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THE CARNOT-CARATHEODORY DISTANCE AND THE
INFINITE LAPLACIAN 6/03/08

THOMAS BIESKE, FEDERICA DRAGONI, JUAN MANFREDI

ABSTRACT. In R™ equipped with the Euclidean metric, the distance from the origin
is smooth and infinite harmonic everywhere except the origin. Using geodesics, we
find a geometric characterization of when the distance from the origin in an arbitrary
Carnot-Carathéodory space is viscosity infinite harmonic at a point outside the
origin. We specifically show that at points in the Heisenberg group and Grushin
plane where this condition fails, the distance from the origin is not a viscosity
subsolution. We also show that at the origin, the distance function is not a viscosity
supersolution.

1. INTRODUCTION

In the Euclidean setting, it is easy to show by direct computation that the distance
from the origin is (smoothly) infinite harmonic away from the origin. Such a result
can not be obtained in Carnot-Carathéodory spaces because the distance function is
not necessarily smooth off the origin [12, 17, 18]. We therefore, examine the infinite
Laplace equation from the viewpoint of viscosity solutions. We discover that the
distance from the origin does not even satisfy the infinite Laplace equation in the
viscosity sense at all points. Using geodesics, we find a geometric characterization
of when the distance from the origin is indeed a viscosity solution. The Heisenberg
group and Grushin plane will be examined closer, showing that when this condition
fails at a point, the distance need not be a viscosity solution. This differs from the
eikonal equation, in which the distance from the origin is a viscosity solution to the
eikonal equation at all points outside the origin [12]. At the origin, the distance
function is a viscosity subsolution to the infinite Laplace equation, but not a viscosity
supersolution.

We divide the paper up as follows: Section 2 discusses Carnot-Carathéodory spaces
while Section 3 concerns viscosity infinite harmonic functions and their key properties.
Section 4 is the main section, presenting the infinite Laplace material discussed above.
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2. CARNOT-CARATHEODORY SPACES

In this section, we will briefly discuss the spaces under consideration. We first note
that a general Carnot-Carathéodory space is a manifold of topological dimension n.
The tangent space is generated by linearly independent vector fields X1, Xs, ..., X,,,
with m < n, that satisfy Hormander’s condition. That is, the vector fields and their
Lie brackets span the tangent space at each point. By Chow’s Theorem (See, for
example, [3].) any two points can be joined by a curve whose tangent vector lies in
span{X;}™,. The natural distance between points x and y, denoted d(z,y), is the
infimum of lengths of such curves joining x and y. Thus, Carnot-Carathéodory spaces
are length spaces.

Calculus on Carnot-Carathéordory spaces is defined using the given vector fields
Xy, Xs, ..., X,,. The horizontal gradient of a smooth function w is given by

Xu = (Xju, Xou, ..., Xpu)

and the symmetrized second order horizontal derivative matrix (X?u)* has entries
2, \* 1
(XFu)j; = §(Xiquu + X;uX;u)

for i,7 = 1,2,...,m. Using these derivatives, the main operator we consider is the
infinite Laplace operator, defined by

Asou = ((X%u)* Xu, Xu) = Z XiuX;uX; X;u.

3,j=1

We concern ourselves with three main types of Carnot-Carathéodory spaces, namely
Carnot groups, Grushin-type spaces and Riemannian manifolds. Carnot groups, de-
noted G, are Carnot-Carathéodory spaces with a non-abelian algebraic group law.
The tangent space is a stratified nilpotent Lie algebra, denoted g, with decomposi-
tion

g=VioWe --aV,

for appropriate vector spaces that satisfy the Lie bracket relation [V;, V}] = Vi4;. The
exponential map exp : g — G can be taken to be the identity map. The exponential
map is used to define natural dilations ¢, for » > 0 on G via the dilations on g, also
denoted §,., given by 6,(V;) = r'V;.

The (first) Heisenberg group H is a Carnot group that will deserve our close atten-
tion. The Heisenberg algebra h can be identified with R? in coordinates (21, T2, x3)
spanned by a basis consisting of vector fields X7, X5, and X3 given by

8 ) 8 3 T (9 (9
= 2L Xy= Xy= —.
8x1 2 8133’ 2 8%2 + 2 8233’ and 3 (91:3
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By taking Lie brackets, it is easy to see that w = 2 and 6, (1, 19, 13) = (r@y, 12, 7%03).
The Heisenberg group also has a smooth gauge bi-Lipschitz equivalent to the Carnot-
Carathéodory distance function. For a point z = (x1, 9, x3), it is given by

1
1

g(z,0) = ((x% +23)° + mg)

For further details concerning Carnot groups and the Heisenberg group, the interested
reader is directed to [3], [4], [14], and the references therein.

The second class of spaces under consideration, Grushin-type spaces, lack an al-
gebraic group structure. Their tangent space is constructed by considering R"™ with

coordinates (z1,z,...,x,) and the vector fields
0
Xi: i\L1, L2y, Lj—1) 7~
pi(x1, T2 13 m
for i = 2,3,...,n where p; is a (possibly constant, but not identically zero) polyno-
mial. We decree that p; =1 so that
0
X =—.
! 8301
Points in the Grushin-type space are also denoted (z1,xs,...,x,). Global dilations

do not, in general, exist. A special Grushin-type space under consideration is the
Grushin plane, denoted G, which has n = 2 and py = x;. For further results on
Grushin-type spaces, the interested reader is directed to [3], [5], [6] and the references
therein.

Note that when m = n and the vectors vanish nowhere, we are in the Riemannian
case. See [2] and [7] for further discussion.

3. VISCOSITY INFINITE HARMONIC FUNCTIONS AND COMPARISON WITH CONES

As discussed above, our main equation under consideration is the infinite Laplace
equation given by
—Agu = 0.

We now define appropriate weak solutions to this equation. Namely,

Definition 1. An infinite harmonic function u is a continuous function that is a
viscosity solution to the infinite Laplace equation. That is, u satisfies the following;:

IL1 For any point xy and function ¢ with X;X;¢ continuous for all 7, j such that
u(zg) = ¢(xg) and u(x) < ¢(z) near zg, we have —Ap(z9) < 0 (u is a
viscosity infinite harmonic subsolution).

IL2 For any point xy and function ¢ with X;X ;1 continuous for all ¢, 7 such that
u(zo) = ¥(zg) and u(x) > ¥(x) near xp, we have —A(zg) > 0 (u is a
viscosity infinite harmonic supersolution).
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It is an open problem if infinite harmonic functions are uniquely determined by their
boundary values in general Carnot-Carathéodory spaces. The uniqueness theorems in
Carnot groups, Grushin-type spaces and Riemannian manifolds motivated our focus
on these spaces. Jensen in R™ [15], Bieske, in the Heisenberg group [4], Grushin-type
spaces [6] and Riemannian manifolds [7] and Wang in Carnot groups [20] proved the
following theorem.

Theorem A. Let () be a bounded domain and let 0: 00 — R be a continuous function.
Then the Dirichlet problem

(3.1)

—Aou=0 on
{ u=40 on o2

has a unique viscosity solution wu.

It is well-known that in Euclidean space, when 6(y) = a + b d(x,y) for some fixed
x and a,b € R, the viscosity solution to Equation (3.1) is u(y) = 6(y) on all of
Q and such solutions are cones [10]. It is natural to ask if this is still the case in
Carnot-Carathéodory spaces. There are two kinds of cones when using the Carnot-
Carathéodory distance function. The first kind are called infinite harmonic cones
and are defined using viscosity solutions of the infinite Laplacian. That is,

Definition 2. Let a,b € R. Given a point x and an open set U, we define the function
D:9(U\{z}) — R by

D(y) =a+bd(z,y).
The infinite harmonic cone based on (U, x) is the unique viscosity infinite harmonic
function w[‘}bx in U\ {z} such that

wf}’; =D on O(U\{z}).

The second kind are called metric cones and are defined by extending the function
D in the definition above to all of U. As discussed above, in Euclidean space these two
definitions coincide. However, we will show below that in Carnot groups, Grushin-
type spaces and Riemannian manifolds, these definitions produce different cones.

The first use of these cones is to define the comparison with cones property. Namely,

Definition 3. Let U be an open set, and let u : U — R. Then u enjoys comparison
with infinite harmonic cones from above in U if for every open V C U and a,b € R
for which

uly) < Wiy (v)
holds on 9(V \ {z}), then we have

u(y) < wiit (y)

in V. A similar definition holds for when the function uw enjoys comparison with
infinite harmonic cones from below in U. The function u enjoys comparison with
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infinite harmonic cones in U exactly when it enjoys comparison with infinite harmonic
cones from above and below.

The function u enjoys comparison with metric cones from above in U if for every
open V C U and a,b € R with b > 0 for which

u(y) < D (y)
holds on (V' \ {x}), then we have
u(y) < D™ (y)

in V. The function u enjoys comparison with metric cones from below in U if for
every open V C U and a,b € R with b > 0 for which

Catb d(x,y)

uly) > D (y) € a—bd(z,y)

holds on 9(V \ {z}), then we have
u(y) = D™ (y)

in V. The function u enjoys comparison with metric cones in U exactly when it
enjoys comparison with metric cones from above and below.

The uniqueness of infinite harmonic functions, proved via a comparison principle
produces the following lemma.

Lemma 3.1. ([6, 7]) A wviscosity infinite harmonic supersolution in U enjoys com-
parison with infinite harmonic cones from below in U. Similarly, a viscosity infinite
harmonic subsolution enjoys comparison with infinite harmonic cones from above in
U and an infinite harmonic function enjoys comparison with infinite harmonic cones
i U.

Before discussing comparison with metric cones, we recall the definition of a Lips-
chitz function on a metric space.

Definition 4. Let (X, d) be a metric space and let Y be a proper subset of X. An
L-Lipschitz function F': Y — R is a function with

e F(z)-F

(3.2) Lip(F,Y) © sup [F(w) = Fly)l <L < 0.
"—f,y#EY d(l’, y)
a7y

Using Lipschitz functions, we can define the important concept of an absolute
minimizing Lipschitz extension (AMLE) on a metric space.

Definition 5. Let (X,d) be a metric space and Y a proper subset of X. Given a
Lipschitz function F' : Y — R, we say that v : X — R is an AMLE of F' on X exactly
when

(i) Lip(u, X) = Lip(F,Y).
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(ii) for any open set U CC X, we have
Lip(u, U) = Lip(u, 0U).

Champion and De Pascale [8] proved the following theorem in length spaces. Recall
that a length space is a space, such as a Carnot-Carathéodory space, in which the
distance between two points is the infimum of the lengths of paths connecting the
points.

Theorem B. Let (X,d) be a length space and Y proper open subset of X, then
u:Y — Ris an AMLE if and only if u satisfies comparison with metric cones.

In addition, the tug-of-war approach in [19] produces the following theorem.

Theorem C. Let (X, d) be a length space andY a proper subset of X. For any given
Lipschitz function F 'Y — R, there exists a unique AMLE of F' on X.

Because both types of cones are used to characterize different mathematical con-
cepts, it is natural to attempt to establish a relationship between metric cones and
infinite harmonic cones. We first need to recall a result of Monti and Serra-Cassano

18].

Theorem D. Given a point y in a Carnot group, Grushin-type space or Riemannian
manifold, for almost every x, we have

[Xd(z,y) | < 1.
Using this result, we then have the following proposition.
Proposition 3.2. ([6, 7]) Given a pair (U,z) and a,b € R, the cone w(a]l; satisfies
w[a]l;(y) < a+abs(b)d(z,y)
w(a]l;(y) > a—abs(b)d(z,y)

fory € U. Here, abs(-) denotes absolute value.
We then have the following lemma.

Lemma 3.3. A function that enjoys comparison with infinite harmonic cones from
above enjoys comparison with metric cones from above. A function that enjoys com-
parison with infinite harmonic cones from below enjoys comparison with metric cones
from below. Thus, infinite harmonic functions enjoy comparison with metric cones.

Proof. Let U be an open set and V CC U. Let z be a point and let a,b € R with
b > 0 define a metric cone D*(y) = a+b d(z,y) such that D™ > w on (V' \{z}). Let
w{“/l; be the infinite harmonic cone in V equal to D" (y) on (V' \ {z}). Then w{'”/:l; >
on O(V '\ {z}). Since u enjoys comparison with infinite harmonic cones from above,

we have
a,b .
u(y) < wy(y) in V.
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The result follows from the theorem. The second statement is proved in a similar
manner and omitted. The third follows from the first two. ([l

Combining the results in this section, we have the following corollary.

Corollary 3.4. Let X be a Carnot group, Grushin-type space or Riemannian man-
ifold, let Y be a bounded domain in X and let F': Y — R be a Lipschitz function.
The function u is the unique AMLE of F into Y if and only if u is infinite harmonic
inY and u=F on JY.

Proof. Let u be the unique AMLE. If v is the unique infinite harmonic function on
Y with boundary data F', v enjoys comparison with infinite harmonic cones and thus
comparison with metric cones. By uniqueness of AMLE’s, v must equal . O

4. THE DISTANCE FUNCTION AND THE INFINITE LAPLACIAN

In the previous section, we showed that the infinite harmonic functions enjoy com-
parison with metric cones. The interesting question is whether the distance function
itself is infinite harmonic. As mentioned above, this is the case in Euclidean space
[10]. The answer to this question depends on the geometry of the space.

We begin with two geometric definitions concerning points in a domain U.

Definition 6. Let U be a bounded domain, and x an arbitrary point.
1 A point y € U is geodesically near with respect to the point z if

yeA=H{ U 7 : 7y is a geodesic between z and z}.
z€0(U\{z})

2 A point y € U that is not geodesically near is geodesically far with respect
to the point x. That is, y ¢ A.
3 A point y € U is boundary near with respect to the point x if there
exists z € QU so that
d(z,y) < d(z, z).
4 A point y € U that is not boundary near is boundary far with respect to
the point x. That is, for all z € U, we have

d(z,y) > d(z, z).

We drop the phrase “with respect to z” in these definitions when the point x is
understood.

We first note that because geodesics need not be unique, the set A actually in-
cludes all geodesics between points x and z. Points that are geodesically near with
respect to = lie on some geodesic from x to the boundary point z. Additionally, it
is clear that geodesically near implies boundary near, or equivalently, boundary far
implies geodesically far. We next note through the following examples that, unlike
the Fuclidean case, interior points need not be geodesically near.
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Example 7. Boundary far points. Constant boundary data with b > 0.
Consider the Riemann sphere with the spherical metric so that the geodesics are arcs
of great circles. Let the domain U be the southern hemisphere and fix the point x as
the north pole. Then, on the boundary of U, a + b d(z,y) equals a fixed constant D
for all a,b € R. Having constant boundary data, the corresponding infinite harmonic
cone is the constant D. Clearly, we have D < a+b d(x,y) in U and D = a+b d(z,y)
on JU. We note that the interior points are both boundary far and geodesically far.

Example 8. Boundary near does not imply geodesically near. Let x be the
origin in the Heisenberg group H and consider the ball of radius R centered at the
origin, denoted Bg(0). All points in Bg(0) are boundary near. However, not all
points are geodesically near. In particular, the points in Ar are geodesically far. See
the figure below.

(2,9)

FiGURE 1. Heisenberg ball: set of points geodesically far from the origin.

Example 9. Boundary near does not imply geodesically near. Let x be the
origin in the Grushin plane G and consider the ball of radius R centered at the
origin, denoted Bg(0). All points in Bg(0) are boundary near. However, not all
points are geodesically near. In particular, the points in Ay are geodesically far. This
corresponds to the two-dimensional version of Figure 1 above.

We next fix a,b € R with b > 0, a bounded domain U and a point x. We will write

wp for the infinite harmonic cone in U with boundary data D(y) iy d(x,y) on

OU. We begin by considering cones with constant boundary data. In the case when
b =0, we have wp(y) = D(y) = a for all points y in U. In the case when b > 0, we
have the following proposition motivated by Example 7.

Proposition 4.1. Let D(y) be defined as above. If D(y) is constant with b > 0 then
rgU.
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Proof. Suppose € U. Then x € (U \ {x}) and D(x) = a. Thus, D(y) = a for all
y € O(U \ {z}). Choose x # z € (U \ {z}). Then

a=D(z)=a+bd(z,z2)
and since b > 0 we arrive at a contradiction. O

Because the boundary data is constant, the uniqueness of the infinite harmonic
cones produces the constant infinite harmonic cone wp. We have the following theo-
rem.

Theorem 4.2. Let U be a bounded domain and a,b € R with b > 0. Define D(y) =
a+bd(x,y) as above. Suppose D(z) = K for z € (U \ {x}) = 0U for some constant
K. Let wp be the (constant) infinite harmonic cone with boundary data K. Then the
point y € U is boundary far with respect to x exactly when wp(y) < D(y).

Proof. Suppose that y is boundary far with respect to x. Because y is an interior
point to U \ {x}, there is an r > 0 so that the ball B(y,r) CC (U \ {z}). Let v be a
geodesic from x to y. Then, there is a point & € (B(y,r) \ {y}) N~y with the property

d(z,y) = d(x,2) + d(z,y).

Using this property, we see that D(y) > D(z). Suppose that wp(y) = D(y). We
would then have

D(y) =wp(y) = K = wp(2) < D(&) < D(y).

We note that the penultimate inequality is a consequence of Proposition 3.2 and
therefore conclude that wp(y) < D(y).
Suppose next that wp(y) < D(y). Then by Proposition 3.2, we have

K =wp(y) < D(y).
That is, for any z € (U \ {z}),
a+bd(z,z) <a+bd(x,y).
Because b > 0, we conclude that y is boundary far with respect to x. ([l

The case of non-constant cones is more involved. We have the following partial
result that parallels the constant case.

Theorem 4.3. Let U, x,a,b be as in Theorem 4.2. Suppose that D(z) is non-constant
on O(U\{z}) and let wp be the (non-constant) infinite harmonic cone with boundary
data D(z). Then we have the implications

y 18 boundary far with respect to x =

wp(y) < D(y) = y is geodesically far with respect to x.
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Proof. We first observe that as a non-constant (continuous) infinite harmonic function
on a compact set, we have that wp achieves its maximum on U. By the strong
maximum principle, which follows from the Harnack inequality [16], this maximum
can occur only on the boundary.

Now assume that y is boundary far. Suppose wp(y) = D(y). Because y is boundary
far and b > 0, for all z € (U \ {z}) we have D(y) > D(z). That is,

wp(y) > wp(z)

for all z € (U \ {x}). This contradicts the fact that the maximum of wp occurs only
on the boundary. We conclude that wp(y) < D(y).
The contrapositive of the second assertation is an observation in Section 1.4 of

1]. O

Ideally, we would like to prove both converse implications of the above theorem.
This, however, is not possible, since if both converse statements are true, we would
have proved that all geodesically far points are boundary far, which is not necessarily
the case as Example 8 and Example 9 show. We conclude that the converse statements
are not necessarily both true. We have the following lemma that addresses the first
reverse implication.

Lemma 4.4. Let U,x,a,b,d(y) and wp(y) be as in Theorem 4.3. Additionally, sup-
pose U has points that are boundary far with respect to x and points that are boundary
near with respect to x. Then there exists a point y € U that is boundary near with
wp(y) < D(y). Thus, wp(y) < D(y) does not necessarily imply that y is boundary

far.

Proof. Suppose that wp(y) < D(y) implies y is boundary far. Then the logically
equivalent implication that y is boundary near implies wp(y) = D(y) would be true.
We will show, however, that the latter implication is false.

By the continuity of the distance function, we may construct a sequence {y, }nen
of points in U that are boundary near with respect to z and converge to the point
y € U that is boundary far with respect to xz. By our assumption, we have wp(y,) =
D(y,). By continuity of the cone functions, this implies wp(y) = D(y). However, x is
boundary far, and so Theorem 4.3, which showed that wp(y) < D(y), is contradicted.

O

In order to examine the second reverse implication, we need to further explore when
points are geodesically near, for at those points, we have the two cones are equal. We
must, therefore, focus on the geodesics themselves. We recall the following definition.

Definition 10. Given a geodesic space (X, d), let v : [0,1] — X be a minimizing
geodesic from = € X to y € X such that v(0) = x and (1) = y. Then ~ is extendable
if there is some € > 0 so that the curve 7 : [0,1 + ¢] — X is a minimizing geodesic
from  to 4(1 +¢) and |1 = 7.
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We note some important examples and non-examples of extendable geodesics.

Example 11. Let (X, d) be the Riemann sphere with the spherical metric. Geodesics
from the north pole to the south pole are not extendable. Geodesics from the north
pole to any other point are extendable. (Cf. Example 7.)

Example 12. Let (X, d) be the Heisenberg group H. Then geodesics from the origin
to all points off the x3-axis are extendable, while geodesics terminating on the x3-axis
are not extendable [3].

Example 13. Let (X, d) be the Grushin plane G. Geodesics from the origin ending
at the zo-axis are not extendable, while those ending off the zs-axis are extendable

3]-
We now relate points at which a geodesic is extendable to geodesically near points.

Proposition 4.5. Fiz a point x in a Carnot-Carathéodory space. Lety be an arbitrary
point. Then there exists a bounded domain U with y € U so that y is geodesically
near with respect to x if and only if there exists some geodesic v from x to y that is
extendable.

Proof. Fix the point z. First, let U be a bounded domain so that y is geodesically near
with respect to x. By definition, there is a geodesic from x to a point z € (U \ {z})
that meets y. The restriction is also a geodesic from x to y and is extendable to z.
Next, let v be an extendable geodesic from = to y. Let B(y,r) be the open ball
centered at y with radius 7 << 1 so that there exists a point z € 4 N 0B(y,r). Let
U be a bounded domain containing y and having z € 9(U \ {z}). Then y lies on a
geodesic from = to z and is therefore geodesically near with respect to x. 0

Theorem 4.3 leads to the following corollary.

Corollary 4.6. Let x be a point in a Carnot-Carathéodory space where infinite har-
monic functions are unique, i.e., Theorem A holds. Then the metric cones are infinite
harmonic at points y where a geodesic from x to y is extendable. In particular, if x
is the origin of the Heisenberg group H then the metric cones are infinite harmonic
everywhere except possibly the xs-axis and if x is the origin of the Grushin plane G
then the metric cones are infinite harmonic everywhere except possibly the xs-axis.

Proof. Let y be a point where a geodesic from z to y is extendable. By Proposition
4.5, there is a domain U so that y € U is geodesically near with respect to x. By
Theorem 4.3, wp(y) = D(y). O

Our next goal is to remove the word “possibly” from the above two specific exam-
ples. We have the following theorem.

Theorem 4.7. Let xo € H be a point of the form (0,0,23) with 2§ # 0 or xy € G

a point of the form (0,z3) with 3 # 0. Then there is a function ¢ with X;X;¢
continuous for all i,j such that ¢(xy) = d(0,2¢) and d(0,z) < ¢(x) near xo but
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—Asd(xg) > 0. Thus, the distance from the origin is not a viscosity subsolution to
the infinite Laplace equation at these points.

Proof. We begin with the Grushin plane G and recall the Grushin vector fields are
X, = 71 and X, = xla . Let zg = (0,29) with 23 # 0 and let = (1, z2) be near
xo. Note that the vector X2 is the zero vector at xy. Let ¢ : G — R be the function

11
¢($) = ¢($1, IQ) = \/7_1'(,217411 + 4(17%)2 -+ 51‘1 — 2%% + (I‘z — .]}'(2))4

Then ¢ is smooth near zy with X1¢(z9) = 1 and X, X;¢(zg) = —4. We therefore
have

—Ds(20) = —{(D*d(0))* Xp(0), Xp(0)) = = X1 X16(20)(X16(0))* =1 > 0.
Thus, if ¢(x) > d(0,x) near xy, then d(0, ) is not a viscosity subsolution at z and
is therefore not infinite harmonic at xy. (Condition IL1 would not hold.)

Recalling that abs(+) is the absolute value, we note that via the geodesic formulas in
3], ¢(xg) = /2w abs(zy) = d(0, x) and so we only need to show that d(0,z) < ¢(z)
near zo. If = is of the form (0, z5), then

d(0,2) = \/2mabs(z2) < \/2mabs(xy) + (13 — 23)* = ¢(z)

with equality occurring only when z = xy. At other points, we can see via a computer
algebraic program that ¢(z) — d(0,z) > 0in a ne1ghborhood of xg.

Similarly, in the Heisenberg group, we let xy = (0,0,29) with 23 # 0 and let
¢ : H — R be the function

11
() = @@, w2, w5) = V(2] +23)" +1625) + 5 (w1 4 ) — 2(2] +3) + (w — 23)".
Then ¢ is smooth near zo with X;¢(zo) = Xa¢(zo) = 3 and

N —4 0
oy = (57
so that, as above,

“Ad(20) = —((D?(r0)) X(20), Xb(x0)) = (2 x %) (2 %) _2>0.

We again note that using [3], ¢(zo) = 24/7abs(z3) = d(0, z) and so we only need to
show that d(0,z) < ¢(x) near xy. For points x of the form (0,0, z3), we have
d(0,x) = 2y/mabs(x3) < 2y/mabs(xs) + (23 — 23)* = é(2)

with equality only when x3 = z3. At other points, we proceed as in the Grushin plane
case. U

Having shown that the distance function is not a viscosity subsolution at these
points, it is natural to ask if it is a viscosity supersolution there. We answer in the
affirmative with the following theorem and corollary.



C-C DISTANCE AND THE INFINITE LAPLACIAN 13

Theorem 4.8. Let xg € H be a point of the form (0,0,z9) with x5 # 0. Let T =
(x1, ). For real numbers ny,m2,m3 and a 2 X 2 symmetric matriz X, consider the
following inequalities based on the Taylor series [4]:

(4.1) d(xz,0) > d(z0,0) 4+ x1m + x2m2 + o(d(x, x0)) as v — xo.

d(x,0) < d(z0,0) + 111 + 29 + (T3 — 2973
1
(4.2) - i(Xf, Z) + o(d*(z,20)) as x — xy.
If n1,ma,ms and X satisfy these inequalities, then ny = 1y = 0.

Similarly, let zg € G be a point of the form (0,x9) with x5 # 0. For real numbers
V1, Vg, v3, consider the following inequalities based on the Taylor series [5]:

(4.3) d(x,0) > d(z0,0) 4+ z111 + o(d(z, x0)) as x — .

d(z,0) > d(z0,0) + 2101 + 2(x2 — 29) 1

1
(4.4) + 5(351)21/3 + o(d*(z, w0)) as x — xo.

If vy, v5 and v satisfy these inequalities, then vy = 0.
Proof. We shall prove only the Heisenberg case, the Grushin case is similar and omit-

ted. If Equation (4.1) holds, it will hold for the points = (21,0, 23) as they approach
xo. Using the fact that = € B(0,d(x¢,0)) [3], we then have

0 > d(x,0) — d(xo,0) > zym + o(|z1]) as x — xo.
Dividing by |z1|, we obtain
0 > sgn(xy)n + o(1).

If 7 is strictly negative, then choosing x; < 0 produces a contradiction and if 7 is
strictly positive, then choosing x; > 0 also produces a contradiction. We conclude
that n; = 0. Similarly, o = 0. If 1,72, m3 and X satisfy Equation (4.2) then n; and
1 satisfy Equation (4.1). O

The following corollary gives the desired result.

Corollary 4.9. Let zy € H be a point of the form (0,0, 23) with 3 # 0 or zy € G a
point of the form (0,z39) with 25 # 0. Then the distance from the origin is a viscosity
supersolution to the infinite Laplace equation at these points.

Proof. We only prove the Heisenberg case, the Grushin case is similar and omitted.
If Condition IL2 is vacuous, we are done. If a function v satisfies the hypotheses
of Condition IL2, then by setting X1 (zo) = m1, Xotv(z0) = 12, X3¢ (29) = 13 and
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(X%9(x0))* = X, we have a solution to Equation (4.2)[4]. By the Theorem, X1 (xq) =
Xot(xo) = 0 and so

Condition IL2 holds and thus the distance is a viscosity supersolution. 0
We now consider the distance function at the origin. We recall from Section 2 that
a Carnot-Carathéodory space is defined as an n-dimensional manifold whose tangent

space is generated by m vectors. We also recall that for a vector v, v is the projection
of v onto the space V;. We then begin with the following theorem.

Theorem 4.10. Given a Carnot-Carathéodory space, let dim(Va) = mq and let the

point x have coordinates (xy,Ta,...,x,). Recall that T = (x1,xs,...,2y). For real
numbers N1, Mz, .« .y, Nmam, and a m X m symmetric matriz X, consider the following
inequalities based on the Taylor series [13]:
(4.5) d(z,0) < mei + o(d(x,0)) as x — 0.

i=1

m-+mo

| 2
(4.6) d(z,0) < Z x;n; + §<Xx,x> + o(d*(x,0)) as x — 0.
i=1

Then these inequalities hold for no choice of M1, M2, ..., Mmtm, 07 X.

Proof. Suppose Equation (4.5) held for some 7,72, ...,n, and for all points = near
the origin. In particular, it would hold for z = (21,0, ...,0), so that Equation (4.5)
becomes

21| < zim + of|z1]).
Dividing by |z1| we have
1 < (sgnxy)m + o(1).
For x; > 0 and letting z; — 07, we see that 1 < n;. For x; < 0 and letting z; — 07,
we see that 1 < —n;. We then have

I<m< -1
and conclude no such 7; can exist. If there are values 11,7, ..., Nmim, and X that
satisfy Equation (4.6) then ny, s, ..., 0, satisfy Equation (4.5). O

The inability to satisfy these equations produces the following corollary.

Corollary 4.11. In any Carnot-Carathéodory space, the distance from the origin is
a viscosity subsolution to the infinite Laplace equation at the origin.

Proof. Let ¢ be a function meeting the requirements of Definition 1. Then,
X16(0), X90(0),...X,,0(0) and (D?¢(0))* would satisfy Equation (4.6) [4, 5]. Thus,
Condition IL1 is vacuous. O
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We now will show that the distance from the origin need not be a supersolution at
the origin.

Theorem 4.12. In the Heisenberg group H and Grushin plane G, the distance from
the origin is not a vicosity supersolution to the infinite Laplace equation at the origin.

Proof. Consider the function h : H — R given by

1
h(z) = h(x1, 2, 73) = 5(371 + o) + 2(af + 23) + 3

and the function w : G — R given by
1
w(z) = w(xy, xg) = 2! + 223 + 3.

We consider first the Grushin case. First, we have w(0) = 0 = d(0,0) and we
can compute X;w(0) = 3 and X; X w(0) = 4. Thus, as in Theorem 4.7, we have
—A,w(0) = =1 < 0. We only need to show that d(x,0) > w(z) near the origin. Any
point z of the form (0, z3), we have d(0,z) = /27 abs(xs) and w(z) = z3. Thus for
small zo, we have d(z,0) > w(x). For other points, a graph of w(x) versus d(0, z)
shows that d(0,z) > w(x) with equality only at the origin.

The Heisenberg case is similar. We have h(0) = 0 = d(0,0) and

1 1
—Ach(0) = =(2x 5) +(2x 3) =-2<0.
We note that when a point z is of the form (0,0, x3), we have d(0,z) = /4w abs(z3)
while h(z) = x4 and so for 23 near 0, we have h(z) < d(0,z). As in the Grushin case,
it is easy to see that h(z) < w(x) near the origin. O

In summary, the Carnot-Carathéodory distance is infinite harmonic in the Heisen-
berg group and Grushin plane only at points where the geodesic is extendable. This
fact suggests that the operator A, is a better link to the metric of the space than
the classical Laplacian A, especially in non-commutative geometries such as Carnot-
Carathéodory spaces. At points away from the origin where the geodesics are not
extendable, the distance function is a viscosity supersolution, but not a viscosity
subsolution. At the origin, the opposite is true; the distance function is a viscosity
subsolution, but not a viscosity supersolution. This situation can be better visualized
in the Heisenberg group H and Grushin plane G through the following pictures.
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FiGURE 2. Carnot-Carathéodory distance from the origin in H.
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FiGure 3. Carnot-Carathéodory distance from the origin in H.
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FI1GURE 4. Carnot-Carathéodory distance from the origin in G.
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FiGUurE 5. Carnot-Carathéodory distance from the origin in G.
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