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Abstract

We investigate approximations by finite sums of products of functions with separated variables to

eigenfunctions of multivariate elliptic operators, and especially conditions providing an exponential de-

crease of the error with respect to the number of terms. The results of the consistent use of tensor

formats can be regarded as a base for a new class of iterative eigensolvers with almost linear complexity

in the univariate problem size.

The results of numerical experiments clearly indicate the linear-logarithmic scaling of low-rank tensor

method in the univariate problem size. The algorithms work equally well for the computation of both,

minimal and maximal eigenvalues of the discrete elliptic operators.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
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1 Introduction

Recent advances in tensor approximation methods applied to the functions and operators in Rd lead to
the natural idea of solving multi-dimensional boundary and eigenvalue problems in tensor-product formats.
This idea has been first time formulated in [2] in the very general setting. The recent results on efficient
methods of tensor approximation and their application in electronic structure calculations can be found in
[11, 3, 8, 15, 18] and others.

In this paper we investigate approximations by finite sums of products of functions with separated
variables to eigenfunctions of elliptic operators with smooth coefficients, and especially conditions providing
an exponential decrease of error in the number of terms.

We consider the model eigenvalue problem: Find a pair (λ, u) ∈ R×H1
0 (Ω) \ {0} such that

Λu = λu in Ω,
u = 0 on ∂Ω

(1.1)

with the elliptic differential operator Λ of the form

Λ := − div (A gradu) + 〈b,∇u〉+ cu, (1.2)

∗The work of the second author was partially supported by FIM, ETH Zürich during his visit of the ETH/University of
Zürich in May - July, 2008.

†This work was partially supported by DFG, Russian Fund of Basic Research (grant 08-01-00115) and a Priority Research
Grant of the Department of Mathematical Sciences of the Russian Academy of Sciences.
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where Ω ∈ R
d is some bounded or unbounded tensor-product domain, and the operator coefficients A, b, c

in (1.2) are supposed to be smooth (analytic) in Ω.
We will prove that the eigenfunctions of problem (1.1) allow separable approximation that converges

exponentially in the number of terms.
Problem (1.1) is discretised by the Galerkin FEM with tensor-product basis functions, so that the arising

stiffness and mass matrices of size n⊗d (with d-fold product n⊗d = n × ... × n) are represented in the low
Kronecker rank format with the storage requirements and computational complexity of order O(dn).

In this paper, for the ease of presentation, we use simple iterative solvers such as the power method
or the Lanczos iteration, though algorithms of better choice can be easily adapted to our concept. Due to
the above mentioned approximation results for the continuous solutions, and relying on the rank-structured
representation of all matrices involved, we propose to solve the corresponding high-dimensional algebraic
eigenvalue problem of the size n⊗d in the low tensor-rank format. To this end, we introduce the so-called
“truncated iterations”, where most of the intermediate vectors have to be approximated in some fixed rank-
structured tensor product form. The corresponding rank truncation performed at each iteration makes use
of recently developed methods (cf. [18, 22, 8]). For the class of rank structured matrices, our algorithm can
be shown to have storage and complexity bounds of order O(rdn + rnd), or even O(dRrn), where r, R are
the small (often fixed) rank parameters with the theoretical bounds r = O(log n) and R = O(log n| log ε|).

We notice that in the case d = 2 the rank truncation operator is realised by the “truncated SVD” method
applied to the rank-R matrix. It is, in practice, a finite algorithm (with complexity at most O(nR2 + R3))
providing the best rank-r approximation to the current iterand (see numerics in Sections 2 and 6.2). Hence,
numerical results for d = 2 can be viewed as the reference cases, demonstrating nearly optimal performance
of the proposed techniques.

The results of the consistent use of tensor formats can be regarded as a base for a new class of iterative
eigensolvers with almost linear complexity in the univariate problem size.

The rest of the paper is organised as follows. In Section 2 we give motivating numerical illustrations
for the Laplace operator in d = 2, which clearly indicate a spectacular gain by the truncated Lanczos
iteration compared with the standard full-format implementation. In Section 3, we briefly describe the
tensor product formats for representing multivariate functions of the continuous and discrete arguments.
Section 4 proves the existence of separable approximation for the eigenfunctions of an elliptic operator posed
in Rd. This result is of principal significance for understanding the rigorous mathematical basis for applying
tensor methods in multidimensional setting. Section 5 describes the favourable properties of tensor formats
in discrete elliptic eigenvalue problems, while Section 6 presents numerical illustrations for certain spectral
problems in dimensions d = 2, 3.

2 Motivating Numerics

In this research we are motivated by the nice solution structure for the 2D Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2

and the eigenproblem
−∆u(x, y) = λu(x, y), (x, y) ∈ [0, π]2.

If u is zero on the boundary, then the eigenvalues and eigenfunctions are

λkl = k2 + l2, ukl(x, y) = sin kx sin ly, k, l = 1, 2, ... .

A matrix counterpart of the Laplace operator can be taken in the form

Mu = λu, M = A⊗ I + I ⊗A,

where ⊗ denotes the Kronecker (tensor) product, I is the identity and

A =




2 −1
−1 2 −1

... ... ...
−1 2 −1

−1 2




.
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Let A and I be of order n. Then the matrix eigenvalue problem Mx = λx can be solved explicitly. The
eigenvalues are

λkl = 4 sin2 πk

2(n + 1)
+ 4 sin2 πl

2(n + 1)
, 1 ≤ k, l ≤ n,

and the corresponding eigenvectors are exactly represented as tensor products:

xkl = uk ⊗ vl,

where uk and vl are n-dimensional vectors with the entries

uk
s = sin

πks

n + 1
, 1 ≤ s ≤ n; vl

t = sin
πlt

n + 1
, 1 ≤ t ≤ n.

In general, the cost of traditional iterative eigenvalue algorithms is higher than linear, possibly O(n2).
The tensor structure of eigenvectors allows to modify the eigensolvers so that the cost of one iteration reduces
to O(n).

As an example of an iterative eigensolver we discuss the Lanczos method.

Algorithm 2.1 Let M be a real symmetric matrix of order N . The following steps produce the Ritz values
approximating the eigenvalues of M :

• Choose an initial vector p1 with ||p1|| = 1 and set p0 = 0, b0 = 0.

• For k = 1, 2, ... compute
zk = Mpk,
ak = (zk, pk),
qk = zk − akpk − bk−1pk−1,
bk = ||qk||,
pk+1 = qk/bk.

• Compute the Ritz values as the eigenvalues of the projected k × k matrix

Mk = P⊤
k MPk, Pk = [p1, ..., pk],

which is the symmetric tridiagonal matrix consisting of the values ak, bk.

Now we consider the same computations with the following vector truncation. If x ∈ Rn2

, Tε(x) is defined
as a vector y of the form

y =
r∑

t=1

ut ⊗ vt, ut, vt ∈ R
n,

with minimal r such that
||x− y|| ≤ ε

for a fixed ε. Note that if x is in the above tensor format and a matrix M is of the tensor form (cf. Section
3.5)

M =

R∑

s=1

As ⊗Bs, R≪ n,

then the matrix-vector multiplication z = My has a tensor format with Rr summands. A natural idea to
reduce this number is to replace z with Tε(z). Then, the Lanczos algorithm transforms to the following
tensor-format scheme.

Algorithm 2.2 The Lanczos steps with tensor approximation of computed vectors reads as follows:

• Choose an initial vector p1 so that p1 = Tε(p1) with ||p1|| = 1 and set p0 = 0, b0 = 0.
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• For k = 1, 2, ... compute
zk = Mpk,
ak = (zk, pk),
qk = Tε(zk − akpk − bk−1pk−1),
bk = ||qk||,
pk+1 = qk/bk.

• Compute the Ritz values from the generalized eigenvalue problem

Mku = λNku,

where Mk = P⊤
k MPk, Nk = P⊤

k Pk.

We can compare the performance of these two algorithms. The truncation parameter was chosen so that
every vector in the Krylov subspace basis is approximated in the tensor format so that the tensor rank (the
number of tensor-product terms in the sum) does not exceed 7 or the relative approximation accuracy is less
than 10−2. In the table below we can see the timings obtained on a 2.7 GHz workstation:

n 1000 2000 4000 6000
Lanczos time (sec) 2.8 12.1 76.7 224.9

Tensor Lanczos time (sec) 0.4 0.7 1.5 2.2

The accuracy in the maximal eigenvalue was about 10−3 in both methods, even a bit better with trunca-
tions. The table shows that the time of the tensor-truncated Lanczos grows linearly in n while the original
Lanczos time increases actually faster as n2. For n = 6000 we observe an acceleration by a factor 100.

Thus, we are interested to find if we might have the same effect when using tensor formats in matrix
eigensolvers for more general elliptic problems,

Λu = λu, u : [0, π]d → R,

where Λ is the elliptic operator with smooth enough (or separable) coefficients. For this purpose, we next
introduce the tensor representations.

3 Description of tensor formats

3.1 Tensor spaces and tensor representations

Several continuous and discrete spaces considered in this paper are tensor spaces of order d, where in our
application d equals the spatial dimension of the eigenvalue problem. Let

W = W1 ⊗W2 ⊗ . . .⊗Wd (3.1)

be the notation for the underlying tensor space. By definition, each w ∈W can be written as a sum

w =
∑

k

w
(1)
k ⊗ w

(2)
k ⊗ . . .⊗ w

(d)
k (w

(j)
k ∈Wj). (3.2)

An interesting subset are those elements which require only R terms. They form the set

MR =

{
w ∈W : w =

R∑

k=1

w
(1)
k ⊗ w

(2)
k ⊗ . . .⊗ w

(d)
k , w

(j)
k ∈ Wj

}
.

We say that elements w ∈ MR with w /∈ MR−1 have the tensor rank R. Obviously, tensors w ∈ MR can

be represented by the description of Rd elements w
(j)
k ∈Wj . Hence, the cost is linear in d.
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As in the Galerkin method, the replacement of the spaces Wj by subspaces Vj ⊂ Wj (1 ≤ j ≤ d) is of
interest. They lead to the tensor subspace

V = V1 ⊗ V2 ⊗ . . .⊗ Vd ⊂W. (3.3)

Setting rj := dimVj and choosing a (without loss of generality orthonormal) basis
{
φ

(j)
k : 1 ≤ k ≤ rj

}
of Vj ,

we can represent each v ∈ V by

v =
∑

k

bkφ
(1)
k1
⊗ φ

(2)
k2
⊗ . . .⊗ φ

(d)
kd

, (3.4)

where the multi-index k = (k1, . . . , kd) runs over all 1 ≤ kj ≤ rj , 1 ≤ j ≤ d.
Let r = (r1, . . . , rd) ∈ Nd be a tuple of dimensions. We define

Mr =
{
v ∈W as in (3.4) with bk ∈ R, {φ(j)

k : 1 ≤ k ≤ rj} ⊂Wj orthonormal system
}

.

A representation of w ∈ Mr in the form (3.4) is also called a Tucker representation of Tucker rank r.

A representation of w ∈ Mr in the Tucker format (3.4) requires
∏d

j=1 nj reals and the representation of
∑d

j=1 nj vectors φ
(j)
k .

3.2 Tensor approximation, tensor truncation

For any element w ∈W there are numbers R and tuples r such that w ∈ MR∗ and w ∈Mr∗ , but the ranks
R∗ and r∗ may be rather large. A representation by one of the tensor formats (3.2) or (3.4) is only of interest
if the respective ranks are small enough. Therefore, given w ∈W we search for approximations v ∈ MR or
v ∈ Mr with suitably small ranks R or r. When we fix the set S :=MR or S :=Mr, the smallest error is
described by

σ(w,S) := inf
v∈S
‖w − v‖.

In the following we will give examples where σ(w,S) decays exponentially with the rank R or
min{rj : 1 ≤ j ≤ d} , respectively. In general, the infimum in the definition of σ(w,S) cannot be re-
placed by a minimum, since for S =MR a minimiser is not necessarily existing. Although, the minimiser
exists for S = Mr, its computation can be performed only approximately. Therefore, in practice, one has
to determine a v ∈ S such that ‖w − v‖ comes close to σ(w,S). The replacement of w by such a v ∈ S is
called the tensor truncation to S and denoted by

w 7→ v =

{
TRw if S =MR,
Trw if S =Mr.

(3.5)

Heuristic methods for computing the rank structured approximations in different problem settings are dis-
cussed in [5, 19, 27, 18, 8, 7].

In the particular case of d = 2, the difficulties mentioned above do not appear. The minimiser of
inf
v∈S
‖w − v‖ = min

v∈S
‖w − v‖ is the result of the truncated singular value decomposition. Furthermore, the

representations byMR andMr with r = (R, R) coincide.

3.3 Application to function spaces

Let I = I1 × I2 × . . . × Id be the product of (possibly infinite) intervals Ij ⊂ R. Then L2(I) is the tensor

space L2(I1)⊗L2(I2)⊗ . . .⊗L2(Id). The tensor product w =
⊗d

j=1 w(j) of w(j) ∈ L2(Ij) corresponds to the

pointwise product w(x) =
∏d

j=1 w(j)(xj).
If w is an analytical function in all variables xj , approximations by polynomials may lead to small errors.

In the case of a uniform degree r − 1, the subspaces Vj ⊂ Wj in (3.3) are Pr−1 and any v ∈ V =
⊗d

j=1 Vj

has the Tucker rank r = (r, . . . , r) . The error, which is an upper bound of σ(w,Mr), depends on the decay
of the higher derivatives. The analysis in Section 5.1 will show exponential decay of σ(w,Mr).

Multivariate functions depending on the Euclidean norm as, e.g., the classical potentials 1/‖x‖,
e−λ‖x‖/‖x‖, e−λ‖x‖ can be rather well approximated inMR leading to exponential decay of σ(w,MR) with
respect to R. For its computation and analysis see [12, 11, 23, 14, 17, 15, 4].
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3.4 Application to grid functions

Galerkin discretisations with tensor product basis functions or finite difference schemes lead to grid points

xi =
(
x

(1)
i1

, . . . , x
(d)
id

)
, where i ∈ I = I1 × . . . × Id. Hence, the grid values u(xi) = ui belong to RI which is

the tensor space
R

I = R
I1 ⊗ R

I2 ⊗ . . .⊗ R
Id ,

i.e., Wj = RIj from (3.1) have the dimension nj := #Ij . For simplicity we assume nj = n for all 1 ≤ j ≤ d.
The representation of w ∈ MR needs a storage of Rdn, while w ∈ Mr with r = (r, . . . , r) requires

rdn + rd data.

3.5 Application to matrices

The index sets I1, . . . , Id and J1, . . . , Jd give rise to the two tensor spaces X := RI1 ⊗ . . . ⊗ RId and Y :=
RJ1 ⊗ . . .⊗ RJd . Given matrices A(j) ∈ RIj×Jj (1 ≤ j ≤ d), its Kronecker product A := A(1) ⊗ . . .⊗A(d) is
defined as the mapping

A : X → Y, x = x(1) ⊗ . . .⊗ x(d) 7→ Ax = A(1)x(1) ⊗ . . .⊗A(d)x(d) ∈ Y.

4 Regularity for elliptic eigenvalue problems

4.1 Polynomial approximation of analytic functions

To understand the separability property of eigenfunctions we analyse their regularity with respect to some
classes of functions which allow the holomorphic extension to the complex plane.

The error estimates will be derived for the function set AM,ρ(I) and for its multidimensional counterpart
AM,ρ(I

d), d ≥ 2. The definition of the space AM,ρ

(
Id

)
requires several steps. For the interval I := (−1, 1)

and ρ > 1, Bernstein’s regularity ellipse is given by (cf. [1])

Eρ := {z ∈ C : |z − 1|+ |z + 1| ≤ ρ + ρ−1}.

Its semi-axes are a = ρ+ρ−1

2 and b = ρ−ρ−1

2 , implying a + b = ρ.

Definition 4.1 Let I = (−1, 1) and M > 0, ρ > 1 be given constants. AM,ρ(I) is the class of functions
f ∈ C∞(I) having a holomorphic extension to Eρ(I) such that

|f(z)| ≤M ∀z ∈ Eρ(I).

Next, we introduce the multidimensional analogue of AM,ρ(I) on the tensor domain Id := (−1, 1)
d
. Let

E(j)
ρ := I × ...× I × Eρ × I × ...× I with Eρ to be inserted at the jth position.

Definition 4.2 For given constants M > 0, ρ > 1, the set AM,ρ(I
d) consists of all functions f ∈ C∞(Id)

having holomorphic extensions to E(j)
ρ , for all 1 ≤ j ≤ d, and satisfying

max
1≤j≤d

{ sup
x∈E(j)

ρ

|f(x)|} ≤M.

The following remark recalls the well-known fact that controlling all higher derivatives of a function
implies that it belongs to AM,ρ(I) (see e.g. [20] for the proof).

Remark 4.3 Assume that a function u : I → R satisfies for some Cu, γu ≥ 0

∥∥∥∥
∂nu

∂xn

∥∥∥∥
L∞(I)

≤ Cuγn
un! for all n ∈ N0. (4.1)

Then u ∈ AM,ρ(I) holds with ρ = 1 + γ−1
u > 1, M = C · Cu.
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For the continuous multivariate functions f = f(x1, ..., xd) : R
d → R, we use the tensor product inter-

polant
INf = I1

N ...Id
Nf ∈ PN [Id],

where Ii
Nf (1 ≤ i ≤ d) denotes the interpolation polynomial of degree N with respect to the variables

xi ∈ I := [−1, 1] interpolating f with respect to the variables xi ∈ I := [−1, 1] at the Chebyshev nodes.

Proposition 4.4 Let M > 0 and ρ > 1 be given. For all f ∈ AM,ρ(I
d) and N > 1 the estimate

‖f − INf‖C0(Id) ≤ c M (log N)
d
ρ−N (4.2)

holds.

In the next section we derive the regularity results for solutions of elliptic eigenvalue problems which will
imply Remark 4.3.

4.2 Regularity for elliptic eigenvalue problems with smooth data

Let Ω ⊂ Rd be a Lipschitz domain. For ℓ ∈ N, we define the norms

∥∥∇ℓu
∥∥2

L2(Ω)
:=

∑

|α|=ℓ

ℓ!

α!
‖Dαu‖2L2(Ω) and

∥∥∇ℓu
∥∥

L∞(Ω)
:=

∥∥∥∥∥∥∥

√√√√
∑

|α|=ℓ

ℓ!

α!
|Dαu|2

∥∥∥∥∥∥∥
L∞(Ω)

.

For u replaced by vectors or matrices, the absolute value |·| is to be replaced by the Euclidean or spectral
norm.

Consider the eigenvalue problem for the differential operator

Λu := −∇ · (A∇u) + 〈b,∇u〉+ cu, (4.3)

where 〈a, b〉 :=
∑d

i=1 aibi (without complex conjugation). We say that Λ is uniformly elliptic if
A ∈ L∞

sym

(
Ω, Rd×d

)
, b ∈ L∞ (

Ω, Rd
)
, and c ∈ L∞ (Ω) satisfy

0 < amin := inf
x∈Ω

inf
v∈Cd\{0}

〈A (x) v, v〉
〈v, v〉 ≤ sup

x∈Ω
sup

v∈Rd\{0}

〈A (x) v, v〉
〈v, v〉 =: amax <∞ (4.4a)

0 ≤ −1

2
div b + c. (4.4b)

We assume that the coefficients of the operator Λ are analytic; i.e., there exist positive constants CA, Cb,
Cc and γA, γb, γc such that

‖∇pA‖L∞(Ω) ≤ CAγp
Ap! ∀p ∈ N0,

‖∇pb‖L∞(Ω) ≤ Cbγ
p
b p! ∀p ∈ N0,

‖∇pc‖L∞(Ω) ≤ Ccγ
p
c p! ∀p ∈ N0.

(4.5)

We consider two types of domain: Either Ω = Rd or Ω is a bounded Lipschitz domain with analytic bound-
ary, i.e., there is a finite family U of open subset in Rd along a family of bijective maps1

{
χU : B1 → U

}
U∈U

such that

∀U ∈ U : χU ∈ C0,1
(
B1, U

)
, χ−1

U ∈ C0,1
(
U, B1

)
,

∀U ∈ U : χU

(
B0

1

)
= U ∩ ∂Ω, χU

(
B+

1

)
= U ∩ Ω, χU

(
B−

1

)
= U ∩ R

d\Ω,
∃CΓ, γΓ ∀U ∈ U : ‖∇pχU‖L∞(B1)

≤ CΓγp
Γp! ∀p ∈ N0.

(4.6)

Let us consider the eigenvalue problem: Find a pair (λ, u) ∈ R×H1
0 (Ω) \ {0} such that

Λu = λu in Ω,
u = 0 on ∂Ω

(4.7)

with Λ as in (4.3). Let E (λ) denote the eigenspace for the eigenvalue λ.

1B1 denotes the unit ball in Rd and B0

1
:= {x ∈ B1 | xd = 0}. For σ ∈ {+,−}, we set Bσ

1
:= {x ∈ B1 | σxd > 0}.
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Theorem 4.5 Let Ω be an analytic, bounded Lipschitz domain which satisfies (4.6). Assume that the co-
efficients A, b, c satisfy (4.5). Then, any eigenfunction u ∈ E (λ) of (4.7) (normalised to ‖u‖L2(Ω) = 1) is

analytic. There exist constants C, K > 0 depending only on the constants in (4.5), (4.6), and on amin and
the spatial dimension d such that

∥∥∇p+2u
∥∥

L2(Ω)
≤ CKp+2 max

{
p,

√
|λ|

}p+2

for all p ≥ 0. (4.8)

Proof. The statement follows from [20, Theorem 5.3.10] as follows. First, let |λ| ≥ 1 and consider (4.7) as
the equation

−ε2∇ · (A∇u) +
〈
b̃,∇u

〉
+ (c̃− 1)u = f in Ω with u|∂Ω = 0

where ε2 = λ−1, b̃ = λ−1b, c̃ = c/λ and f ≡ 0. For the quantity E in [20, Theorem 5.3.10] we obtain the
estimate

E−1 := Cb +

√
1 + Cc/ |λ|
|λ|−1/2

+ 1 ≤ 1 + Cb +
√
|λ|+ Cc ≤ C1

√
|λ|,

where C1 := 1 + Cb +
√

1 + Cc. The other quantities which appear in [20, Theorem 5.3.10] have to be
substituted by

Cf ← 0, Cc ← Cc + 1, E ← C2 |λ|−1/2
,

(E
ε

)2

← C2
2

with C2 :=
(√

1 + Cc + Cb

)−1
. From (4.4) we conclude that

Re a (u, u) =

∫

Ω

〈A∇u,∇u〉+ Re (〈b,∇u〉u) + c |u|2

=

∫

Ω

〈A∇u,∇u〉+ 1

2

〈
b,∇

(
|u|2

)〉
+ c |u|2

=

∫

Ω

〈A∇u,∇u〉+
(
−1

2
div b + c

)
|u|2

(4.4)

≥ amin ‖∇u‖2L2(Ω)

holds. Since u is an eigenfunction corresponding to λ and ‖u‖L2(Ω) = 1 we obtain

‖∇u‖L2(Ω) ≤ a
−1/2
min

√
Re a (u, u) =

√
(Re λ) /amin.

Plugging these quantities into the estimate in [20, Theorem 5.3.10] we get

∥∥∇p+2u
∥∥

L2(Ω)
≤ CKp+2 max

{
p,

√
|λ|

}p+2

,

where C only depends on the constants CA, Cb, Cc, γA, γb, γc, CΓ, γΓ, amin. As explained in [20, Remark
5.3.11] the coercivity assumption which is imposed in [20, Theorem 5.3.10] is not required for this estimate.
The proof of [20, Theorem 5.3.10] covers only the case d = 2. However, the only part therein, where d = 2
(instead of general d) is used explicitly, is the mapping lemma [20, Lemma 4.3.1]. Inspection of the proof
shows that the case d ≥ 3 can be handled analogously while, then, the constants in (4.8) in general depend
also on the spatial dimension d.

The case |λ| < 1 is even simpler because we consider

−ε2∇ · (A∇u) + 〈b,∇u〉+ (c− λ)u = f in Ω with u|∂Ω = 0

where f = 0 and ε2 = 1. By repeating the steps in the first part of the proof with coefficients b̃ = b, c̃ = c−λ
with |λ| < 1 we obtain ∥∥∇p+2u

∥∥
L2(Ω)

≤ C (pK)
p+2

.
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Remark 4.6 Assume the suppositions of Theorem 4.5 except that Ω = R
d. Then the estimate

∥∥∇p+2u
∥∥

L2(Rd)
≤ CKp+2 max

{
p,

√
|λ|

}p+2

for all p ≥ 0

follows from [20, Prop. 5.5.1] by a simple repetition of the arguments of the previous proof.

5 Tensor formats in elliptic eigenvalue problems

5.1 Error estimate for low tensor-rank approximation

Now we are in a position to apply the regularity results in Theorem 4.5 to derive the low separation rank
approximations to certain class of eigenfunctions in (4.7).

Corollary 5.1 Assume that the assumptions of Remark 4.6 are fulfilled and let Ωb = (−b, b)d be some fixed
hypercube in Rd. Then the estimate (4.1) holds in Ωb for each variable x1, ..., xd, with

ρ = 1 + C−1
1 , M = C2

√
|λ|,

and with C1, C2 > 0 depending only on the constants C, K in Theorem 4.5 and |λ| and a.

Proof. To prove the assertion we check that the bound (4.8) implies Remark 4.3 with the respective constants
Cu, γu, where u, λ is the eigenpair in (4.7). Due to the Sobolev embedding theorem, the L2-bound (4.8)
implies the corresponding estimate in L∞ norm

∥∥∇p+2u
∥∥

L∞(B)
≤ C(d)Kp+2 max

{
p,

√
|λ|

}p+2

,

such that C(d) may depend on the dimension d (see also discussion in [21]). Now the estimate (4.1) follows
with the constants specified in the assertion.

Now we are able to derive the separable approximations for a class of elliptic eigenvalue problems.

Theorem 5.2 Let the assumptions of Corollary 5.1 be satisfied. Then for any finite box Ωb there exists an
element ur ∈ Mr with r = (r, ..., r), such that for the eigenfunction in (4.7) we have

‖u− ur‖C0(Ωb) ≤ cM (log r)
d
ρ−r, (5.1)

where ρ = 1 + C−1
1 and M = C|λ| as defined above. The related representation of ur in MR has at most

rank R = rd−1.

Proof. Corollary 5.1 ensures that for the eigenfunction we have u ∈ AM,ρ(Ωb) with the respective constants
M, ρ. Hence, we apply the tensor product interpolant Ir−1 = I1

r−1...I
d
r−1u ∈ Pr−1[Ωb] on Ωb with respect

to d variables as in Proposition 4.4 and obtain the bound (4.2). The representation in the format MR is
obtained by reordering of rank-1 summands. This completes our proof.

For problems posed in Rd, Theorem 5.2 implies the asymptotic estimate

r = O(| log ε|+ log |λ|)

of the Tucker rank r on a finite hypercube, where ε > 0 is the desired approximation error.
To conclude this section we observe that for a special class of spectral problems, Theorem 5.2 can be

applied in the finite hypercube Ωb defined above. Specifically, we assume that the eigenfunction of problem
(4.7) with Ω = Rd exhibits the exponential decay,

|u(x)| ≤ Ce−β‖x‖ as x→∞. (5.2)

Given ε > 0, consider the “approximating” eigenvalue problem posed in the hypercube Ωb of size b =
O(| log ε|), with the corresponding eigenfunction ub, and suppose that ‖u− ub‖ ≤ Cε.

Remark 5.3 Corollary 5.1 ensures that the eigenfunction ub allows the same upper bound on the Tucker
and canonical ranks as in Theorem 5.2. Hence, in this case the truncated iteration can be applied directly to
the problem in finite domain Ωb. Such a situation is typical in computational quantum chemistry.
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5.2 Application to the discrete problem

We apply the Galerkin approximation with respect to the tensor product piecewise linear basis functions.
In the following, we make use of tensor representation of functions as well as the Kronecker tensor product
representation of the elliptic operator Λ. Let us formulate the assumptions on the coefficients which ensure
the respective tensor representation.

We consider the elliptic operators of the form

− div (A gradu) + 〈b, u〉+ cu ≡ ΛAu + ΛCu, (5.3)

where A = {aij(x)}di,j=1 ∈ L∞
sym

(
Ω, Rd×d

)
, b ∈ L∞ (

Ω, Rd
)

and c ∈ L∞ (Ω) satisfy the conditions listed in
§4.2. To simplify the discussion, we further set b = 0, though all the tensor constructions apply to this case as
well. In addition, we make the following assumptions which lead to the low Kronecker rank representation of
the discrete operator (the Galerkin stiffness matrix). We assume from the very beginning that the operator
coefficients are separable, aij , c ∈ MR, with some moderate rank parameter R ∈ N, i.e.,

aij(x) =

R∑

k=1

a
(1)
ij,k(x1) · · · a(d)

ij,k(xd), i, j = 1, ..., d,

and

c(x) =
R∑

k=1

c
(1)
k (x1) · · · c(d)

k (xd).

Hence, in the case of rank-1 test and trial functions u(x) = Πd
ℓ=1u

(ℓ)(xℓ), v(x) = Πd
ℓ=1v

(ℓ)(xℓ), the associated
bilinear forms can be written using the product ansatz as follows

〈ΛAu, v〉L2 =

R∑

k=1

d∑

i,j=1

d∏

ℓ=1

〈
a
(ℓ)
ij,k(xℓ)

∂δjℓ

∂xℓ
u(ℓ)(xℓ),

∂δiℓ

∂xℓ
v(ℓ)(xℓ)

〉

L2(Ω)

, (5.4)

〈ΛCu, v〉L2 =

R∑

k=1

d∏

ℓ=1

〈
c
(ℓ)
k (xℓ)u

(ℓ)(xℓ), v
(ℓ)(xℓ)

〉

L2(Ω)
, (5.5)

where δji is the Kronecker delta.
In the general case, a basis of piecewise polynomial functions

φi(x) =

d∏

ℓ=1

φiℓ
(xℓ), i ∈ I = Id := {1, ..., n}d, (5.6)

can be used, where φiℓ
are low order polynomials in the variable xℓ. For simplicity, we choose the Galerkin

subspace V ⊂ (H1
0 (Ω))d of piecewise linear basis functions (cf. Section 3.3). The Galerkin approximation to

the eigenvalue problem takes the form

LU ≡ (A+ C)U = λMU, U ∈ R
I , (5.7)

with the Kronecker tensor product representation (cf. Section 3.5)

A =

R∑

k=1

d∑

i,j=1

⊗d
ℓ=1A

(ℓ)
ij,k, C =

R∑

k=1

⊗d
ℓ=1C

(ℓ)
k , M = ⊗d

ℓ=1M
(ℓ), (5.8)

where A
(ℓ)
ij,k, C

(ℓ)
k , M (ℓ) ∈ Rn×n are the tridiagonal matrices

A
(ℓ)
ij,k =

{〈
a
(ℓ)
ij,k(xℓ)

∂δjℓ

∂xℓ
φp,

∂δiℓ

∂xℓ
φq

〉

L2

}n

p,q=1

,

C
(ℓ)
k =

{〈
c
(ℓ)
k (xℓ)φp, φq

〉

L2

}n

p,q=1
, M (ℓ) =

{
〈φp, φq〉L2

}n

p,q=1
.
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Lemma 5.4 The matrices A, C, and M have the respective Kronecker ranks Rd2, R, and 1.
The storage requirements to represent these matrices scale linearly in the univariate problem size n,

Q(A) = O(3d3Rn), Q(C) = O(3dRn), Q(M) = O(3dn).

The same cost holds for the matrix-vector multiplication by a rank-1 vector.

Proof. The first assertion follows from the tridiagonal structure of the Kronecker factors in (5.8). Suppose
that vector U has the rank-1 tensor representation

U = u(1) ⊗ ...⊗ u(d), u(ℓ) ∈ R
n.

Then the matrix-times-vector multiplication with our stiffness matrices is reduced to one-dimensional oper-
ations,

AU =

R∑

k=1

d∑

i,j=1

⊗d
ℓ=1A

(ℓ)
ij,ku(ℓ), CU =

R∑

k=1

⊗d
ℓ=1C

(ℓ)
k u(ℓ), MU = ⊗d

ℓ=1M
(ℓ)u(ℓ),

which again leads to the linear cost in n.

For example, in the case of the Laplace operator in Rd discretised by a finite difference scheme, we obtain
the simple Kronecker rank-d representation

A = A⊗ In ⊗ ...⊗ In + In ⊗A⊗ In...⊗ In + ... + In ⊗ In...⊗A, (5.9)

where A = tridiag{1,−2, 1} ∈ Rn×n and In is the n× n identity matrix (cf. Section 3.5).
Now we are able to discuss iterative methods accomplished with low rank truncation for solving the

discrete eigenvalue problem as in (5.7).

6 Numerics and concluding remarks

In this section we present numerical illustrations for 2D and 3D eigenvalue problems. Notice that the
example for the “truncated” Lanczos algorithm applied to the 2D Laplace operator is already discussed in
the introductory Section 2.

6.1 Iterative eigenvalue problem solvers with rank truncation

Without loss of generality we can setM = I in (5.7) since the matrixM has Kronecker rank one and, hence,
it is diagonalisable at the expense O(n log n). Now consider the algebraic eigenvalue problem

LU = λU, U ∈ R
I . (6.1)

We are interested in the approximate solutions of (6.1) in the tensor classMr ⊂ RI .
Largest eigenvalues. A standard method for computing the eigenpair (λ, U) for the (single) largest

eigenvalue is the simple power method. This includes the repeated matrix-vector multiplication which in
our approach is accomplished with the rank truncation,

U (0) ∈Mr : Ũ (m+1) := LU (m), U (m+1) = Tr(Ũ
(m+1)),

where Tr : RI → Mr is the nonlinear truncation operator to Mr defined in (3.5). ‖U (m+1)‖/‖U (m)‖ will
converge to the largest eigenvalue and U (m)/‖U (m)‖ to the associated eigenvector.

Lemma 6.1 Each step of the “truncated” power iteration needs a storage of size QP = O(3Rd3rn + rd).
The same asymptotical complexity bound holds for the matrix-vector multiplication with rank-1 vectors.

Smallest eigenvalues. To compute the minimal eigenvalue we apply the power method to the equivalent
equation

L−1U =
1

λ
U, U ∈ R

n⊗d

. (6.2)
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In the present paper we study the effect of numerical methods designed in the rank structured tensor formats
described above. There are further, possibly better suited methods, which can be modified similarly by the
rank truncation. In particular, one can apply preconditioned nested iterations (instead of evaluating the
action of inverse matrix) as follows. Given V (0) ∈ Mr:

Ṽ (m+1) := V (m) − ωB
(
LV (m) − U

)
, V (m+1) = Tr(Ṽ

(m+1))→ L−1U, (6.3)

where B can be chosen as the inverse of the shifted Laplacian. In the iteration (6.3) the truncation operator
Tr can be applied to the intermediate vectors LV (m) and B

(
LV (m) − U

)
as well.

6.2 Numerical illustrations

Below, we give numerical illustrations for the “truncated” power iteration applied to the inverse of an elliptic
operator L−1, where we set b = 0. In the case of constant/separable coefficients , L−1 will be approximated
by a low rank Kronecker product, e.g., obtained from the sinc-quadrature method [10, 11, 15].

6.2.1 Operators with constant coefficients

First we consider the finite difference analogue of the negative Laplacian A on the domain Ω = (0, 1)d, as
in (5.9) for d = 2, 3 with zero boundary conditions. The case d = 2 is of interest since in that case the
truncation operator Tr can easily be realised by the “truncated” SVD algorithm.

We recall that the eigenvalues are

λi = (n + 1)2
d∑

ℓ=1

4 sin2 πiℓ
2(n + 1)

, i ∈ N
d with components 1 ≤ iℓ ≤ n,

and the corresponding eigenvectors are exact rank-1 tensors:

Ui = u(i1) ⊗ ...⊗ u(id),

where u(iℓ) ∈ Rn with entries

u(iℓ)
s = sin

πiℓs

n + 1
, 1 ≤ s ≤ n.

We implement the power iteration for the matrix L = A−1, which is (approximately) represented in the
rank-R Kronecker format in the form

L ≈ LR :=

M∑

k=−M

ck

d⊗

ℓ=1

exp(−tkA(ℓ)) ≈ A−1, R = 2M + 1, tk, ck > 0, (6.4)

with A(ℓ) ∈ Rn×n, providing exponential convergence in R (see [11]). In particular, we take

tk = ekh, ck = htk, h = π/
√

M,

which leads to the convergence rate

∥∥A−1 − LR

∥∥ ≤ Ce−π
√

M , R = 2M + 1.

For even better coefficients tk, ck compare [4]. We recall that the memory requirements for this algorithm
are linear in n, i.e. O(dRn), while a linear complexity in the number of grid points would lead to O(nd).

The matrix-vector multiplication of LR with a rank-1 vector in Rn⊗d

takes O(dRn log n) operations by
using the diagonalisation

exp(−tkA(ℓ)) = F ′
s ·D · Fs, D = diag{e−tkλ1 , ..., e−tkλn},

where Fs is the sin-transform matrix of size n, and λi (i = 1, ..., n) are the respective eigenvalues of the 1D
Laplacian.
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Example 1. We present the results for λ = λmin in the 2D case, computed in MATLAB by using
Intel(R) T230/1.66 GHz processor. Since the eigenvector has rank one, we apply on each iteration step the
truncation operator T1 implemented via truncated SVD. In the next table we present numerical illustrations
for a sequence of grids indicating the CPU time (sec.) for one matrix-vector multiplication with LR, and
with fixed parameter M = 10 (the respective Kronecker rank of LM is R = 2M +1 = 21), and accomplished
with the rank truncation LR for R = 21 followed by a rank truncation. We present the number of power
iterations on each grid, as well as the resulting relative errors δλ = |λ−λh,R|/|λ| and δu = ‖U−Uh,R‖1/‖U‖1.

p (n = 2p − 1) Time/it. δλ δu it.
8 0.04 7.3 · 10−6 5.0 · 10−4 5
10 0.1 2.5 · 10−7 1.1 · 10−4 6
12 0.4 1.0 · 10−8 2.0 · 10−5 7
14 1.45 3.8 · 10−10 4.2 · 10−6 8
16 7.0 2.2 · 10−11 1.17 · 10−6 9

Table 6.1: Minimal eigenvalue for 2D Laplacian.

The results indicate the true asymptotical convergence of the truncated iteration in the mesh parameter
h = π/(n + 1), on a sequence of large n× n grids for n = 2p − 1, p = 8, 10, ..., 16. Table 6.2.1 also indicates
perfect linear scaling of the tensor method in n (compare with O(n2) for traditional methods of linear
complexity). The number of power iterations increases as O(log n) as expected.

Example 2. We consider the tensor computation of several smallest eigenvalues using the same tensor
power iteration, but accomplished with successive Gram-Schmidt orthogonalisation at each iteration step.
Here we solve the problem on a sequence of n×n grids for n = 2p− 1, p = 6, 8, ..., 16. The number of power
iterations observed is about 2 ≤ it ≤ 4 for all grids with p ≥ 8. Here the computation of the initial guess
by means of a nested iteration involving coarser grids is very helpful. The next table presents the iteration
history for three eigenpairs (λi, ui) (i = 1, 2, 3).

p Time/it. δλ1 δu1 δλ2 δu2 δλ3 δu3

6 0.02 2.3 · 10−6 2.5 · 10−4 2.7 · 10−5 1.9 · 10−3 4.2 · 10−6 3.3 · 10−3

8 0.03 2.1 · 10−7 8.9 · 10−5 1.3 · 10−6 3.9 · 10−4 5.3 · 10−7 1.1 · 10−3

10 0.1 1.7 · 10−8 2.2 · 10−5 6.9 · 10−8 9.4 · 10−5 1.3 · 10−8 1.8 · 10−4

12 0.39 9.9 · 10−10 5.2 · 10−6 4.5 · 10−9 2.3 · 10−5 1.9 · 10−9 7.0 · 10−5

14 1.6 6.5 · 10−11 1.3 · 10−6 2.8 · 10−10 6.0 · 10−6 1.5 · 10−10 1.7 · 10−5

16 6.9 3.8 · 10−12 3.2 · 10−7 1.8 · 10−11 1.5 · 10−6 4.3 · 10−11 4.5 · 10−6

Table 6.2: Several smallest eigenvalues for 2D Laplacian.

Again, these results indicate the linear scaling of the tensor method in n. The cost of one power iteration
step increases like O(n log n) as expected. Furthermore, we expect the asymptotic behaviour

δλ = O(λh2) and δu = O(
√

λh), as h→ 0,

which are in agreement with the above presented calculations. Notice that in our case the true scaling factor
between the refined grids is 16 for the eigenvalues and 4 for the eigenfunctions.

Example 3. We apply the tensor method to compute the minimal eigenvalue of the 3D Laplacian on large
n× n× n grids with n = 2p − 1. In this case, the action of the truncation operator T1 is equivalent to the
rank-1 Tucker approximation of the n× n× n rank-R tensors arising at each iterative step.

We observe the asymptotic complexity O(dn log n) to achieve the theoretical error bounds for both the
eigenvalues and eigenfunctions. Notice that the problem size on the finest grid (with n = 217, d = 3) exceeds
N = nd = 217d ≈ 1015, which is far beyond the facilities of modern super-computers. Hence tensor methods
are mandatory for solving large scale multi-dimensional spectral problems.
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p Time/it. δλ δu it.
6 0.03 2.0 · 10−4 1.5 · 10−3 4
8 0.05 1.6 · 10−5 9.4 · 10−4 4
10 0.12 7.8 · 10−7 1.2 · 10−4 5
12 0.51 4.9 · 10−8 3.4 · 10−5 5
14 2.2 3.1 · 10−9 9.3 · 10−6 5
16 10.6 1.9 · 10−10 2.8 · 10−6 5
17 22.3 4.8 · 10−11 1.6 · 10−6 5

Table 6.3: Minimal eigenvalue for 3D Laplacian on large spatial grids.

6.2.2 Operator with variable coefficients

In this section we consider eigenvalue problems for the elliptic operators of the form

Λu = ∆u + c(x)u, x ∈ R
d

with smooth coefficient c(x).
In the subsequent examples we consider discretisations represented by matrices of the form

A =M+ qC, q > 0, (6.5)

where M > 0 is the finite difference negative Laplacian in 2D as before, and C is the low Kronecker rank

matrix discretising the zero-order term c(x) =
R∑

k=1

c
(1)
k (x1) · c(2)

k (x2) ≥ 0 as in (5.3). We suppose that

0 ≤ 〈Cx, x〉 ≤ 〈x, x〉 ∀ x ∈ Vn \ {0}.

Example 4. In this example we apply the Lanczos algorithm for computing the largest eigenvalues as
described in §2. Consider matrices of the form

A =M−
R∑

t=1

Dt ⊗Dt,

where M is the negative discrete Laplacian and Dt are diagonal matrices with positive entries. We ap-
proximate the maximal eigenvalue by the standard Lanczos and truncated tensor Lanczos methods for the
following two examples:

(A) the entries of Dt are grid values of the function (1 + Tt(x))/10, where Tt is the Chebyshev polynomial
of degree t;

(B) the entries of Dt are random values uniformly distributed in [0, 1].

We compare the results obtained after 50 iterations for both methods. The matrix size is N = 3002, the
truncation rank and the accuracy are set to 10 and 10−2, respectively.

R 1 3 5 7 9
Standard Lanczos 7.989 7.957 7.925 7.900 7.893
Tensor Lanczos 7.977 7.940 7.917 7.893 7.906

Table 6.4: Maximal eigenvalues, case (A).

We observe that the computed eigenvalues in both methods are close to the truncation accuracy even for
the random case. This suggests that tensor tools may be applied to a much broader class of matrices than
required by the theory described above.
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R 1 3 5 7 9
Standard Lanczos 7.862 7.615 7.302 6.800 6.460
Tensor Lanczos 7.852 7.608 7.292 6.789 6.452

Table 6.5: Maximal eigenvalues, case (B).

Example 5. The minimal eigenvalue is calculated for the problem (6.5) with the matrix C corresponding
to the rank-1 potential c(x) = sin(λx1) sin(λx2) in (0, 1)2. We perform the truncated power iteration with
the matrix L = A−1, such that the respective matrix-vector multiplication y = LU is implemented by the
“truncated” iterative procedure, yp → y, as p→∞, where

yp+1 = yp − ωLR(Ayp − U), p = 0, 1, ...

with certain rank-r initial guess y0 and with a proper relaxation parameter ω ∈ (0, 2). Here LR is the rank-R
approximation to the inverse of the shifted Laplacian described in (6.4).

Table 6.6 presents the results on the sequence of grids n = 2p, p = 10, 11, 12, 13, for the truncation rank
r = 3. We give the total CPU time (sec.), the number of power iterations and the scaling factor between
the neighbouring grids. We expect an O(n log n) scaling provided that all nested iterations require the same
number of loops and the same tensor rank for the preconditioner (of course, there are some fluctuations).

n Time δRes Power iter. Scaling
1024 7.3 3.0 · 10−4 10 −
2048 23.6 1.5 · 10−4 14 2.3
4096 63.9 7.6 · 10−5 14 2.7
8192 209. 3.8 · 10−5 17 2.7

Table 6.6: Minimal eigenvalue for −∆ + c(x) in 2D.

This table indicates the linear-logarithmic scaling in n as well as the robust convergence of the power
iteration with the tensor modification.

6.3 Concluding remarks

The theoretical and numerical analysis of multi-dimensional eigenvalue problems presented in the paper
clearly indicate that tensor structured methods for the approximation and solution of “smooth” spectral
problems in Rd yield a promising basis for efficient solution methods in the modern high dimensional appli-
cations. Moreover, it seem that these methods are not restricted to smooth problems.

Acknowledgement. The authors are thankful to Dipl. Ing. Cristóbal Bertoglio for assistence with the
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