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Abstract

Given an observed stochastic process, computational mechanics provides an explicit and
efficient method of constructing a minimal hidden Markov model within the class of max-
imally predictive models. Here, the corresponding so-called ε-machine encodes the mech-
anisms of prediction. We propose an alternative notion of predictive models in terms
of a hidden Markov model capable of generating the underlying stochastic process. A
comparison of these two notions of prediction reveals that our approach is less restrictive
and thereby allows for predictive models that are more concise than the ε-machine.

Keywords: hidden Markov models, computational mechanics, ε-machines, prediction

Contents

1 Introduction 2
1.1 Models of prediction and their constraints . . . . . . . . . . . . . . . . . . . . 2
1.2 The main idea of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Generative models: Stochastic automata, HMMs, and OOMs . . . . . . . . . 7

2 Predictive models of stochastic processes 8
2.1 Generating a process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Our prediction setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 What does “prediction” really mean? 13
3.1 Predictive versus prescient memories . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Implications on minimality of predictive models . . . . . . . . . . . . . . . . . 16

4 Conclusions 19

A Appendix: Prediction with infinite histories 19
A.1 Generating a process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.2 Our prediction setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.3 Comparison to computational mechanics . . . . . . . . . . . . . . . . . . . . . 21

1Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

1



1 Introduction

1.1 Models of prediction and their constraints

This paper is mainly about computational mechanics, a theory introduced and further devel-
oped by Crutchfield and coworkers [Crutchfield and Young, 1989, Shalizi and Crutchfield, 2001,
Ay and Crutchfield, 2005, Still and Crutchfield, 2007]. It deals with the following problems:
Having an observed stochastic process, what is the best model in the sense of minimal size and
maximal predictive power? If such a model exists, is there a way of explicitly constructing
it? How much memory is needed to generate the process? In the context of these problems,
the so-called ε-machine and its construction have been proposed as the optimal solution.

The models considered in computational mechanics are stochastic output automata, also
called edge-emitting hidden Markov models (HMMs). We give a short discussion of the
different types of HMMs in Section 1.3. The ε-machine is directly derived from the so-called
causal states which are the minimal sufficient statistic on the past for predicting the future
of the stochastic process. More precisely, they form the coarsest partition of the past that
retains all information about the future. Furthermore, they can be obtained in a constructive
and efficient way ([Shalizi et al., 2002]).

There may exist, however, HMMs with fewer internal states than the corresponding ε-machine.
There are even examples of HMMs with few internal states that lead to an ε-machine with
infinite size ([Crutchfield, 1994], see also Example 3.6). Consequently, ε-machines can only
be of minimal size within reduced model classes that satisfy appropriately chosen constraints.
Unfortunately, in the literature these constraints are mainly implicitly stated, which leads
to a misperception and the above-mentioned apparent inconsistency. In particular, the ε-
machine is not the minimal model that generates a given process, a property occasionally
referred to in the literature. Instead, the ε-machine minimality depends on constraints that
are related to particular notions of memory and prediction based on the fundamental concept
of sufficient statistic. This paper reveals and relaxes these constraints in such a way that, given
an HMM, a minimal predictive model of the corresponding output process can not be larger
than that HMM. Recently, one step towards such an extension, namely introducing stochastic
memories, has been made in [Still and Crutchfield, 2007]. While the focus of that paper lies
on the trade-off between predictive power and model size (allowing some prediction error)
based on the bottleneck method [Tishby et al., 1999], we show in the present contribution
that this extension also is necessary for having concise models with maximal predictive power
(in our weakened sense). On the other hand, it allows for smaller models only in combination
with our notion of prediction.

In Section 1.2, we provide an intuitive sketch of our main idea in a simplified setting before
going into the technical details of precise definitions and results within the main part of
the paper. Based on our understanding of prediction as a generative operation we then
briefly discuss several generative models for stochastic processes in Section 1.3. The main
part, Sections 2 and 3, contains definitions and results for the case of prediction with finite
histories and does not require any measure theoretic background. To complete the discussion,
in the appendix we apply measure theoretic tools for showing that all results, up to minor
modifications, remain true in the cases of infinite history and general state spaces.
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1.2 The main idea of the paper

In order to illustrate the main idea of the paper, as an initial step we start with a simplified
situation of a one-step prediction scenario. More precisely, we consider a pair Xp and Xf

of discrete random variables, which we interpret as past and future observations. Not all
information of Xp is necessary for predicting Xf , so that one tries to compress the relevant
information in a (discrete) memory variable M via a memory map mem as shown in Figure 1.

Xp
//

mem

��3
33

33
33

33
33

33
Xf

M

Figure 1: Memory map mem that compresses the information contained in Xp about Xf

Within computational mechanics, mainly deterministic memory maps mem have been consid-
ered, where M is assumed to be a sufficient statistic1 on the past Xp for the future Xf . Only
recently an extension to stochastic maps has been considered ([Still and Crutchfield, 2007]).
We adopt this extension and do not require mem to be a deterministic function but allow for
a stochastic assignment, i.e. the memory map is assumed to be a Markov kernel (transition
probability).

In general, the map mem reduces the information about the future, which is expressed by the
following inequality:

I(M : Xf) ≤ I(Xp : Xf), (1)

where I denotes the mutual information between two variables. The mutual information
I(Xp : Xf) between past and future corresponds to a complexity measure defined within the
context of stochastic processes and known as effective measure complexity, excess entropy , and
predictive information [Grassberger, 1986, Shalizi and Crutchfield, 2001, Bialek et al., 2001].
We use the term predictive information for I(Xp : Xf) also within the simplified setting of
this section.

In computational mechanics one assumes that M is prescient ([Shalizi and Crutchfield, 2001])
in the sense that the equality holds in (1):

I(M : Xf) = I(Xp : Xf). (2)

Note that for a deterministic memory map mem, this property reduces to the notion of
sufficient statistic. Furthermore, (2) directly implies that the predictive information is a
lower bound of the entropy H(M) which corresponds to a complexity measure known as
statistical complexity within computational mechanics ([Shalizi and Crutchfield, 2001]):

I(Xp : Xf) ≤ H(M) ≤ ln
(
|M|

)
, (3)

1See, e.g., [Kulhavý, 1996] for an introduction to statistics in an abstract context.
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where |M| denotes the cardinality of the set M of memory states.

The requirement (2) is equivalent to

I(Xf : Xp | M) = 0, (4)

which means that M captures all the information of the past that is necessary for predicting
the future, or, stated differently, the future is independent of the past given the memory:

Xf ⊥⊥ Xp | M. (5)

This implies that the joint distribution can be represented by the graph of Figure 2.

Xp

mem

��3
33

33
33

33
33

33
Xf

M

gen

EE�������������

Figure 2: Factorization of the channel Xp → Xf resulting from a prescient memory

More precisely, there is a Markov kernel gen, illustrated by the arrow M → Xf , that satisfies

P(Xf = xf | Xp = xp) =
∑

m

mem(xp; m) gen(m; xf). (6)

Interpreting gen in a generative way, this means that one can replace the mechanisms that
underly the channel Xp → Xf by the two steps of

1. mapping the past to a memory state using mem and then, based on that state,

2. generating the future with gen.

It is important to point out that the replacement of the channel Xp → Xf by the composition
of mem and gen does not mean that both mechanisms have the same outcome. Due to the
intrinsic stochasticity of the kernels, one can not expect that the predicted outcome coincides
with the real outcome. Only the distribution is the same. In order to explicitly model this
outcome difference, we use the symbol X̃f to denote the prediction variable, given by the
mechanisms mem and gen, and combine the graphs of the Figures 1 and 2 into the graph of
Figure 3. In this picture, the condition (6) translates to the following condition:

P(Xf = xf | Xp = xp) = P(X̃f = xf | Xp = xp). (7)

Here, the existence of a kernel gen that satisfies (7) is a consequence of the assumption that the
memory is prescient. On the other hand, one could try to find a kernel mem, not necessarily
prescient, for which there exists a kernel gen such that (7) is satisfied. The requirement (7)
simply means that the memory mem contains sufficient information for generating a future
trajectory with gen that is indistinguishable from the real future trajectory based on the
observed past. We call such a memory predictive. This is the ansatz of the present paper,
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Figure 3: Memory map mem together with a generator gen which generates X̃f as a version of Xf that
is indistinguishable from Xf based on Xp

which relaxes the notion of a prescient memory. At the end of this section, we give an example
of a predictive memory that is not prescient.

With inequality (1) and with the assumption (7) one has the following relations to the pre-
dictive information, that is the mutual information between past and future:

I(M : Xf) ≤ I(Xp : Xf) = I(Xp : X̃f) ≤ I(M : X̃f). (8)

More precisely, only the equality in (8) requires predictability of the memory. According to
the second inequality, a memory can contain more information about the predicted future
X̃f than the past Xp, whereas, according to the first inequality, no memory can contain
more information about the actual future than the past. In view of the usual reference to
the data processing inequality within the computational mechanics literature, the second
inequality appears unfamiliar and emphasizes a new aspect of prediction. On the other hand,
it is simply a direct consequence of the explicit distinction between the actual and predicted
future, that is Xf and X̃f . Furthermore, as a direct implication of (8) the inequality (3), which
holds for prescient memories, remains valid also for predictive memories. Stated explicitly, the
entropy of a predictive memory variable M is lower bounded by the predictive information of
the observed process. We will see that, as consequence of our extension of the memory class
to predictive memories, it is possible to come closer to this lower bound and thereby better
exploit the predictive structure of the underlying process.

Example 1.1 shows the difference between prescient and predictive memories within the sim-
plified setting of this introduction. As we already mentioned, all definitions of this section
will be extended to the general setting of stochastic processes. The key idea of our main
Example 3.6 within that general setting is illustrated by the following construction:

Example 1.1. Let Xp and Xf assume values in { 0, 1, 2 },

P(Xp = xp) = 1
3 and P(Xf = xf | Xp = xp) =





2
3 , if xf = xp 6= 2
1
3 , if xp = 2 or xf = 2

0, otherwise

.

As predictive information we get

I(Xp : Xf) = 4
9 ln(2),
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which is a lower bound for the entropy of any prescient or predictive memory. Since all three
possibilities for Xp yield different expectations on the future, every prescient memory variable
still has to distinguish between these three states (the mathematical proof of this statement is
simple and contained in the proof of Proposition 3.5). Intuitively, if we identify states xp with
the same conditional distribution on the xf we get three so-called causal states as equivalence
classes. Obviously, every prescient memory has at least three memory states with an entropy
H(M) ≥ ln(3). On the other hand, it is possible to define a predictive memory with only
two memory states. To this end, consider a memory with state set { 0, 1 } that copies xp if
xp ∈ { 0, 1 } and choses a random state otherwise:

P(M = m | Xp = xp) = mem(xp; m) :=





1, if m = xp 6= 2
1
2 , if xp = 2

0, otherwise

.

We see that mem is predictive by defining gen(m) = P(Xf | Xp = m), m ∈ { 0, 1 } and
observing that also for xp = 2 this yields the correct distribution of the prediction:

P(X̃f | Xp = 2) = 1
2P(X̃f | M = 0) + 1

2P(X̃f | M = 1)

= 1
2P(Xf | Xp = 0) + 1

2P(Xf | Xp = 1) = P(Xf | Xp = 2).

Furthermore, H(M) = ln(2). ♦

Within the general context of stochastic processes, our main results are the following: Every
prescient memory map mem, which is assumed to satisfy (2), is also predictive but not vice
versa (Proposition 3.4 and Example 3.6). On the other hand, restricted to the situation where
the map mem is deterministic, i.e. M is a statistic on Xp, predictive and prescient turn out
to be equivalent (Proposition 3.4). The ε-machine turns out to be minimal in the class of
prescient memories, even if we allow stochastic memory maps (Proposition 3.5). Every HMM,
however, can be considered as a predictive model with the same number of memory states
(Proposition 2.5), which provides a way of constructing machines that are more concise than
the ε-machine. Example 3.6 is such a (minimal, edge-emitting) HMM with two hidden states
whereas the corresponding ε-machine requires infinitely many hidden states.

Although extending the model class from prescient to predictive allows for substantially
smaller models, while preserving a notion of predictive power which we consider quite natural,
we have to point out two drawbacks. Firstly, constructing a minimal HMM is intrinsically
difficult, whereas efficient algorithms are available for the construction of the ε-machine. Sec-
ondly and conceptually more important, the property of sufficiency is lost. This means that
the memory state is not a complete substitute for the past. Within computational mechan-
ics, the total information that is required for encoding the future distribution is completely
contained in the memory state whereas in our model the memory only contains that part
of it that is sufficient for generating the future distribution based on the past. When we
want to use our model for sampling the future distribution given an xp, we first choose a
memory state m according to mem(xp) and then apply the process gen(m) which generates
an xf . If we repeat this sampling procedure we obtain the correct future distribution. On the
other hand, if we “forget” the history state xp and, instead of sampling new m’s according
to mem(xp), apply gen(m) using the same m, the resulting distribution of xf will be different
from P(Xf | Xp = xp). Thus, we have to memorize the distribution (the information state) of

6



the memory states m given xp. One can show that the number of these information states is
lower bounded by the number of causal states.

1.3 Generative models: Stochastic automata, HMMs, and OOMs

In computational mechanics the ε-machine is defined in terms of a stochastic (output) automa-
ton.2 This name is directly linked to the intuition of a “machine”: It has internal states M

and is initialized by one of these states according to some initial probability distribution. At
each time step t the internal state Mt is updated, that is Mt+1 is generated and, at the same
time, an output symbol Xt+1 from a finite alphabet D is emitted. This is modeled by a joint
transition probability from the internal states to output and internal states. Stochastic au-
tomata are also widely known as edge-emitting hidden Markov models. Here “edge-emitting”
means that the output symbol may depend on both the old and the new internal state (out-
put symbol and new internal state are determined by a joint kernel). In transition graph
representations of edge-emitting HMMs, the output symbols appear as edge labels.

Probably more common than edge-emitting HMMs are the more restrictive state-emitting
HMMs. These HMMs have to satisfy the additional condition that the output symbol Xt+1

depends on either Mt or Mt+1 but not on both (as in the case of edge-emitting HMMs). More
precisely, it is assumed that the transition probability factorizes as follows:

P(Mt+1, Xt+1 | Mt) = P(Mt+1 | Mt) P(Xt+1 | Ms), s ∈ { t, t + 1 }.

Even more restrictive are functions of Markov chains. Here, the output symbol is a deter-
ministic function of the internal state Mt+1. Sometimes also a notion less restrictive than
edge-emitting HMM is considered, namely that of a partially observed Markov process:3 A
(time homogeneous) Markov process (Mt,Xt)t∈Z

on a product space M × D, where the com-
ponent D is considered to be observable, whereas the other component M consists of hidden
states. Note that here both marginal processes (Mt)t∈Z

and (Xt)t∈Z
need not be Markovian.

These four notions, partially observed Markov process, edge-emitting HMM (stochastic au-
tomaton), state-emitting HMM, and function of a Markov chain (ordered from more general
to more restrictive) are essentially equivalent in the following sense: To every partially ob-
served Markov process, one can naturally associate a function of a Markov chain such that
the cardinality of the internal states increases only by the constant factor of the cardinality
of the output alphabet. One simply takes as new set M′ of internal states the product M×D

of internal and observable states and the projection m′ = (m,x) 7→ x onto the observable
component x as function determining the output symbol. In the following, we only consider
edge-emitting HMMs and HMM always means edge-emitting.

There are also more algebraic models of stochastic processes, which dismiss the conception
of the internal dynamics being described by a stochastic process. Instead, some vector space
replaces the internal states and the “dynamics” is described by linear maps (instead of Markov
kernels). These models were introduced and termed stochastic S-modules by Heller in the
very concise and well-written paper [Heller, 1965]. Later, in [Jaeger, 2000], Jaeger made the
construction more explicit and transparent for readers not familiar with module theory. He

2See, e.g., [Bukharaev, 1995] for an introduction to the theory of stochastic automata.
3The term “partially observed Markov process” sometimes refers to edge- or state-emitting HMMs.

7



introduced the name observable operator model (OOM ), provided ways of interpreting them
and extended the theory by learning algorithms. Ergodic theory for OOMs was developed
in [Faigle and Schönhuth, 2007, Schönhuth and Jaeger, 2007]. In [Littman et al., 2001], the
same model class was also obtained starting from a somewhat different intuition (internal
states are constructed as predictions for certain tests) as linear non-controlled predictive state
representations (PSRs).4 The equivalence of linear non-controlled PSRs and OOMs is shown
in [Singh et al., 2004].

OOMs are a generalization of HMMs in the sense that for any HMM there is a naturally
associated, equivalent OOM with the internal states of the HMM providing a basis for its
internal vector space.5 Here the OOM state vectors roughly correspond to the so called
information states (probability distributions over internal states) and the number of internal
states of the HMM is equal to the dimension of the associated OOM. However, not every
OOM is induced by an HMM (as the transitions need not be positive), and the dimension of
the minimal OOM may be substantially smaller than the minimal number of HMM states.
In fact, finite dimensional OOMs exist for some processes which do not allow for HMMs with
finitely many internal states.

While OOMs can be constructed such that the internal state vector has some probabilistic
interpretation (giving the probability of certain future events), it may be impossible to in-
terpret any basis as “internal (pure) states”: To simulate a process with an HMM, one can,
at each time step, determine the next internal state randomly. Thus one has to store the
internal state only (as opposed to the information state). This is not possible for OOMs in
general, due to the occurrence of “negative probabilities”.

The question whether there exists a (finite) HMM, as well as finding the minimal one, is intrin-
sically difficult. It depends on an intricate geometrical condition specified in [Heller, 1965].
Thus, although we want to keep the interpretation of a probabilistic machine and work with
HMMs as generative models, OOM theory is interesting in that it provides a constructive
algorithm for finding the minimal OOM. In some cases, in particular in the situation of our
main Example 3.6, this minimal OOM is equivalent to an HMM and thus the minimal HMM
can be obtained in a constructive way.

2 Predictive models of stochastic processes

2.1 Generating a process

Before suggesting our notion of prediction, we first consider the task of generating a process.
Generating a predicted future based on memory states is a crucial part of our understanding of
prediction. We assume a finite set D (called state space or alphabet of the generated process), a
countable set M of memory states (also called internal states) and a Markov kernel (transition
probability) which we call generator :

gen : M → P(D × M),

4PSRs exist also for controlled systems, thus including actions of the observer. In principle, they can be
non-linear, but most of the theory considers the linear case.

5The vector space consists of the signed measures on the internal states.
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where P(D×M) is the set of probability measures on D×M. The situation for more general
spaces is discussed in the appendix.

Remark. A generator together with an initial probability distribution on the internal states
is an (edge-emitting) HMM, except that we allow the set of internal states to be countable
(instead of finite).

We use the notation gen(m; x, m̂) to denote the probability of the pair (x, m̂) with respect
to gen(m). Together with an initial probability distribution µ on the memory states M, this
kernel generates a stochastic process X̃k, k ∈ N, on D and a process Mk, k ∈ N0 := N ∪ {0},
on M in the following way: Being in a memory state at time k, it (stochastically) produces
a new memory state at time k + 1 and, at the same time, emits a symbol from D. This is
shown in Figure 4.

M0
//

  B
BB

BB
BB

B
M1

//

  B
BB

BB
BB

B
M2 ···· MT−1

//

""F
FF

FF
FF

FF
MT

X̃1 X̃2 ···· X̃T−1 X̃T

Figure 4: The process of generating memory states Mk and emitting observable states X̃k

The joint distribution is computed according to

P(M[0,T ] = m[0,T ], X̃[1,T ] = x[1,T ]) = µ(m0)
T∏

k=1

gen(mk−1; xk,mk),

where we use the notation [0, T ] for the discrete interval { 0, . . . , T } and M[0,T ] = m[0,T ] for
M0 = m0, . . . ,MT = mT . Similarly, throughout the paper we also use the notation XT to
denote a stochastic process Xk, k ∈ T, where T is the time set of the process.

Definition 2.1 (generating a process). Let XN be a stochastic process on D. We say that
gen generates XN if there exists an initial distribution µ for gen, such that X̃N has the same
distribution as XN.

Remark. For every stochastic process XN, there exists a generator gen which generates it.
This is true because the set of internal states is allowed to be countable and the time set
is only semi-infinite. Thus the generator can store the complete history of output symbols
in the internal state. Another generator which can be constructed for any process is the
finite-history version of the ε-machine (see Example 2.4).

2.2 Our prediction setting

We use generators as models for the process of prediction. The initial distribution is com-
puted by a memory map from past observations and contains the information of the history.
Although computational mechanics usually works with infinite length observations (histories),
we allow here only finite but varying length observations. This way we avoid measure-theoretic
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technicalities due to an uncountable set of infinite history trajectories. In the appendix, we
treat the case of infinite histories and show that virtually everything remains valid. Unfor-
tunately, the variation of history length leads to some notational technicalities, especially in
Section 3.1.

Throughout this article, we consider a stationary stochastic process XZ, the observable pro-
cess, with finite state set D. Note that, since XZ is stationary, it is uniquely determined by its
restriction to positive times. For the task of prediction, we assume that the outcome of XZ is
known for some finite but arbitrary past time interval [−t+1, 0]. Based on these observations,
a generator is used as a mechanism for generating an outcome of X̃t

[1,T ] as prediction of the
real future outcome X[1,T ]. The situation is illustrated in Figure 5 and made more precise by
the following definitions.

X−t+1

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
X−t+2

""D
DDD

DDD
DD

DD
DDD

DD
DD

DDD
D

···· X−1

��1
11

11
11

11
11

11
11

1
X0

��

X1 X2 ···· XT−1 XT

X̃t
1 X̃t

2
···· X̃t

T−1 X̃t
T

M t
0

>>~~~~~~~~
// M t

1

>>~~~~~~~~
// M t

2 ···· M t
T−1

==zzzzzzzz

Figure 5: The process of generating X̃t
[1,T ] as prediction of X[1,T ] based on a length-t history which is

fed into the memory variable M t
0. The dotted lines symbolize that XZ may have arbitrary

dependencies and need not be Markov.

Definition 2.2 (memory). A memory (map) mem assigns to every history x[−t+1,0] ∈

D[−t+1,0] of arbitrary but finite length t a probability distribution on a countable set M of
memory states:

mem : D∗ :=
⋃

t∈N0

D[−t+1,0] → P(M).

Note that D∗ contains the “empty history,” which corresponds to not having observed any-
thing.

We use the memory map mem and a generator gen : M → P(D×M) to define random variables
M t

k and X̃t
k as shown in Figure 5. For every history length t, X[−t+1,0] and mem induce a

random variable M t = M t
0 with distribution

P(M t = m | X[−t+1,0] = x[−t+1,0]) = mem(x[−t+1,0]; m).

Now we can start the generator gen in the memory state M t
0 and obtain the predicted pro-

cess X̃t
N

on D as well as a process of internal states M t
N0

on M with the joint (conditional)
distribution

P(M t
[0,T ] = m[0,T ], X̃t

[1,T ] = x[1,T ] | X[−t+1,0] = x[−t+1,0])

= mem(x[−t+1,0]; m0)

T∏

k=1

gen(mk−1; xk,mk).
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Definition 2.3 (predictive model). We call the memory map mem predictive (w.r.t. XZ)
if there exists a generator gen : M → P(D × M), such that for all t and all x[−t+1,0] satisfying
P(X[−t+1,0] = x[−t+1,0]) > 0 the following equality holds:

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X̃t
[1,T ] | X[−t+1,0] = x[−t+1,0]) for all T .

We then call the pair (mem, gen) predictive model of the process XZ.

This definition of a predictive memory corresponds to the requirement (7) which we already
discussed in the introduction. To summarize, if we have a predictive model and a finite interval
of observations with arbitrary length t, we use the memory map to (stochastically) produce
an initial value M t for the generator. Then we apply the generator to produce a predicted
future X̃t

[1,T ] that has the same statistic properties as the “real” future X[1,T ], conditioned on
the observations X[−t+1,0]. It is important that the generator must not depend on the length
t of the history.

In Section 3, we relate our notion of a predictive model to the definition used in computa-
tional mechanics. Before doing so, we give an example showing that one can construct a
predictive model of any stationary stochastic process, namely (the finite-history version of)
the ε-machine of computational mechanics. This important example is also used in Proposi-
tion 3.5 and Example 3.6.

Example 2.4 (ε-machine). In computational mechanics, the ε-machine is defined on the
so-called causal states. These are defined as equivalence classes of observed histories. Usually
these histories are assumed to have infinite length, but finite length histories have also been
considered (e.g. [Feldman and Crutchfield, 1998]). In this case, the identified histories may
have different lengths. The equivalence relation identifies histories with the same conditional
expectation on the future, i.e. x[−t+1,0] ∼ x′

[−s+1,0] if and only if6

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | X[−s+1,0] = x′
[−s+1,0]) for all T > 0.

The causal state of x[−t+1,0] is given by its equivalence class

C(x[−t+1,0]) :=
{

x′
[−s+1,0]

∣∣ s ∈ N0, x′
[−s+1,0] ∼ x[−t+1,0]

}
.

As memory set, we take the set MC := Im(C) :=
{

C(x[−t+1,0])
}

of causal states. The
deterministic memory map memC assigns to a history x[−t+1,0] the Dirac measure in the cor-
responding causal state C(x[−t+1,0]), i.e. memC

(
x[−t+1,0]; C(x[−t+1,0])

)
= 1. To get a predictive

model, we also need a generator. By x[−t+1,0]x, we denote the history y[−t,0] of length t + 1
obtained by concatenation of x[−t+1,0] and x, i.e. y0 = x and y−k = x−k+1 for k = 1, . . . , t.
Note that if C(x[−t+1,0]) = C(x′

[−s+1,0]), we also have C(x[−t+1,0]x) = C(x′
[−s+1,0]x), provided

that x[−t+1,0] and x′
[−s+1,0] have positive probability. This is true because

P(X[1,T ] | X[−t,0] = x[−t+1,0]x) =
P(X0 = x, X[1,T ] | X[−t,−1] = x[−t+1,0])

P(X0 = x | X[−t,−1] = x[−t+1,0])
,

and XZ is stationary. Therefore, the following generator (the ε-machine transition) is well
defined:

genC

(
m; x,m′

)
:=

{
P(X1 = x | X[−t+1,0] = x[−t+1,0]), if C(x[−t+1,0]x) = m′

0, otherwise
,

6We assign histories with probability zero, i.e. P(X[−t+1,0] = x[−t+1,0]) = 0, to arbitrary equivalence classes.
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where x[−t+1,0] is any history with positive probability and C(x[−t+1,0]) = m. We obtain

P(X̃t
[1,T ] = x[1,T ] | X[−t+1,0] = x[−t+1,0])

=

T∏

k=1

genC

(
C(x[−t+1,0]x1 · · · xk−1); xk,C(x[−t+1,0]x1 · · · xk)

)

=
T∏

k=1

P(X1 = xk | X[−t−k+2,0] = x[−t+1,0]x1 · · · xk−1)

(stationary)
= P(X[1,T ] = x[1,T ] | X[−t+1,0] = x[−t+1,0]).

Thus (memC, genC) is a predictive model. ♦

As a pair (mem, gen), a predictive model (of XZ) in particular provides the generator gen which
generates the restriction XN of the process XZ to positive times in the sense of Definition 2.1.
The appropriate initial distribution is given by the memory map for t = 0, i.e. by mem(∅),
where ∅ is the empty history. In the following proposition, we show the converse of this
statement: Every generator that generates the positive time restriction XN can be used in a
predictive model with an appropriate memory map.7 In particular, if the number of memory
states in M is large enough to allow for generating the positive time restriction of the process,
it is also large enough to admit a predictive model of XZ.

Proposition 2.5 (generator as predictive model). Let gen : M → P(D × M) be a gen-
erator that generates the positive time restriction of the process XZ. Then there is a memory
map mem : D∗ → P(M), such that (mem, gen) is a predictive model of XZ.

Proof. Let the initial distribution for gen be such that X̃N has the same distribution as XN.
Define for all x[−t+1,0] with positive probability

mem(x[−t+1,0]; m) := P(Mt = m | X̃[1,t] = x[−t+1,0]).

The case t = 0 is clear because of the fact that X̃0
N

and X̃N have the same distribution.
Therefore, let t > 0:

P(X̃t
[1,T ] | X[−t+1,0] = x[−t+1,0])

=
∑

m

P(M t
0 = m | X[−t+1,0] = x[−t+1,0]) P(X̃t

[1,T ] | M t
0 = m, X[−t+1,0] = x[−t+1,0])

=
∑

m

mem(x[−t+1,0]; m) P(X̃t
[1,T ] | M t

0 = m)

=
∑

m

P(Mt = m | X̃[1,t] = x[−t+1,0]) P(X̃[t+1,t+T ] | Mt = m)

= P(X̃[t+1,t+T ] | X̃[1,t] = x[−t+1,0])
(assumption)

= P(X[t+1,t+T ] | X[1,t] = x[−t+1,0])

(stationary)
= P(X[1,T ] | X[−t+1,0] = x[−t+1,0]),

7Thus, generative and predictive models are essentially equivalent. Note, however, that the memory map
need not be unique.
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where we used that X̃t
[1,T ] is independent of X[−t+1,0] given M t

0 and X̃[t+1,t+T ] is independent

of X̃[1,t] given Mt.

Remark. Proposition 2.5 is the main source of examples of predictive models: We can take
an arbitrary (edge-emitting) HMM with stationary output process and automatically obtain
a predictive model of the output. This model uses the same memory states and generating
mechanism as the original HMM. Example 3.6 below is of that type.

3 What does “prediction” really mean?

3.1 Predictive versus prescient memories

As we already mentioned in the introduction, our concept of a predictive memory map dif-
fers from the concept usually discussed within computational mechanics. There, one tries
to compress the observed sequence x[−t+1,0] by the memory map and requires that, at the
same time, no information about the future x[1,T ] (for all T ) that is contained in the history
x[−t+1,0] is lost. In the situation where all observed histories have the same length, which
in computational mechanics is usually assumed to be infinite, this means requiring that the
mutual information between history and future is equal to the mutual information between
the memory variable M and the future, similar to the requirement (2) of the introduction. In
our present setting of finite varying history lengths, however, we do not have a single memory
state at time zero but for any history length t a different memory state M t.8 Simply assuming
the information equality for every length t separately, i.e.

I(M t : X[1,T ]) = I(X[−t+1,0] : X[1,T ]) for all T and all t, (9)

is a weak requirement which does not provide the correct correspondence to (2) in the context
of computational mechanics for finite but varying observation lengths. For memory maps
satisfying (9), the information about the future need not be contained in the memory state
alone but also in the particular observation length t. The same memory state m can have a
completely different implication on the future if it results from different history lengths (see
Example 3.1). Therefore, we have to assume that the memory keeps all information about
the future without the additional knowledge of t. We give two equivalent versions of the right
correspondence to (2).

First, we simply assume, in addition to (9), that conditional probabilities of the future given
a memory state do not depend on the observation length t. More precisely, given m ∈ M, we
assume that P(X[1,T ] | M t = m) is independent of t whenever P(M t = m) > 0. Since (9) is
equivalent to

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | M t = m)

whenever P(X[−t+1,0] = x[−t+1,0], M t = m) > 0, we finally get the following condition as
correspondence to (2):

P(X[−t+1,0] = x[−t+1,0], M t = m) > 0, P(M s = m) > 0

=⇒ P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | M s = m) for all T . (10)

8This technicality does not appear in the infinite-history case discussed in the appendix.
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As a second definition, which is equivalent to (10), we provide a t-independent version of (9).
To this end, we imagine that t is determined randomly by a N0-valued random variable τ

which is assumed to be independent of all other variables. We call such a variable τ random
time. Combining the family of memory variables M t, t ∈ N0, with a random time τ we get a
new variable M τ which is equal to M t precisely when τ = t. We require that, for all random
times τ , the corresponding M τ contains maximal information about the future, even if we
don’t know the value of τ . More precisely,

I(M τ : X[1,T ]) = I(X[−τ+1,0] : X[1,T ]) for all T ∈ N and all random times τ . (11)

Note that (11) contains (9) as the special case of constant random times. It is straightforward
to show (but omitted here) that (11) is equivalent to (10). We illustrate the difference between
(9) and (11) by the following example.

Example 3.1 (the difference via random times). Let XZ be a non-i.i.d. Markov process
on D := { 0, 1 }. Define

M t := X0 and M̂ t :=

{
X0, if t odd

1 − X0, if t even
.

Then both M and M̂ satisfy (9), whereas M also satisfies (11) and M̂ does not. This is

because the information M̂ τ = m is useless if we don’t know whether τ is odd or even. ♦

Definition 3.2 (prescient). We call a memory prescient , if it satisfies the equivalent con-
ditions (11) and (10).

The following example shows that predictive memories need not be prescient and can have
fewer memory states than the ε-machine (which turns out to be the minimal prescient memory
in Proposition 3.5). It is an extension of Example 1.1 to the setting of stochastic processes.

Example 3.3. Let D := { 0, 1, 2 } and XZ the Markov process defined by

P(X0 = x0) = 1
3 and P(Xk+1 = xk+1 | Xk = xk) =





2
3 , if xk+1 = xk 6= 2
1
3 , if xk = 2 or xk+1 = 2

0, otherwise

.

As the process is Markov and different last symbols of the history yield different expectations
of the next symbol, there are three causal states as defined in Example 2.4 (the empty history
induces the same expectation as the histories ending in the symbol 2). On the other hand, we
obtain a predictive memory map with two memory states in the same way as in Example 1.1:
Let M := { 0, 1 } and

mem(x[−t+1,0]; m) :=





1, if t 6= 0 and m = x0 6= 2
1
2 , if t = 0 or x0 = 2

0, otherwise

.

Just as in the situation of Example 1.1, we see that mem is indeed predictive. ♦
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The property “prescient” only refers to the map mem and not to the operational aspects of
prediction given by the generating “mechanism” of a generator gen. Therefore, it does not
refer to the predicted process X̃t

[1,T ]. In the following proposition, we show that nevertheless
we can associate to any prescient memory a generative mechanism: Every prescient memory
is predictive. Furthermore, in the case of deterministic memory, predictive and prescient are
equivalent.

Proposition 3.4 (predictive versus prescient).
1. Every prescient memory map is predictive.
2. If a memory map is deterministic and predictive, then it is also prescient.

Proof.
1. Assume w.l.o.g. that for all m ∈ M there is some tm with P(M tm = m) > 0 (otherwise, m

may be removed from M). Let M̂ t be constructed from X[−t+2,1] with mem, just like M t is
constructed from X[−t+1,0]. We define the generator

gen(m; x, m̂) := P(M̂ tm+1 = m̂, X1 = x | M tm = m).

In view of Proposition 2.5, it suffices to show

P(X̃t
[1,T ] = x[1,T ]) = P(X[1,T ] = x[1,T ]).

We show the more general equation (for m with P(M t
0 = m) > 0)

P(X̃t
[1,T ] = x[1,T ] | M t

0 = m) = P(X[1,T ] = x[1,T ] | M t
0 = m)

by induction over T . The case T = 0 is trivial. For T > 0:

P(X̃t
[1,T ] = x[1,T ] | M t

0 = m) (12)

=
∑

m̂

P(M t
1 = m̂, X̃t

1 = x1 | M t
0 = m) P(X̃t

[2,T ] = x[2,T ] | M t
1 = m̂)

=
∑

m̂

gen(m; x1, m̂) P(X̃tm+1
[1,T−1] = x[2,T ] | M tm+1

0 = m̂)

(ind. as.)
=

∑

m̂

P(M̂ tm+1 = m̂, X1 = x1 | M tm
0 = m) P(X[1,T−1] = x[2,T ] | M tm+1

0 = m̂).

Now using stationarity of XZ and (10), which holds also for M̂ instead of M due to stationarity,

we obtain for those m̂ with P(M̂ tm+1 = m̂, X1 = x1 | M tm
0 = m) > 0 that

P(X[1,T−1] = x[2,T ] | M tm+1 = m̂) = P(X[2,T ] = x[2,T ] | M̂ tm+1 = m̂) (13)

= P(X[2,T ] = x[2,T ] | M̂ tm+1 = m̂, M tm
0 = m, X1 = x1).

In total we obtain the required equality:

P(X̃t
[1,T ] | M t

0 = m)
(12)+(13)

= P(X[1,T ] | M tm
0 = m)

(10)
= P(X[1,T ] | M t

0 = m).

15



2. Let M t = ft(X[−t+1,0]). For m = f(x[−t+1,0]) = f(x′
[−s+1,0]), we get from predictiveness

P(X[1,T ] | X[−s+1,0] = x′
[−s+1,0]) = P(X̃s

[1,T ] | X[−s+1,0] = x′
[−s+1,0])

= P(X̃t
[1,T ] | M t = m)

= P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) .

Consequently, if A := f−1
s (m) is the set of length-s histories mapped to m,

P(X[1,T ] | M s = m) =

∑
x′

[−s+1,0]
∈A P(X[−s+1,0] = x′

[−s+1,0])P(X[1,T ] | X[−s+1,0] = x′
[−s+1,0])∑

x′

[−s+1,0]
∈A P(X[−s+1,0] = x′

[−s+1,0])

=
P(X[1,T ] | X[−t+1,0] = x[−t+1,0])

∑
P(X[−s+1,0] = x′

[−s+1,0])∑
P(X[−s+1,0] = x′

[−s+1,0])

= P(X[1,T ] | X[−t+1,0] = x[−t+1,0]).

This is nothing but equation (10).

Remark. Let mem be a predictive memory map. Consider the set M′ := {mem(x) | x ∈
D∗ } ⊆ P(M) of information states and the deterministic M′-valued memory map defined
by mem′

(
x; mem(x)

)
= 1. Then mem′ is easily seen to be a prescient memory map (i.e. a

sufficient statistic on the past for the future). Note that while mem′ is directly linked to mem,
M′ may be much bigger than M. In Proposition 3.5 we show that the cardinality of M′ is
bounded below by the number of causal states.

3.2 Implications on minimality of predictive models

Figure 6 illustrates the situation in view of Proposition 3.4 with the abbreviations “DM =
deterministic memory,” “PsM = prescient memory,” and “PdM = predictive memory.” In

DM

PdM PsM

Figure 6: The extension of the memory class suggested by predictive models

computational mechanics, prescient deterministic memories have been studied, that is the
intersection of DM and PsM. An extension of this intersection to larger classes of memory
maps is natural. According to Proposition 3.4, we have the following hierarchy of possible
extensions:

DM ∩ PsM = DM ∩ PdM ( PsM ( PdM. (14)
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According to the equality in (14), considering predictive memory maps without dropping the
determinism requirement does not enlarge the class. Only recently, an extension to the class
PsM including also non-deterministic memories has been considered by Still and Crutchfield
[Still and Crutchfield, 2007]. It turns out that this extension does not allow for “smaller”
models than already captured by deterministic memory maps, as we show in the following
proposition. Therefore, we suggest to further extend the class from PsM to PdM and show
in Example 3.6 that this extension is indeed effective.

Proposition 3.5 (ε-machine minimality in PsM). The causal state projection C of Ex-
ample 2.4 defines a prescient deterministic memory map to MC. Further, it has minimal
number of memory states amongst the prescient (not necessarily deterministic) memories.
More precisely:

mem : D∗ → P(M) prescient ⇒ |M| ≥ |MC|.

Proof. We show (10). Let mC := C(x[−t+1,0]) and s be such that P
(
C(X[−s+1,0]) = mC

)
>

0. The conditional probability P
(
X[1,T ]

∣∣ C(X[−s+1,0]) = mC

)
is a convex combination of

P(X[1,T ] | X[−s+1,0] = x′
[−s+1,0]) with x′

[−s+1,0] ∈ mC. Since all elements of mC induce the
same conditional probability of X[1,T ], we obtain

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P
(
X[1,T ]

∣∣ C(X[−s+1,0]) = mC

)

and memC is prescient. Now assume that mem is another prescient memory. We show that
if the supports of mem(x[−t+1,0]) and mem(x′

[−s+1,0]) are not disjoint, then C(x[−t+1,0]) =

C(x′
[−s+1,0]). In particular, |MC| ≤ |M|. Thus, assume some m ∈ M with

P(M t = m | X[−t+1,0] = x[−t+1,0]) > 0 and P(M s = m | X[−s+1,0] = x′
[−s+1,0]) > 0.

From (10), we obtain

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | M s = m) = P(X[1,T ] | X[−s+1,0] = x′
[−s+1,0]),

hence C(x[−t+1,0]) = C(x′
[−s+1,0]), which finishes the proof.

Example 3.6 below illustrates that our extension allows for minimal memories in PdM not
captured within PsM. It is an example of an HMM with two hidden states that, consequently,
admits a predictive model with two memory states. The corresponding minimal number of
memory states within PsM, which according to Proposition 3.5 is realized by the ε-machine,
turns out to be infinite.9 Moreover, the causal states are singletons, so that the causal state
projection does not achieve any compression. Here, different histories lead to different expec-
tations on the hidden states (different information states) of the HMM. When considering
infinite histories, the causal states of the ε-machine turn out to be even uncountable, whereas
the HMM can still be turned into a predictive model with two internal states (see the ap-
pendix).

9The existence of finite HMMs leading to infinitely many causal states was already mentioned in
[Crutchfield, 1994].
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Example 3.6 (predictive model smaller than the ε-machine). In order to specify this
example, we consider an HMM (gen, µ) with internal state set M. This defines stochastic
processes X̃N and MN0 . If the joint process (X̃N,MN) is stationary, we can extend this joint
process to a stationary process with time set Z in a unique way. We denote the resulting
processes on D and M with XZ and SZ, respectively, and interpret them as the observable
process and a process of internal states. In this concrete example, we take D := M := { 0, 1 }
and the uniform distribution on M as initial distribution. With a parameter p, 0 < p < 1

4 , we
define the generator by

gen(m; x, m̂) :=





1 − 2p, if m̂ = x = m

p, if x 6= m

0, otherwise

. (15)

See Figure 7 for an illustration of the transition graph. It is easy to check that the stationarity

0 1

1|p

0|p

0|1 − 2p 1|1 − 2p1|p 0|p

Figure 7: Transition graph of the generator defined by (15). Circled nodes are internal states and
edges are transitions, labeled with output symbol x and transition probability q as “x|q”.

condition is indeed satisfied. Because of Proposition 2.5, it is clear that there is a predictive
model of the process XZ with two memory states. We now show that, nevertheless, the causal
states are singletons. For this purpose, we define for any output symbol x ∈ D a function
fx : [0, 1] → [0, 1] which keeps track of the probability that the internal state is 0. Concretely,

fx(y) :=
y gen(0; x, 0) + (1 − y) gen(1; x, 0)

y
∑1

m=0 gen(0; x,m) + (1 − y)
∑1

m=0 gen(1; x,m)
.

We compute the conditional probability that the internal state is 0 as follows:

P(S0 = 0 | X[−t+1,0] = x[−t+1,0])

=

1∑

m=0

P(S−1 = m | X[−t+1,−1] = x[−t+1,−1]) P(S0 = 0, X0 = x0 | S−1 = m)

P(X0 = x0 | X[−t+1,−1] = x[−t+1,−1])

= fx0

(
P(S−1 = 0 | X[−t+1,−1] = x[−t+1,−1])

)

(induction)
= fx0 ◦ · · · ◦ fx−t+1

(
P(S−t = 0)

)
= fx0 ◦ · · · ◦ fx−t+1(

1
2 )

Obviously, P(X[1,T ] | S0 = 0) 6= P(X[1,T ] | S0 = 1) (as p 6= 1
4), and therefore

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | X[−s+1,0] = x′
[−s+1,0])

⇔ fx0 ◦ · · · ◦ fx−t+1(
1
2 ) = fx′

0
◦ · · · ◦ fx′

−s+1
(1
2 ). (16)
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Now plugging the definition of gen into the definition of fx we obtain

f0(y) =
y(1 − 3p) + p

y(1 − 4p) + 2p
and f1(y) =

yp

1 − 2p − y(1 − 4p)
.

We observe that both f0 and f1 are strictly increasing,

f0(]0, 1[) = ]12 , 1[ and f1(]0, 1[) = ]0, 1
2 [.

This implies that fx0 ◦· · · ◦fx−t+1(
1
2 ) and fx′

0
◦· · · ◦fx′

−s+1
(1
2) are different for distinct x[−t+1,0]

and x′
[−s+1,0]. Because of (16), the causal states are singletons. ♦

4 Conclusions

There are two natural and well-known concepts of constructing an HMM as model of a
given stochastic process. The first one is based on the idea that the memory variable (hidden
variable of the HMM) is prescient in the sense of being a sufficient statistic on the past for the
future. Minimizing the size of such a prescient memory leads to the so-called ε-machine which
can be obtained in a constructive and efficient way. The second way of assigning an HMM
to a stochastic process requires the HMM to be capable of generating the given process. The
problem of finding a minimal such HMM is an intrinsically hard problem and can not be solved
as easily as in the ε-machine case. Both approaches provide different ways of understanding
prediction which is a central theme of computational mechanics. We feel that the current
literature does not highlight the difference between these two approaches in sufficient detail.
This, unfortunately, leaves space for a misperception of ε-machines as minimal HMMs capable
of generating the underlying process, which corresponds to the second approach and not to the
ε-machine approach. Based on this perception, there is an apparent inconsistency between the
ε-machine minimality and the existence of (substantially) smaller hidden Markov models that
generate the same underlying process. In this article, we clarified the formal relation between
the two approaches and thereby identified the ε-machine approach as the more restrictive
one. We argued that the assumptions made within the second approach are related to a
generative understanding of prediction which leads to the notion of a predictive memory and
a corresponding predictive model. Based on this generative understanding of prediction we
could show that the underlying HMM can be significantly smaller than the corresponding
ε-machine. We compared the operational aspects of the two concepts of prediction and
discussed some drawbacks of our approach in this regard. Currently, we do not know which
of the two notions of prediction is the more natural one and further steps towards revealing
and comparing operational aspects of prediction are subject of our research.

A Appendix: Prediction with infinite histories

In this appendix, we translate our setting and results to the case of infinite histories. Essen-
tially all results remain true, but we have to deal with measure theoretic issues because the
set of infinite histories is uncountable and may enforce uncountably many internal states of
predictive models including the ε-machine. As it does not require much additional effort, we
also consider more general, non-discrete state spaces for the (observable) stochastic process.
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A.1 Generating a process

We assume that the state space D of the generated process is a Polish space, the space M of
memory (or internal) states is a Souslin space,10 and the generator gen is a Markov kernel,
i.e. a measurable map

gen : M → P(D × M).

Here, the topological spaces M and D are equipped with their Borel σ-algebras and P(D×M)
with the σ-algebra induced by the evaluations eA : µ 7→ µ(A) which coincides with the Borel σ-
algebra of the weak-∗ topology. We use the notation gen(m; D×B) to denote the probability
of a measurable set (event) D × B with respect to gen(m). Like in the discrete case, gen

together with an initial distribution µ on M generates stochastic processes X̃N and MN0 on D

and M (the Kolmogorov extension theorem holds for Souslin spaces). The finite dimensional
joint distributions are computed according to

P(X̃[1,T ] ∈ D[1,T ], M[0,T ] ∈ B[0,T ])

=

∫

B0

∫

D1×B1

· · ·

∫

DT ×BT

1 gen(mT−1; d(dT ,mT )) · · · gen(m0; d(d1,m1)) µ(dm0),

where we use the notation DI =
∏

i∈I Di for measurable sets Di. If the initial distribution µ

is gen-invariant, the processes MN0 and X̃N are extended to stationary processes MZ and X̃Z.

Definition A.1 (generating a process). Let XN (resp. XZ) be a stochastic process on D.
We say that gen generates XN (resp. XZ) if there exists an initial distribution (resp. invariant
distribution) for gen such that X̃N (resp. X̃Z) has the same distribution as XN (resp. XZ).

A.2 Our prediction setting

Let XZ be a D-valued, stationary stochastic process and D Polish.

Definition A.2 (memory). A memory (map) mem is a Markov kernel from the set D−N0

of history trajectories to a Souslin space M of memory states:

mem : D−N0 → P(M).

As in Section 2.2, mem induces a random variable M = M0 and, together with a generator
gen, we obtain processes X̃N, MN0. Note that here we have a single memory state at time 0
and there is no need for an upper index, as the history length is fixed (and infinite). In the
following, we will use conditional probabilities and make the general assumption that they
are regular versions. In Souslin spaces, this is always possible. Also note that the σ-algebra
of a Souslin space is countably generated.

10Souslin spaces are slightly more general than Polish spaces ensuring that images of Souslin spaces under
measurable maps, such as the set of causal states, are again Souslin spaces (see [Bourbaki, 1989]).
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Definition A.3 (predictive model). We call the memory map mem predictive (w.r.t. XZ)
if there exists a generator gen : M → P(D × M), such that

P(XN | X−N0) = P(X̃N | X−N0) a.s. (almost surely)

We then call the pair (mem, gen) predictive model of the process XZ.

Proposition A.4 (generator as predictive model). Let gen : M → P(D×M) be a gener-
ator that generates the process XZ. Then there is a memory map mem : D−N0 → P(M), such
that (mem, gen) is a predictive model of XZ.

Proof. Let the invariant initial distribution for gen be such that X̃Z has the same distribution
as XZ. Define mem by

mem ◦ X̃−N0 := P(M0 | X̃−N0).

We denote the processes generated by gen started in mem◦X−N0 by X̂N and M̂N0, respectively.
We obtain

P(X̂N | X−N0 = x) =

∫
P(X̂N | M̂0 = m) mem(x; dm)

=

∫
P(X̃N | M0 = m) P(M0 ∈ dm | X̃−N0 = x)

= P(X̃N | X̃−N0 = x) = P(XN | X−N0 = x),

P ◦ X−1
−N0

-a.s. in x ∈ D−N0. Thus (mem, gen) is a predictive model.

Remark. Note that in Proposition A.4, in contrast to the finite-history case (see Proposi-
tion 2.5), it is not sufficient to assume that gen generates only the positive time process XN.
Instead, we have to assume that the whole process XZ is generated. This is, however, satisfied
in our main Example 3.6. Thus it also admits a predictive model for infinite histories.

A.3 Comparison to computational mechanics

Definition A.5 (prescient). We call a memory map mem prescient, if the resulting M

satisfies
P(XN | M) = P(XN | X−N0) a.s.

Predictive and prescient memories are related in the same way as in the finite-history case:

Proposition A.6 (predictive versus prescient).
1. Every prescient memory map is predictive.
2. If a memory map is deterministic and predictive, then it is also prescient.

Proof.
1. Let mem be a prescient memory and Mk = Mk

0 the resulting memory state at time k

(calculated by mem from X]−∞,k]). Define the generator gen : M → P(D × M) by

gen(m; D × B) := P(X1 ∈ D, M1 ∈ B | M0 = m), (17)
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and let Ml = M0
l be the memory state produced by gen at time l when started in M0 at time

0. We show that P(X̃[1,T ] | M0) = P(X[1,T ] | M0) a.s. by induction over T . We obtain

P(X̃[2,T ] | M1 = m) = P(X̃[1,T−1] | M0 = m)
(ind. as.)

= P(X[1,T−1] | M0 = m)

(XZ stat.)
= P(X[2,T ] | M1 = m), (18)

which leads to

P(X̃[1,T ] ∈ D[1,T ] | M0) =

∫

D1×M

P(X̃[2,T ] ∈ D[2,T ] | M0
1 = · ) d gen(M0)

(17)+(18)
=

∫

X−1
1 (D1)

P(X[2,T ] ∈ D[2,T ] | M1) dP( · | M0)

(prescience)
= P(X[1,T ] ∈ D[1,T ] | M0).

This finishes the induction and in total we obtain

P(X̃N | X−N0) =

∫ =P(XN|M
0)︷ ︸︸ ︷

P(X̃N | M0) dP( · | X−N0)
(prescience)

= P(XN | X−N0).

2. Now let (mem, gen) be a predictive model and mem deterministic, i.e. M = M0 = f ◦X−N0

for some measurable function f : D−N0 → M. Then P(XN | X−N0) = P(X̃N | M) is σ(M)-
measurable modulo P. Since obviously σ(M) ⊆ σ(X−N0), it holds a.s. that

P(XN | X−N0) = P(XN | M).

The causal states are defined as equivalence classes of histories inducing the same expectation
on the future (with a fixed, regular version of conditional probability). Within the measure
theoretic setting of this appendix, we find it more convenient to use a different but equivalent
definition. To this end, consider the causal state projection C : D−N0 → P(DN) defined by

x 7→ C(x) := P(XN | X−N0 = x).

The set of causal states is the image of this map:

MC := Im(C) ⊆ P(DN).

Note that MC inherits a Souslin topology and thus a measurable structure from P(DN). The
map C is measurable, and it is easy to see that the corresponding deterministic memory is
prescient. Before we prove that C corresponds to, as in the discrete case, a minimal prescient
memory, we consider the process XZ of Example 3.6. With a slight modification of the
arguments there, one can show that the corresponding set MC of causal states is uncountable
(regardless of the version of conditional probability). On the other hand, there is a predictive
model (for infinite histories) with two memory states.
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Proposition A.7 (ε-machine minimaltiy). Let mem be a prescient memory map with set
M of memory states. Then there exist disjoint measurable subsets Nz ⊆ M, z ∈ MC, such that

mem(x; NC(x)) = 1 a.s.

In particular, M cannot be essentially (i.e. up to zero-sets) smaller than MC.

Proof. Let M = M0 be the memory variable obtained by mem. Define PM : M → P(DN) by

PM ◦ M := P(XN | M), and Nz := P−1
M (z) for z ∈ MC.

The Nz are obviously measurable and disjoint. Due to prescience, PM ◦ M = P(XN | X−N0)
a.s., and consequently

mem(x; NC(x)) = P(M ∈ NC(x) | X−N0 = x) = P(PM ◦ M = C(x) | X−N0 = x) = 1,

where we used C(x) = P(XN | X−N0 = x).
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