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Abstract

In the present paper we analyse a class of tensor-structured preconditioners for
the multidimensional second order elliptic operators in R

d, d ≥ 2. For equations in
bounded domain the construction is based on the rank-R tensor-product approximation
of the elliptic resolvent BR ≈ (L − λI)−1, where L is the sum of univariate elliptic
operators. We prove the explicit estimate on the tensor rank R that ensures the
spectral equivalence. For equations in unbounded domain one can utilise the tensor-
structured approximation of Green’s kernel for the shifted Laplacian in R

d, that is well

developed in the case of non-oscillatory potentials. For the oscillating kernels e−iκ‖x‖
‖x‖ ,

x ∈ R
d, κ ∈ R+ we constructive proof of the rank-O(κ) separable approximation. This

leads to the tensor representation for the discretized 3D Helmholtz kernel on n×n×n
grid that requires only O(κ | log ε|2 n) reals for storage. Such representations can be
applied to both the 3D volume and boundary calculations with sublinear cost O(n2)
even in the case κ = O(n).

Numerical illustrations demonstrate the efficiency of low tensor rank approximation

for Green’s kernels e−λ‖x‖
‖x‖ , x ∈ R

3, in the case of Newton (λ = 0), Yukawa (λ ∈ R+)

and Helmholtz (λ = iκ, κ ∈ R+) potentials, as well as for the kernel functions 1/‖x‖
and 1/‖x‖d−2, x ∈ R

d, in higher dimensions d > 3. We present numerical results on the
iterative calculation of the minimal eigenvalue for the d-dimensional finite difference
Laplacian by power method with the rank truncation and based on the approximate
inverse BR ≈ (−∆)−1, with 3 ≤ d ≤ 50.

AMS Subject Classification: 65F50, 65F30, 46B28, 47A80
Key words: Preconditioning, high dimensions, boundary value problems, spectral problems,
tensor approximation, Green’s kernels, elliptic resolvent.

1 Introduction

The construction of efficient preconditioned iterative methods plays the important role in the
numerical analysis of high dimensional equations arising in the modern engineering, physi-
cal and chemistry applications. For example, we mention the multi-dimensional integral-
differential equations, elliptic/parabolic boundary value problems posed in R

d, d ≥ 2,
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which include the Hartree-Fock/Kohn-Sham equations in density functional theory, the time-
dependent Schrödinger equation in quantum molecular dynamics, the Lippmann-Schwinger
integral formulation of the electronic Schrödinger and Hartree-Fock equations, the Poisson-
Boltzmann equation in protein modelling, the deterministic Boltzmann equation as well as
the multi-parametric stochastic PDEs.

In multi-dimensional applications, traditional numerical methods of linear complexity in
the volume fail due to the so-called ”curse of dimensionality” (Bellman). This effect can
be relaxed or completely avoided by a systematic application of low rank tensor-structured
representations of the arising multivariate functions and related operators. Applications of
tensor methods for representation of classical Green’s kernels and elliptic resolvent [3, 4, 11,
13, 19, 23, 2], multi-dimensional convolution [21, 20, 6] and many other quantities arising
in electronic structure calculations [17, 22, 24] have demonstrated the surprising efficiency.
In some applications the a-priori fixed tensor subspace via sparse grids leads to efficient
algorithms in higher dimensions [12, 31].

The present paper is motivated by the fact that application of tensor formats for iter-
ative solving of the elliptic boundary-value and spectral problems in higher dimensions is
essentially based on using preconditioned (nonlinear) iterations with tensor truncation (cf.
[3, 4, 16, 20, 14, 26]). In this way the construction of spectrally close tensor structured pre-
conditioners for the class of elliptic integral-differential operators in R

d is one of the building
blocks in development of efficient numerical methods in the case d ≥ 3.

The idea on tensor-structured approximation of the elliptic inverse was first addressed
in [3, 4]. Particular constructions based on the sinc-approximation applied to the operators
(−∆+λI)−α, λ ∈ R+, α > 0 on a hypercube were considered in [11, 20]. In the present paper
we prove the explicit estimate on the tensor rank of sinc-quadrature based preconditioners
that ensures spectral equivalence. Efficient tensor approximation of non-oscillatory free-
space Green’s kernels for different discretisation schemes have been described [17, 13, 19].
To our best knowledge, the low rank tensor-structured approximation for oscillating kernels
have not been yet addressed in the literature (cf. the asymptotically optimal method in the
volume size based on the fast multipole type representations [5, 6]). In the present paper we

construct and prove the rank-O(κ) separable approximation for the oscillating kernel e−iκ‖x‖

‖x‖ ,

x ∈ R
d, κ ∈ R+. Such representations allow the 3D volume and boundary calculations with

sublinear cost O(| log ε| κn), even in the case κ = O(n). Notice that methods presented in
[5, 6] lead to the linear complexity in the volume, O(κ3 log κ+ C(| log ε|)3).

The rest of the paper is organised as follows. In Section 2 we formulate the classes of
boundary-value and spectral problems in bounded/unbounded domains and formulate the
tensor truncated preconditioned iterative schemes. We also collect some basic definitions on
the separable approximation of multivariate functions (tensors) and related operators (ma-
trices). Then we introduce the class of tensor structured preconditioners for elliptic operators
of the second order. We also discuss possible applications of the separable approximation
for the free-space Green’s kernels in the so-called FEM-BEM coupling methods and in the
Green function formulations. In Section 3, we analyse the tensor-product preconditioner in
(0, 1)d. Lemma 3.1 shows the linear scaling in d, while Lemma 3.2 proves the explicit esti-
mate on the tensor rank that ensures spectral equivalence. Then, we focus on tensor-product
approximation of the integral operators in R

d with oscillating kernels. We give constructive
proof of the rank-O(κ) separable approximation for the oscillating kernel function e−iκ‖x‖

‖x‖ ,
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x ∈ R
d, κ ∈ R+. This leads to the tensor representation with approximation error ε > 0,

for the discretized 3D Helmholtz fundamental solution on n× n× n grid that requires only
O(| log ε|2 n2) reals for storage.

We complete Section 3 with report on the results of numerical experiments illustrating
the efficiency of the low tensor-rank approximation for the class of nonoscillating kernels for
d ≥ 3, and for the oscillating Helmholtz kernel in 3D. Another numerical example shows
the linear scaling in d of the “truncated” power iteration (cf. [14]) applied to the spectral
problem for the Laplacian in (0, 1)d, d ≤ 50.

2 Problem setting and description of preconditioners

2.1 Problem setting

We consider preconditioning methods for solving boundary value and eigenvalue problems

Λu = f, and Λu = λu (2.1)

with the elliptic differential operator Λ of the form

Λ := − div (A∇u) + V u. (2.2)

Here the operator Λ maps as Λ : H1
0 (Ω) → H−1(Ω), where Ω ⊂ R

d is some bounded or un-
bounded tensor-product domain. The operator coefficients A = {aij(x)}d

i,j=1 ∈ C∞(Ω,Rd×d),
and V ∈ C(Ω) in (2.2) are supposed to provide the low tensor-rank approximation of the
corresponding solutions in H1

0 (Ω) (see [14, 26]).
Efficient numerical solvers for high-dimensional boundary value and eigenvalue problems

can be based on systematic use of the tensor approximation methods (cf. [3, 4, 11, 15, 13]).
This concept relies on several prerequisites:

• Representation of arising operators and functions in rank-structured tensor formats
and the corresponding error analysis (separable approximation).

• Efficient implementation of multilinear matrix-vector operations with truncation to
fixed tensor rank (tensor truncation).

• Construction of rank-structured spectrally close preconditioners or approximate inverse
operators and using them in special iterative solvers which are well suited for truncated
iterations.

The last topic will be in the focus of the present paper.

2.2 Tensor-structured representation of functions and operators

In this section we recall the commonly used tensor structured formats for representing the
high order tensors considered as the elements of tensor-product Hilbert space [29].

Representation of tensors: A d-th order tensor V = [vi1,...,id : iℓ ∈ Iℓ] ∈ R
I (I =

I1 × . . .× Id) is an element of the tensor-product Hilbert space Vn = ⊗d
ℓ=1Vℓ of real-valued
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(complex-valued) functions of the discrete argument, with Vℓ = R
Iℓ , and equipped with

the Euclidean inner product 〈·, ·〉 : Vn × Vn → R, where n = (n1, ..., nd). In general, we
have Iℓ = {1, ..., nℓ}, however, for the ease of discussion we set #Iℓ = nℓ = n (ℓ = 1, ..., d).
The concept of rank-structured tensor product formats allows to get rid of the exponential
increase in the number of entries in V , as nd. In this way, one considers the outer product of
vectors v(ℓ) = {v(ℓ)

iℓ
}iℓ∈Iℓ

∈ Vℓ (ℓ = 1, ..., d) that forms the canonical rank-1 tensor

V ≡ [vi]i∈I = v(1) ⊗ ...⊗ v(d) ∈ Vn with entries vi = v
(1)
i1

· · · v(d)
id
,

requiring only dn elements to store it (now linear in the dimension). In the case d = 2, the
outer product of vectors represents a rank-1 matrix.

Rank-R canonical representation (tensor class CR,n) of a tensor V ∈ Vn is defined by

V =
∑R

ν=1
βνv

(1)
ν ⊗ . . .⊗ v(d)

ν , βν ∈ R (2.3)

with normalised vectors v
(ℓ)
ν ∈ Vℓ (ℓ = 1, ..., d). The minimal parameter R in (2.3) is called

the rank (or canonical rank) of a tensor.
Tucker model (tensor class T r,n, r = (r1, ..., rd)): Rank-r orthogonal Tucker approxima-

tion is based on subspaces Tn := ⊗d
ℓ=1Tℓ ⊂ Vn for certain Tℓ = span{t(ℓ)νℓ

}rℓ

νℓ=1 ⊂ Vℓ with
rℓ := dim Tℓ < n. Then each tensor V ∈ Tn can be represented by a sum of rank-1 elements

V =
∑r1

ν1=1
. . .

∑rd

νd=1
βν1,...,νd

t(1)ν1
⊗ . . .⊗ t(d)

νd
≡ β ×1 T

(1) ×2 T
(2)...×d T

(d), (2.4)

where T (ℓ) = [t
(ℓ)
1 ...t

(ℓ)
rℓ ], t

(ℓ)
νℓ ∈ Tℓ (ℓ = 1, ..., d) is the orthogonal matrix and ×ℓ denotes the

mode-ℓ contracted product. Here r = max
ℓ

{rℓ} is called the Tucker rank (Trank). In our

applications we have r ≪ n, say r = O(logn). The coefficients tensor β = [βν1,...,νd
] ∈

R
r1×...×rd (core tensor), is an element of the dual (reciprocal) tensor space Br.

Remark 2.1 Note that CR is a subset of Tr with r = (R, ..., R) corresponding to the case of
diagonal core tensors. Hence, we have the following lower bound on the canonical rank in
(2.3), in terms of the Tucker rank in (2.4), r = maxℓ rℓ ≤ R.

Mixed (two-level) Tucker-canonical model: Subclass T CR,r
⊂ T r,n with β ∈ CR,r ⊂ Br,

consists of tensors in the form

V =
(∑R

ν=1
βνb

(1)
ν ⊗ . . .⊗ u(d)

ν

)
×1 T

(1) ×2 T
(2)...×d T

(d), (2.5)

where T (ℓ) ∈ R
n×rℓ (ℓ = 1, ..., d) is the orthogonal matrix.

Storage constraints: The storage requirements for the Tucker (resp. canonical) decompo-
sition is bounded by rd+drn (resp. R+dRn), where usually r ≪ n and r ≪ R. Representing
the T CR,r

format amounts to dRr +R + drn reals (linear scaling in d, n, R, r).
Representation of tensor-structured matrices (operators): The index sets I1, ..., Id and

J1, ..., Jd give rise to the pair of tensor-product Hilbert spaces V = R
I1 ⊗ ... ⊗ R

Id and
W = R

J1 ⊗ ... ⊗ R
Jd. Given matrices A(ℓ) ∈ R

Iℓ×Jℓ (ℓ = 1, ..., d), their Kronecker product
A := A(1) ⊗ ...⊗A(d) is defined as the mapping

A : V →W, V ∋ v = v(1) ⊗ ...⊗ v(d) 7→ Av = A(1)v(1) ⊗ ...⊗ A(d)v(d) ∈W.
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We introduce a class MR,n of the Kronecker rank R (Krank(A) = R) matrices in the form

A =
∑R

ν=1
A(1)

ν ⊗ · · · ⊗ A(d)
ν , A(ℓ)

ν ∈ R
Iℓ×Jℓ, ℓ = 1, ..., d, (2.6)

where R is supposed to be small, say R = O(logn). This provides a tremendous reduction in

storage from O(n2d) to O(dRn2). The matrices A
(ℓ)
ν can be “compressed” by techniques of

hierarchical or wavelet matrix approximation or adapting Toeplitz/circulant type structures
(cf. the convolution with translation invariant kernels) reducing the complexity and storage
to O(dRn logn).

Low tensor rank nonlinear approximation: Since both T r and CR are not linear spaces,
we arrive at a nontrivial nonlinear approximation problem

A0 ∈ Vn : A = argminT∈S ‖A0 − T‖Vn
(2.7)

with S ∈ {T r,CR,T CR,r
} or S ⊂ T r being a subclass of symmetric, antisymmetric, or

positive tensors. The replacement of A0 by an approximation A ∈ S is called the tensor
truncation to S and denoted by TSA0. In practice, the computation of the minimiser A can
be performed only approximately.

In the case S = T r, we have proven the solvability of minimisation problem (2.7), the
quadratic convergence in the ”energy functional”, and analysed the structure of its Frechét
derivative (cf. [19]). Basic ALS iteration to compute the Tucker approximation in T r

was presented in [7, 8]. With good initial guess, we normally observe the stable geometric
convergence of the ALS method for orthogonal Tucker approximation. On the other hand,
the (nonorthogonal) canonical decomposition in CR is well suited for fast multilinear algebra.
The mixed tensor format T CR,r

combined with the multigrid acceleration techniques allows
to utilise the favourable features of both Tucker and canonical models [24].

2.3 Equations in bounded domain

We are interested in preconditioned iterations for solving the FEM approximations of the
variational boundary-value problem

find u ∈ H1
0 (Ω) s.t.

∫

Ω

d∑

i,j=1

aij(x)∂iu∂jv + V uv =

∫

Ω

fv ∀v ∈ H1
0 (Ω) , (2.8)

as well as of the related eigen-value problem: Find (λ, u) ∈ R ×H1
0 (Ω) \ {0}, such that

∫

Ω

d∑

i,j=1

aij(x)∂iu∂jv + V uv = λ

∫

Ω

uv ∀v ∈ H1
0 (Ω) . (2.9)

For numerical approximation and preconditioning of “tensor-structured” discrete elliptic
operators defined in the hypercube Ω = (0, 1)d, we consider the Galerkin schemes via the
tensor-product piecewise polynomial basis functions {φi},

φi(x) =
d∏

ℓ=1

φiℓ(xℓ), i ∈ I = Id := {1, ..., n}d. (2.10)
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For the ease of presentation, φiℓ are supposed to be linear polynomials in variable xℓ, i.e.,
we choose the Galerkin subspace of the Courant hat functions, Vn = (Vn)

d ⊂ (H1
0 (0, 1))d

associated with the uniform tensor product grid. The Galerkin approximation to the initial
BVP (2.8) now reads as follows

LU ≡ (A + V)U = F, U ∈ R
I , (2.11)

while the spectral problem (2.9) is discretised as

LU ≡ (A + V)U = λMU, U ∈ R
I , (2.12)

where U denotes the vector representation of u ∈ Vn in the basis set {φi}. This leads to the
explicit definition of the stiffness/mass matrices,

〈AU, V 〉 := 〈A∇u,∇v〉(L2(Ω))d , 〈VU, V 〉 := 〈V u, v〉L2(Ω) , 〈MU, V 〉 := 〈u, v〉L2(Ω) ,

and the vector in the right-hand side,

〈F, V 〉 := 〈f, v〉L2(Ω) , ∀u, v ∈ Vn.

We follow the concept of approximate (truncated) iterations based on usage of the rank
structured formats to represent matrix-vector operations in the framework of preconditioned
iterative solvers (cf. [16, 14]).

For the linear system (2.11) the truncated preconditioned iteration takes the form

Ũm+1 = Um − B−1(AUm − F ), U (m+1) := TS(Ũ (m+1)),

where the truncation operator TS is defined by the nonlinear approximation procedure that
“projects” the respective vectors onto some manifold S of rank structured tensors.

In turn, solving the spectral problem (2.12) in the rank structured formats can be realised
via the truncated preconditioned inverse iteration as follows,

Ũm+1 = Um − B−1(AUm − µmUm), U (m+1) := TS(Ũ (m+1)),

U (m+1) : U (m+1)/‖U (m+1)‖, µm+1 = (AUm+1, Um+1).

In both cases, the preconditioner B−1 can be chosen as inverse of the shifted Laplacian. In
the following we present the more general construction of B.

In the framework of FEM Galerkin equations (2.11) and (2.12) we introduce the class of
elliptic operators which allow the low tensor rank approximate inverse. Let Σ0 : H1

0 (Ω) →
H−1(Ω) be an elliptic operator given by the (positive) diagonal coefficients matrix D =
diag{D1, ..., Dd} ∈ C(Ω; Rd×d), and by the “univariate” potentials Vℓ(xℓ),

Σ0 := −
d∑

ℓ=1

Σℓ, with Σℓ = − d

dxℓ

Dℓ(xℓ)
d

dxℓ

+ Vℓ(xℓ), ℓ = 1, ..., d.

Suppose that the elliptic operator Σℓ (ℓ = 1, ..., d) is positive definite and let Aℓ ∈ R
n×n be

the Galerkin discretisation of Σℓ. Introduce the class of rank-R Kronecker product precon-
ditioners defined by approximate inverse

BR ≈ L−1
0 with L0 := A1 ⊗ ...⊗ I + ... + I ⊗ ...⊗Ad.
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Here the coefficients Dℓ, Vℓ can be chosen from the optimisation of the condition number in

C1 〈LU,U〉 ≤ 〈L0U,U〉 ≤ C2 〈LU,U〉 ∀U ∈ Vn, (2.13)

so that the matrix L0 is supposed to be spectrally close/equivalent to the initial stiffness
matrix A + V.

The construction of approximate inverse in the form of rank-R Kronecker tensor product
representation is based on the sinc-quadrature method (see Lemma 3.2 below). In §3.1
we prove the spectral equivalence estimates for the preconditioner BR and show that the
storage requirement for the respective representation (3.1) is linear in d, O(dRnq), with
q = 1, 2 (compare with the linear complexity in the volume N = nd).

Remark 2.2 We notice that the potential function V (x), x ∈ R
d, might include non-

separable (singular) terms like
∑
m

1/‖x−xm‖. The low tensor-rank approximation of a class

of Green’s kernels will be addressed in Section 2.4. Moreover, the tensor representation of
the Schrödinger type operators was discussed in [3].

2.4 Equations in unbounded domain and BEM applications

2.4.1 General discussion

In the case Ω = R
d, we set A = I ∈ C(Ω; Rd×d), and consider the corresponding boundary

value problem (BVP) and eigen-value problem (EVP) in the form

−∆u+ V u = f, and − ∆u+ V u = λu, (2.14)

subject to the corresponding “radiation condition” as ‖x‖ → ∞. There are several commonly
used numerical methods for solving (2.14) based on the application of the fundamental
solutions of related elliptic operators with constant coefficients:

1. Computation of particular solution (potential) by the convolution of the given right-
hand side (density) with the related fundamental solution.

2. Boundary element methods (BEM) in bounded/unbounded domains.

3. Green function (fixed point) formulation of equations (2.14).

The reference elliptic operator with constant coefficients will be chosen as the shifted Lapla-
cian,

−∆ ± z2I, z ∈ [0,∞).

Hence, in general, we are interested in the tensor-structured approximation of the respective
elliptic resolvent (Green’s function operator)

Rz := (−∆ ± z2I)−1, z ∈ [0,∞)

with the kernel function defined by spherically symmetric fundamental solution (Green func-
tion) Gz(x), x ∈ R

d. The fundamental solution of the operators −∆, and −∆+z2, Re z2 > 0,
in R

d is given by

G0(x) =
Γ(d

2
− 1)

4πn/2‖x‖n−2
, and Gz(x) =

1

2πn/2

(
z

‖x‖n−2

)n/2−1

Kn/2−1(z‖x‖), (2.15)
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respectively, where Kν is the modified Bessel function of the second kind [1, §9.6]. In turn,
the fundamental solution of the Helmholtz type operator ∆ + κ2, κ2 > 0 takes the form

Gκ(x) =
i

4

(
κ

2π‖x‖

)n/2−1

, x ∈ R
d, H

(1)
n/2−1(κ‖x‖), (2.16)

where H
(1)
n/2−1 is the Hankel function of the first kind [1]. In particular, in the case d = 3,

the corresponding fundamental solution is given by the classical Newton (z = 0), Yukawa
(−∆ + z2, z > 0) or Helmholtz (∆ + κ2, κ > 0) kernels,

G0(x) :=
1

4π

1

‖x‖ , Gz(x) :=
1

4π

e−z‖x‖

‖x‖ , Gκ(x) :=
1

4π

eiκ‖x‖

‖x‖ , x ∈ R
3,

respectively.
The common feature of the family Gz(‖x‖) is the analyticity in variable ρ = ‖x‖2, except

the singularity point ρ = 0. This property together with spherical symmetry allows efficient
separation of variables x1, ..., xd, in R

d. In the case of non-oscillating kernels as in (2.15) the
separable representation can be constructed by using the quadrature approximation of the
Laplace transform,

Gz(‖x‖) =

∫

R+

Ĝz(t)e
−t‖x‖2

dt, x ∈ R
d.

For d = 3, the quadrature approximation of the Newton/Yukawa potentials e−κ
√

ρ
√

ρ
for

κ ∈ [0,∞), is based on application of the sinc-quadratures to the Gauss transform

G(ρ) =
e−κ

√
ρ

√
ρ

=
2√
π

∫

R+

exp(−ρτ 2 − κ2/4τ 2)dτ, ρ = ‖x‖2. (2.17)

We are interested in the L2-projection onto the set of tensor-product basis functions {φi}
introduced above (say, piecewise constant basis functions). The low tensor rank approxima-
tions for the arising d-th order coefficients tensor

G = [Gi]i∈I with Gi =

∫
G(ρ(x))φi(x)dx

is proven in [13, Lemma 4.3], [20, Theorem 3]:

Proposition 2.3 The tensor G ∈ R
I allows the rank-R sinc-quadrature based approxima-

tion GR ∈ CR,n, such that
‖G − GR‖ ≤ Ce−βR/ log R,

where constants C, β do not depend on R. The approximation error ε > 0 is achieved by the
Tucker/canonical approximation with the rank estimate r ≤ R ≤ O(| log ε|) up to low order
terms.

The numerical illustrations for Gz(x) with d = 3 can be found in §3.4 (see also [2, 20]).
Low rank representation of Gz(x) can be utilised in fast tensor convolution transform [21,
22, 24]. Construction of separable approximation to non-oscillating fundamental solution Gz

for d > 3 can be based on similar sinc-methods.
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In the present paper, we focus on the important special case. Specifically, we consider
separable approximation for the Helmholtz kernel Gκ(x) for d = 3 and for its formal mul-

tidimensional counterpart given by the function eiκ‖x‖

‖x‖ , x ∈ R
d, d > 3 (though the latter

does not represent the fundamental solution for the 3D Helmholtz operator in R
d, our con-

structions can be useful for understanding the effects of higher dimensions). Our main result
proves the rank-O(κ) tensor approximation for the Helmholtz kernel that scales linearly in
the frequency parameter κ (see Section 3.3). This result leads to sublinear cost O(κn logn),
regarded to n × n × n spatial grids. Up to our best knowledge, low separation rank ten-
sor approximation for oscillating kernels have not been yet addressed in the literature (cf.
the asymptotically optimal methods in the volume size based on the fast multipole type
representations [5, 6]).

In the next two subsections we discuss the particular numerical schemes for solving elliptic
PDEs which can be gainfully improved by using tensor approximations to Green’s functions.

2.4.2 Application in FEM-BEM coupling

Consider the FEM applications dealing with elliptic problems in unbounded domain. The
initial BVP posed in Ω = R

d,
−∆u+ V u = f, (2.18)

and subject to the corresponding radiation conditions as ‖x‖ → ∞, can be reduced to
the equation in the auxiliary bounded “tensor product” domain Ω0 = [−a, a]d, a > 0,
with the nonlocal boundary conditions posed on Γ = ∂Ω0. Specifically, assuming that
V (x) = const ≥ 0 and f(x) = 0, for x ∈ R

d \ Ω0, and introducing the free-space Green’s
kernel G(‖x−y‖) for the corresponding “external” elliptic operator with constant coefficients,
the equation (2.18) can be rewritten in the form

−∆u + V u = f in Ω0; u− (I + K)−1V∂nu = 0 on Γ, (2.19)

where the boundary Poincaré-Steklov (pseudo-differential) operator

S = (I + K)−1V : H−1/2(Γ) → H1/2(Γ),

is defined via the double layer and single layer integral operators K and V (see [25] for more
details)

Ku =

∫

Γ

∂n,yG(‖x− y‖)u(y)dy, Vu =

∫

Γ

G(‖x− y‖)u(y)dy, (2.20)

with ∂n beind the outward normal derivative on Γ. Hence, the tensor product representation
of the integral operators K and V allows to implement the nonlocal boundary conditions (and
the whole solution process) in the combined equation (2.19) using tensor product formats. In
fact, if the the Green function G(‖x‖) allows a tensor-structured representation on a tensor
grid in R

d, that geometrically fits the boundary Γ, then the action of the corresponding
boundary integral operators in (2.20) can be implemented in tensor format as well, just
by “tracing” the tensor product volume representation onto the piecewise tensor product
boundary Γ. We will develop such tensor representations of the boundary (integral) operators
elsewhere. In this way, the Poisson, Yukawa and Helmholtz type kernels in R

d can be
adapted.
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Figure 2.1: Examples of step-type 3D geometries.

The above strategy can be also extended to more complicated step-type geometries of
Ω0. Figure 2.1 represents examples of 3D piecewise tensor product geometries, which are
well suited for tensor methods.

2.4.3 The Green function formulation

The Green function (fixed point) formulation applied to the spectral problems in quantum
chemistry (the Lippmann-Schwinger equation) leads to the efficient numerical methods based
on data-sparse representation of operators involved (see [17, 4] and references therein). This
concept can be also applied as a preconditioning scheme for solving the elliptic boundary
value problems.

The Green function formulations of the corresponding BVP and EVPs as in (2.14),
can be derived by multiplication with the elliptic resolvent (Green’s function operator) Rz.
The corresponding integral (Green function) formulation of the elliptic BVP in the form
−∆u+ V u = f , reads as

u = Gzu+ f ⋆ Gz (2.21)

with
Gzu := [V0u] ⋆ Gz ≡ Rz(V0u), V0 = z2 − V, Rz = (−∆ + z2)−1,

where ⋆ denotes the convolution product in L2(Rd). Here the parameter z2 ≥ 0 can be spec-
ified via some optimisation criteria, however z = 0 will be the standard choice (convolution
with the Poisson kernel).

Under certain assumptions, Gz can be proved to be the bounded operator in L2(Rd)
(see[4, 28]), that allows simple and robust iterative solution methods provided that the
convolution transform can be computed in the efficient way (cf. [19]).

In the case of spectral problem with the negative target eigenvalue λ < 0, by setting
z =

√
−λ, one obtains the integral formulation to the initial eigen-value problem

u = Gzu with Gzu = [V0u] ∗Gz. (2.22)

The important feature of this formulation is that any eigenvalue-eigenfunction pair, (λ, u),
(λ in the discrete spectrum), for the operator −∆ + V generates a fixed point solution of
the problem (2.22) (cf. [17, 4, 20] for the case of Hartree-Fock, electronic Schrödinger and
Kohn-Sham equations).

We point out that the integral representation Gz = (V0 · ) ⋆ Gz is computationally attrac-
tive due to the following gainful features (see [17, 28]):
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• Simple collocation-type discretisation with discontinuous basis functions (L2 setting).

• Existence of low-separation rank approximations to the operators V and Gz that allows
fast tensor-product convolution transform.

• Robust and fast convergence of the nonlinear fixed point iterations to solve (2.21) and
(2.22), which are well suited for the numerical multi-linear algebra via truncation to
the prescribed tensor format.

For the rest of this section, we discuss in more detail the tensor approximation to the
discrete convolution transform with the corresponding Green’s kernels. Notice that the
tensor-product multidimensional convolution for the class of translation invariant kernels
was developed in [23, 21, 20]. In this way, we consider the collocation-type approximation of
the operator Gz = (V0 ·)⋆Gz with respect to the certain ansatz spaceW = span{φi} ⊂ L2(Rd)
of possibly discontinuous tensor-product basis functions as in (2.10). Letting

ψ =
∑

i∈I
aiφi, V0 = {〈V0φi, φj〉}i,j∈I ∈ R

I×I ,

we calculate the L2-projection PW (V0ψ) of V0ψ onto W ,

PW (V0ψ) =
∑

j∈I

∑

i∈I
ai〈V0φi, φj〉φj =

∑

j∈I
bjφj

with bj = (V0A)j, A = [ai]. Introducing the coefficients tensor

B = [bj]j∈I ∈ R
I , i.e., B = V0A,

the discretisation of Gzψ can be then defined by multidimensional convolution,

Gzψ ≈ G ⋆ B,

where tensor G is obtained by the projection of the convolving kernel Gz(x) = e−z‖x‖/‖x‖
onto the space W (see Proposition 2.3),

G = [Gi]i∈I with Gi =

∫
Gz(x)φi(x)dx.

In the case of piecewise constant basis functions in (2.10) the stiffness matrix V0 becomes
diagonal, V0 = diag{〈V0φi, φi〉}i∈I (local operator of multiplication with V0(x)). Here we
presuppose the existence of low Kronecker rank representation for the matrix V0 as in (2.6).
For example, this is the case if V0(x) is given by

∑
ν

Zν

‖x−xν‖ + g(x), with a smooth function g.

In some physical models solution (2.14) exhibits exponential decay as ‖x‖ → ∞. In this
case, the computational domain can be restricted to the fixed-size hypercube in R

d. The
similar situation arises in the traditional 3D BEM applications (see §2.4.2 above).
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3 Low tensor rank preconditioners

3.1 Analysis of the preconditioner BR

We utilise the rank-R preconditioner BR based on the sinc-quadrature approximation as
follows,

BR :=
M∑

k=−M

ck

d⊗

ℓ=1

exp(−tkAℓ) ≈ L−1
0 , (tk, ck ∈ R+, Aℓ ∈ R

n×n). (3.1)

It can be proven to provide exponential convergence in R = 2M +1 (see Lemma 3.2 below).
Next simple lemma proves the linear scaling of the preconditioner BR in d.

Lemma 3.1 (Linear scaling). Preconditioner BR in (3.1) has the Kronecker rank R =
2M + 1, i.e. we have

BR ∈ MR,n.

Let the operator coefficients Dℓ, Vℓ (ℓ = 1, ..., d) be constant. Then the required storage and
respective cost of the matrix-vector multiplication with rank-1 tensor can be estimated by

O(dRn), and O(dRn logn).

In the case of variable coefficients the related cost is bounded, respectively, by

O(dRn2), and O(dRn2).

Proof. The Kronecker rank estimate is due to representation (3.1). Taking into account that
in the case of constant coefficients the Galerkin matrix Aℓ (ℓ = 1, ..., d) can be diagonalised
at the cost O(n logn) by using FFT matrices, we arrive at the linear-logarithmic scaling in n
for the related matrix operations. The last assertion is due to the full format representation
of the matrix exponential exp(−tkAℓ) ∈ R

n×n in the general case.
To control the quality of preconditioning, we make use of the known error bound for the

sinc-quadrature (3.1) applied to the Laplace transform of the matrix-valued function,

L−1
0 =

∫ ∞

0

e−tL0dt with cond(L0) = O(n2).

The appropriate choice of quadrature parameters tk, ck (see (3.3)) leads to the exponential
convergence rate (cf. [13, Lemma 4.3]),

∥∥L−1
0 − BR

∥∥ ≤ C0e
−π

√
M , (3.2)

where the constant C0 > 0 does not depend onM and on n. Notice that the similar result was
proven in [4, Theorem 22]. The following lemma proves the spectral equivalence estimates.

Lemma 3.2 (Spectral equivalence). Let us set in (3.1)

tk = ekh, ck = htk, h = π/
√
M, k = −M, ...M, (3.3)
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and suppose that the constants C0, C1, C2 are determined by (3.2) and (2.13), respectively.

Choose M such that the inequality C0‖L0‖‖B−1
R ‖e−π

√
M < q(M)C1 holds with q < 1, then we

have
C̃1 〈LU,U〉 ≤

〈
B−1

R U,U
〉
≤ C̃2 〈LU,U〉 ∀U ∈ Vn, (3.4)

with spectral equivalence constants C̃1, C̃2 > 0 that allow the following bound on the condition
number

C̃2

C̃1

≤ 1

1 − q(M)

C2

C1

+
q(M)

1 − q(M)
.

Proof. The matrices Aℓ, are symmetric and positive definite, hence, the Laplace transform
and related exponential factors in (3.1) are correctly defined. Moreover, all terms in the
sum L0 = A1 ⊗ ... ⊗ I + ... + I ⊗ ... ⊗ Ad mutually commute providing the corresponding

factorisation of the matrix exponents e−tkL0 =
d∏

ℓ=1

e−tkI⊗...⊗Aℓ⊗...⊗I (k = −M, ...,M). Then

using the property of matrix exponential we obtain ,

d∏

ℓ=1

e−tkI⊗...⊗Aℓ⊗...⊗I =

d⊗

ℓ=1

e−tkAℓ ,

see [18, Theorem 5.3]. Moreover, we have
∥∥L0 − B−1

R

∥∥ =
∥∥−L0(L−1

0 − BR)B−1
R

∥∥ ≤ ‖L0‖
∥∥L−1

0 − BR

∥∥ ∥∥B−1
R

∥∥ .

Using (3.2) the constants C̃1, C̃2 > 0 can be estimated by

C1 − C0‖L0‖‖B−1
R ‖e−π

√
M ≤ C̃1, C̃2 ≤ C2 + C0‖L0‖‖B−1

R ‖e−π
√

M ,

with C0 > 0 defined in (3.2). Combining the above inequality with the error estimate (3.2)
and with (2.13) leads to the desired bound.

Remark 3.3 Lemma 3.2 indicates that the Kronecker rank-R preconditioner B−1
R has lin-

ear (or quadratic) scaling in the univariate problem size n, providing at the same time the
condition number of order C2/C1 in (2.13), as soon as the estimate

C0‖L0‖
∥∥B−1

R

∥∥ e−π
√

M < C1

holds. The latter is valid for R = O(| log(q(M)/C1)|2) = O((logn)2). Notice that the
modified sinc-quadrature leads to the improved convergence rate in (3.2), Ce−αM/ log(M) with
α = log(cond(L0)) (cf. [18, Lemma 9.3], [13, Lemma 4.3]) again providing the rank estimate
R = O(log(| log(q(M))|/C1)) = O((log h)2).

3.2 Canonical approximation of the oscillating Helmholtz kernels

We propose the construction of exponentially convergent tensor decompositions of the weakly
singular oscillating kernels eiκ‖x−y‖

‖x−y‖ , κ ∈ R, such that its real and imaginary parts

cos(κ‖x− y‖)
‖x− y‖ and

sin(κ‖x− y‖)
‖x− y‖ , x, y ∈ R

d
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will be treated separately. In the case d = 3, we obtain the rank-O(κ) separable approxi-
mation for the oscillating Helmholtz kernel. At the end of Section 3 we provide numerical
illustrations for d = 3, and for moderate κ ≤ 15 which may substantiate the generic constants
in the theoretical rank estimates.

On the first step, we transform the singular cos-kernel to the “more regular” kernel by
subtraction of the principal singularity 1

‖x‖ . Then we construct separable approximations of
the “regular” Helmholtz potentials

f1,κ(‖x‖) :=
sin(κ‖x‖)

‖x‖ ; f2,κ(‖x‖) :=
1

‖x‖ − cos(κ‖x‖)
‖x‖ =

2sin2(κ
2
‖x‖)

‖x‖ ,

which leads to the respective approximations of the related kernel functions

f1,κ(‖x− y‖), f2,κ(‖x− y‖), x, y ∈ R
d.

Figure 3.1 shows the complicated shape of the target functions f1,κ and f2,κ (2D slices of the
potential in d = 3).

In the next statements we prove the rank estimates for the tensor approximations of both
f1,κ and f2,κ.
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Figure 3.1: Visualisation of f1,κ, f2,κ for κ = 15, d = 3.

Theorem 3.4 For given tolerance ε > 0, the function f1,κ : [0, 2π√
d
]d → R allows the

Tucker/canonical approximations, such that

σ(f1,κ,S) ≤ Cε with S = {T r,CR},

and with the rank estimates (r = (r, ..., r)),

r ≤ R ≤ Cd(| log ε| + κ).

Proof. We set t = ‖x‖2 and then approximate the entire function g(t) = sin(κ
√

t)√
t

, t ∈ [0, 2π] by
trigonometric polynomials in t up to the accuracy ε in the max-norm. To that end we make
use of the change of variables z = cos(t), z ∈ [−1, 1], and consider the entire function f(z) =
g(arccos(z)) that has the maximum value O(eκ) on the respective Bernstein’s regularity
ellipse of size O(1). Applying the Chebyshev series to the function f(z),

f(z) ≈ C0 +
M∑

m=1

CmTm(z), z ∈ [−1, 1],
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and taking into account that the Chebyshev polynomials satisfy Tm(z) = cos(m arrcos z),
z ∈ [−1, 1], we are led to approximation by trigonometric polynomials (up to tolerance ε > 0)
with M = O(| log ε| + κ) terms, where each trigonometric term has the form cos(mt) =
cos(m‖x‖2).

Notice that the multivariate function h(x) := cos(x2
1 + ... + x2

d) has a separation rank
R ≤ d, i.e. h ∈ CR, that is the consequence of the “magic” rank-d representation (cf. [3])

sin(

d∑

i=1

xj) =

d∑

i=1

sin xj

∏

k∈{1,...,d}\{j}

sin(xk + αk − αj)

sin(αk − αj)
,

which is valid for all αk ∈ R, such that sin(αk − αj) 6= 0 for all j 6= k.
Now, the result follows by combination of the rank estimate for Chebyshev trigonometric

approximation with the inclusion h ∈ CR.
Theorem 3.4 gives the constructive proof of the existence of low tensor rank approxi-

mation for the continuous function f1,κ. Next statement applies to the d-th order tensor
representing the projected kernel f2,κ onto the piecewise constant basis functions. Exten-
sion to the case of higher order tensor-product polynomials is straightforward. For further
constructions, we introduce the function

f1(t) :=
sin2(κ/2

√
t)

t
≡

(
f1,κ/2(t)

)2
.

Theorem 3.5 For given ε > 0, the coefficients tensor corresponding to f2,κ : [0, 2π√
d
]d → R,

G = [Gi]i∈I with Gi = ‖xi‖f1(‖xi‖)
∫

Rd

1

‖x‖φi(x)dx

allows the Tucker/canonical approximations, such that σ(G,S) ≤ Cε with S = {T r,CR},
and with the rank estimates,

r ≤ R ≤ Cd2| log ε| (| log ε| + κ) (r = (r, ..., r)).

The numerical complexity of the rank-R canonical approximation is bounded by

O(d3| log ε| (| log ε| + κ)n).

Proof. We factories the function g(t) = sin2(κ/2
√

t)√
t

(with t = ‖x‖2 ∈ [0, 2π]) as

g(t) = t
1√
t
f1(t) with f1(t) =

(
f1,κ/2(t)

)2
.

Now we apply the same argument as in Theorem 3.4 to the entire function f1 : [0, 2π] → R

and obtain its separable approximation in classes T r and CR (on the continuous level) that
allows the κ-dependent rank estimate

r ≤ R ≤ Cd(| log ε| + κ).

Since f = t is the rank-d function of variables (x1, ..., xd), we are left to the tensor approx-
imation of the coefficients tensor for the Newton potential 1/‖x‖ (see Proposition 2.3, [19,
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Lemma 4.3] and [20, Theorem 3]). Using the rank-| log ε| approximation of the coefficients
tensor for Newton potential, we arrive at the desired rank estimate for the resultant canonical
tensor [Gi]i∈I obtained as the Hadamard product of three canonical factors with respective
rank parameters d, | log ε| and d(| log ε| + κ).

We comment that Theorems 3.4 and 3.5 indicate linear scaling of the tensor rank in the
frequency parameter κ, which can lead to the remarkable reduction of the numerical cost in
the case of moderate and high frequencies, κ ≤ Cn.

3.3 Complexity issues and numerics

Theorems 3.4 and 3.5 imply that the canonical tensor representation (up to tolerance ε > 0)
of the descretized Helmholtz kernel on n × n × n grid amounts to O(| log ε|(| log ε| + κ)n)
which allows the upper bound O(| log ε|n2) for high frequency regime, κ = Cn.

Given the dimension parameter d and the univariate grid size n, we ask the question
when the canonical format requires less storage than the orthogonal Tucker representation.
The corresponding parameter relation is given by

dRn ≤ rd + drn,

which leads to the condition that ensures the priority of the canonical representation,

d(
R

r
− 1)n ≤ rd−1.

The latter will be always satisfied in higher dimensions.
In the case of traditional FEM/BEM applications, i.e., if d = 3, we set R

r
= 2 (typical in

our numerical practice), then we arrive at the priority relation for the canonical representa-
tion √

3n ≤ r,

which can be satisfied only on very coarse grids (recall that for non-oscillating kernels we
have r = O(logn)). However, for the case of oscillating kernels we may have κ = Cn, i.e.,
the canonical decomposition would be more preferable.
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Figure 3.2: The Tucker vs. canonical approximation of the 3D Newton/Yukawa kernels.
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Proceeding with the case of 3D Helmholtz kernel, we notice that κ ≤ Cn ensures that the
Tucker model scales linear in Nvol = n3. Furthermore, if κ ≤ Cn2/3 then the Tucker model
scales sublinear in Nvol and linear in NBEM = n2. Recall that the approximation condition
in the high-frequency domain is given by κ ≤ Cn.

Below we present some numerical illustrations. The computations were performed in
MATLAB 7.3.

Example 1. Figure 3.2 represents the convergence history for the best orthogonal Tucker
[24] vs. canonical [2] approximations of the Newton/Yukawa potentials on n×n×n grid for
n = 2048.

Example 2. Figure 3.3 shows the convergence history for the Tucker model applied to
f1,κ, f2,κ depending on κ ∈ [1, 15] and termination criterian with fixed values ε1 > 0, and
ε2 > 0. It is clearly indicating the relation r ∼ C + κ for differen (fixed) values of ε1 = 10−3

and ε2 = 10−3.
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Figure 3.3: Convergence history for the Tucker model applied to f1,κ, f2,κ, κ ∈ [1, 15].

Convergence for the Tucker and canonical models applied to f2,κ, κ ∈ [1, 15] is presented
in Figures 3.4 and 3.5, respectively.
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Figure 3.4: Convergence history for the Tucker model applied to f2,κ, κ ∈ [1, 15].

Figure 3.4,right clearly demonstrates exponential convergence in the Tucker rank r in
the interval r ≥ r0 = κ (supports the theory). We obtain the canonical approximation
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(cf. Figure 3.5) by using the two-level format T CR,r
, i.e., we compute the canonical rank-R

decomposition by ALS-type iteration applied to the small-size r × r × r Tucker core.
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Figure 3.5: Convergence history for the canonical model applied to f2,κ, κ ∈ [1, 15].

Example 3. Results for canonical approximation of the Newton potential 1/‖x‖d−2, x ∈
R

d, for d = 3, 4, 5, are depicted in Figure 3.6, while the respective convergence rate for
weakly singular potential 1/‖x‖, d = 4, 5 can be seen in Figure 3.7.

Example 4. Next Figure 3.8 indicates that the convergence of spectral (via trigonomet-
ric functions) approximations of the Helmholtz kernel deteriorates dramatically even for
moderate frequences.

Example 5. Finally, we present the results on the iterative calculation of the mini-
mal eigen-value for the d-dimensional finite difference Laplacian by power method with
the rank truncation [14]. The rank-R tensor approximation is given by (3.1) with Aℓ =
tridiag{−1, 2,−1} ∈ R

n×n. Here, we discretise the problem on (0, π)d using nd grid points
and apply the sinc-quadrature with M = 49 to obtain the rank-(2M + 1) appproximation
of the Laplacian inverse for d = 3, 10, 50. The next table presents the computational time
(sec.) per iteration, the relative H1-error in the eigenfunction and the relative error in the
eigen-value for n = 29. In all cases, the number of power iterations does not exceed 6.

This table clearly indicates the linear scaling in d of tensor-product approximation. More
detailed numerical illustations on tensor-structured eigen-value solvers can be found in [14].
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Figure 3.6: Canonical approximation applied to the Newton potential 1/‖x‖d−2 for d =
3, 4, 5.
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Figure 3.7: Canonical approximation applied to the weakly singular potential 1/‖x‖ for
d = 4, 5.
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