

where the collection of dyadic cubes {E1(Q) . . . EA(Q)} are defined in part 1 of the proof. The
block bases {gQ : Q ∈ Bs} give rise to the operators Gs defined by,

Gs(f) =
∑

Q∈Bs

〈f, gQ〉hQ|Q|−1.

By (3.13), ‖Fs‖p ≤ Cp‖Gs‖p. Hence

‖Tℓ,m‖p ≤ Cp2
−m

A0∑

s=1

‖Gs‖p. (5.18)

Part 3. In the last part of the proof we obtain norm estimates for Tℓ,m by recalling the
bounds for the projection G∗

s obtained in Section 4. Fix s ≤ A0, let

B = Bs and G = Gs.

The transposed operator G∗ is just

G∗(f) =
∑

Q∈B

〈f, hQ〉 gQ|Q|−1.

In part 1 of the proof, for Q ∈ B, we defined the collections {E1(Q), . . . , EA(Q)}.They satisfy
conditions (4.2)–(4.4). Hence we apply Theorem 4.1 with S = G∗ and λ = ℓ. By duality this
gives the following three norm estimates for G,

‖G‖H1
d
≤ C, ‖G‖2 ≤ C2−ℓ/2 and ‖G‖BMOd

≤ C2−ℓ/2. (5.19)

By interpolation and (5.19), for 1 < p <∞ and 1/p+ 1/q = 1

‖G‖p ≤
{
Cp2

−ℓ/2 for p ≥ 2;

Cp2
−ℓ/q for p ≤ 2.

(5.20)

With (5.20) and (5.18) we deduce (5.15).

5.3 Estimates for Tℓ,m, ℓ ≥ 0, −ℓ ≤ m ≤ 0.

Here we analyze the operators Tℓ,m, when ℓ ≥ 0, −ℓ ≤ m ≤ 0. In this case the scale of the

test functions ψK lies in between the scale of the cube Q and that of ∆j+ℓ(h
(ε)
Q ). Again we

estimate Tℓ,m by reduction to projection operators onto ring domains, following the pattern of
the previous sub-section.

Proposition 5.3 Let 1 < p < ∞. and 1/p + 1/q = 1. Let ℓ ≥ 0 and −ℓ ≤ m ≤ 0 then the
operator

Tℓ,m(f) =

∞∑

j=−∞

∑

Q∈Sj

∑

K∈Sj+ℓ+m

〈
f,
ψK

|K|

〉
〈∆j+ℓ(h

(ε)
Q ), ψK〉h(ε)

Q |Q|−1
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satisfies the norm estimate

‖Tℓ,m‖p ≤
{
Cp2

m/22−ℓ/2 for p ≥ 2;

Cp2
m/22−ℓ/q for p ≤ 2.

(5.21)

Proof. The proof splits canonically into three parts. First we analyze and rewrite Tℓ,m. Then
we define auxiliary operators that dominate Tℓ,m, and continue with norm estimates for those
operators. As above we are led to consider projections onto ring domains.

Part 1. Fix ℓ ≥ 0 and −ℓ ≤ m ≤ 0. Let j ∈ Z and choose a dyadic cube Q ∈ Sj . Then form
the collection of cubes

Uℓ,m(Q) = {K ∈ Sj+ℓ+m : 〈ψK ,∆j+ℓ(h
(ε)
Q )〉 6= 0}.

Observe that with the above definition of the collections Uℓ,m(Q) the following identity holds

Tℓ,m(f) =

∞∑

j=−∞

∑

Q∈Sj

∑

K∈Uℓ,m(Q)

〈
f,
ψK

|K|

〉
〈∆j+ℓ(h

(ε)
Q ), ψK〉h(ε)

Q |Q|−1.

Part 2. Fix Q ∈ Sj and K ∈ Uℓ,m(Q). To find the auxiliary operators we prove first that
∣∣∣
〈
∆j+ℓ(h

(1,0)
Q ), ψK

〉∣∣∣ ≤ C2m|K| (5.22)

To see this make the following observation. First note that |Q| = 2−nj and diam(K) =√
n2−j−m−ℓ. Then observe that ∆j+ℓ(h

(ε)
Q is supported in the ring domain Dℓ(Q) and estimate

∣∣∣
〈
∆j+ℓ(h

(ε)
Q ), ψK

〉∣∣∣ ≤ C

∫

K

|∆j+ℓ(h
(ε)
Q )|

≤ C|Dℓ(Q) ∩K|
≤ C2−ℓ−j( diam(K))n−1

≤ C2m|K|.
For a cube K ∈ Uℓ,m(Q) its distance to Q is bounded by the C diam(Q). Hence, there exists

a universal A0 so that for j ∈ Z the collection Sj can be split into

S(1)
j , . . . ,S(A0)

j ,

so that the sets {Uℓ,m(Q) : Q ∈ S(s)
j } are pairwise disjoint. Fix s ≤ A0 and form the collections

Bs =
⋃

j∈Z

S(s)
j .

Note that {Uℓ,m(Q) : Q ∈ Bs} satisfies the conditions (3.9) and (3.10). Define

Fs(f) = 2m
∑

Q∈Bs

〈f, dQ〉hQ|Q|−1, dQ =
∑

K∈Uℓ,m(Q)

hK .

The integral estimates (3.16), (3.15) and (5.22) imply

‖Tℓ,m‖p ≤ Cp

A0∑

s=1

‖Fs‖p.
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Part 3. It remains to estimate ‖Fs‖p. Notice that the collections Uℓ,m(Q), Q ∈ Bs satisfy
conditions (4.2)–(4.4). Next apply Theorem 4.1 to S = 2−mF ∗

s and λ = ℓ+m. By duality this
yields for Fs the norm estimates on L2, H1

d and BMOd

‖Fs‖2 ≤ C2(m−ℓ)/2, ‖Fs‖H1
d
≤ C2m, and ‖Fs‖BMOd

≤ C2(m−ℓ)/2. (5.23)

By interpolation from (5.23) we get for 1 < p <∞ and 1/p+ 1/q = 1 that,

‖Fs‖p ≤
{
Cp2

(m−ℓ)/2 for p ≥ 2;

Cp2
m/2−ℓ/q for p ≤ 2.

5.4 Estimates for T
(ε)
ℓ R−1

i0
, ℓ ≥ 0.

We give the norm estimates for T
(ε)
ℓ R−1

i0
, ℓ ≥ 0, ε ∈ Ai0, and 1 ≤ i0 ≤ n. We do this by reduction

to the estimates for the operator T
(ε)
ℓ , ℓ ≥ 0. Strictly speaking we discuss the reduction to the

proof given in the previous sub sections. We obtain a series representing T
(ε)
ℓ R−1

i0
, analyze the

shape and form of the measures Ei0∂ih
(ε)
Q and describe how the convolution operator ∆j+ℓ acts

on those measures. In the following analysis we also collect the information needed for the
estimates of the T

(ε)
ℓ R−1

i0
when ℓ ≤ 0.

The representation of T
(ε)
ℓ R−1

i0
. In Theorem 2.1 and Theorem 2.2 we aim at estimates for

T
(ε)
ℓ R−1

i0
when ε ∈ Ai0. Hence we seek an explicit expansion for T

(ε)
ℓ R−1

i0
. By (3.23) we have

R−1
i0

= Ri0 +

n∑

i=1
i6=i0

Ei0∂iRi and T
(ε)
ℓ R−1

i0
= T

(ε)
ℓ Ri0 +

n∑

i=1
i6=i0

T
(ε)
ℓ Ei0∂iRi. (5.24)

Let j ∈ Z. Recall that Sj denotes the family of dyadic cubes Q for which |Q| = 2−nj. Let
Q ∈ Sj , i 6= i0, and ε ∈ Ai0. Then form

k
(ℓ,i)
Q = ∆j+ℓ

(
Ei0∂ih

(ε)
Q

)
. (5.25)

Thus by (5.24)

T
(ε)
ℓ R−1

i0
(u) = T

(ε)
ℓ Ri0(u) +

∑

Q∈S

n∑

i=1
i6=i0

〈Ri(u), k
(ℓ,i)
Q 〉h(ε)

Q |Q|−1. (5.26)

Given the representation (5.26) we further analyze the functions {k(ℓ,i)
Q : Q ∈ S}. It is only at

this point of our analysis that we exploit the fact that i0 and ε are related by the condition
ε ∈ Ai0.
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The measures Ei0∂ih
(ε)
Q . We defined k

(ℓ,i)
Q by a convolution operator applied to

Ei0∂ih
(ε)
Q , i 6= i0, ε ∈ Ai0,

where ∂i denotes the differentiation with respect to the yi variable and Ei0 denotes integration
with respect to the xi0 − th coordinate,

Ei0(f)(x) =

∫ xi0

−∞

f(x1, . . . , s, . . . , xn)ds, x = (x1, . . . , xn).

Thus, Ei0∂ih
(ε)
Q admits a convenient factorization: Let x = (x1, . . . , xn), then

Ei0∂ih
(ε)
Q (x) =

[∫ xi0

−∞

h
εi0
Ii0

(s)ds

] [
∂ih

εi

Ii
(xi)

] [∏
{hεk

Ik
(xk) : k /∈ {i0, i}}

]
. (5.27)

The properties of the three factors appearing in (5.27) are as follows.

1. As ε ∈ Ai0, we have εi0 = 1, hence the first factor in (5.27)

xi0 →
∫ xi0

−∞

h
εi0
Ii0

(s)ds

is supported in the interval Ii0 . Furthermore it is bounded by |Ii0| and piecewise linear
with nodes at l(Ii0), m(Ii0) and r(Ii0) and slopes +1,−1 or 0. Here we let l(Ii0) denote the
left endpoint of Ii0 , and m(Ii0), r(Ii0) denote its midpoint, respectively its right endpoint.

2. The partial derivatives ∂i applied to h
(ε)
Q induces a Dirac measure, at each of the discon-

tinuities of hεi

Ii
. The resulting formulas depend on the value of εi ∈ {0, 1}, since

∂ihIi
= δl(Ii) − 2δm(Ii) + δr(Ii),

∂i11i
= δl(Ii) − δr(Ii).

In either case, for ϕ ∈ C∞(R) the above identities yield the estimate,

∣∣〈∂ih
εi

Ii
, ϕ〉
∣∣ ≤ 2 sup

{ |ϕ(s) − ϕ(t)|
|s− t| : s, t,∈ I

}
|Ii|. (5.28)

3. The third factor in (5.27) is the function

x→
∏

{hεk

Ik
(xk) : k /∈ {i0, i}} (5.29)

It is piecewise constant and assumes the values {−1, 0,+1}. When restricted to a dyadic
cube W with diam(W ) ≤ diam(Q)/2 the factor (5.29) defines a constant function.

As a result of the above discussion Ei0∂ih
(ε)
Q is a measure supported on Q so that for any

continous function on Rn,

|〈Ei0∂ih
(ε)
Q , ϕ〉| ≤ |Q| · ‖ϕ‖∞ and 〈Ei0∂ih

(ε)
Q , 1〉 = 0.
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The convolution ∆j+ℓ acting on Ei0∂ih
(ε)
Q . Recall that in (2.2) the operator ∆j+ℓ is given

as convolution with dj+ℓ so that

∆j+ℓ

(
Ei0∂ih

(ε)
Q

)
= Ei0∂ih

(ε)
Q ∗ dj+ℓ,

with

supp dj+ℓ ⊆ [−C2−(j+ℓ), C2−(j+ℓ)]n, |dj+ℓ| ≤ C2n(j+ℓ), Lip(dj+ℓ) ≤ C2(n+1)(j+ℓ). (5.30)

Moreover for 1 ≤ i ≤ n by (2.1)

∫

R

dj+ℓ(x− y)yidyi = 0 and

∫

Rn

dj+ℓ(x− y)dy = 0, x ∈ R
n. (5.31)

We derive next for k
(ℓ,i)
Q its structural estimates concerning support, Lipschitz properties

and pointwise bounds. It turns out that these depend critically on the value of sign (ℓ) :

1. The case ℓ ≥ 0. For Q ∈ S and ε ∈ Ai0 let D(ε)(Q) denote the set of discontinuities of

the Haar function h
(ε)
Q . Fix ℓ ∈ N and define

D
(ε)
ℓ (Q) = {x ∈ R

n : dist(x,D(ε)(Q)) ≤ C2−ℓ diam(Q)}.

Thus D
(ε)
ℓ (Q) is the set of points that have distance ≤ C2−ℓ diam(Q) to the set of dis-

continuities of h
(ε)
Q .

Fix x 6∈ D
(ε)
ℓ (Q). As we observed in the paragraphs following (5.27) there exist A ∈

{−1, 0, 1} and a ∈ R so that,

Ei0h
(ε)
Q (y) = A(yi0 − a), for y ∈ B(x, c2−(j+ℓ)). (5.32)

Combining now (5.30) with (5.31) and we find

∆j+ℓ(Ei0h
(ε)
Q )(x) =

∫

Rn

dj+ℓ(x− y)Ei0h
(ε)
Q (y)dy

= A

∫

Rn

dj+ℓ(x− y)(yi0 − a)dy

= 0.

(5.33)

Since ∆j+ℓ is a convolution operator it commutes with differentiation, and we obtain for

x 6∈ D
(ε)
ℓ (Q),

∆j+ℓ(Ei0∂ih
(ε)
Q )(x) = ∂i∆j+ℓ(Ei0h

(ε)
Q )(x)

= 0.
(5.34)

Combining (5.34) with (5.30) we obtain that the functions {k(ℓ,i)
Q : Q ∈ S, i 6= i0, ℓ ≥ 0}

satisfy the structural conditions

supp k
(ℓ,i)
Q ⊆ D

(ε)
ℓ (Q), |k(ℓ,i)

Q | ≤ C2ℓ, Lip(k
(ℓ,i)
Q ) ≤ C22ℓ( diam(Q))−1, (5.35)

with C > 0 independent of Q ∈ S, i 6= i0, or ℓ ≥ 0.
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2. The case ℓ ≤ 0. In this case we use (5.28) and (5.30) to see that the family {k(ℓ,i)
Q : Q ∈

S, i 6= i0, ℓ ≤ 0}, satisfies the following conditions

supp k
(ℓ,i)
Q ⊆ (C2|ℓ|)·Q, |k(ℓ,i)

Q | ≤ C2ℓ(n+1), Lip(k
(ℓ,i)
Q ) ≤ C2ℓ(n+2)( diam(Q))−1, (5.36)

were again C > 0 is independent of Q ∈ S, i 6= i0, or ℓ ≤ 0.

Proposition 5.4 Let 1 < p < ∞. Let 1 ≤ i 6= i0 ≤ n and ε ∈ Ai0. For ℓ ≥ 0 the operator X
defined by

X(f) =
∑

Q∈S

〈f, k(ℓ,i)
Q 〉h(ε)

Q |Q|−1,

satisfies the norm estimates

||X||p ≤
{
Cp2

+ℓ/2 if p ≥ 2;

Cp2
+ℓ/p if p ≤ 2.

(5.37)

Proof. Recall the expansion (5.2) asserting that

T
(ε)
ℓ (f) =

∑

Q∈S

〈f, f (ε)
Q,ℓ〉h

(ε)
Q |Q|−1,

where f
(ε)
Q,ℓ has vanishing mean and satisfies the basic estimates (5.3),

supp f
(ε)
Q,ℓ ⊆ D

(ε)
ℓ (Q), |f (ε)

Q,ℓ| ≤ C, Lip(f
(ε)
Q,ℓ) ≤ C2ℓ( diam(Q))−1,

and where D
(ε)
ℓ (Q) is the set of points that have distance ≤ C2−ℓ diam(Q) to the set of dis-

continuities of h
(ε)
Q . Using only the scale invariant conditions (5.3) we proved that T

(ε)
ℓ , (ℓ ≥ 0)

satisfies the norm estimates (5.4), that is,

‖T (ε)
ℓ ‖p ≤

{
Cp2

−ℓ/2 for p ≥ 2;

Cp2
−ℓ/q for p ≤ 2.

Observe that by (5.35) the functions {2−ℓk
(ℓ,i)
Q } satisfy the very same structure conditions (5.3)

as {f (ε)
Q,ℓ}. Hence for the norm of the operator 2−ℓX there hold the same upper bounds as for

T
(ε)
ℓ , ℓ ≥ 0. Consequently, the norm of X can be estimated as

||X||p ≤
{
Cp2

ℓ−ℓ/2 if p ≥ 2;

Cp2
ℓ−ℓ/q if p ≤ 2.

Proposition 5.4 in combination with (2.4) and (5.26) implies that for ℓ > 0,

||T (ε)
ℓ R−1

i0
||p ≤

{
Cp2

ℓ/2 if p ≥ 2;

Cp2
ℓ/p if p ≤ 2.
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6 The Proof of Theorem 2.2.

In this section we prove Theorem 2.2. It turns out that for ℓ ≤ 0 the norm estimates for T
(ε)
ℓ R−1

i0

and T
(ε)
ℓ are much simpler than for ℓ ≥ 0. Indeed for ℓ < 0 the scale of Q ∈ Sj is finer than

the scale of ∆j+ℓ(h
(ε)
Q ) and the discontinuities of the Haar function are completely smeared out.

We can therefore reduce the problem to estimates for rearrangement operators acting on Haar
functions, treating T

(ε)
ℓ R−1

i0
and T

(ε)
ℓ simultaneously by the same method.

Let u be a smooth function with vanishing mean and compact support. Let i 6= i0 and
ε ∈ Ai0. Then

T
(ε)
ℓ R−1

i0
(u) = T

(ε)
ℓ Ri0(u) +

∑

Q∈S

n∑

i=1
i6=i0

〈Ri(u), k
(ℓ,i)
Q 〉h(ε)

Q |Q|−1,

where
k

(ℓ,i)
Q = ∆j+ℓ(Ei0∂ih

(ε)
Q ), Q ∈ Sj .

Since ℓ < 0 the functions {k(ℓ,i)
Q : Q ∈ S, i 6= i0, ℓ ≤ 0}, satisfy conditions (5.36). Recall also

that
T

(ε)
ℓ (u) =

∑

Q∈S

〈u, f (ε)
Q,ℓ〉h

(ε)
Q |Q|−1,

where
f

(ε)
Q,ℓ = ∆j+ℓ(h

(ε)
Q ), Q ∈ Sj .

It is easy to see that also the family {f (ε)
Q,ℓ : Q ∈ S , ℓ ≤ 0} satisfies the same structural

conditions (5.36), that is

supp f
(ε)
Q,ℓ ⊆ (C2|ℓ|) ·Q, |f (ε)

Q,ℓ| ≤ C2−|ℓ|(n+1), Lip(f
(ε)
Q,ℓ) ≤ C2−|ℓ|(n+2)( diam(Q))−1. (6.1)

Proposition 6.1 If ℓ ≤ 0 then

||T (ε)
ℓ ||p + ||T (ε)

ℓ R−1
i0
||p ≤

{
Cp2

−2|ℓ|/p for p ≥ 2;

Cp2
−|ℓ| for p ≤ 2.

Proof. Let 1 ≤ i 6= i0 ≤ n. Let Q ∈ S. Choose signs δQ,i, ǫQ ∈ {+1, 0,−1} and form

gQ,ℓ =

[
n∑

i=1, i6=i0

δQ,ik
(ℓ,i)
Q

]
+ ǫQf

(ε)
Q,ℓ. (6.2)

We emphasize that the definition of gQ,ℓ depends on the choice of signs δQ,i, ǫQ ∈ {+1, 0,−1};
nevertheless our notation suppresses this dependence. Note that by (5.36) and (6.1) the func-
tions {gQ,ℓ} are of mean zero and satisfy structure conditions, not depending on the choice of
signs, namely

supp gQ,ℓ ⊆ C2|ℓ| ·Q, |gQ,ℓ| ≤ C2−(n+1)|ℓ|, Lip(gQ,ℓ) ≤ C2−(n+2)|ℓ| diam(Q)−1. (6.3)

Consider the rearrangement τ : S → S that maps Q ∈ S to its |ℓ| − th dyadic predecessor.
Let Q1, . . . ,Q2n|ℓ| be the canonical splitting of S so that for fixed k ≤ 2n|ℓ| the map τ : Qk → S
is bijective. Fix k ≤ 2n|ℓ|. Determine the family {ϕ(k)

W : W ∈ S} by the equations

ϕ
(k)
τ(Q) = 2(n+1)|ℓ|gQ,ℓ, Q ∈ Qk. (6.4)
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Thus defined the functions ϕ
(k)
W are of mean zero and satisfy the structural conditions

supp ϕ
(k)
W ⊆ C ·W, |ϕ(k)

W | ≤ C, Lip(ϕ
(k)
W ) ≤ C diam(W )−1.

Define the operator

S(u) =
2n|ℓ|∑

k=1

∑

Q∈Qk

〈
u, ϕ

(k)
τ(Q)

〉
h

(ε)
Q |Q|−1.

Apply Theorem 4.2 to S with λ = |ℓ|. This yields

‖S‖2 ≤ C02
n|ℓ|, ‖S‖H1

d
≤ C02

n|ℓ|, ‖S : BMO(Rn) → BMOd ‖ ≤ C0|ℓ|1/22n|ℓ|. (6.5)

Note that by (6.2) and (6.4) the algebraic definition of the operator S depends on the choice
of signs δQ,i, ǫQ ∈ {+1, 0,−1}, yet by (6.5) our estimates for ‖S‖p are independent thereof.

Let g ∈ Lp. Depending on g we choose δQ,i, ǫQ ∈ {+1, 0,−1}, hence S, so that

‖T (ε)
ℓ (g)‖p + ‖T (ε)

ℓ R−1
i0

(g)‖p ≤ Cp2
−(n+1)|ℓ|Cp‖S‖p‖g‖p. (6.6)

Consequently, our upper bounds for ‖T (ε)
ℓ ‖p + ‖T (ε)

ℓ R−1
i0
‖p follow from (6.5). Indeed, by inter-

polation and the estimate |ℓ|1/2 ≤ 2|ℓ|/2, (6.5) and (6.6) imply that

||T (ε)
ℓ ||p + ||T (ε)

ℓ R−1
i0
||p ≤

{
Cp2

−2|ℓ|/p for p ≥ 2;

Cp2
−|ℓ| for p ≤ 2.

7 Sharpness of the exponents in Theorem 1.1.

In this section we construct the examples showing that the exponents (1/2, 1/2) respectively
(1/p, 1/q) are sharp in the estimates of Theorem 1.1,

||P (ε)(u)||p ≤ Cp‖u‖1/2
p ‖Ri0(u)‖1/2

p , p ≥ 2, (7.1)

and
||P (ε)(u)||p ≤ Cp‖u‖1/p

p ‖Ri0(u)‖1/q
p , p ≤ 2, (7.2)

where 1 ≤ i0 ≤ n and ε ∈ Ai0.
When we say that we obtained sharp exponents in Theorem 1.1 we mean the following: Let

η > 0. Since the Riesz transform is a bounded operator on Lp(1 < p < ∞), replacing in (7.1)
the pair of exponents (1/2, 1/2) by (1/2 − η, 1/2 + η) would lead to a statement that implies
(7.1), hence would yield a stronger theorem. Our examples show, however, that improving the
exponents in the right hand side of (7.1) is impossible. (The same holds for (7.2).) Specifically
we have this theorem:

Theorem 7.1 Let 1 ≤ i0 ≤ n, and ε ∈ Ai0. Let 1 < p <∞, 1/p+ 1/q = 1. and η > 0. Then

sup
u∈Lp

||P (ε)(u)||p
‖u‖1/2−η

p ‖Ri0(u)‖1/2+η
p

= ∞ p ≥ 2, (7.3)

and

sup
u∈Lp

||P (ε)(u)||p
‖u‖1/p−η

p ‖Ri0(u)‖1/q+η
p

= ∞, p ≤ 2. (7.4)
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For simplicity of notation we verify Theorem 7.1 only in the case when n = 2. The passage
to arbitrary n ∈ N is routine and left to the reader. Moreover we carry out the proof of
Theorem 7.1 with the following specification

n = 2, i0 = 1, ε = (1, 0). (7.5)

Throughout this section we assume (7.5) and put

P = P (1,0).

We obtain Theorem 7.1 by exhibiting a sequence of test functions for which the quotient in
(7.3) respectively (7.4) tends to infinity. On each test function we prove lower Lp bounds for
the action of P and upper Lp estimates for R1. In sub-section 7.1 we define building blocks s⊗d
and the test functions fǫ using a procedure that resembles that of adding independent copies of
the basic building blocks. The proof of (7.3) requires upper estimates for ‖fǫ‖p and ‖R1(fǫ)‖p,
that we prove in sub-section 7.2 and a lower estimates for ‖P (fǫ)‖p obtained in sub-section 7.3
.

7.1 The building blocks s⊗ d.

We build the examples showing sharpness of exponents on the properties of the functions s⊗ d
defined here. Throughout this section we fix ǫ > 0.

Let A,B be Lipschitz functions on R. Assume that

supp A ⊆ [0, 1],

∫
A = 0 and supp B ⊆ [−1, 1]. (7.6)

Given x = (x1, x2) we define

s(x1) = A(x1), d(x2) = B(x2/ǫ),

s⊗ d(x) = s(x1)d(x2).

We rescale g = s⊗d to a dyadic square Q = I×J as follows. Let lI , lJ denote the left endpoint
of I respectively J. Put

sI(x1) = s(
x1 − lI
|I| ), dJ(x2) = d(

x2 − lJ
|J | ),

and
gQ(x) = sI(x1)dJ(x2). (7.7)

We next define the testing function fǫ that is obtained by first forming “almost independent”
copies of g = s⊗ d and then adding 1

ǫ
of those. Below we define a collection of dyadic squares

G and form
fǫ =

∑

Q∈G

gQ. (7.8)

To define G we proceed as follows. Fix j ∈ N. Let Dj denote the collection of dyadic intervals
I satisfying

I ⊆ [0, 1] and |I| = 2−j.
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Let Lj ⊆ Dj satisfy
I, J ∈ Lj implies dist(I, J) ≥ |I|, (7.9)

and ∑

J∈Lj

|J | =
1

2
. (7.10)

To define Lj simply take the even numbered intervals of Dj, counting from left to right. Next
assume that ǫ > 0 is power of 1/2, thus

ǫ = 2−n0 for some n0 ∈ N. (7.11)

For 1 ≤ k ≤ 1/ǫ put

Gk =
⋃

{I × J : I ∈ D2kn0, J ∈ L2kn0} and G =

1/ǫ⋃

k=1

Gk.

Observe that |Q| = ǫ4k for Q ∈ Gk, and by (7.10)

∑

Q∈Gk

|Q| =
1

2
and

∑

Q∈G

|Q| =
1

2ǫ
. (7.12)

7.2 Upper estimate for ‖fǫ‖p and ‖R1(fǫ)‖p.

We obtain our Lp estimates of fǫ by proving an upper bound for its norm in the space dyadic
BMO. These in turn follow from scale-invariant L2 estimates and “ almost orthogonality” of
the functions ∑

Q∈Gk

gQ, k ≤ 1

ǫ
.

Proposition 7.2 Let fǫ be defined by (7.8). The support of fǫ is contained in [−1, 1]× [−1, 1]
and

‖fǫ‖BMOd
≤ C. (7.13)

Hence ‖fǫ‖p ≤ Cp.

Proof. Let Q0 ∈ G and form g =
∑

{Q∈G, Q⊆Q0}
gQ. The BMOd inequality (7.13) is a conse-

quence of uniform L2 estimate
‖g‖2

L2(R2) ≤ C|Q0|, (7.14)

in combination with the Lipschitz estimates,
∑

{Q∈G, |Q|>|Q0|}

‖1Q0(gQ −mQ0(gQ))‖L2(R2) ≤ Cǫ|Q0|1/2, (7.15)

where mQ0(gQ) = |Q0|−1
∫

Q0
gQ. In two separate paragraphs below we will verify that (7.14)

and (7.15) hold. Before that we show how these estimates yield (7.13). Let

K = {W ∈ S : ∃ε 〈fǫ, h
(ε)
W 〉 6= 0}

Let W be a dyadic square with |W | ≤ 1/4, then
∫

W
fǫ = 0. Hence forW ∈ K, diam(W ) ≤ 1. By

(3.26), to estimate the BMOd norm of fǫ it suffices to test the cubes of K. Next we fix a dyadic
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square W ∈ K. Since diam(W ) ≤ 1 we may choose k ∈ N0 such that ǫ2(k+1) ≤ diam(W ) ≤ ǫ2k.
Define a decomposition of G as G = H1 ∩ H2 ∪ H3 where

H1 = {Q ∈ G : diam(Q) = ǫ2k, Q ∩ 2 ·W 6= ∅},

H2 = {Q ∈ G : diam(Q) ≥ ǫ2(k−1), Q ∩ 2 ·W 6= ∅},
and

H3 = {Q ∈ G : diam(Q) ≤ ǫ2(k+1), Q ∩ 2 ·W 6= ∅}
Accordingly let

gj =
∑

Q∈Hj

gQ, j ∈ {1, 2, 3}.

The cardinality of H1 is bounded by C. Hence ‖1Wg1‖2 ≤ C|W |1/2. With A = |W |−1
∫

W
g2, and

triangle inequality (7.15) gives
∫

W
|g2 −A|2 ≤ Cǫ2|W |. The estimate (7.14) implies ‖1W g3‖2 ≤

C|W |1/2. To see this let M denote the maximal squares of H3. The collection M(⊆ H3) consists
of pairwise disjoint squares so that

∑

Q0∈M

|Q0| ≤ C|W |.

Next write GQ0 =
∑

Q∈H3,Q⊆Q0
gQ, to obtain

g3 =
∑

Q0∈M

GQ0 and ‖g3‖2
2 =

∑

Q0∈M

‖GQ0‖2
2.

Apply (7.14) to GQ0 to obtain

‖g3‖2
2 ≤ C

∑

Q0∈M

|Q0|

≤ C|W |.
Finally ‖1Wg3‖2 ≤ ‖g3‖2 ≤ C|W |1/2.

Moreover for t ∈W there holds the identity

fǫ(t) = g1(t) + g2(t) + g3(t).

Invoking the estimates for g1, g2, g3 we obtain
∫

W

|fǫ − A|2 ≤ C|W |.

By (3.25) this estimate yields (7.13).

Verification of (7.14). By rescaling it suffices to consider Q0 = [0, 1] × [0, 1]. For Q,Q′ ∈ G
with |Q| = |Q′| and Q 6= Q′ we have 〈gQ, gQ′〉 = 0. Hence the left hand side of (7.14) equals

∑

Q∈G

〈gQ, gQ〉 + 2
∑

{Q,Q′∈G: |Q|<|Q′|}

〈gQ, gQ′〉. (7.16)

In view of (7.16) we aim at estimates for the entries of the Gram matrix 〈gQ, gQ′〉.
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We first treat the diagonal terms of the Gram matrix. A direct calculation gives 〈gQ, gQ〉 =
ǫ|Q|/4, hence by (7.12) ∑

Q∈G

〈gQ, gQ〉 ≤ C. (7.17)

Next we turn to estimating the off diagonal terms. Consider Q,Q′ ∈ G such that |Q| < |Q′|.
Write Q = I × J and Q′ = I ′ × J ′. Note, first if dist(Q,Q′) ≥ 2 diam(Q′) then 〈gQ, gQ′〉 = 0.
Hence it remains to consider the case dist(Q,Q′) ≤ 2 diam(Q′). Let lI denote the left endpoint
of I. The Lipschitz estimate Lip(sI′) ≤ C|I ′|−1 and that

∫
|dJ(x2)|dx2 ≤ ǫ|J | imply that

|〈gQ, gQ′〉| =

∣∣∣∣
∫

(sI′(x1) − sI′(lI))sI(x1)dx1

∣∣∣∣ ·
∣∣∣∣
∫
dJ ′(x2)dJ(x2)dx2

∣∣∣∣

≤ C
|I|
|I ′| |I|

∫
|dJ(x2)|dx2

≤ ǫC
|I|
|I ′| |Q|.

(7.18)

Since Q = I × J ∈ G there exists k ∈ N so that |I| = ǫ2k. Hence for Q′ = I ′ × J ′ ∈ G with
|Q′| > |Q| there exists k′ ∈ N with k′ ≤ k − 1 so that |I ′| = ǫ2k′

, and |I|/|I ′| = ǫ2k−2k′
. Note

that for each Q ∈ G the cardinality of the set

{Q′ ∈ G : |Q| < |Q′|, 〈gQ, gQ′〉 6= 0}
is bounded by C1, say. Consequently in the double sum appearing on the left hand side of
(7.19), for each Q only C1 cubes Q′ give a contribution. Thus by (7.18)

∑

{Q,Q′∈G: |Q|<|Q′|}

|〈gQ, gQ′〉| ≤ Cǫ2k+1
k−1∑

k′=1

ǫ−2k′
∑

Q∈G

|Q|

≤ Cǫ3
∑

Q∈G

|Q|.
(7.19)

By (7.12) the last line in (7.19) is bounded by Cǫ2. Combining (7.17) and (7.19) gives (7.14).

Verification of (7.15). Fix Q,Q0 ∈ G so that |Q0| < |Q| and dist(Q,Q0) ≤ C diam(Q).
Then

‖1Q0(gQ −mQ0(gQ))‖2 ≤ CLip(gQ) diam(Q0)|Q0|1/2. (7.20)

Moreover if Q,Q0 ∈ G so that |Q0| < |Q| and dist(Q,Q0) ≥ C diam(Q), then

‖1Q0(gQ −mQ0(gQ))‖2 = 0. (7.21)

Note that Lip(gQ) ≤ C(ǫ diam(Q))−1. Since Q,Q0 ∈ G, with |Q0| < |Q|, there exists k, k0 ∈ N,
with k ≤ k0 − 1 so that diam(Q0) =

√
2 · ǫ2k0 and diam(Q) =

√
2 · ǫ2k. The cardinality of

{Q ∈ G : diam(Q) =
√

2 · ǫ2k, dist(Q,Q0) ≤ C
√

2 · ǫ2k}
is bounded by a constant C. Hence by (7.20) and (7.21),

∑

{Q∈G, |Q|>|Q0|}

‖1Q0(gQ −mQ0(gQ))‖2 ≤ Cǫ|Q0|1/2.

Thus we verified (7.15).
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We emphasize that the above upper bound on ‖fǫ‖p works when the test functions g = s⊗d
and its rescalings gQ = sI ⊗ dJ are defined with Lipschitz functions A,B satisfying (7.6), that
is, supp A ⊆ [0, 1],

∫
A = 0 and supp B ⊆ [−1, 1]. We next impose furthermore that

A′ is Lipschitz and

∫
B = 0. (7.22)

Proposition 7.3 Let fǫ be defined by (7.8), assume that (7.22) and (7.6) hold. Then for
1 < p <∞,

‖R1(fǫ)‖p ≤ Cpǫ.

Proof. The Fourier multipliers of the Riesz transforms R1 respectivley R2 are ξ1/|ξ| and
ξ2/|ξ|. Hence using (7.22) for gQ = sI ⊗ dJ we have the identity

R1(gQ) = R2(∂1E2gQ), (7.23)

where ∂1 is differentiation with respect to the variable x1 and E2gQ(x1, x2) =
∫ x2

−∞
gQ(x1, s)ds.

Define now

s̃(x1) = A′(x1), d̃(x2) = C(x2/ǫ), C(t) =

∫ t

−∞

B(s)ds.

Let s̃I , d̃J be obtained from s̃(x1), d̃(x2) by rescaling,

s̃I(x1) = s̃(
x1 − lI
|I| ), d̃J(x2) = d̃(

x2 − lJ
|J | ),

where lI , lJ denote the left endpoint of I respectively J. Then with g̃Q = s̃I ⊗ d̃J the identity
(7.23) assumes the following form,

R1(gQ) = ǫR2(g̃Q). (7.24)

By (7.22) the Lipschitz functions A′, C satisfy (7.6). Hence Proposition 7.2 implies that
f̃ǫ =

∑
Q∈G g̃Q satisfies the Lp estimate

‖f̃ǫ‖p ≤ Cp.

By (7.24) we have R1(fǫ) = ǫR2(f̃ǫ). Hence the Lp boundedness of the Riesz transforms yields

‖R1(fǫ)‖p ≤ ǫ‖R2(f̃ǫ)‖p

≤ Cpǫ‖f̃ǫ‖p

≤ Cpǫ.

We remark that the proof given above containd the following estimates estimates that we
will use again later. For g = s⊗ d and g̃ = s̃⊗ d̃,

‖R1(g)‖p = ǫ‖R2(g̃)‖p

≤ ǫCp‖g̃‖p

≤ Cpǫ
1+1/p.

(7.25)
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7.3 Lower bound for ‖P (fǫ)‖p, p ≥ 2.

We first specialize once more the class of Lipschitz functions A,B we use to define

s(x1) = A(x1), d(x2) = B(x2/ǫ)

g = s⊗ d and fǫ =
∑

Q∈G

gQ.

We simply take now

B(x2) =

{
sin(πx2) x2 ∈ [−1, 1];

0 x2 ∈ R \ [−1, 1].

and choose A to be smooth, so that supp A ⊆ [0, 1],
∫
A = 0 and

∫ 1

0

A(x1)h[0,1](x1)dx1 =

∫ 1

0

sin(2πx1)h[0,1](x1)dx1.

The following list of identities relates the Haar functions {h(1,0)
Q } to the test functions {gQ}.

1. The scalar products 〈gQ, h
(1,0)
Q 〉 and 〈gQ, gQ〉 are as follows,

∫
gQ(x)h

(1,0)
Q (x)dx = ǫ

4|Q|
π2

and

∫
gQ(x)gQ(x)dx = ǫ

|Q|
4
. (7.26)

2. Let Q′ = I × J ′, be a dyadic square where J ′ is the dyadic interval adjacent to J so that
the right endpoint of J is the left endpoint of J ′. Then

∫
gQ′(x)h

(1,0)
Q (x)dx = −

∫
gQ(x)h

(1,0)
Q (x)dx

= −ǫ4|Q|
π2

.

(7.27)

3. For all choices of Q′ = I × J ′ with |J ′| = |J | and dist(J, J ′) ≥ |J | we have
∫
gQ′(x)h

(1,0)
Q (x)dx = 0. (7.28)

4. If Q,Q′ ∈ S so that |Q′| < |Q| then
∫
gQ′(x)h

(1,0)
Q (x) = 0. (7.29)

We consider p ≥ 2. Since P (fǫ) is compactly supported, lower Lp estimates for P (fǫ) result
from lower L2 estimates. We obtain the latter by exploiting again the fact that {gQ : Q ∈ G}
is an “almost orthogonal” family of functions.

Proposition 7.4 Let fǫ be defined by (7.8). The support of P (fǫ) is contained in [−1, 1] ×
[−1, 1] and

‖P (fǫ)‖2 ≥ cǫ1/2. (7.30)

Hence for p ≥ 2, ‖P (fǫ)‖p ≥ cǫ1/2.

46



Proof. By Bessel’s inequality,

∑

Q∈G

〈fǫ, h
(1,0)
Q 〉2|Q|−1 ≤ ‖P (fǫ)‖2

2. (7.31)

Using (7.31) and (7.12) we prove below that (7.30) follows from the following lower estimate
for the Haar coefficients

|〈fǫ, h
(1,0)
Q 〉| ≥ cǫ|Q| for Q ∈ G. (7.32)

To prove (7.32), fix a dyadic square Q = I × J with Q ∈ G. Write the Haar coefficient as

〈fǫ, h
(1,0)
Q 〉 = 〈gQ, h

(1,0)
Q 〉 +

∑

Q′∈G\{Q}

〈gQ′, h
(1,0)
Q 〉. (7.33)

Recall (7.26) asserting that

〈gQ, h
(1,0)
Q 〉 = ǫ4|Q|/π2.

Next we show that the off diagonal terms in (7.33) are negligible compared to 〈gQ, h
(1,0)
Q 〉. We

claim, ∑

Q′∈G\{Q}

|〈gQ′, h
(1,0)
Q 〉| ≤ Cǫ2|Q|. (7.34)

The first step in the verification of the claim consists in observing that the only contribution
to (7.34) comes from the index set {Q′ ∈ G \ {Q} : |Q′| > |Q|}. Indeed, if Q′ ∈ G, Q′ 6= Q and

|Q′| = |Q| then (7.28) in combination with (7.9) implies that 〈gQ′, h
(1,0)
Q 〉 = 0. Also by (7.29)

for Q′ ∈ G and |Q′| < |Q| we have 〈gQ′, h
(1,0)
Q 〉 = 0.

Next we provide an estimate for the contribution to (7.34) coming from {Q′ ∈ G \ {Q} :
|Q′| > |Q|}. Choose k ∈ N so that |Q| = ǫ4k and let k′ ∈ N satisfy k′ < k. There exists at most
one square Q′ ∈ G satisfying

|Q′| = ǫ4k′

and 〈gQ′, h
(1,0)
Q 〉 6= 0.

Next fix Q′ = I ′ × J ′ with |Q′| = ǫ4k′
and k′ < k. Write Q = I × J and Q′ = I ′ × J ′. Let lI

denote the left endpoint of I. Recall that Lip(sI′) ≤ C|I ′|−1 and
∫
|dJ(x2)|dx2 ≤ C|J |. Hence,

|〈gQ′, h
(1,0)
Q 〉| =

∣∣∣∣
∫

(sI′(x1) − sI′(lI))hI(x1)dx1

∣∣∣∣ ·
∣∣∣∣
∫

J

dJ ′(x2)dx2

∣∣∣∣
≤ C|I| · |I ′|−1|Q|
= Cǫ2k−2k′|Q|.

(7.35)

By definition of gQ′ and h
(1,0)
Q if |Q′| > |Q| and 〈gQ′, h

(1,0)
Q 〉 6= 0 then dist(Q′, Q) ≤ C diam(Q′).

It now follows from (7.35) that for any Q ∈ G,

∑

{Q′∈G, |Q′|>|Q|}

|〈gQ′, h
(1,0)
Q 〉| ≤ C|Q|ǫ2k

k−1∑

k′=1

ǫ−2k′

≤ Cǫ2|Q|.
(7.36)
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Thus by (7.36) we verified the claim (7.34). Hence we have (7.32). It remains to show how the
coefficient estimates (7.32) imply the norm inequality of (7.30). Using first (7.31) then (7.32)
and (7.12) we obtain

‖P (fǫ)‖2
2 ≥ cǫ2

∑

Q∈G

|Q|

≥ cǫ.

7.4 The proof of theorem 7.1 .

We choose Lipschitz functions A,B with specification of the previous sub-section and define
testing functions g = s[0,1] ⊗ d[0,1], fǫ as above.

Consider first the estimate (7.4) of Theorem 7.1. Let 1 < p ≤ 2. Fix η > 0. Let g =
s[0,1] ⊗ d[0,1] be defined by (7.7). Since g is bounded and supported in [0, 1] × [−ǫ, ǫ], we have

‖g‖p ≤ Cǫ1/p. (7.37)

Next observe that for the square function S(P (g)) we have the obvious estimate S(P (g)) ≥
|〈g, h(1,0)

[0,1[×[0,1[〉|. Next recall that ‖P (g)‖p ∼ ‖S(P (g))‖p hence ‖P (g)‖p ≥ c|〈g, h(1,0)
[0,1[×[0,1[〉|. By

(7.26), we have 〈g, h(1,0)
[0,1[×[0,1[〉 = 4ǫ/π2, hence

||P (g)||p ≥ cǫ. (7.38)

By (7.37) and (7.25)
‖g‖1/p−η

p ‖R1(g)‖1/q+η
p ≤ Cǫ1+η. (7.39)

Combining (7.38) and (7.39) yields

||P (g)||p
‖g‖1/p−η

p ‖R1(g)‖1/q+η
p

≥ cǫ−η.

Since η > 0 is fixed and ǫ > 0 is arbitrarily small we verified (7.4).
Next we turn to the case p ≥ 2. The test function fǫ is defined by (7.8). Proposition 7.2

and Proposition 7.3 give the upper bounds

‖fǫ‖p ≤ Cp and ‖R1(fǫ)‖p ≤ Cpǫ.

Hence for η > 0
‖fǫ‖1/2−η

p ‖R1(fǫ)‖1/2+η
p ≤ Cpǫ

1/2+η.

By Proposition 7.4 we have the lower estimate

‖P (fǫ)‖p ≥ cpǫ
1/2.

so that
‖P (fǫ)‖p

‖fǫ‖1/2−η
p ‖R1(fǫ)‖1/2+η

p

≥ cpǫ
−η.
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