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Abstract

Let M be a compact Kähler manifold equipped with a Hamiltonian action of a compact Lie group
G. In [Invent. Math. 67 (1982), no. 3, 515–538], Guillemin and Sternberg showed that there is a
geometrically natural isomorphism between the G-invariant quantum Hilbert space over M and the
quantum Hilbert space over the symplectic quotient M//G. This map, though, is not in general unitary,
even to leading order in ℏ.

In [Comm. Math. Phys. 275 (2007), no. 2, 401–422], Hall and the author showed that when the
metaplectic correction is included, one does obtain a map which, while not in general unitary for any fixed
ℏ, becomes unitary in the semiclassical limit ℏ → 0. The unitarity of the classical Guillemin–Sternberg
map and the metaplectically corrected analogue is measured by certain functions on the symplectic
quotient M//G. In this paper, we give precise expressions for these functions, and compute complete
asymptotic expansions for them as ℏ→ 0.

Keywords: Geometric Quantization, Symplectic Reduction, Asymptotic Expansion, Laplace’s Method

1 Introduction.

Let M be a compact Kähler manifold with Kähler form ω. Suppose there exists a Hermitian line bundle

ℓ with connection with curvature −iω. For each positive integer k, the geometric quantization H(k)
M of M

is defined to be the space of holomorphic sections of ℓ⊗k. In the context of geometric quantization, k is
interpreted as the reciprocal of Planck’s constant ℏ.

Suppose moreover that G is a compact Lie group, with Lie algebra g, which acts on M in a Hamiltonian
fashion with moment map Φ : M → g∗. Under sufficient regularity assumptions, the symplectic quotient
M//G is again a compact Kähler manifold; denote the resulting Kähler form by ω̂. Assuming that the action

of G lifts, the bundle ℓ descends to a line bundle ℓ̂ → M//G, and the connection descends to one with
curvature −iω̂.

The space H(k)
M//G of holomorphic sections of ℓ̂⊗k is the result of reducing before quantizing. On the

other hand, one may first quantize and then reduce, which amounts to considering the space
(
H(k)

M

)G

of

G-invariant sections of ℓ⊗k.
A classical result of Guillemin and Sternberg [GS82] is that there is a natural invertible linear map Ak

from the “first quantize then reduce” space
(
H(k)

M

)G

to the “first reduce then quantize” space H(k)
M//G. From

the point of view of quantum mechanics, though, it is not only the vector space structure of the quantization
that is important, but also the inner product.

It is known that in general, the Guillemin–Sternberg map Ak is not unitary, and is not even unitary
to leading order as k → ∞ [Flu98], [Cha06], [HK06] [Li08], [Pao05], [MM07], [MZ05], [MZ06]. In [HK06],
the author and Brian Hall showed that when the so-called metaplectic correction is introduced, one obtains
an analogue Bk of the Guillemin–Sternberg map which, though still not unitary in general for any fixed k,
becomes unitary in the semiclassical limit k → ∞ (this was later shown to be the case in a more general
setting by Hui Li [Li08]).
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The unitarity, or lack thereof, of the map Ak (resp. Bk) is measured by a certain function Ik (resp. Jk)
on the symplectic quotient M//G, with unitarity achieved at least when Ik (resp. Jk) is identically 1. One
of the main results of [HK06] is that

lim
k→∞

Jk = 1,

where the limit is uniform on M//G. (There is an analogous computation for the limit of the Ik; see Section
1.1 below). We should also mention that in [MZ05] and [MZ06], Ma and Zhang, as well as Ma and Marinescu
in [MM07], show the existence of an asymptotic series which is related to that for Ik, and also compute the
first term.

Our main results are explicit expressions for Ik and Jk (Theorem 1.1) as well as complete asymptotic
expansion of the functions Ik and Jk as k → ∞ (Theorem 1.2). We state these results precisely in Section
1.1 below.

One may ask whether there are any cases in which Bk is asymptotically unitary to all orders, that is,
in which limk→∞ Jk = 1 + o(k−∞). Although we do not prove it here, our results suggest that such “exact
asymptotics” are not possible for compact M (see the remark following Lemma 3.3). Our results, as well as
those of [HK06], do not seem to depend crucially on the compactness of M , and indeed the obstruction to
“exact asymptotics” disappears when M is noncompact.

In the rest of this section, we describe our main results precisely and then finish by recalling from [HK06]
the precise definition of modified Guillemin–Sternberg-type map Bk. In Section 2 we build on the results
of [HK06] to give precise expressions for the densities Ik and Jk which make the asymptotic computations
possible. In Section 3 we prove our main result, Theorem 1.2, by applying previous results of the author
[Kir08] to the case at hand.

1.1 Main results.

Let (M2n, ω, J,B := ω(·, J ·)) be a compact Kähler manifold with symplectic form ω, complex structure J and
metric B. Let ℓ → M be a Hermitian line bundle over M with connection ∇ with curvature −iω. Suppose
that a compact Lie group G of dimension d acts on M (preserving the Kähler structure) in a Hamiltonian
fashion with moment map Φ : M → g∗, and suppose moreover that the induced infinitesimal action on ℓ
(given by the quantization of the components of the moment map) exponentiates to a global action of G on
ℓ. We denote the components of the moment map by φξ : M → R, for ξ ∈ g.

Suppose that 0 is a value and a regular value of Φ, and moreover that G acts freely on the zero set
Φ−1(0). In this case, the symplectic quotient M//G := Φ−1(0)/G is a compact smooth manifold which
inherits a Kähler structure from that of M ; denote the induced symplectic form on M//G by ω̂. The line

bundle ℓ descends to a Hermitian line bundle ℓ̂ → M//G, and the connection ∇, restricted to G-invariant

sections, induces a connection on ℓ̂. Throughout, x0 ∈ Φ−1(0) will denote a point in the zero-section, and
[x0] := G · x0 will denote the corresponding point in the symplectic quotient.

The infinitesimal action of G on M can be continued to an infinitesimal action of the complexified
group1 GC by setting X

√
−1ξ := JXξ. This action exponentiates to an action of GC on M . The saturation

GC ·Φ−1(0) of the zero set by the group GC is called the stable set Ms. It is an open submanifold of M , and
the complement is of complex codimension at least one. The (free) action of GC on Ms gives the stable set
the structure of a principle GC-bundle πC : Ms → M//G. Indeed, the complex structure on the symplectic
quotient can be understood via the Kähler isomorphism

Φ−1(0)/G = M//G = Ms/GC.

Moreover, the action Λ : exp(
√
−1g) × Φ−1(0) → Ms gives the stable set the structure of a trivial vector

bundle2 over Φ−1(0) with fiber g (see [HK06], [Li08], or [Sja95] for details).

1For each compact Lie group G there exists a unique Lie group GC such that G is a maximal compact subgroup which sits
inside GC as a totally real submanifold, and such that the Lie algebra of GC is the complexification of g. The group GC is called
the complexification of GC. It is diffeomorphic to T ∗G, and the multiplication map G× exp(

√
−1g) → GC is a diffeomorphism.

See [Kna02, Sec VII.1] for details.
2This does not imply that Ms is a trivializable GC-bundle over M//G; in general the zero set Φ−1(0) is a non-trivial G-bundle

over M//G.
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The geometric quantization H(k)
M of M is the space of holomorphic sections of ℓ⊗k, k ∈ N. We make H(k)

M

into a Hilbert space by equipping it with the inner product

〈s, t〉 := (k/2π)
n/2

∫

M

(s, t)
ωn

n!
,

where (s, t) denotes the pointwise Hermitian product in ℓ⊗k.
Let K :

∧n (
T 1,0M

)∗
denote the canonical bundle of M. Suppose that K admits a square root3, and

denote a choice of square root by
√

K. Sections of
√

K are called half-forms, and
√

K is called a half-form
bundle. A section of K is said to be holomorphic if in each local holomorphic coordinate chart, the coefficient
of dz1 ∧ · · · ∧ dzn is a holomorphic function. Suppose that the action of G lifts to an action on

√
K which is

compatible with the action on K induced by pushforward.

There is a natural inner product on the space of sections of
√

K: if µ, ν ∈ Γ
(√

K
)
, then µ2 ∧ ν̄2 ∈

∧2n
T CM is a (complex) volume form. We can trivialize the bundle

∧2n
TM by the (global, nowhere

vanishing) section ωn/n!, and hence there is a function (µ, ν)—the pointwise inner product of µ and ν—such
that

µ2 ∧ ν̄2 =: (µ, ν)2ωn/n!. (1.1)

The metaplectic correction, by definition, amounts to considering ℓ⊗k ⊗
√

K; that is, the (half-form)

corrected quantization Ĥ(k)
M of M is the space of holomorphic sections of ℓ⊗k ⊗

√
K. The pairing (1.1) is a

special case of the BKS pairing in geometric quantization [Woo91, Sec 10.2]. It defines a Hermitian form

on ℓ⊗k ⊗
√

K and hence an inner product on Ĥ(k)
M : for sections t1, t2 ∈ Γ(ℓ⊗k ⊗

√
K) which are locally

represented by tj(x) = sj(x) ⊗ µ(x), we set

(t1, t2)(x) = (s1(x), s2(x))(µ, ν)(x).

Let
(
H(k)

M

)G

denote the space of G-invariant holomorphic sections of ℓ⊗k, and similarly
(
Ĥ(k)

M

)G

the

space of G-invariant holomorphic sections of ℓ⊗k ⊗
√

K. The restriction of a G-invariant holomorphic section

s ∈
(
H(k)

M

)G

to Φ−1(0) descends to a section of ℓ̂ which we denote by Aks. In [GS82], Guillemin and

Sternberg show that Aks is holomorphic, and moreover that Ak is an isomorphism of vector spaces.
In [HK06], the author and Brian Hall showed that Ak is generically not unitary, and does not even

become approximately unitary as k → ∞. In Section 1.3 below, we will recall from [HK06] a similar

map Bk :
(
Ĥ(k)

M

)G

→ Ĥ(k)
M//G, for k sufficiently large, relating the quantum spaces in the presence of the

metaplectic correction. To define the map Bk requires more than just “restrict and descend” because two
half-forms on M pair to give an (n, 0)-form on M . But two half-forms on the quotient should pair to give
an (n − d, 0)-form, so a mechanism to reduce the degree is needed. The map Bk turns out to be essentially
a square root of the map “restrict to Φ−1(0), contract with the vectors in the directions of the infinitesimal
G-action, and descend the G-invariant result to the quotient”. The map Bk is also in general not unitary,
but it does become approximately unitary as k → ∞.

To measure the unitarity of the maps Ak and Bk, the author and Brian Hall showed in [HK06] that there
exist functions Ik ∈ C∞(M//G), and for k sufficiently large functions Jk ∈ C∞(M//G), such that

∫

M

|s|2 ωn

n!
=

∫

M//G

|Aks|2 Ik
ω̂n−d

(n − d)!
, for every s ∈

(
H(k)

M

)G

, and (1.2)

∫

M

|r|2 ωn

n!
=

∫

M//G

|Bkr|2 Jk
ω̂n−d

(n − d)!
, for every r ∈

(
Ĥ(k)

M

)G

.

3A square root of K is a line bundle, denoted by
√

K, such that
√

K ⊗
√

K = K. Such a line bundle exists if the second
Stiefel–Whitney class of M vanishes. If a square root of K exists, then there are (up to equivalence) two nonisomorphic square
roots.
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Clearly, Ak (resp. Bk) is unitary if I(k) (resp. J(k)) is identically 1. The main result of [HK06] is that
for each x0 ∈ Φ−1(0),

lim
k→∞

Ik([x0]) = 2−d/2vol(G · x0), and

lim
k→∞

Jk([x0]) = 1,

where both limits are uniform. This means in particular, that in the presence of the metaplectic correction,
quantization commutes unitarily with symplectic reduction in the semiclassical limit. Moreover, in the
uncorrected case, if vol(G · x0) is not constant, then Ak does not converge to (a constant multiple) of a
unitary map. Indeed, this fact, as well as results implying or equivalent to the uncorrected limit (1.2),
have been previously studied. To the best of our knowledge, the first case was the thesis of Flude [Flu98],
followed in various other forms by [Cha06], [MZ05], [MZ06], [MM07], and [Pao05] (we refer the reader to the
discussion in [HK06] for more details), and most recently in greater generality in [Li08].

We will find expressions for the densities Ik and Jk in terms of the geometric data, and compute complete
asymptotic expansions for both densities as k → ∞.

To state our results precisely, fix an Ad-invariant inner product on g and, with respect to it, and orthonor-
mal basis {ξj}d

j=1 such that the corresponding Haar measure dvolG on G is normalized to
∫

G
dvolG = 1.

Introduce polar coordinates ξ = (ρ,Ω) on g, where

ρ :=

√
(ξ1)

2
+ · · · (ξd)

2

and Ω ∈ Sd−1 is a point in the unit sphere; in particular, ξ = ρΩ. The Lie algebra g acts on M infinitesimally,
and we denote the vector field giving the action of ξ ∈ g by Xξ ∈ Γ(TM).

For a function f ∈ C1(M), we define its gradient as the image of df under the isomorphism between
T ∗M and TM given by the Kähler metric B = ω(·, J ·); that is, df = B(grad f, ·). The divergence of a vector
field X ∈ Γ(TM) is defined by div X := LXωn/ωn, where LX denotes the Lie derivative in the direction of
X, since for a Kähler manifold, the Liouville form ωn/n! corresponds to the Riemannian volume. These are
related to the Laplacian by

∆f = div grad f. (1.3)

Our first main result is the following.

Theorem 1.1 The densities Ik and Jk may be expressed as

Ik([x0]) =

(
k

2π

)d/2

vol(G · x0)
2 j1(k, x0), and (1.4)

Jk([x0]) =

(
k

π

)d/2

vol(G · x0)j1/2(k, x0) (1.5)

where

ja(k, x0) :=

∫

g

exp

{∫ 1

0

−2kφξ(e
itξx0) + a ∆φξ(e

itξx0)dt

}
ddξ. (1.6)

Moreover, we will find that ja(k, x0) (and hence Ik and Jk) admits an entire asymptotic expansion

ja(k, x0) ∼ k−d/2
∞∑

j=0

ζ
(a)
2j (x0)k

−j

as k → ∞, where the coefficients are given explicitly in Theorem 1.2 below. The results of [HK06] may be

interpreted as the statement that ζ
(1)
0 = ζ

(1/2)
0 = πd/2vol(G · x0)

−1.
Our second main result is a computation of the coefficients ζj . The coefficients can be expressed, and

computed, more efficiently in terms of certain combinatorial quantities which we will introduce in Section
3. We state here our results in a direct form, where the geometric content can be clearly seen. The concise
version appears as Theorem 3.1 in Section 3.
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Theorem 1.2 For ja(k) as defined in (1.6),

ja(k, x0) = k−d/2
∞∑

j=0

ζ
(a)
2j (x0)k

−j + o(k−∞), (1.7)

where the coefficients are given by

ζ
(a)
j (x0) = 1

2 Γ
(

d+j
2

) ∫

Sd−1

[
∣∣XΩ

∣∣−(d+j)
j∑

m=0

aj−m

(j − m)!

×
j−m∑

l=1

∑

Pj,l(~n)

c(j − m;~n)(∆φΩ)n1
((

JXΩ
)
∆φΩ

)n2 · · ·
((

JXΩ
)l

∆φΩ

)nl

(1.8)

×
m∑

r=1

(−d+j
2

r

) ∣∣XΩ
∣∣−2r ∑

Qm,r(~n)

2r

(n1 + 2)! · · · (nr + 2)!
(JXΩ)n1+1φΩ · · · (JXΩ)nr+1φΩ

]

x0

dΩ

where
(

α

r

)
:=

α(α − 1) · · · (α − r + 1)

r!
,

c(j;n1, n2, . . . , nj) :=
j!

(1!)n1n1!(2!)n2n2! · · · (j!)nj nj !
,

the sums in the second and third lines of (1.8) are taken over the sets

Pj,l(~n) = {(n1, . . . , nl) ∈ Z
l
≥0 : n1 + · · · + nl = j − l + 1 and n1 + 2n2 + · · · + l nl = j}, and

Qm,r(~n) = {(n1, . . . , nr) ∈ Z
r
≥1 : n1 + · · · + nr = m},

and empty sums are understood to be 1.

For example, the first two terms are

ζ
(a)
0 = 1

2 Γ
(

d
2

) ∫

Sd−1

∣∣XΩ
x0

∣∣−d
dΩ, and

ζ
(a)
2 = d

4 Γ
(

d
2

) ∫

Sd−1

∣∣XΩ
x0

∣∣−(d+2)

[
a(JXΩ

x0
∆φΩ(x0) + a (∆φΩ(x0))

2
)

− d+2
2

a
3∆φΩ(x0)(JXΩ

x0
)2φΩ(x0) + 1

12 (JXΩ
x0

)3φΩ(x0)∣∣XΩ
x0

∣∣2
+

(−d+2
2

2

)
((JXΩ

x0
)2φΩ(x0))

2

9
∣∣XΩ

x0

∣∣4

]
dΩ.

Remarks.

1. The function
JXΩφΩ(x0) = ω(XΩ, JXΩ) =

∣∣XΩ
x0

∣∣2

is strictly positive (since we assume G acts freely on the zero set). We write it as |XΩ|2 when we want
to emphasize this positivity.

2. By the general theory of [Kir08], the first term can be expressed in terms of the determinant H of the

Hessian of 2
∫ 1

0
φξ(e

itξx0)dt at ξ = 0. This determinant was computed in [HK06, Lemma 3.1, Thm 4.1]

to be H = 2dvol(G · x0)
2, from which it follows by [Kir08, Prop. 1] and Lemma 3.3 that

ζ
(a)
0 = 1

2 Γ
(

d
2

) ∫

Sd−1

∣∣XΩ
x0

∣∣−d
dΩ =

Γ(d
2 )

2

2d/2+1πd/2

Γ(d
2 )
√

H
= πd/2vol(G · x0)

−1.

♦
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We conclude this section by recalling the definition from [HK06] of the half-form corrected Guillemin–
Sternberg type map Bk discussed in the introduction. For a p-form α, denote the (left) contraction with

vector fields X1, . . . , Xr by i

(∧r
j=1 Xj

)
α := α(X1, X2, . . . , Xr, ·, . . . , ·).

Theorem 1.3 [HK06, Thm 3.1] There exists a linear map B : Γ(M,
√

K)G → Γ(M//G,
√

K̂), unique up to
an overall sign, with the property that

π∗
C

[
(Bν)2

]
=

[
i

(∧
j
Xξj

)
(ν2)

]∣∣∣
Ms

.

For any open set U in M//G, if ν is holomorphic in a neighborhood V of π−1
C

(U), then Bν is holomorphic
on U.

For each k, there is a linear map Bk : Γ(M, ℓ⊗k ⊗
√

K)G → Γ(M//G, ℓ̂⊗k ⊗
√

K̂), unique up to an overall
sign, with the property that

Bk(s ⊗ ν) = Ak(s) ⊗ B(ν)

for all s ∈ Γ(ℓ⊗k) and ν ∈ Γ(
√

K). This map takes holomorphic sections of ℓ⊗k ⊗
√

K
∣∣∣
V

to holomorphic

sections of ℓ̂⊗k ⊗
√

K̂
∣∣∣
U

.

2 The densities Ik and Jk.

In this section, we will build on the results of [HK06] to find the expressions (1.4) and (1.5) for the densities
Ik and Jk (resp.). Much of the groundwork was already done in [HK06], but we need more precise results
to get the full asymptotic expansion.

In [HK06], it was shown that

Ik([x0]) = vol(G · x0)(k/2π)d/2

∫

g

τ(ξ, x0) exp

{
−2k

∫ 1

0

φξ(e
itξx0)dt

}
ddξ (2.1)

and that

Jk([x0]) = (k/π)d/2

∫

g

τ(ξ, x0) exp

{
−

∫ 1

0

(
2kφξ(e

itξx0) +
LJXξωn

2ωn
(eitξx0)

)
dt

}
ddξ, (2.2)

where τ is the Jacobian of the diffeomorphism Λ : g × Φ−1(0) → Ms given by Λ(ξ, x0) := eiξx0. It was
also shown that as k → ∞, the contribution to Ik (resp. Jk) coming from the complement of a ball of
finite radius is exponentially small, so it is enough to consider the integrals restricted to the unit ball
B := {ξ ∈ g : |ξ| ≤ 1}.

The main result of this section is the following computation of the Jacobian τ in terms of the geometric
data.

Theorem 2.1 The Jacobian of the map Λ : (ξ, x0) ∈ g × Φ−1(0) → eiξx0 ∈ Ms is given by

τ(ξ, x0) = vol(G · x0) exp

{∫ 1

0

∆φξ(e
itξx0)dt

}
.

Using Theorem 2.1 to simplify the densities (2.1) and (2.2) above yields Theorem 1.1. The proof of
Theorem 2.1 depends on two technical lemmas (Lemmas 2.2 and 2.3) which we defer to the end of this
section.

Proof. For each ξ ∈ g, the GC-action yields a map e−iξ : Ms → Ms given by x 7→ e−iξx. Let µ ∈
Γ

(∧2n
T ∗M

)
be the volume form defined at each point by

µeiξx0
:=

(
(e−iξ)∗

ωn

n!

)

eiξx0

.
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Since µ is nonvanishing, we can use it to trivialize
∧2n

T ∗M ; in particular, there is a function δ ∈ C∞(M)
such that

ωn

n!
= δµ. (2.3)

Differentiating in the direction of JXξ and dividing by ωn/n!, we obtain (using Lemma 2.2)

LJXξωn

ωn
=

JXξ(δ)

δ
= JXξ log δ. (2.4)

Fix a point ξ = ρΩ and define a path γΩ(t) := eitΩx0 for t ∈ [0, ρ]. Then γ̇Ω(t) = JXΩ
eitΩx0

. Hence,

JXΩ log δ = d log δ(γ̇Ω). Integrating d log δ along the path γΩ(t) therefore yields

δ(eiρΩx0) = exp

{∫ ρ

0

LJXΩωn

ωn

}
δ(x0). (2.5)

Now, by definition µx0 = ωn
x0

/n! for x0 ∈ Φ−1(0) which implies δ(x0) = 1 for x0 ∈ Φ−1(0). Combining
Lemma 2.3 with (2.3) and (2.5) yields

Λ∗ωn/n! = vol(G · x0) exp

{∫ ρ

0

LJXΩωn

ωn

}
ddξ ∧ dvolΦ−1(0).

Finally, to complete the proof, observe that by (1.3), LJXξωn/ωn = div gradφΩ = ∆φΩ.

We now prove the lemmas that are used in the proof of Theorem 2.1. Consider the volume form µ on
Ms given by

µeiξx0
:= (e−iξ)∗

ωn

n!
.

Lemma 2.2 For each η ∈ g, we have LJXηµ = 0.

Proof. Let X1, · · · , X2n be vector fields on Ms in a neighborhood of eiξx0. Then

(LJXηµ)eiξx0
(X1, . . . , X2n) = lim

s→0

1

s

[
(eisη)∗µeiξx0

− µeiξx0

]
(X1, . . . , X2n)

= lim
s→0

1

s

[
µeisη+iξx0

(eisη
∗ X1, . . . , e

isη
∗ X2n) − µeiξx0

(X1, . . . , X2n)
]

= lim
s→0

1

sn!

[
ωn

x0
(e−isη−iξ+isη

∗ X1, . . . , e
−isη−iξ+isη
∗ X2n)

− ωn
x0

(e−iξ
∗ X1, . . . , e

−iξ
∗ X2n)

]
= 0.

Lemma 2.3 (Λ∗µ)(ξ,x0)
= vol(G · x0)d

dξ ∧ dvolΦ−1(0).

Proof. Since both Λ∗µ and ddξ ∧ dvolΦ−1(0) are top dimensional and the latter is nowhere vanishing, there

exists a function h(ξ, x0) such that (Λ∗µ)(ξ,x0)
= h(ξ, x0)d

dξ ∧ dvolΦ−1(0).

We will show that h is independent of ξ, from which we will conclude that h(x0) = vol(G · x0) by
restricting to the zero set, where it is known [HK06, eqn (4.7) and Lemma 5.4] that

(Λ∗µ)(0,x0) = (Λ∗ωn/n!)(0,x0) = vol(G · x0)d
dξ ∧ dvolΦ−1(0).

To show that h is independent of ξ, let η ∈ g. Then

Λ∗(η, 0)eiξx0
=

d

ds

∣∣∣∣
s=0

Λ(ξ + sη, x0) =
d

ds

∣∣∣∣
s=0

ei(ξ+sη)x0 = JXη
eiξx0

.

By Lemma 2.2, for each η ∈ g,
(
L(η,0)Λ

∗µ
)
(ξ,x0)

= (Λ∗LJXηµ)(ξ,x0)
= 0,

which implies ∂
∂ξj

h(ξ, x0) = 0 for each basis vector ξj ; that is, h = h(x0).

7



3 The expansion.

In this section, we first introduce some combinatorial objects to simplify the statement of Theorem 1.2. We
then recall results of the author [Kir08] which can, after some computations, be used to arrive at Theorem
1.2. Finally, we will carry out these computations, thus arriving at our proof of Theorem 1.2.

To state Theorem 1.2 in a more useful form, we recall here some combinatorial objects related to Bell
polynomials; we refer the interested reader to [Com74, Ch. 3] for more details. The partial Bell poly-

nomials Bj,l = Bj,l(x1, x2, . . . , xl), combinatorial functions on the set {x1, . . . , xl} which can be defined in
terms of a formal double series expansion, are given explicitly by

Bj,l(x1, . . . , xl) =
∑

Pj(~n)

c(j;~n) xn1
1 xn2

2 · · ·xnl

l (3.1)

where

c(j, ~n) := c(j; n1, n2, . . . , nj) :=
j!

(1!)n1n1!(2!)n2n2! · · · (l!)nlnl!

and the sum is taken over the set Pj,l(~n) consisting of all (ordered) l-tuples of nonnegative integers ~n :=
(n1, n2, . . . , nl) such that n1 + · · · + nl = j − l + 1 and n1 + 2n2 + · · · l nl = j, that is,

Pj,l(~n) =

{
(n1, . . . , nl) ∈ Z

l
≥0 :

n1 + n2 + · · · + nl = j − l + 1
n1 + 2n2 + · · · + l nl = j

}
. (3.2)

The partial Bell polynomials are classical combinatorial objects and are known to satisfy many recursion
(and other) identities. We will find useful the combinations

Bj(x1, · · · , xj) :=

j∑

l=1

Bj,l(x1, . . . , xl), (3.3)

which are known as the complete exponential Bell polynomials.4

Related, though much simpler, are the polynomials Cm,r = Cm,r(x1, x2, · · · ) defined by

(x1t + x2t
2 + x3t

3 + · · · )r =

∞∑

m=r

Cm,rt
m.

These polynomials can be computed recursively via the relation

Cm,r =

m−1∑

j=r−1

xm−jCj,r−1

with initial data Cm,1(x1, x2, . . . ) = xm. Alternatively, Cm,r is the sum of all ordered products of r elements
of the set {x1, x2, . . . } such that the subscripts add to m:

Cm,r(x1, . . . , xm) =
∑

Qm,r(~n)

xn1xn2 . . . xnr
, (3.4)

where
Qm,r(~n) = {(n1, · · · , nr) ∈ Z

r
>0 : n1 + n2 + · · · + nr = m}.

To state our main theorem more concisely, let f, g, h ∈ C∞(g × Φ−1(0)) be

f(ρ, Ω, x0) := 2

∫ ρ

0

φΩ(eitΩx0)dt,

h(ρ, Ω, x0) :=

∫ ρ

0

∆φΩ(eitΩx0)dt, and (3.5)

g(ρ, Ω, x0) := exp {ah(ρ,Ω, x0)}
4Note that the sum starts at 1. This is in contrast to some other definitions in the literature; generally, sums starting at

zero are called more simply the complete Bell polynomials.
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The expression of Theorem 1.2 we give below is in terms of the Bell polynomials introduced above and the
radial derivatives of f , g and h (which are computed below in Lemma 3.3). It will turn out that the leading
order behavior of f is quadratic, so we define

fj(Ω, x0) :=
1

(j + 2)!

∂j+2

∂ρj+2
f(ρ,Ω, x0)

∣∣∣∣
ρ=0

.

For g we define the usual Taylor coefficients

gj(Ω, x0) :=
1

j!

∂j

∂ρjg(ρ, Ω, x0)

∣∣∣∣
ρ=0

and similarly for h (we will drop the Ω and x0 dependence to ease notation).
The following is a more concise version of our main Theorem 1.2.

Theorem 3.1 For ja(k) as defined in (1.6),

ja(k, x0) = k−d/2
∞∑

j=0

ζ
(a)
2j (x0)k

−j + o(k−∞),

where the coefficients are given by

ζ
(a)
j = 1

2Γ
(

d+j
2

)∫

Sd−1

[
f
−(d+j)
0 (Ω)

j∑

m=0

gj−m

j∑

r=1

(−d+j
2

r

)Cm,r(f1, . . . , fm)

f0(Ω)r

]
dΩ (3.6)

= 1
2Γ

(
d+j
2

)∫

Sd−1

[
f
−(d+j)
0

j∑

m=0

aj−m

(j − m)!
Bj−m(h1, 2!h2, · · · , m!hm)

m∑

r=1

(−d+j
2

r

)Cm,r(f1, . . . , fm)

f0
r

]
dΩ,

where

p!hp = (JXΩ
x0

)p−1∆φΩ(x0),

fp =
2

(p + 2)!
(JXΩ

x0
)p+1φΩ(x0) =

2

(p + 2)!
(JXΩ

x0
)p

∣∣XΩ
x0

∣∣2 ,

the polynomial Cm,r(f1, . . . , fm) (defined in (3.4)) is the sum of all ordered products of r elements of the
set {f1, f2, . . . , fm} such that the subscripts add to m, the polynomial Bj−m is the complete Bell polynomial
defined by (3.1) and (3.4), and empty sums are understood to be 1.

Remark.

To obtain naive “exact asymptotics”, that is, term-by-term cancelation of the tail of the series (1.7),
we see from (3.6) that it is necessary that f = 2

∫ ρ

0
φΩ(eiρΩtx0)dt be quadratic in ρ. Otherwise the set

{f1, f2, . . . , fN} is nontrivial for all N > 1 which yields nontrivial Cm,r(f1, . . . , fm) terms at all orders.
For compact M , it is not possible that f be quadratic, since if it were, then twice differentiating implies

JXΩφΩ(eiρΩx0) =
∣∣∣XΩ

eiρΩx0

∣∣∣
2

= const. But as ρ → ∞, the path eiρΩx0 approaches a point x∞ which is fixed

by eΩ (see [Ler05]) so that we must rather have
∣∣∣XΩ

eiρΩx0

∣∣∣
2

→ 0 as ρ → ∞. ♦

Using the linearity of the moment map and ξ = ρΩ, we have

∫ 1

0

φξ(e
itξx0)dt =

∫ ρ

0

φΩ(eitΩx0)dt

and ∫ 1

0

∆φξ(e
itξx0)dt =

∫ ρ

0

∆φΩ(eitΩx0)dt.
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Therefore, in terms of the functions f and g defined in (3.5), the density ja may be written

ja =

∫

g

e−kfg ddξ =

∫

g

e−kfeah ddξ,

which is, for each fixed x0 ∈ Φ−1(0), a Laplace type integral. It follows from [HK06] that it is enough to
consider the integral over the unit ball B := {ξ ∈ g : |ξ| ≤ 1}.

For completeness, we quote the result from [Kir08] which we need to obtain Theorem 1.2. Let {ξ1, . . . , ξd}
be coordinates on R

d. Denote by Sd−1 = {|ξ| = 1} ⊂ R
d the unit sphere and introduce polar coordinates

ρ :=
√

(ξ1)2 + · · · (ξd)2 and Ω = ξ/|ξ| ∈ Sd−1.
Suppose that R is a region in R

d containing 0 as an interior point, and let f and g be measurable functions
on R. Suppose f attains its unique minimum of 0 at 0. Assume moreover there exists N > 0 and

• N + 1 continuous functions fj(Ω), j = 0, . . . , N with f0 > 0 such that for some ν > 0

f(ρ,Ω) = ρν
N∑

j=0

fj(Ω)ρj + o(ρN+ν) as ρ → 0, and (3.7)

• N + 1 functions gj(Ω), j = 0, . . . , N such that for some λ > 0

g(ρ, Ω) = ρλ−d
N∑

j=0

gj(Ω)ρj + o(ρN+λ−d) as ρ → 0. (3.8)

Theorem 3.2 [Kir08] With the hypotheses above, there exists an asymptotic expansion

∫

B

e−kfg ddx =

N∑

j=0

ζjk
−(λ+j)/ν + o(k−(N+λ)/ν) (3.9)

where the coefficients are given by

ζj = 1
ν Γ

(
j+λ

ν

) ∫

Sd−1

[
f
−(j+λ)/ν
0

j∑

m=0

gj−m

m∑

r=1

(− j+λ
ν

r

)
f (r)

m f−r
0

]
dΩ,

where f
(r)
m = Cm,r(f1, . . . , fm) is the sum5 of all ordered products of r elements of {f1, f2, . . . , fm} such that

the subscripts add to m,
(
α
r

)
:= α(α − 1) · · · (α − r + 1)/r!, and empty sums are understood to be 1.

To apply Theorem 3.2, we need asymptotic expansions of f and g near 0. We will use their Taylor series:

Lemma 3.3 For f and g as defined in (3.5),

f = ρ2
∞∑

j=0

2ρj

(j + 2)!

(
JXΩ

)j+1
φΩ + o(ρ∞), ρ → 0

and

g =

∞∑

j=0

ρjaj

j!
Bj(∆φΩ(x0), JXΩ

x0
∆φΩ(x0), . . . , (JXΩ

x0
)j−1∆φΩ(x0)) + o(ρ∞), ρ → 0

=

∞∑

j=0

ρj



aj

j!

j∑

l=0

∑

Pj,l(~n)

c(j, ~n)

l∏

p=1

((
JXΩ

x0

)p−1
∆φΩ(x0)

)np



 + o(ρ∞), ρ → 0,

where Bj is the complete exponential Bell polynomial defined in (3.3) and Pj,l(~n) is defined in (3.2).

5For example, f
(3)
6 = 6f1f2f3 + 3f2

1 f4 + f3
2 ,
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Proof. The fundamental theorem of calculus yields

∂n
ρ f(eiρΩx0) = 2∂n−1

ρ φΩ(eiρΩx0) = 2(JXΩ)n−1φΩ(eiρΩx0).

Moreover, f(x0) = ∂ρf(x0) = 0, so that

f =

∞∑

j=2

2ρj

j!

[
(JXΩ)j−1φΩ

]
x0

as desired.
To compute the Taylor series for g, we first recall that the Taylor series for exp(h(ρ)) near ρ = 0 can be

expressed using Faà di Bruno’s formula as [Com74, Sec. 3.4]

∞∑

j=0

ρj

j!
exp(h(0))Bj(h

′(0), . . . , h(j)(0)) (3.10)

=

∞∑

j=0

ρj

j!



exp(h(0))

j∑

l=1

∑

Pj,l(~n)

c(j;~n)

l∏

p=1

(
h(p)(0)

)np



 ,

where Bj is the complete exponential Bell polynomial (3.3), and Pj,l(~n) is defined in (3.2). Taking h(ρ) =

a
∫ ρ

0
∆φΩ(eiΩtx0)dt in (3.10) and using ∂ρg(eiρΩx0) = JXΩg(eiρΩx0), ∂

(l)
ρ h = (JXΩ)l−1∆φΩ, and g(x0) =

exp(h(0)) = 1 completes the proof.

We are now ready to prove our main Theorems 1.2 and 3.1.
Proof of Theorems 1.2 and 3.1. Take ν = 2 and λ = d. From Lemma 3.3, we see that

fj(Ω, x0) =
2

(j + 2)!
(JXΩ

x0
)j

∣∣XΩ
x0

∣∣2 (3.11)

and

gj(Ω, x0) =
aj

j!
Bj(∆φΩ(x0), JXΩ

x0
∆φΩ(x0), . . . , (JXΩ

x0
)j∆φΩ(x0)) (3.12)

=
aj

j!

j∑

l=0

∑

Pj,l(~n)

c(j, ~n)

l∏

p=1

((
JXΩ

x0

)p−1
∆φΩ(x0)

)np

.

Plugging these into Theorem 3.2 applied to ja(k, x0) ∼
∫

B
e−kfg ddξ yields

ja(k, x0) =

∞∑

j=0

ζjk
−(j+d)/2 + o(k−∞)

where

ζj = 1
2 Γ

(
j+d
2

) ∫

Sd−1

[
∣∣XΩ

0

∣∣−(d+j)
j∑

m=0

aj−mBj−m

(j − m)!

m∑

r=1

(− j+d
2

r

) ∣∣XΩ
x0

∣∣−2r
f (r)

m

]
dΩ (3.13)

in which

f (r)
m = Cm,r(

2
3! (JXΩ

x0
)2φΩ, 2

4! (JXΩ
x0

)3φΩ, . . . , 2
(m+2)! (JXΩ

x0
)m+1φΩ) (3.14)

=
∑

Qm,r(~n)

2r

(n1 + 2)! · · · (nr + 2)!
(JXΩ

x0
)n1+1φΩ · · · (JXΩ)nr+1φΩ

is the sum of all ordered products of r terms of the set {f1(Ω, x0), f2(Ω, x0), . . . } whose subscripts add to m
and

Bj−m = Bj−m(∆φΩ(x0), JXΩ
x0

∆φΩ(x0), . . . , (JXΩ
x0

)j−m−1∆φΩ(x0)) (3.15)

=

j−m∑

l=0

∑

Pj−m,l(~n)

c(j − m,~n)

l∏

p=1

((
JXΩ

x0

)p−1
∆φΩ(x0)

)np

.

Aside from simply substituting f
(r)
m and Bj−m, we can make one significant simplification:
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Lemma 3.4 ζj = 0 for j odd.

Proof. The linearity of the infinitesimal action of GC on M implies X−Ω = −XΩ and JX−Ω = −JXΩ.
Related is the linearity of the moment map in the component index: φ−Ω = −φΩ. These facts together imply

that fj(−Ω, x0) = (−1)jfj(Ω, x0). Since the sum of the subscripts of the terms appearing in f
(r)
m is m, we

have f
(r)
m (−Ω, x0) = (−1)mf

(r)
m (Ω, x0). Finally, we conclude that

gj−m(−Ω, x0)f
(r)
m (−Ω, x0) = (−1)jgj−m(Ω, x0)f

(r)
m (Ω, x0)

which implies that for j odd, the integrand appearing in ζj is antisymmetric with respect to Ω 7→ −Ω so
that the integral is 0 for j odd.

Making the substitutions of (3.14) and (3.15) into (3.13) and replacing j by 2j (Lemma 3.4) yields
Theorems 1.2 and 3.1.
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[Pao05] Roberto Paoletti, The Szëgo kernel of a symplectic quotient, Adv. Math. 197 (2005), no. 2, 523–553.

[Sja95] Reyer Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. Math.
(2) 141 (1995), no. 1, 87–129.

[Woo91] N.M.J. Woodhouse, Geometric Quantization, 2nd Edition, Oxford University Press, Inc., New York, 1991.

12


