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Abstract

We consider a generalization of the nonstationary Stokes system, where
the constant viscosity is replaced by a general given positive function. Such
a system arises in many situations as linearized system, when the viscosity of
an incompressible, viscous fluid depends on some other quantities. We prove
unique solvability of the nonstationary system with optimal regularity in L9-
Sobolev spaces, in particular for an exterior force f € L4(Qr). Moreover,
we characterize the domains of fractional powers of some associated Stokes
operators A, and obtain a corresponding result for f € L9(0,7;D(Ag)). The
result holds for a general class of domains including bounded domain, exterior
domalins, aperture domains, infinite cylinder and asymptotically flat layer with

91 .
W, "-boundary for some r > d with r» > max(q, ¢’).

Key words: Stokes equation, Stokes operator, unbounded domains, maximal regu-

larity, domains of fractional powers
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1 Introduction and Assumptions
We consider the following nonstationary Stokes-like system

O — div(2u(z,t)Dv) + Vp = f in Q x (0,7),
dive =g in Q x (0,7),

vlr, =0 on I'y x (0,7,

n-T,(v,p)|lr, = a on I'y x (0,7),

U‘t:() = Vg on {2
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2 1 INTRODUCTION AND ASSUMPTIONS

where v: Q x (0,7) — R? is the velocity of the fluid, p: Q x (0,7) — R is the
pressure,
T,(v,p) = 2v(x,t)Dv — pI

is the stress tensor, Dv = $(Vo+VoT), v: Qx (0,T) — (0, 00) is a variable viscosity
coefficient, and 0 C R?, d > 2, is a suitable domain with boundary 092 = I'; U T,
consisting of two closed, disjoint (possibly empty) components I';, j = 1,2. Moreover,
n denotes the exterior normal at 02 and f, = f—(n- f)n the tangential component of
a vector field f. Finally, we denote S(v) = 2vDv and Qr = Q2 x (0,7) for T' € (0, o).

In the case that v(z,t) = vy € (0,00) is independent of (x,t) the latter system
was extensively studied in many kinds of different domains relevant for mathematical
fluid mechanics. But in many situations the viscosity v of an incompressible fluid
depends on some quantities as e.g. temperature or a concentration of a species.
Moreover, we note that the case of variable density can reduced to case of variable
viscosity up to a lower order term.

First results on general nonstationary Stokes systems, including the case of vari-
able viscosity, were obtained by Solonnikov |26, 25] in L?-Sobolev spaces and weighted
Holder spaces in the case of a bounded domain with pure Dirichlet boundary condi-
tions and g = 0. Moreover, Bothe and Priif |7] obtained unique solvability of general
nonstationary Stokes systems in L?-Sobolev spaces for the case of bounded and exte-
rior domains with Dirichlet, Neumann, and Navier boundary conditions. Finally, we
note that Ladyzenskaja and Solonnikov [20] and later Danchin [9] obtained results
for a similar nonstationary Stokes system with variable density instead of variable
viscosity.

In [5] Terasawa and the author studied the corresponding Stokes resolvent sys-
tem to (1.1)-(1.4) in a large class of unbounded domains. In the latter contribu-
tion it is shown that an associated reduced Stokes operator admits a bounded H -
calculus, which implies in particular that the reduced Stokes operator has maximal
LP-regularity for every 1 < p < oo. Based on this result, we will show unique
solvability in L9-Sobolev spaces for the system (1.1)-(1.4).

More precisely, the first main result is the following:

Theorem 1.1 Let 0 < T < 00, d < 11,79 < 00, 1 < q < o0 such that q,q <

min(ry,m2) and ¢ # 3,3, and let v(z,t) = veo+1/(x, t) withv' € BUC([0,T); W2 (Q)),

V|p, € C2([0,T); L®(y)) and v(z,t) > vy > 0. Moreover, assume that ) is ei-

ther a bounded domain, an exterior domain, a perturbed half-space, an aperture do-

main, an asymptotically flat layer, or an infinite cylinder with boundary of class
1

WTQQ_E. Then for every f € LY(Qr)?, g € W;’O(QT) with O,g € L9(0,T; W (Q)),

q,I2
171 1(171) 171 1(17l) 2

gles €Wy 720y x (0,1)), a € W, 7 Ty x (0,T)%, and vo € W, *(Q)?
satisfying the compatibility condition

: il : 3 :
div vy = gli—o in W_,(€), volr, =0 if ¢ > Y (n-2vDuvy);|r, = ar|e=o if ¢ > 3.



there is a unique solution (v,p) € W2 (Qr)* x W (Qr) of (1.1)-(1.5). Moreover,

[ollwzr + IVPllLe + [lpleoll i-13a-1) (1.6)

Wy

< C (H(f, Vo)llzo + 100ll-100 + [oles, Doy g0-31 ““0”W5-3<m> |

where ||.||21,04 = ||.|\Lq(07T;W;F12). The constant C can be chosen independently of

T € (0,Tp] for any fized 0 < Ty < 0.
Finally, if Q is a bounded domain and T'y # 0, then all statements hold true for

For precise definitions of the domains and the function spaces we refer to Section 2
below. Theorem 1.1 will be a consequence of the corresponding result for a more
general class of domain satisfying Assumption 2.1 below.

Finally, we note that in Section 5 below we will derive a more general statement
for the case that f € L9(0,T;D(Ag)), o € R in the case of pure Dirichlet boundary
conditions (I'y = (), cf. Theorem 5.1 below. Here A, is an associated Stokes operator
and the domains of fractional powers are characterized in Section 4 below.

2 Preliminaries

We use the notation of [5]. We just recall that f € qu(Q) if f e L1 () and
Vf e LYS2). Moreover,

Wie (@) = {F € W)« flr, =0}, WA (@)= (Wi (@) j=12

Wi (@) = {f W@ flr, =0}, W,A0) = (W), @)

If g € LY2), then we say g € Wq}lQ(Q) if there is some R € W/ (€)% such that
g = div R. In this case we define

(IR, @)ijll2(9) Wl (@) = —(R.Vp)a for all p € W;',FQ(Q)-

) q/,FQ

The element gr € W, () is independent of the choice of R € W} (Q)? such that
g = div R since
(Ri— Ry, V) =0  forall p € W, 1, ()

if Ry, Ry € W, (Q)? and div Ry = div Ry. The latter identity can be easily proved
by approximating R; — Ry by compactly supported functions in qu,Fl (Q)4. Moreover,
we have g = gg in D’'(Q2) in the sense that

(R, QP>W;112(Q),W;,’F2(Q) =(g,0)a  forall p € Cg°(Q).
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Therefore we will identify gz with g in the following. Finally, we have

L < inf R )
gl @ < REW1 (0 v Rmg || o)

Moreover, we recall the general class of domains considered in [5].

Assumption 2.1 Let 1 < ¢ < oo, let d < ri,r9 < 00 such that q,q¢" < min(ry,rs).
Moreover, let Q C R, d > 2, be a domain and 02 =Ty UTy with T'y, Ty closed and
disjoint satisfying the following conditions:

(A1) There is a finite covering of Q with relatively open sets Uj, 7 =1,...,m,

such that U; coincides (after rotation) with a relatively open set of IRTZZW where

91
R‘vlj = {(2',2q) € R : 2g > (")}, 75 € VV12 "2(ReY). Moreover, suppose
that there are cut-off functions pj,1; € C°(Q), 7 = 1,...,m, such that p;,
Jj=1,...,m, is a partition of unity, ¥, = 1 on suppy,, and suppy; C Uj,

j=1...,m.

(A2) For every f € L*(Q)4, s = q,q, there is a unique decomposition f = fo + Vp
with fo € Jo(Q) and p € W]r, () where

L#(2)

J(Q) = {feCfg)(QUFz)d:divf:O} ,
Win(©) = {peWl):pl, =0}.
(A3) For every p € WS{FQ(Q), s = q,¢, there is a decomposition p = p1 + pa

such that p; € WHQ) with pi|r, = 0, py € L{_(Q) with Vp, € WHQ) and
(1, Vp2)llwie) < C|Vps.

We refer to [5, Section 2| for some basic result for function spaces defined on domains
Q) satisfying the assumptions above. We note that the standard Sobolev embedding
theorem holds for domains as above. In particular, we have W!(Q2) — L*(Q) and

1fgllwie) < Corllfllwaellgllwae (2.1)

forall 1 <g<randr>d.
Now we provide some examples of domains satisfying the assumptions above:

Definition 2.2 Let Q C R, d > 2, be a domain and let d < r < oo. Then

_1
1. Q is called an exterior domain with VVT2 "~boundary, if R4\ Q is compact and

_1
0%) is locally the graph of a VVT»2 "-function in a suitable coordinate system.



_1
2. ) 1s called a perturbed half space with Wf "-boundary, if QU Br(0) = Ri U

_1
Bgr(0) for some R > 0 and 0N is locally the graph of a W,? "-function in a
suitable coordinate system.

3. Q is called aperture domain with Wy " -boundary if QU Bgr(0) =RZ URZ U
Br(0) for some R > 0, where RY = {z € R : 24 < —c} for some ¢ > 0 and

1
0% is locally the graph of a VVT2 " -function in a suitable coordinate system.

1
4. 2 s called an infinite cylinder with VVT2 "-boundary if Q@ = Q x R, where
1
' Cc R4 s a bounded domain with VVT2 "-boundary.

1
5. € is called an asymptotically flat layer with Wf " -boundary if

Q={zeR":a+v () <zg < b+ (2)},
_1
where x = (2, x4), a < b, and 4 € Wy RYY) such that v, (') —v_(2')+b—
a>k>0 for all ¥ € R, lim|g/| oo v+ (2") = 0, and lim|gy| oo Vy+(2") = 0 if
r = 00.

Obviously, all domains above satisfy the condition (A1). In the case of pure Dirichlet
boundary conditions (A2) is known to be valid for all 1 < ¢ < oo, cf. [4, 12, 13, 22,
11, 24|, where 9Q € C! is only needed. In the Appendix we will show that (A2) is
also valid for the domains above in the case that I'y is compact.

Lemma 2.3 Let Q C R, d > 2, be a bounded domain, an exterior domain, a
perturbed half-space, an aperture domain, an asymptotically flat layer or an infinite
1

oL
cylinder with Wy, " -boundary. Moreover, assume that I's is compact unless € is
an asymptotically flat layer. Moreover, we assume that I'y # 0 in the case of an
asymptotically flat layer. Then assumptions (A1)-(A8) are valid.

Proof: Tt is easy to see that (A1) is fulfilled for all kinds of domains with Wf; 2o
boundary mentioned above.

First let Ty = (). Then the (A2) holds because of the standard Li-Helmholtz
decomposition for these kinds of domains, cf. [4, 12, 13, 22, 11, 24|, where 9Q € C*
is only needed. If Q is an asymptotically flat layer and T'y, T’y # (), then (A2) follows
from [4, Corollary A.3]. The case I'y # () and €2 is not an asymptotically flat layer is
proved in the Appendix, cf. Corollary A.2 below.

Finally, we come to the prove of (A3). First let I'; = (). We note that (A3) is valid
if Q= R% Tn this case p = py + py with py = F e (€)f(€)] for some ¢ € C°(RY)
with ¢ = 1 on B;(0) satisfies the conditions in (A3), cf. [4, Remark 2.6.2]. Moreover,
(A3) holds true if the following extension property is satisfied: For every p € W;(Q)

there is an extension p € W;(Rd) such that plo = p and ||Vp|, < C||Vp||,- This
is the case for every (e, 00)-domain, cf. [8], in particular, for exterior domains and
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aperture domains. This extension property does not hold for asymptotically flat
layers, cf. [4, Section 2.4, and also not for infinite cylinders by similar arguments.
Nevertheless (A3) is also valid in asymptotically flat layers due to |4, Lemma 2.4|. If
Q= x R is an infinite cylinders, then for every p € qu(Q) we have

. 1 _
P = 1 f@' xq)da’ € W)(R),  fa=p—pi €W} (Q)
Q/

due to Poincaré’s inequality in {'. Now p; = ps + py for some ps, 0,,p2 € qu (R) as
seen above in the case ) = RY. Hence p; = ps + p3 and p, satisfy the conditions in
(A3).

Finally, if 'y is compact, then the construction for the case I'y; = () can be easily
modified to obtain py|r, = pa|r, = 0. If Ty # () and 2 is an asymptotically flat layer,
then (A3) is trivial since W(}IQ(Q) Wi, (Q) :={f e W () : flr, = 0}. |

As an immediate consequence of the existence of an L?-Helmholtz decomposition
due to (A2) we obtain:

Lemma 2.4 Let Q,q be as in Assumption 2.1. Then for every F € ijllz(Q) and
ac quia(ljg) there is some p € qu(Q) such that

(Vp,V)a = (F, o)1 Wi for all p € W,FQ(Q) (2.2)

q,I'g?

p’FQ =a on 1—‘2- (23)

If Ty # 0, p is uniquely determined. If Ty = (0, then p is uniquely determined up to
a constant. Moreover, there is some constant C, independent of I, a such that

IVBllzaoye < Co (IF i, ) + IV AlLzec@) ) -

We refer to |5, Lemma 2| for the proof.
Recall that the anisotropic Sobolev-Slobodeckij space is defined as

2s,s _ . 2s s .
W, (M x (0,T)) = LY0,T; W, (M)) N W, (0,75 LY(M))
for s > 0 normed by

HUH;I,V(?H = HUHLq (0,T;W2s (M + Hqu 2(0,T5La(M))?

where M € {Q,0Q,T'1,Ty}. Moreover, we define W™°(Qr) = LI(0,T; W7 (Q)),
m e N,

Using an extension operator E: quﬁ(l“g) — W, (Q), cf. |5, Corollary 2|, and
(2.1), one easily gets

1 <C ; a 4
HmHLq(o,T;W;_‘I‘(Fz)) - q’rlHV||BUC([O’T)’W’}1(Q))H |’L‘1(07T;W; ‘11(F2))



for any v € BUC([0,T); W' (), a € LU0, T; W;_E<F2))7 and 1 < g <y, r >d.

Moreover, if v|r, € C'z([0 T) L>(T5)), then

lval < Comlvlog

W, q (0,T;L4(T3)) ok ([0,7);L>=(I'2)) “ H

(OTLq(F2))

since Wq "(0,T; X) is normed by

T
e A e 2
Wi (0.T:X) T

Altogether we obtain

Ivall s, < Con (IWlucomms o + 1o« gomypeeny) Il st
q q

provided that 1 < ¢ <ry, r; > d, and ¢ > 0 is sufficiently small.

Finally, we need some extension results for the traces spaces of val(QT).

(2.4)

Lemma 2.5 Let Q CRY, d > 2, 1 < ¢ < 0o with q # %, 3, be as in Assumption 2.1,

and let 0 < T < o0o. Then

22
1. For every ug € Wy *() with uglr, = 0 if ¢ > 3 there is some u € W2'(Qr)

3

with uli—o = uo, ulr,xomr) = 0 if ¢ > 5. Moreover, there is some C > 0

2
independent of T € (0, 00] such that

lellwz@r) = CIIUoIIW;f%(Q)

11 1
1*?5(1*5)

2. For every a € W,
Ae Wi’l(QT)d with Aly—o =0, A|r, =0, and

(n . 21/DA)7-|F2 = a,, div A|F2 = Q.
Moreover,
1Allwz 10y < Cllalh-1 s0-1)4

where C' can be chosen independently of T € (0, 0o].

(Ty x (0,7))% with al—o = 0 if ¢ > 3 there is some

Proof: With the aid of the coordinate transformations due to [5, Proposition 1] and
the partition of unity due to Assumption 2.1 the first statement is easily reduced to

case of a half-space RZ, which is well-known, cf. e.g Grubb [19, Appendix]|.
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In order to prove 2., let A € W2 (Qr)? with Al,—o, Alsq =0, and d,Alr, = v~ 'a
such that ||Alj21, < Cllall;_1 1(1-1)q — As before, the existence of A can be reduced
q’ q”’

to the corresponding statement in Ri. — Then

(n-2vDA);|r, = WV A, + v, A )|r, =0+ ar,
div A’FQ = (diVT AT + anAn)]p2 =0+ Q.

The constant C' can be chosen independently of T since we can extend a to a €

_11n_1
W, 7?0y x (0,00))" such that [lally_1 1) where C
q’ q”’

does not depend on T, and restrict the corresponding A € W2 x (0,00))¢ to
(0,T) afterwards. The latter extension to (0,00) can be done by first extending a in

an even way around t = T to a function defined on (0,27") and then extending by
_171(1_1)
q’2 q (

q S CHaHl—%,%(l—%),qa

'y x (0,00))? since a|j—or = ali—o = 0if ¢ > 3.
|

1
zero, which yields an a € W,

3 Nonstationary Stokes Equations

As in the case of the generalized Stokes resolvent equations, cf. [5], (1.1)-(1.5) can
(at least formally) be reduced to the nonstationary reduced Stokes equations

o — div(vVu) + VPu — VvIvol = f, in Qp,
U|F1 =0 on I'y X (07T),
Tiu=a, onTlyx(0,7),

V]4=0 = Vo in €,

NN N N
= W N =
S N N N’

For given v = v(t) the reduced Stokes operator A,, on L4(Q)? is defined as

Agv = —div(yVu) + VP — V' Vo (3.5)
D(A,,) = {v € Wg(Q)d vlp, = O,T{’VU|1"2 = 0} ,

where T7 v is defined by

(T1 ,v)r = (n - 2vDV);|p,, (T1v), = vdivulp,. (3.6)

Moreover, P,v = p; € qu(Q) with pi|r, € W;_E(FQ) is defined as the solution of

(Vp1,Ve)a = V(A —=Vdiv)y,Ve)a + (Dv,2Vr @ Vo)q, (3.7)
p1|F2 = 2Vanvn (38)

for all ¢ € qu',rQ(Q) = {gp € qu,(Q) 2ol = 0}. Note that the right-hand-side of

(3.7) defines a bounded linear functional on W(},IQ(Q). The existence of a solution of



(3.7)-(3.8) that is unique (up to a constant if I'y = @) follows from the existence of a
unique Helmholtz decomposition, i.e., (A2), c¢f. Lemma 2.4. Hence

. 1—1
gwﬁmwﬁ%ewmmmmmmqmﬁ

is a bounded linear operator.

Finally, we note that the domain of A,, depends on ¢t unless v(z,t) is independent
of t or 'y = (). In the case that v is independent of ¢ the following result follows from
|5, Theorems 1,2, and 3|.

Theorem 3.1 Let 1 < p < oo, 0 < T < oo, and let Q,q be as in Assumption 2.1.
Then for every f € LP(0,T; L)) there is a unique solution v € W, (0,T; L9(Q)*)N
LP(0,T;D(A,)) of

V() + Ap(t) = f(1), 0<t<T,
v(0) = 0

Moreover,
[0 oo, r500) + [ Aol oorizey < Cllflzeco,ize)-

If Q is a bounded domain and 'y # (), then the statement is also true for T = oo.

From the latter theorem and Lemma 2.5, we deduce:

Theorem 3.2 Let 0 < T < oo and let 2, q,v be as in Assumption 2.1. Moreover, let

111 2
(fryar,v9) € L‘J(QT)dXI/Vq1 ozt q)(sz (O,T))deVq2 ()% satisfy the compatibility

conditions
1. wolr, =0 if ¢ > 3.
2. (n-2vDvy),|r, = arli=o0 if ¢ > 3.
Then, there is a unique solution v € W2 (Qr)? of (3.1)-(3.4), which satisfies

v s <C r q + a/'r —L 2(1—= + U —
lolhzan < € (1 lunian + lorl ooy oo+l o)

The constant C' can be chosen independently of T € (0, Ty] for every 0 < Ty < oo. If
Q is a bounded domain, an infinite cylinder or an asymptotically flat layer, T'y # 0,
limy oo v(2,1) = Voo in W, (Q), and limy_ || — VOOHC%([T,OO);LOO(FQ)) = 0, then the
statements hold true for T = oco.

Proof: First assume that v = v(x) is independent of t € (0,7). Then the theorem
follows immediately from Theorem 3.1 if a, = ug = 0. The general case a,,uy # 0

can be easily reduced to the latter case by first subtracting a suitable extension of
ug and then a suitable extension of a,, cf. Lemma 2.5.
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Next let v = v(x,t) be time-dependent and fix some ¢y € [0, 7). Then by the first
part the theorem holds if v is replaced by vy, () := v(x,ty). Moreover,

| div(2vDv) — div(2v4, Dv) | ey < Cllv — villBucqomw, @) lvllwz1 o
due to (2.1) and

”n'Tl/(U7p) _n'TVtO(U7p)H Aa-1

Q=
Q=

1—
q

< C <||V — Vi ||BUC([0,T);VVT11 () + ”V - VtO||C%75([O,T);L°°(F2))>

(1olhuzsian + el 30 )

( Wy (Qr) 2V[/qlq21c1

due to (2.4) for e > 0 sufficiently small. Hence by a standard perturbation argument
the theorem holds true provided that

< 6

IV = viollsuoqommws, @y + 1V = Yull g o rypoeqrnyy

for some dy = d¢(to) > 0 and € > 0 as before. Choosing to = 0, this implies that the
theorem is true if 7" is replaced by 0 < 7" < T sufficiently small. Now let 0 < T,,, < T
be the supremum of all 7" € (0, T'] such that the statement of the theorem is true if T
is replaced by T”. Then T,, = T since otherwise we can extend the solution operator
by solving the system on [T}, T, + k) for some £ > 0 such that

< 6(T").

I = vrllvcn rmrmmws, @) + 17 = Vtullcb—c g, g ey

Therefore the statement of the theorem holds true for any 0 < T' < oo with some

C = C(T). If Qis a bounded domain, then the statement holds for 7' = oo since

it holds for [0,00) replaced by [T”,00) for some 7" > 0 sufficiently large due to

. o . 1 . _ -

limy oo V() = Voo in W (2) and limy . [|v U"O”C%([T,oo);Lw(Fz)) = 0. |
Now we are able to proof Theorem 1.1. For a similar proof in the case of constant

viscosity and an asymptotically flat layer with mixed boundary conditions we refer

to [3].

Proof of Theorem 1.1: For almost every ¢t € (0,7) let po(.,t) € qu(Q) with

1—1
palr, € W, “(T'3) be the solution of

(vp2<'7 t)v VQO) = (f(t) + VVg(t)a v@)ﬂ + <atg(t)7 90>W*1 Wt (39)

a:I'27"" ¢/ \T'y

for all ¢ € W(}/IQ(Q) and po|r, = —ay, cf. Lemma 2.4. Now we define f, = f—Vpy+
vVg. Then

1flly < C (H(f: Va)llq + Hat9|’Lq(0,T;ij§2) + Han\llﬁ,ggﬁ),q)



11

with C' independent of T. Moreover, let (a,), = a, and (a,), = g|r,-

Now let v € W2 (Qr)? be the solution of the reduced Stokes equations with right-
hand side (f,,a;). Then (v,p) with Vp = VP, v + Vps solves (1.1) and (1.3)-(1.5)
by construction. Hence it only remains to prove that dive = g.

First of all, because of (3.9),

_(fr(t)v VQD)Q = <8tg(t)v @)Wfl Wi o +(VVg(t)7 VSO)Q (310)

q,I'27" " ¢/ I'y

for all ¢ € W(}IQ(Q) and almost every ¢ € (0,7). On the other hand, since v €
W2 (€)% solves (3.1)-(3.4),

—(f, V)a = (0 divo, <p>Wq—F1 o+ (vVdive, Ve)a (3.11)

for all ¢ € W} (Q) because of

(div(vyVv), Vp)g — (VP,v, Vp)g + (VI V!, Vip)g (3.12)
= (vAv,Vo)q — (VPu,Vy)g+ (Dv,2Vr @ Vy)q = (vV dive, Vy)g

for all ¢ € .W;F2(Q) and almost every t € (0,7) due to (3.7). Moreover, since
divo — g e W}

4T, (£2), Proposition 3.3 below implies dive = g. [

Proposition 3.3 Let Q,q be as in Assumption 2.1 and let u € L0, T, W;7F2(Q)),
0 < T < oo, be such that Ou € LU0, T; W, L. (Q)), tlimo =0, and

q,I'2

T
/ (@u,gp)W}lTWl + (vVu,Ve)g, =0 (3.13)
0 q,

q'\Ty
for all o € LY(0,T; W), (). Then u = 0.

Proof: Lety € L7(0,T; qu,vpz(Q)) be arbitrary and let v € W;,’I(QT)d be a solution

of the reduced Stokes equations (3.1)-(3.4) with right-hand side f = V¢, a = 0, and
vg = 0. Then by (3.11)

T
—(V¢, Vo), = / (0 div v, gp)W71F Wi dt + (vVdivo, Vo),
0 q",T'g q

forall p € L9(0,T; W, 1, (92)). Now, choosing o (x,t) = u(z, T—t) € L0, T; W, 1,()),
we obtain

—(Vu(T =), V)or

(c% div U(t), u(T — If)>W—1 w1

q'.\Ty’" " a,T2

dt + (vVdive, Vu(T — .)) o,

(Bu) (T — 1), divo(t) -1 o dt + V(T — ), Vdive)g, =0

.27 ¢/ Ty

/OT
I
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due to (3.13). Here we have used

T

T
—/ (v, Ow) . -1 dt
0

a,I'27"" ¢/, Ty
t=0

/0 <at’U7 w>w{;112 wi dt = <U(t), w(t)> . 2

2
(AN o q q
12 Wy ,Wq,

for all v € LU0, T; Wi, ) NW(0,T; W), w € L7(0,T; W) ) " W50, T; W, 1),

q,I'2
where we note that L*(0, T; W) A W(0,T; W) < BUC([0, T); Wi ™*) for all 1 <
s < 0.

Since ¢ € L9(0,T; W;,IZ(Q)) was arbitrary, we conclude Vu(t) = 0 for almost
every t € (0,7") due to Lemma 2.4. Hence dyu = 0 due to (3.13) and therefore u = 0
since uli—p = 0. [

4 Domains of Fractional Powers for Stokes Opera-
tors

In the following let v(x) = vy + v/(2) with v/ € W] (Q) be independent of ¢ and
v(xz) > vy > 0 for all x € Q. For simplicity we denote A, = A,, from now on. As
shown in [5] we have

D((c+ 4,)") = (LU(Q)*, D(Ag))fa);

where (., .)[q) denotes the complex interpolation functor. This is a consequence of the
bounded imaginary powers of ¢ + A,, cf. |5, Theorem 1| and |17, Proposition 6.1].
Here again ¢ € R is such that ¢+ A, is invertible and admits a bounded H*°-calculus.

This is the case for ¢ > 0 sufficiently large and for ¢ = 0 if 2 is a bounded domain

2L
with W,, "-boundary and I'; # 0.

In the following we will restrict ourselves to the case of pure Dirichlet boundary
conditions, i.e., I'y = 9, I'y = (). Then

D(4,) = {u € WqZ(Q)d L ulpn = 0} =D(A,)’,

where A, denotes the Dirichlet realization of the Laplacian A on L4(Q), i.e., D(4,) =
{u e W2(Q) : ulsq = 0}. Moreover, we have:

Lemma 4.1 Let Q CRY, d > 2, satisfy (A1) for some d < ry < oo and let 1 < q <
oo with ¢ < ry. Then

{ue H*(Q) :uloo =0} if ; <20 <2,

(L‘I(Q),qu(ﬂ) N W;o(Q»[a] = {Hzo‘(ﬂ) if 0 < 2a < 1

Here Hgo‘(Q) is the restriction of the Bessel potential space HqQO‘(Rd) to Q equipped
with the quotient norm.
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Proof: First of all, the statement can be localized as follows: Let ¢;,%;, 7 =1,...,m
be the cut-off functions due to (Al). Then the mapping

R:WHQ) — [[WERY)  with Rv = (p;0)7,
j=1

is bounded for every 1 < ¢ < oo and £ = 0,1,2. By complex interpolation
R: H7*(Q) — [[JL, H;*(RZ) for all 1 < ¢ < oo and 0 < a < 1 since HJ(Q) =
WF(Q). Moreover, the mapping

Q: [[H*(RY) — H*(Q)  with Qu =Y tuw;
j=1

j=1
is bounded for all 1 < ¢ < oo and 0 < a <1 and QRv = v for all v € H*(2). This
shows that HZ*(Q) is a retract of []7", Il-lga(Rfﬁ). Therefore the statement can be

9L
reduced to the case of 2 = Rg, v € Wy, ™ (RI1). Using the coordinate transforma-
tion F,: R — R? with F7|Ri: R? — R? due to [5, Proposition 1, Corollary 1], we
have

Fr: HX*(RY) — HX*RY),  Fr: H*(RI) — HX(RY)

for all 1 < ¢ <1, 0 < a <1, where (FJv)(z) = v(F,(x)). Hence the statement for
Q = R? follows from the case of a half-space, cf. [15]. |

Corollary 4.2 Let Q,T'1,I'5,q be as in Assumption 2.1 and assume that Ty = ().
Then

u€ H>*(N) :ulpa =0} if L <20 <2

Do+ 4g)7) = 14 & (O el =0} 7 <20 <

H7*(€2) if 0 <200 <,

where ¢ = 0 in the case of a bounded domain and ¢ > 0 sufficiently large else.

Finally, we derive a corresponding result for a variant of the standard Stokes operator,
namely

Agov = PAp = —P,div(tVv) — P,V v e D(A,,),
D(Ago) = D(A) N Jy(Q) = {ve W ()" :dive =0,v]sq =0} .

In an important relation between the Stokes operator A,, and the reduced Stokes
operator A, is given by the following proposition, which is a variant of |2, Lemma 3.1]:

Lemma 4.3 Let QC R4, n>2,1<q< oo, andd € (0,7) be as in Assumption 2.1.
Moreover, assume that (A\+ As,)~" exists for some X € ¥5 = {z € C\ {0} : |arg 2| <
6} with |\ > R and s = q,q'. Then (A\+ A,,)"" exists and

Aglry) = Agor A+ A9 n@ = A+ 4g0) " (4.1)
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Proof: The first statement can be seen as follows: If v € D(A4,) N J,(£2), then
(— div(vVv) + VPv + VI Vol | Ve)g = (vVdive, Vip)g = 0

for all ¢ € W}(Q) because of (3.12). Hence —div(vVv) + VP,v + VIV € J,(Q)
due to (A.3) below. Thus

A = —div(vVo) + VI Vol + VP = P,(—div(vVo) + VI Vol) = A, v

for all v € D(A,) N J,(Q).
In order to prove the second relation let v = (A + A,)~'f with f € J, (). Then
multiplying (A + Ag)u = f by Vg, ¢ € W, (Q) and using (3.12) we obtain

Adive,@)g + (VV dive, Ve)g =0 for all ¢ € W ().

Hence divv = 0 because of Lemma 4.4 below if A # 0. If A = 0 and €2 is a bounded
domain, we get divv = 0 too by the unique solvability Lemma 2.4. Hence v € J,(Q).

Since by the first statement X\ + Ay, = (A4 Ag)| s, (@) is injective, we finally conclude
that (A + A,o) ' f =u=(A+ A,) "' f for every f € J,(Q). [

Lemma 4.4 Let Q CRY, n > 2, and 1 < q < oo be as in Assumption 2.1. If \+ Ay
is surjective for X € (—o0, 0], then there is no non-trivial g € qu(Q) solving

Mg, 9)a + (¥Vg,V)a for all ¢ € qu,(Q) (4.2)

Proof: Let f € L7(Q)? be arbitrary and let u € D(A,) such that (A + Ay)u = f.
Then multiplying f with Vg we observe that divu € qu/(Q) solves

—Adivu,g) — (vVdivu,Vg) = (f,Vg) for all g € W, ()

due to (3.12). Hence, if g € W}(€2) solves (4.2), then (f,Vg) =0 for all f € L7 (Q)
and therefore Vg = 0. Because of (4.2) and X # 0, we conclude g = 0. |

THEOREM 4.5 Let Q CRY, n>2,1<q< oo, and § € (0,m) be as in Assump-
tion 2.1 and let A,, be as above. Then there is some R > 0 such that (A + A,,) "
exists for all X € X5 with |\ > R and

C
1+ |l

If Q is a bounded domain, then the statement even holds for R =0 and A € ¥5U{0}.
Moreover, R+ A,, (with R =0 for bounded domains) possesses bounded imaginary
powers w.r.t. Y,_s and we have

1A+ Ago) @) < for all X\ € 35\ Bg(0).

D(Aa ) B {U c H(?a(Q)d : U|8Q = 0} N Jq(Q) Zfé <2a < 27
P HPQ) N () if0< 20 < 1.
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Proof: Except for the last statement the theorem is an immediate consequence of
Lemma 4.3 and [5, Theorems 1, 2, and 3|. The last statement follows from Corol-
lary 4.2 and

D(A5,) = (LYY, D(Ag))a) N Jo(9),

which we prove by a modification of the arguments of [16, Lemma 6]. First of all,
since A, , possesses bounded imaginary powers, we have

D(AZ,) = (J4(2), D(Age)) o)

due to [17, Proposition 6.1]. Moreover, since the space on the right-hand side is
independent of the choice of v, it is sufficient to consider the case v = 1 in the
following. We define a projection P,: D(A,) — D(A,,) by

Pyf = —(c+Ay) "B+ A)f,  feD(A,.

Because of Ay|;,«) = Aqo, we have P, f = fforall f € D(A,,). Hence P,: D(A,) —
D(A,.) is a projection onto D(A,,). Moreover,

(ﬁqfv g)Q = ((C + Aq,a)_lpq(c + Aq)f» g)Q
= ((c= A, (c+Ayo) " 9)a = (f.(c = A)(c+ Ayo) " g)o

for all f € D(A,) and g € J, () because of (A,,v,w)q = (v, Ay ,w)q for all
veDA,,), we DAy ). Hence
[(Paf.9)al < Cllflallglls, o)

for all f € D(A,) and g € J,(€2). Hence ﬁq extends to a bounded projection from
LY(Q)4 onto J,(Q) since D(4,,) is dense in J (). With the aid of P, and [27,

Theorem 1.2.4] we conclude
(J4(€2), D(Age)) o) = ﬁq(Lq(Q>d>D(Aq))[a] - (LQ(Q)da D(Ag))ia1 N Ja(82).

This finishes the proof. [ |

5 Nonstationary Stokes System in Fractional Sobolev
Spaces

Let ¢ = 0 if 2 is a bounded domain and let ¢ > 0 be so large that ¢+ A, is invertible
and has bounded imaginary powers else. Because of Lemma 4.3, c+ A, is invertible

and has bounded imaginary powers too. Therefore we denote by A either ¢ + A,
defined on X = L,(Q)¢ or ¢ + A, defined on X = J,(Q). Moreover, let

Xo =DA% ={r e X: A% € X}
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if & > 0 equipped with the norm ||z||x, = ||A%z|x and let X, be the completion
of X with respect to ||z|lx, = ||A%|x if @« < 0. Then by [6, Theorem 1.5.4,
Proposition 1.5.5., Chapter V| A,: D(4,) C X, — X, with A,z = Az for all
x € D(A,) := Xii. is an invertible operator with bounded imaginary powers for
arbitrary a € R. Hence by the result by Dore and Venni we obtain:

THEOREM 5.1 Let 1 < p < o0, a € R, 0 < T < o0, and let Q,q be as in
Assumption 2.1 and let A,, a € R, be as above. Then for every f € LP(0,T; D(A%))
and vy € (Xa, le)lf%’p there is a unique solution v € W, (0, T; Xo)NLP(0,T; X1 1)
of
V() + Av(t) = f(b), 0<t<T,
v(0) =

Moreover, there is a constant C' independent of f,vo, T such that

I + Aol < € (Il + ool ), )

Proof: By Lion’s trace method, cf. e.g. |21, Proposition 1.2.10|, for every vy €
(Xa» Xi4a); 1, there is some w € W (0, 00; Xo) N LP(0, 00; X144) such that w],—o =
vo and the ngrm of w is bounded by a constant times the norm of vy. Hence sub-
tracting w from v we can reduce to the case vy = 0. The latter case now follows from
Dore and Venni [10, Theorem 3.2| if T' < oo and from Giga and Sohr [18, Theorem
2.1]if T = oc. [

Finally, we note that Corollary 4.2 can know be used to obtain a more ex-
plicit characterization of the condition f € LP(0,T;D(A%)) and v € W, (0,T; X,) N
Lp(07T7 X1+a>-

A Helmholtz Decomposition for Mixed Boundary
Conditions

In the following we will show that (A2) is also valid for bounded domains, exterior
domains, perturbed half-spaces, and aperture domains with C''-boundary provided
that I'y is compact. To this end we use:

Proposition A.1 Let Q CR? d > 2 and let 1 < q < oo. Then (A2) holds true if
and only if there is a constant Cy > 0 such that for every s = q,q¢' and p € WS{FQ(Q)

IVpllze@) < Coll #llyi-2 (A1)

where F' € WS’Flz(Q) is defined by

(Vp, V)a = (F o)1 in

s5,I'97"" 5,9

for all ¢ € W81,7F2(Q). (A.2)
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Moreover, if (A2) holds, then for s = q,q and F € Ws}g there is a unique solution

D € WS{FZ(Q) (up to a constant if Ty = 0) such that (A.2) holds. Finally, if (A2)
holds, then

T ={fe @ (£, V=0 foral e Wi, (@)} (A3)

Proof: First assume that (A2) holds. Identifying Wsl,IQ(Q) with a closed subspace

of L4(2)? via ¢ — Vi, we can find for every I € Ws_r12(9> some f € L*(Q)? such
that

(Frohis i, = (£, Vo forall o € Wy, (Q)
and || f||Ls) < HFHW_F1 () by the Hahn-Banach theorem. Now let f = fo + Vp be

the decomposition due to (A2). Then p € WS{FQ(Q) solves

(vpv VSO)Q = (fa VQO)Q = <F7 (70>W71 Wl

s,'97" " s,

for all p € Wsl,7F2(Q) because of
(fOJ VSO>Q =0 for all NS Wsl’,l—‘g (Q)

due to the density of { feC QUL divf= o} in J,(Q) by definition.
The proof of the converse implication is a modification of the arguments in |24,

Proof of Theorem 1.4], which we include for the convenience of the reader. First of
all, if (A.1) holds, then —A,: W}, (Q) — Ws_r12(Q) with

<_Asp7 §0>W_1

ENY

W= (Vp,V)a for all ¢ € W;IZ(Q)

is a bounded linear operator with closed range and trivial kernel. Moreover, (—A;)" =

—Ay. Therefore R(—Ay) = WS_FIQ(Q) by the closed range theorem. Hence we can

define P, f = f — Vp, where p is the unique solution of (A.2) for (F), g0>W711 Wl =
a.I'27"" ¢/ \T'y

(f,V)a. Then Py: L*(Q)4 — L*(Q)¢ with
R(P) = {f€ L) (f,V)o =0 forall g € W), ()},
N(P) = {Vpe L () peWln,®)}.

Moreover, P, has closed range since I — P has closed range and it is easy to see that
(Ps)! = Py. Obviously, Js(Q) C R(P;) since P,f = f for all f € J,(2). For the

converse inclusion it is enough to prove
(Js()" SN (Py),

where Z+ = {f € X' : (f,2) =0 for all x € X}. Then the closed range theorem
implies R(P,) = N(Py)* C J,(Q). Therefore let f € (J,(2))* € L¥(Q)%. Then due
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to |24, Theorem 1.1] there is some p € W}

s’ loc

(2) such that f = Vp almost every-
where. Because of 9Q € C' and [23, Théoréme, p.114], p € W} . (Q) and therefore

f=VpeN(Py). In particular, this shows that (A.3) holds and finishes the proof. m

Corollary A.2 Let 1 < g < oo and let Q C RY, d = 2,3, be a bounded domain, an

_1
exterior domain, o perturbed half-space, or an aperture domain with VVT2 "-boundary
for some d < r < oo. Then (A2) holds for any choice of closed and disjoint T'1, Ty C
O such that Ty U Ty = 00 provided that T'y is a compact and locally a Ct-manifold.

Proof: As noted in the proof of Lemma 2.3 in the case 'y = ) the validity of (A2)
is well-known. Therefore let 2 and I'y, T’y with T'y # () be as in the assumptions. We
prove (A2) with the aid of Proposition A.1. First of all, we note that by the Lemma
of Lax-Milgram (A.2) has a unique solution p € WQ{FQ(Q) for any F' € WQ’IEQ(Q)
Moreover, WQ_IEQ(Q) N WT_FZ(Q) is dense in Wr_rlz(Q) for any 1 < r < oo, which can
be easily using the representation (F, ) = (f, Vo), f € L"(2)? from above. Hence
it is enough to show that there is a constant C;, such that

Vp

p@) < Call Pl @ forall e WL () N Wyr,(Q),s = g.q

To this end let F € WS_I}2(Q) N W{%Q(Q) and let p € W;FQ(Q) be the solution of
(A.2) for ¢ = 2. Moreover, and let 1 € C5°(R?) be such that suppty) C Iy, = {z €
R : dist(z,T5) < e} and ¢ =1 on Iy, and let Q, C R? be a bounded domain with
C'-boundary such that QN I'y. = QNTy, for some € > 0 sufficiently small. Then
po = (1 —¢)p € W) and p; = ¢p € W.o(). Moreover,

(Vro, Voo = (F )i i, + (VY Voo + (Ad)p, 0)a

for all p € W(Q), where ¢ is chosen such that Jr, .nq ¥ dr = 0. Hence

vao|

v < C (IFlig, @ + IPlze@ars.

because of (A2) in the case 'y = 992 and Proposition A.1. Similarly, one obtains

Vi ]

v < C (1Pl o + Pl eerrs.)

by standard results for the Laplace equation with Dirichlet boundary conditions a
bounded C!'-domains. Altogether, this implies

Vp|

v < C (1Pl @ + Ipllzeconra, ) -

Now we use a standard compactness argument to prove (A.1). Provided there is
no C; > 0 such that (A.1) holds, there is a sequence p; € W/}, (Q) such that
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IVDjllae) = 1 and F; € W:FIQ(Q) defined by (A.2) with u replaced by u; satisfies
||F}‘|st§2 — o 0. Hence there is some p € WS{FZ(Q) such that p; —; . p in

WS{FQ(Q) up to a subsequence. Therefore p solves (A.2) with F' = 0. Hence the same

localization procedure as above shows p € WQ{FQ(Q), where one uses that P, = P,
on J,(Q) N J5(Q) in the case of I'ys = 0, cf. [12, Lemma 5.6] and [13, Lemma 3.2]
or [14, Theorem 5| for the case of an aperture domain. Therefore Vp = p = 0 since
I’y # 0. Finally, since p; —; o p in L*(Q2 NTy.) because of the compact embedding
WHQNTy) — L*(QNTy.), we conclude

1= Vsl < € (1Fi it oy + Ipsllzecanrsey ) =5 O
which is a contradiction. Hence (A.1) holds for some C, and s = ¢,q’. Therefore
(A2) holds due to Proposition A.1. |
References

[1] H. Abels. On a diffuse interface model for two-phase flows of viscous, incompress-
ible fluids with matched densities. Arch. Rat. Mech. Anal., DOI 10.1007/500205-
008-0160-2.

[2] H. Abels. Bounded imaginary powers and H.-calculus of the Stokes operator
in unbounded domains. In Nonlinear elliptic and parabolic problems, volume 64
of Progr. Nonlinear Differential Equations Appl., pages 1-15. Birkhéuser, Basel,
2005.

[3] H. Abels. The initial value problem for the Navier-Stokes equations with a free
surface in L9-Sobolev spaces. Adv. Diff. Eq., Vol. 10, No. 1:45-64, 2005.

[4] H. Abels. Reduced and generalized Stokes resolvent equations in asymptotically
flat layers, part I: unique solvability. J. Math. Fluid. Mech. 7, 201-222, 2005.

[5] H. Abels and Y. Terasawa. On Stokes Operators with variable viscosity in
bounded and unbounded domains. Math. Ann., DOI: 10.1007/s00208-008-0311-
7.

[6] H. Amann. Linear and Quasilinear Parabolic Problems, Volume 1: Abstract
Linear Theory. Birkhiuser, Basel - Boston - Berlin, 1995.

[7] D. Bothe and J. Priiss. Lp-theory for a class of non-Newtonian fluids. STAM J.
Math. Anal., 39(2):379-421 (electronic), 2007.

[8] S.K. Chua. Extension theorems on weighted Sobolev space. Indiana Univ. Math.
J., 41, 1027-1076, 1992.



20 REFERENCES

[9] R. Danchin. Density-dependent incompressible fluids in bounded domains. .J.
Math. Fluid Mech., 8(3):333-381, 2006.

[10] G. Dore and A. Venni. On the closedness of the sum of two closed operators.
Math. Z, 196:189-201, 1987.

[11] R. Farwig. Weighted Li-Helmholtz decompositions in infinite cylinders and in
infinite layers. Adv. Diff. Eq. 8, 357-384, 2003.

[12] R. Farwig and H. Sohr. Generalized resolvent estimates for the Stokes system in
bounded and unbounded domains. J. Math. Soc. Japan 46, No. 4, 607-643, 1994.

[13] R. Farwig and H. Sohr. Helmholtz Decomposition and Stokes Resolvent System
for Aperture Domains in L1-Spaces. Analysis 16, 1-26, 1996.

[14] M. Franzke. Strong Li-theory of the Navier-Stokes equations in aperture do-
mains. Ann. Univ. Ferrara, Nuova Ser., Sez. VII 46, 161-173, 2000.

[15] D. Fujiwara. LP-theory for characterizing the domain of the fractional powers
of —A in the half space. J. Fac. Sci. Univ. Tokyo Sect. I, 15:169-177, 1968.

[16] Y. Giga. Domains of fractional powers of the Stokes operator in L, Spaces. Arch.
Rat. Mech. Anal. 89, 251-265, 1985.

[17] Y. Giga and H. Sohr. On the Stokes operator in exterior domains. J. Fac. Sci.
Univ. Tokyo Sect. IA Math., 36(1):103-130, 1989.

|18] Y. Giga and H. Sohr. Abstract LP estimates for the Cauchy problem with appli-
cations to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102,
72-94, 1991.

[19] G. Grubb and V. A. Solonnikov. Solution of parabolic pseudo-differential initial-
boundary value problems. J. Diff. Eq. 87, 256-304, 1990.

[20] O. A. LadyZenskaja and V. A. Solonnikov. The unique solvability of an initial-
boundary value problem for viscous incompressible inhomogeneous fluids. Zap.
Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 52:52-109, 218-219,
1975. Boundary value problems of mathematical physics, and related questions
of the theory of functions, 8.

[21] A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems.
Birkh&user, Basel - Boston - Berlin, 1995.

[22] T. Miyakawa. The Helmholtz decomposition of vector fields in some unbounded
domains. Math. J. Toyama Univ. 17, 115-149, 1994.

[23] Jindfich Necas. Les méthodes directes en théorie des équations elliptiques. Mas-
son et Cie, Editeurs, Paris, 1967.



REFERENCES 21

[24] C. G. Simader and H. Sohr. A new approach to the Helmholtz decomposition
and the Neumann problem in Lf-spaces for bounded and exterior domains. In
Mathematical problems relating to the Navier-Stokes equation, volume 11 of Ser.
Adv. Math. Appl. Sci., pages 1-35. World Sci. Publ., River Edge, NJ, 1992.

[25] V. A. Solonnikov. L,-estimates for solutions to the initial boundary-value prob-
lem for the generalized Stokes system in a bounded domain. J. Math. Sci. (New
York), 105(5):2448-2484, 2001. Function theory and partial differential equa-
tions.

[26] V. A. Solonnikov. Estimates of the solution of model evolution generalized Stokes
problem in weighted Hdolder spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel.
Mat. Inst. Steklov. (POMI), 336(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor.
Funkts. 37):211-238, 277, 2006.

|27] H. Triebel.  Interpolation Theory, Function Spaces, Differential Operators.
North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978.

Helmut Abels

Max Planck Institute for Mathematics in the Sciences
Inselstr. 22

04103 Leipzig, Germany

abels@mis.mpg.de



