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Appliation of hierarhial matries for omputingthe Karhunen-Lo�eve expansionB. N. Khoromskij1, A. Litvinenko2 and H. G. Matthies2Max-Plank-Institut f�ur Mathematik in den Naturwissenshaften, Leipzig, Germany1Institut f�ur Wissenshaftlihes Rehnen, Braunshweig, Germany2AbstratRealisti mathematial models of physial proesses ontain unertainties. Thesemodels are often desribed by stohasti di�erential equations (SDEs) or stohastipartial di�erential equations (SPDEs) with multipliative noise. The unertaintiesin the right-hand side or the oeÆients are represented as random �elds. To solvea given SPDE numerially one has to disretise the deterministi operator as wellas the stohasti �elds. The total dimension of the SPDE is the produt of thedimensions of the deterministi part and the stohasti part. To approximate ran-dom �elds with as few random variables as possible, but still retaining the essentialinformation, the Karhunen-Lo�eve expansion (KLE) beomes important. The KLEof a random �eld requires the solution of a large eigenvalue problem. Usually itis solved by a Krylov subspae method with a sparse matrix approximation. Wedemonstrate the use of sparse hierarhial matrix tehniques for this. A log-linearomputational ost of the matrix-vetor produt and a log-linear storage require-ment yield an eÆient and fast disretisation of the random �elds presented.AMS subjet lassi�ation: 60H15, 60H35, 65N25Key words: Hierarhial matrix, data-sparse approximation, Karhunen-Lo�eve ex-pansion, unertainty quanti�ation, random �elds, eigenvalue omputation.1 IntrodutionDuring the last few years there is a great interest in numerial methods for solving stohas-ti PDEs and ODEs [10, 2, 3, 25, 39, 37, 35, 38℄. Examples are stohasti Navier Stokesequations, stohasti plastiity equations and stohasti aerodynami equations. Veryoften these equations ontain parameters, right-hand sides, initial or boundary onditionswhih have a stohasti nature. Typial examples are ondutivity oeÆients in ground-water ow problems, plastiity of the material and parameters in turbulene modelling.To solve the problem, the given stohasti di�erential or integral equation has to be dis-retised. For the disretisation of the deterministi part one an use any known tehnique(�nite element, �nite di�erenes or �nite volumes). For the disretisation of random�elds the Karhunen-Lo�eve expansion (KLE) [28℄ is usually used. Another important ap-pliation of the KLE is the diret omputation of higher order moments of the solutionwithout omputing the solution per se [29, 36℄. Eah random �eld is haraterised by itsCorrespondene: A. Litvinenko, Institut f�ur Wissenshaftlihes Rehnen, Hans-Sommer Str. 65,38106, Braunshweig, Germany 1



ovariane funtion. To disretise this random �eld one has to solve an eigenproblem fora Fredholm integral operator with the ovariane funtion as the kernel. In a straight-forward disretisations, the matrix is dense and hene the omputational ost is O(n3)FLOPS, where n is the number of degrees of freedom (dof) in the omputational domain.For speial ases, when the ovariane funtion is stationary (i.e. ov(x; y) = ov(x� y))and the omputational domain is an axiparallel retangle with uniform and axiparalleltriangulation the Fast Fourier tehnique [12℄ an be applied with the omputational ostO(n logn). In [23℄ the authors introdued the so-alled Hierarhial Kroneker Tensor(HKT) format for sparse approximation of integral operators. The matrix-vetor produtin the HKT format an be done in O(dn1=d logn) FLOPS, where d is the dimension of thedomain. For more general ases of the ovariane matrix, for a non-retangular domain orfor a non-axiparallel triangulation, the FFT is not appliable and a data sparse tehniqueshould be applied (e.g., the H-matrix tehnique [21, 20, 18, 17℄).In [37℄ the authors ompute the KLE by the Fast Multipole method with an iterativeKrylov eigensolver. In [10℄ a brief overview of how boundary value problems with randomdata may be solved using the stohasti FEM is desribed. In the same paper the authorsapplyH-matries and the Lanzos-based thik-restart method [42℄ for omputing the KLEof random �elds.In the urrent paper we onsider the appliation of the H-matrix method in a sys-temati way. The rest of this paper is strutured as follows. In Setion 2 we set up theproblem and reall the Karhunen-Lo�eve expansion. The H-matrix tehnique is presentedin Setion 3. In partiular, we prove the asymptoti smoothness of the arising ovari-ane funtions. The H-matrix approximation of ovariane funtions is shown in Setion4. Finally, in Setion 5, we provide numerial results for solving an eigenproblem withprede�ned H-matrix-vetor produt.2 BakgroundNowadays the trend of numerial mathematis is often trying to resolve inexat math-ematial models by very exat deterministi numerial methods. The reason is that al-most eah mathematial model ontains unertainties in the oeÆients, right-hand side,boundary onditions, initial data as well as in the geometry. Suh type of unertaintiesan be modelled by random �elds. In [2, 3, 25, 39, 37, 35, 29℄ the authors onsider thefollowing stohasti ellipti boundary value problem� div(�(x; !)ru) = f(x; !) in G � 
; G � Rd ;u = g(x; !) on �G � 
; (1)where the ondutivity oeÆient �(x; !), the right-hand side f(x; !), the boundary datag(x; !) and the solution u(x; !) are random �elds. The omputational domain G is abounded domain, x 2 G and ! belongs to the spae of random events 
.To guarantee the positive de�niteness and regularity of the operator in (1) it is assumed2



that 0 < �min � �(x; !) � �max <1; a.e. on G � 
:We assume that there is a triplet (
;�;P), where 
 is a set of random elementary events,� is the �-algebra of Borel subsets of 
 and P a probability measure. We assume also thatthe random �elds �(�; !) : 
 ! L1(G), f(�; !) : 
 ! L2(G) and g(�; !) : 
 ! L2(�G)have �nite variane.Let us as an example onsider the random �eld �(x; !). The mean value �(x; !) andthe ovariane funtion ov�(x; y), x, y 2 Rd , should be provided. By de�nition, the o-variane funtion is symmetri and positive semi-de�nite. One an lassify all ovarianefuntions into the three following groups:1. Diretionally independent (isotropi) and translation invariant (stationary or homoge-neous), i.e. ov(x; y) = ov(jx� yj).2. Diretionally dependent (anisotropi) and stationary or homogeneous, i.e.ov(x; y) = ov(x� y).3. Instationary and non-homogeneous, i.e. of a general type.The ovariane funtions of types (1) and (2), disretised on an axiparallel retangulargrid, result in (blok) Toeplitz matries. These matries an be further extended to (blok)irulant ones. The matrix vetor multipliation in the lass of (blok) irulant matriesan be performed by the Fast Fourier Transformation (FFT) very eÆiently. In the aseof a general grid as well as in the third ase, the disretised ovariane matrix is not aToeplitz one and the FT annot be applied. Thus, we need a general data sparse formatto store ovariane matries.For the numerial solution of (1) the presented random �elds need to be disretisedboth in the stohasti and in the spatial dimension. One of the main tools here is theKarhunen-Lo�eve expansion (KLE) [28℄. Thus, an e�etive and \sparse" omputation ofthe KLE is a key point in solving Eq. (1) [31℄. Let us de�ne the following operator Twhih will be needed for omputing the KLE of �(x; !):T : L2(G)! L2(G); (T�)(x) := ZG ov�(x; y)�(y)dy:For ov� 2 L2(G � G), the operator T is ompat and selfadjoint [40℄, in fat Hilbert-Shmidt. As the ovariane funtion ov� is symmetri positive semi-de�nite, hene so isT . Thus, the eigenfuntions �` of the following Fredholm integral equation of the seondkind T�` = �`�`; �` 2 L2(G); ` 2 N ; (2)are mutually orthogonal and de�ne a basis of L2(G) (for more details see [33, 19℄). Theeigenvalues �` are real, non-negative and an be arranged dereasingly �1 � �2 � ::: � 0[33℄. From Merer's theorem ([40, 33℄) it follows that for a ontinuous ov� the eigenfun-tions are ontinuous and the onvergene ofov�m(x; y) = m�1X̀=0 �`�`(x)�`(y)3



as m ! 1 to the exat ovariane funtion ov� is absolute and uniform on G � G[33℄. The onvergene rates an be estimated through the smoothness of the ovarianefuntion [37℄.By de�nition, the KLE of �(x; !) is the following series�(x; !) = ��(x) + 1X̀=1p�`�`(x)�`(!); where (3)��(x) = E�(x); �`(!) = 1p�` ZG(�(x; !)� ��(x))�`(x)dx;E�(x) is the mean value of �(x; !), �` and �` are the eigenvalues and the eigenvetors ofproblem (2) and �`(!) unorrelated random variables. For numerial purposes one trun-ates the KLE (3) to a �nite number m of terms. In the ase of a Gaussian random �eld,the �` are independent standard normal random variables. In the ase of a non-Gaussianrandom �eld, the �` are unorrelated but not independent, and an be approximated in aset of new independent Gaussian random variables [24, 41℄, e.g.�`(!) =X�2J �(�)H�(�(!));where �(!) = (�1(!); �2(!); :::), �(�) are oeÆients, H�, � 2 J , is a Hermitian basisand J := f�j� = (�1; :::; �j; :::); �j 2 N0g a multi-index set. For the purpose of atualomputation, trunate the polynomial haos expansion (PCE) [24, 41℄ after �nitely manyterms, e.g.� 2 JM;p := f� 2 J j (�) �M; j�j � pg; (�) := maxf| 2 N j�| > 0g:In [33℄ it is shown that the m-term KL trunation is best in Hilbert-Shmidt norm.As soon as the m-term KLE of the ondutivity �(x; !) is omputed and the randomvariables �`(!) 2 RjJj are disretised [2, 11, 25℄, one an obtain, after applying the stohas-ti Galerkin approximation method [30℄ and trunated PCE, the following equationKu = 24m�1X̀=0 X2JM;p�() 
K`35u = f ; (4)where �() are some disrete operators whih ome from the Hermitian algebra and anbe omputed analytially [30, 25, 29℄. The sparsity pattern of�() depends on how manyterms were used in the PCE. Note that the matries K` 2 Rn�n allow for data sparseapproximations, in partiular the hierarhial (H) matrix approximation. Note that theiterative solvers, used for the solution of (4), do not require that the matries K` arestored expliitly.Now one an see that the auray of the disretisation of (1) depends on the onvergene4



rate of �m(x; !) with respet to m ! 1. Thus, heap and aurate omputing of theKLE approximation of the given random �elds is required.Further, in this paper, we ombine theH-matrix data representation together with Krylovsolvers for the eÆient omputation of the m-term KLEs of the given random �elds andthe solution.2.1 FE disretisation of equation (2)Further in the paper we will use the bold font for de�ning disretised objets, e.g. u 2 Rnor C 2 Rn�n .In general, the eigenvalue problem (2) needs to be solved numerially and standardtehniques (e.g. [1, 19, 32℄) may be used for this. We onsider the following Galerkindisretisation of the operator in (2). Let I = f1; : : : ; ng. Assume that b1,...,bn are thenodal basis funtions with respet to the nodes x1; :::; xn 2 G � Rd , i.e. bi(xj) = Æij, i; j 2I. Let Vh = spanfb1; :::; bng and for the stohasti variables we introdue � = (�1; :::; �n)T ,�i(!) := �(xi; !), i 2 I.The interpolation of �(x; !) in the FE basis above is then�h(x; !) = nXi=1 bi(x)�i(!) = b(x)�(!); b(x) = (b1(x); :::; bn(x)):The ovariane funtion of �h isov�h(x; y) = nXi=1 nXj=1 bi(x)Cijbj(y) = b(x)Cb(y)T ; with Cij = ov�(xi; yj): (5)Note that this disretisation may use a di�erent grid than the disretisation of the spatialpart in (1). Applying (5) and�`(y) = nXj=1 bj(y)�j` = b(y)�`; �` := (�1`; :::; �n`)Tto the eigenvalue problem ZG ov�(x; y)�`(y)dy = �`�`(x); (6)we obtain ZG b(x)Cb(y)Tb(y)�`dy = �`b(x)�`:The weak formulation (Galerkin weighting) givesZG ZG b(x)Tb(x)Cb(y)Tb(y)�`dydx = ZG �`b(x)Tb(x)�`dx;5



or W�` = �`M�`;where the matrixW and mass matrixM are de�ned as followsWij :=Xk;� ZG ZG bi(x)bk(x)Ck�bj(y)b�(y)dxdy; G � Rd ; k; � 2 I;Mij = ZG bi(x)bj(x)dx; i; j 2 I:Reall that the matrixW is symmetri positive semi-de�nite and dense. The mass matrixM is symmetri positive de�nite and may be sparse. Now, the disrete eigenvalue problemlooks like W�` = �h̀M�`; W =MCM ; Cij = ov�(xi; yj): (7)Here the matrix M is stored in the usual data sparse format and the matrix C is ap-proximated in the H-matrix format (see Setion 3). If not the omplete spetrum is ofinterest, but only a part of it then the needed omputational resoures an be drasti-ally redued [4℄. To ompute m eigenvalues (m � n) and orresponding eigenvetorswe apply an iterative Krylov subspae (Lanzos) eigenvalue solver for symmetri ma-tries [27, 42, 4, 26, 34℄. This eigensolver requires only matrix-vetor multipliations.All matrix-vetor multipliations are performed in the H-matrix format whih will ostO(n logn). Note that to solve the symmetri problem (7) often a third party eigensolverrequires the user to de�ne the matrix-vetor produts w =M�1Wv and w =Mv. Thesame problem an be written in the formCM�i = �i�i; (8)where the produt CM is selfadjoint with respet to the new salar produt(�i;�j)M = (M�i;�j).3 H-Matrix tehniqueUsually the mass matrix M is stored in a sparse matrix format, whih requires linearomplexity. The ovariane matrix C is not sparse and, in general, requires O(n2) unitsof memory for the storage and O(n2) FLOPS for the matrix-vetor multipliation. Inthis setion it will be shown how to approximate general ovariane matries with theH-matrix format [20, 18, 17, 22℄. The H-matrix tehnique is nothing but a hierarhialdivision of a given matrix into subbloks and further approximation of the majority ofthem by low-rank matries (Fig. 2). To de�ne whih subbloks an be approximated wellby low-rank matries and whih not, a so-alled admissibility ondition is used. Whendeomposition into subbloks is done an important question is, how to ompute the low-rank approximations. For this purpose we o�er to use the ACA algorithm [15, 7, 5, 8, 9℄whih does the job with a linear omplexity.6



3.1 Admissibility onditionsOriginally the H-matrix tehnique was developed for the approximation of sti�ness ma-tries oming from partial di�erential and integral equations [20, 17, 9℄. Typial kernelsof integral equations are the following Green funtions:�(x; y) := 1jx� yjd�2 ; x; y 2 Rd ; d � 3 or �(x; y) := log jx� yj; x; y 2 R2 ; (9)with singularities at x = y. The idea behind H-matries is to approximate bloks farfrom diagonal (far from the singularity) by low-rank matries. The admissibility ondition(riteria) is used to divide a given matrix into subbloks and de�ne whih subbloks anbe approximated well by low-rank matries and whih not. Let us explain how to obtainan admissibility ondition for the funtions in (9).Let I be an index set of all degrees of freedom. Denote for eah index i 2 I orre-sponding to a basis funtion bi the support Gi := supp bi � Rd . Now we de�ne two treeswhih are neessory for the de�nition of hierarhial matries. These trees are labeledtrees where the label of a vertex t is denoted by t̂.De�nition 3.1 (Cluster Tree TI�I)[20, 17℄A �nite tree TI is a luster tree over the index set I if the following onditions hold:� I is the root of TI and a subset t̂ � I holds for all t 2 TI.� If t 2 TI is not a leaf, then the set of sons sons(t) ontains disjoint subsets of I andthe subset t̂ is the disjoint union of its sons, t̂ = [s2sons(t) ŝ.� If t 2 TI is a leaf, then jt̂j � nmin for a �xed number nmin.De�nition 3.2 (Blok Cluster Tree TI�I) [20, 17℄Let TI be a luster tree over the index set I. A �nite tree TI�I is a blok luster tree basedon TI if the following onditions hold:� root(TI�I) = I � I.� Eah vertex b of TI�I has the form b = (�; �) with lusters �; � 2 TI.� For eah vertex (�; �) with sons(�; �) 6= ?, we havesons(�; �) = 8<: (�; �0) : �0 2 sons(�); if sons(�) = ? ^ sons(�) 6= ?(� 0 ; �) : � 0 2 sons(�); if sons(�) 6= ? ^ sons(�) = ?(� 0; �0) : � 0 2 sons(�); �0 2 sons(�); otherwise� The label of a vertex (�; �) is given by [(�; �) = b� � b� � I � I.7



We an see that \root(TI�I) = I � I. This implies that the set of leaves of TI�I is apartition of I � I.We generalise Gi to lusters � 2 TI by setting G� := Si2� Gi, i.e., G� is the minimalsubset of Rd that ontains the supports of all basis funtions bi with i 2 � .Suppose that G� � Rd and G� � Rd are ompat and �(x; y) is de�ned for (x; y) 2G� � G� with x 6= y. The standard assumption on the kernel funtion in the H-matrixtheory is asymptoti smoothness of �(x; y) 2 C1(G� � G�), i.e, thatj��x��y �(x; y)j � C1j�+ �j!C j�+�j0 kx� yk�j�+�j�; �; � 2 N ;holds for onstants C1, C0 and  2 R. This estimation is used to ontrol the error �q fromthe Taylor expansion �(x; y) = X�2Nd0 ;j�j�q(x� x0)� 1�!��x�(x0; y) + �q:Let S be an integral operator with an asymptotially smooth kernel � in the domainG� � G�: (Sv)(x) = ZG� �(x; y)v(y)dy; x 2 G� :Suppose that �k(x; y) is an approximation of � in G� � G� of the separate form (e.g.,Taylor or Lagrange polynomials):�k(x; y) = kX�=1 '�(x) �(y); (10)where k is the rank of separation. We are aiming at an approximation of the form (10)suh that exponential onvergenek�� �kk1;G��G� � O(�k) (11)holds. For this purpose we introdue the following admissibility ondition.De�nition 3.3 The standard admissibility ondition (Adm�) for two domains B� and B�(whih atually orrespond to two lusters � and �) is de�ned as followsminfdiam(B� ); diam(B�)g � �dist(B� ; B�); (12)where B� ; B� � Rd are axis-parallel bounding boxes of the lusters � and � suh thatG� � B� and G� � B�.Lemma 3.1 The funtion �(x; y) = e�jx�yj onverges exponentially, i.e. 9� suh that for�k(x; y) from (10) holds k�(x; y)� �k(x; y)k � O(�k): (13)8



Proof: Let x, y 2 G := [0; 1℄, x 2 � := [a; b℄, 0 � a < b � 1, and y 2 � := [; d℄,b �  < d � 1. After introdution of the new variable t := x � y, we obtain �(t) := e�twith t 2 [� b; d� a℄. The Taylor series of �(t) in point t0 := (�b)+(d�a)2 is�(t) = e�t0  1 + 1Xj=1 (�1)jj! (t� t0)j! = e�t0  1 + kXj=1 (�1)jj! (t� t0)j + (�1)k+1(k + 1)! (~t� t0)k+1! ;where ~t 2 [� b; d� a℄. Let " := e�t0 (�1)k+1(k+1)! (~t� t0)k+1, L1 := � b, L2 := d� a thenj"j � e�t0 (L2 � L1)k+1(k + 1)! � e�t0 � (L2 � L1)L2�L1(L2 � L1)! (L2 � L1)k+1�(L2�L1)(L2 � L1 + 1) � ::: � (k + 1) � C � �k+1�(L2�L1);where C := e�t0 (L2�L1)L2�L1(L2�L1)! and � := L2�L1L2�L1+1 < 1. �We will say that a pair (�; �) of lusters � and � 2 TI is admissible if the ondition (12)is satis�ed. The admissibility ondition indiates bloks whih allow rank-k approximationand whih not (see Fig. 2). The bloks for whih ondition (12) is true (alled admissiblebloks) are approximated by rank-k matries. All other bloks are omputed as usual.In order to get a simpler partitioning (see an example in Fig. 2, right), we de�ne theweaker admissibility ondition AdmW for a pair (�; �):Blok b = � � � 2 TI�I is weak admissible, ((b is a leaf) or � 6= �); (14)where � , � are assumed to belong to the same level of TI�I .The ovariane funtions whih are onsidered in this paper (see Setion 4) do nothave singularities like in (9) and this is why more appropriate admissibility onditions arerequired. Di�erent types of ovariane funtions require di�erent admissibility onditions.The development of new admissibility ondition is not an easy task and it is out of frameof this paper.Let us onsider properties of funtions depending on (x� y), i.e. �(x; y) = s(x � y).If x 2 Bx and y 2 By then r := x� y belongs toBr := fx� y : x 2 Bx; y 2 Byg:Lemma 3.2 (Proposition 4.1.2, [21℄) Any polynomial P (x; y) an be represented in theform: P (x; y) = k1X�=0 p�(x)y� or P (x; y) = k2X�=0 x�q�(y);where k1 (k2) is the polynomial degree in x (y) and p� and q� are polynomials in onevariable. 9



If the funtion f(�) is approximated in Br by a polynomial P (r) (Taylor series, Lagrangepolynomial, et.), i.e. f(r) � P (r) then the variables x and y have the same degreek = k1 = k2 in P (r). Applying the previous lemma, we obtain a separable k-termapproximation of f(x� y).In Setion E.2 [21℄ the author explains how to trasfer the asymptotial smoothness ofthe funtion f(t) to the asymptotial smoothness of the funtion F (x; y) := f(jx � yj).Let f be de�ned on G0 � R and G0 � (�df ; df), df > 0.De�nition 3.4 (Setion E.2, [21℄) f is asymptotially smooth if����� ddt�� f(t)���� � C0jtj���s for t 2 G0; � 2 N ; s 2 R and a onstant C0 = C0(�): (15)For t := jx� yj, x; y 2 Rd we obtain the funtionF (x; y) := f(jx� yj): (16)Let us denote the diretional derivative by D� :=Pdi=1 �i ��xi , where � 2 Rd .Proposition 3.1 (Setion E.2, [21℄) If the funtion f is asymptotially smooth in senseof (15), then F (x; y) from (16) is also asymptotially smooth, i.e. for all diretionalderivatives D we havejDkF (x; y)j � k!C0jx� yj�k�s (0 6= jx� yj < df); C0 > 0:Lemma 3.3 The funtion F (x; y) = F (r) = e�jrj is asymptotially smooth.Proof: Apply proposition 3.1 to the asymptotial smooth funtion f(t) := e�t. �Remark 3.1 For most of the ovariane funtions onsidered in our appliations theasymptoti smoothness an be veri�ed.3.2 Rank-k Adaptive Cross ApproximationLet R 2 Rp�q andR = ABT ; where A 2 Rp�k ; B 2 Rq�k ; k 2 N : (17)Note that any matrix of rank k an be represented in the form (17).Suppose that b is a blok of the matrixW andR :=W jb. Suppose it is known thatRmaybe approximated by a rank-k matrix. We explain below how to ompute R in the form(17). One possibility is the Adaptive Cross Approximation (ACA) algorithm [15, 7, 5, 9, 8℄.ACA is espeially e�etive for assembling low-rank matries. It requires only k olumnsand k rows of the matrix under onsideration and, thus, has the omputational ostk(p+q). In [15℄ it is proved that if there exists a suÆiently good low-rank approximation,10



then there also exists a ross approximation with almost the same auray in the senseof the 2-norm.The ACA algorithm omputes vetors a` and b` whih form ~R = Pk̀=1 a`bT̀ suh thatkR� ~Rk � ", where " is the desired auray [7, 9℄. In [8℄ the reader an also �nd di�erentounterexamples when the standard ACA algorithm does not work. Here we present thestandard version of the ACA algorithm.Algorithm 3.1 ACA algorithmbegin=� input is a required auray " and a funtion to ompute Rij �=;=� output is matrix ~R �=;k = 0; ~R = 0;S = ;; T = ;; =� sets of row and olumn indies �=doTake a row i� =2 S;Subtrat Ri�j := Ri�j � ~Ri�j, j = 1::q;Find maxj jai�jj 6= 0, j < q. Suppose it lies in olumn j�;Compute all elements bij� in olumn j�, i < p;Subtrat Rij� := Rij� � ~Rij�, i = 1::p;k := k + 1; S := S [ fi�g; T := T [ fj�g;Compute ~R = ~R + ai� � bTj�; =� it is rank k approximation�=if(kai� � bTj�k2 � " � ka1 � bT1 k2) return ~R;Find maxi jbij�j, i < p, i 6= i�. The row where it lies is a new row i�;until(k < kmax)return ~R;end;Note that the algorithm does not ompute the whole matrix R. The subtration is doneonly from the elements under onsideration, i.e. row a` and olumn b`, ` = 1; :::; k.Remark 3.2 Further optimisation of the ACA algorithm an be done by the trunatedSVD. Suppose that a fatorisation of matrix R = ABT , A 2 Rp�K , B 2 Rq�K , is foundby ACA. Suppose also that the rank of R is k, k < K. Then one an apply the trunatedSVD algorithm to ompute R = U�V T requiring O((p+ q)K2 +K3) FLOPS.3.3 H-MatriesDe�nition 3.5 [20℄ Let I be an index set and TI�I be a hierarhial division of the indexset produt I � I into subbloks (so-alled blok luster tree). The set of H-matries isde�ned asH(TI�I ; k) := fW 2 RI�I j rank(W jb) � k for all admissible bloks b of TI�Ig:Here, W jb = (wij)(i;j)2b denotes the matrix blok of W = (wij)i;j2I orresponding tob 2 TI�I. 11



We denote an H-matrix approximation ofW by ~W .Finally, we list omputational omplexities of basi algebrai operations with H-matries.Theorem 3.1 [20, 17℄ Let I be an index set, n := jIj, TI�I a tree whih de�nes theblok struture, depth(TI�I) = O(logn), W 2 H(TI�I ; k). Then the storage requirementof W and matrix vetor multipliation ost O(kn logn), matrix-matrix addition ostsO(k2n logn) and matrix-matrix produt as well as matrix inverse ost O(k2n log2 n).Proof: See [20, 17, 9℄. �Note that the result of addition of two hierarhial matriesM1 andM2 2 H(TI�I ; k) isa matrix from H(TI�I ; 2k). To have the sumM1 +M2 in the lass H(TI�I; k) also, oneshould trunate the rank 2k to k.4 H-matrix approximation of ovariane matrix CExamples of the omputational domain G are shown in Fig. 1.
Figure 1: Examples of omputational domains G with a non-retangular grid.Let x = (x1; :::; xd) and y = (y1; :::; yd) 2 G. De�ne the (anisotropi) distane by� =vuut dXi=1 jxi � yij2=l2i ; where li are orrelation length sales; d = 2; 3: (18)Typial examples of ovariane funtions are:a) ov(�) = e��2 (Gaussian); (19)b) ov(�) = e�� (exponential) and (20)) ov(�) = � �1� 32�+ 12�3� for 0 � � � 10 for � � 1 (spherial): (21)To demonstrate the auray of the H-matrix approximation, we ompute the followingerrors:"2 := jkCk2 � k ~Ck2jkCk2 ; " := k(C � ~C)zk2kCk2kzk2 ; where z is a random vetor:12



n rank k size, MB t, se. " maxi=1::10 j�i � ~�ij, i "2for ~C C ~C C ~C4:0 � 103 10 48 3 0.8 0.08 7 � 10�3 7:0 � 10�2, 9 2:0 � 10�41:05 � 104 18 439 19 7.0 0.4 7 � 10�4 5:5 � 10�2, 2 1:0 � 10�42:1 � 104 25 2054 64 45.0 1.4 1 � 10�5 5:0 � 10�2, 9 4:4 � 10�6Table 1: The auray of the H-matrix approximation (weak admissibility) of the ovari-ane funtion (20), l1 = l3 = 0:1, l2 = 0:5. The geometry is shown in Fig. 1 (right).k size, MB t, se.1 1548 332 1865 423 2181 504 2497 596 nem -
k size, MB t, se.4 463 118 850 2212 1236 3216 1623 4320 nem -Table 2: Dependene of the omputing time and storage requirement on the H-matrixrank k for the ovariane funtion (20). (left) standard admissibility ondition (12),geometry shown in Fig. 1 (middle), l1 = 0:1, l2 = 0:5, n = 2:3 � 105. (right) weakadmissibility ondition (14), geometry shown in Fig. 1 (right), l1 = 0:1, l2 = 0:5, l3 = 0:1,n = 4:61 � 105.All the following numerial experiments are done on a omputer with a 2GHz proes-sor and with 3GB of memory. Table 1 shows the omputing time and storage requirementfor the H-matrix approximation ~C of C. One an see that ~C needs muh less memoryand omputing time than C. Table 2 demonstrates the dependene of omputationalresoures on H-matrix rank k for the standard (left) and weak (right) admissibility on-ditions. The matrix, obtained with the weak admissibility ondition (see an example inFig. 2, right), is simpler, but has a higher rank to ahieve the same auray than thematrix obtained with the standard admissibility. For the ases k = 6 and k = 20 thereare not enough memory (abbreviated as \nem").Figure 2 shows two di�erent examples of H-matrix approximations to the disretisedovariane funtion (20) with l1 = 0:15 and l2 = 0:2. For the matrix on the left thestandard admissibility ondition (12) was used and for the matrix on the right the weakadmissibility ondition (14). The dark bloks indiate the dense matries and the graybloks rank-k matries. The steps inside bloks present the deay of singular values inlog sale. The approximation on the left has a more omplex blok struture, but has asmaller maximal rank k (=6). The approximation on the right has a less omplex blokstruture, but the maximal rank k is larger (=20).Table 3 demonstrates the omputational resoures needed for the H-matrix approxi-mation of the ovariane funtionov(x; y) = e��; l1 = l2 = 1 (see (20)).13
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20 32Figure 2: Two examples of H-matrix approximations 2 Rn�n , n = 322, of the disretisedovariane funtion ov(x; y) = e��, l1 = 0:15, l2 = 0:2, x; y 2 [0; 1℄2. The biggest dense(dark) bloks 2 R32�32 , max. rank k = 6 on the left and k = 20 on the right. The rightblok struture is simpler, but the left struture is more aurate.For small problem sizes suh as 332, 652 (in 2D) it is possible to ompute the exatovariane matrix C and hek the auray of the H-matrix approximation. But forlarge problem sizes there is not enough memory (\nem") to store the matrix C. The lastolumn presents the auray of the H-matrix approximation.time (se.) memory (MB)n C ~C C ~C "332 0:14 0:01 9:5 0:7 4:3 � 10�3652 2:6 0:05 1:4 � 102 3:5 3:7 � 10�31292 �� 0:24 nem 16 ��2572 �� 1 nem 64 ��Table 3: Dependene of the omputational time and storage ost on the problem size n,rank k = 5, ov(x; y) = e��, l1 = l2 = 1, domain G = [0; 1℄2.One an see that H-matrix approximations an be omputed very fast even for 1292and 2572 degrees of freedom, whereas for the dense matries there is not enough memory.Table 4 demonstrates the auray of the H-matrix approximation of the ovarianefuntion (20) for di�erent ovariane lengths l1 and l2 .
14



l1 l2 "0:01 0:02 3 � 10�20:1 0:2 8 � 10�30:5 1 2:8 � 10�5Table 4: Dependene of the H-matrix auray on the ovariane lengths l1 and l2 forovariane funtion (20), G = [0; 1℄2, n = 1292.5 Numerial omputation of KLEAn analytial solution of the eigenvalue problem (2) is known very seldomly (usuallyonly in 1D and for a small lass of ovariane funtions). For instane, the solution ofthe eigenvalue problem (2) with ov(x; y) = e��jx�yj, x; y 2 (�a; a) � R is available in[13, 14℄. However already in 2D the analytial solutions are either more omplex or almostimpossible to dedue. In this setion we solve the symmetri eigenvalue problem (7). Wetested the ARPACK [27℄ and TRLAN [42℄ pakages for omputing m largest eigenvaluesand orresponding eigenfuntions of (7). ARPACK is based upon an algorithmi vari-ant of the Arnoldi proess alled the Impliitly Restarted Arnoldi Method (IRAM). Forsymmetri matries it redues to a variant of the Lanzos proess alled the ImpliitlyRestarted Lanzos Method (IRLM) [27℄.The TRLAN pakage targets the ase where one wants both eigenvalues and eigen-vetors of a large real symmetri eigenvalue problems that annot use the shift-and-invertsheme. In this ase the standard non-restarted Lanzos algorithm requires the storageof a large number of Lanzos vetors whih an ause storage problem and make eahiteration of the method very expensive. The algorithm used in TRLAN is a dynamithik-restart Lanzos algorithm. The onvergene test used in the TRLAN is the residualr < tolerane � k ~Ck [42℄.The three most time-onsuming proedures in the Lanzos method are the matrix-vetor multipliation, re-orthogonalisation and omputation of the Ritz vetors. Allmatrix-vetor produts are approximated in theH-matrix format with the ost O(n logn).We also investigate how the H-matrix tehnique redues the memory requirements andthe omputing times of the eigenvalue solver.Remark 5.1 Note that an H-matrix approximation ~C of the symmetri matrix C is notalways symmetri [6℄ (the possible reason is the rounding error). Therefore we take thesymmetri part of ~C. Note also that in HLIB [16℄ there is a possibility to set up only theupper (lower) half of the matrix.In Table 5 one an see the omputing times required for anH-matrix vetor multipliation.The Table was made using the weak admissibility riteria (14). It approximates theovariane funtion (20) with l1 = l3 = 0:1 and l2 = 0:5. The geometry is shown inFig. 1 (right). The times needed to set up the H-matries are shown in parentheses.Numerial experiments on�rm the theoretial estimation O(kn logn) (from Theorem3.1) for an H-matrix vetor multipliation. One an see a linear dependene on the rank15



k and an almost linear dependene on the problem size n. If the matrix C is stored ina dense matrix format then the omplexity should be O(n2) (the last row). Note thatfor n = 3:5 � 104 and higher there is not enough memory to store C. The orrespondingomputing times for n � 3:5 � 104 are extrapolated from the previous values.k n n 1:05 � 104 2:4 � 104 3:5 � 104 6:8 � 104 2:3 � 105t1 t2 t1 t2 t1 t2 t1 t2 t1 t23 8 � 10�4 0.1 3 � 10�3 0.2 6:0 � 10�3 0.4 1 � 10�2 1 5:0 � 10�2 46 2 � 10�3 0.15 6 � 10�3 0.4 1:1 � 10�2 0.7 2 � 10�2 2 9:0 � 10�2 79 3 � 10�3 0.2 8 � 10�3 0.5 1:5 � 10�2 1.0 3 � 10�2 3 1:3 � 10�1 11full rank 0.13 0.62 2.48 10 140Table 5: t1- omputing times (in se.) required for an H-matrix and dense matrix vetormultipliation, t2 - times to set up ~C 2 Rn�n .Tables 6, 7 show the omputing times whih required TRLAN [42℄ to ompute meigenpairs. Computing times in the Table 7 are larger than the times in the Table 6. Thereason is that TRLAN performs more iteration steps.matrix info (MB, se.) mn k size of ~C time to set up ~C 2 5 10 20 40 802:4 � 104 4 12 0.2 0.2 0.2 0.4 0.7 1.8 56:8 � 104 8 95 0.7 0.7 0.8 1.6 3.4 7.0 192:3 � 105 12 570 6.8 3.6 4.0 7.2 15.0 31.0 75Table 6: Time required for omputing m eigenpairs of the ovariane funtion (20) withl1 = l2 = l3 = 1. The geometry is shown in Fig. 1 (right).matrix info (MB, se.) mn k size of ~C time to set up ~C 2 5 10 20 40 802:4 � 104 4 12 0.2 0.6 0.9 1.3 2.3 4.2 86:8 � 104 8 95 2 2.4 3.8 5.6 8.4 18.0 282:3 � 105 12 570 11 10.0 17.0 24.0 39.0 70.0 150Table 7: Time required for omputing m eigenpairs of the ovariane funtion (20) withl1 = l3 = 0:1, l3 = 0:5. The geometry is shown in Fig. 1 (right).6 ConlusionWe have suessfully applied the H-matrix tehnique for the approximation of ovarianematries (19-21) in 2D and 3D ases. The use of the H-matrix tehnique redues om-putational resoures (Tables 1, 2, 3 and 5), required by eigensolvers (e.g. ARPACK [27℄16
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