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Abstract

We consider a generalization of the nonstationary Stokes system, where
the constant viscosity is replaced by a general given positive function. Such
a system arises in many situations as linearized system, when the viscosity of
an incompressible, viscous �uid depends on some other quantities. We prove
unique solvability of the nonstationary system with optimal regularity in Lq-
Sobolev spaces, in particular for an exterior force f ∈ Lq(QT ). Moreover,
we characterize the domains of fractional powers of some associated Stokes
operators Aq and obtain a corresponding result for f ∈ Lq(0, T ;D(Aα

q )). The
result holds for a general class of domains including bounded domain, exterior
domains, aperture domains, in�nite cylinder and asymptotically �at layer with
W

2− 1
r

r -boundary for some r > d with r ≥ max(q, q′).

Key words: Stokes equation, Stokes operator, unbounded domains, maximal regu-
larity, domains of fractional powers
AMS-Classi�cation: 35Q30, 76D07, 47F05

1 Introduction and Assumptions

We consider the following nonstationary Stokes-like system

∂tv − div(2ν(x, t)Dv) + ∇p = f in Ω × (0, T ), (1.1)
div v = g in Ω × (0, T ), (1.2)
v|Γ1 = 0 on Γ1 × (0, T ), (1.3)

n · Tν(v, p)|Γ2 = a on Γ2 × (0, T ), (1.4)
v|t=0 = v0 on Ω (1.5)
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2 1 INTRODUCTION AND ASSUMPTIONS

where v : Ω × (0, T ) → R
d is the velocity of the �uid, p : Ω × (0, T ) → R is the

pressure,
Tν(v, p) = 2ν(x, t)Dv − pI

is the stress tensor, Dv = 1
2
(∇v+∇vT ), ν : Ω×(0, T ) → (0,∞) is a variable viscosity

coe�cient, and Ω ⊆ R
d, d ≥ 2, is a suitable domain with boundary ∂Ω = Γ1 ∪ Γ2

consisting of two closed, disjoint (possibly empty) components Γj, j = 1, 2. Moreover,
n denotes the exterior normal at ∂Ω and fτ = f−(n·f)n the tangential component of
a vector �eld f . Finally, we denote S(v) = 2νDv and QT = Ω×(0, T ) for T ∈ (0,∞].

In the case that ν(x, t) = ν0 ∈ (0,∞) is independent of (x, t) the latter system
was extensively studied in many kinds of di�erent domains relevant for mathematical
�uid mechanics. But in many situations the viscosity ν of an incompressible �uid
depends on some quantities as e.g. temperature or a concentration of a species.
Moreover, we note that the case of variable density can reduced to case of variable
viscosity up to a lower order term.

First results on general nonstationary Stokes systems, including the case of vari-
able viscosity, were obtained by Solonnikov [26, 25] in Lq-Sobolev spaces and weighted
Hölder spaces in the case of a bounded domain with pure Dirichlet boundary condi-
tions and g = 0. Moreover, Bothe and Prüÿ [7] obtained unique solvability of general
nonstationary Stokes systems in Lq-Sobolev spaces for the case of bounded and exte-
rior domains with Dirichlet, Neumann, and Navier boundary conditions. Finally, we
note that Ladyºenskaja and Solonnikov [20] and later Danchin [9] obtained results
for a similar nonstationary Stokes system with variable density instead of variable
viscosity.

In [5] Terasawa and the author studied the corresponding Stokes resolvent sys-
tem to (1.1)-(1.4) in a large class of unbounded domains. In the latter contribu-
tion it is shown that an associated reduced Stokes operator admits a bounded H∞-
calculus, which implies in particular that the reduced Stokes operator has maximal
Lp-regularity for every 1 < p < ∞. Based on this result, we will show unique
solvability in Lq-Sobolev spaces for the system (1.1)-(1.4).

More precisely, the �rst main result is the following:

Theorem 1.1 Let 0 < T < ∞, d < r1, r2 ≤ ∞, 1 < q < ∞ such that q, q′ ≤
min(r1, r2) and q 6=

3
2
, 3, and let ν(x, t) = ν∞+ν ′(x, t) with ν ′ ∈ BUC([0, T );W 1

r1
(Ω)),

ν ′|Γ2 ∈ C
1
2 ([0, T );L∞(Γ2)) and ν(x, t) ≥ ν0 > 0. Moreover, assume that Ω is ei-

ther a bounded domain, an exterior domain, a perturbed half-space, an aperture do-
main, an asymptotically �at layer, or an in�nite cylinder with boundary of class

W
2− 1

r2
r2 . Then for every f ∈ Lq(QT )d, g ∈ W 1,0

q (QT ) with ∂tg ∈ Lq(0, T ; Ẇ−1
q,Γ2

(Ω)),

g|Γ2 ∈ W
1− 1

q
, 1
2
(1− 1

q
)

q (Γ2 × (0, T )), a ∈ W
1− 1

q
, 1
2
(1− 1

q
)

q (Γ2 × (0, T ))d, and v0 ∈ W
2− 2

q
q (Ω)d

satisfying the compatibility condition

div v0 = g|t=0 in Ẇ−1
q,Γ2

(Ω), v0|Γ1 = 0 if q >
3

2
, (n · 2νDv0)τ |Γ2 = aτ |t=0 if q > 3.
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there is a unique solution (v, p) ∈ W 2,1
q (QT )d ×W 1,0

q (QT ) of (1.1)-(1.5). Moreover,

‖v‖W 2,1
q

+ ‖∇p‖Lq + ‖p|Γ2‖
W

1− 1
q , 12 (1− 1

q )

q

(1.6)

≤ C

(
‖(f,∇g)‖Lq + ‖∂tg‖−1,0,q + ‖(g|Γ2 , a)‖

W
1− 1

q , 12 (1− 1
q )

q

+ ‖v0‖
W

2− 2
q

q (Ω)

)
,

where ‖.‖−1,0,q := ‖.‖Lq(0,T ;Ẇ−1
q,Γ2

). The constant C can be chosen independently of

T ∈ (0, T0] for any �xed 0 < T0 <∞.
Finally, if Ω is a bounded domain and Γ1 6= ∅, then all statements hold true for

0 < T ≤ T0 = ∞.

For precise de�nitions of the domains and the function spaces we refer to Section 2
below. Theorem 1.1 will be a consequence of the corresponding result for a more
general class of domain satisfying Assumption 2.1 below.

Finally, we note that in Section 5 below we will derive a more general statement
for the case that f ∈ Lq(0, T ;D(Aα

q )), α ∈ R in the case of pure Dirichlet boundary
conditions (Γ2 = ∅), cf. Theorem 5.1 below. Here Aq is an associated Stokes operator
and the domains of fractional powers are characterized in Section 4 below.

2 Preliminaries

We use the notation of [5]. We just recall that f ∈ Ẇ 1
q (Ω) if f ∈ L

q
loc(Ω) and

∇f ∈ Lq(Ω). Moreover,

W 1
q,Γj

(Ω) :=
{
f ∈ W 1

q (Ω) : f |Γj
= 0

}
, W−1

q,Γj
(Ω) :=

(
W 1

q′,Γj
(Ω)

)′

, j = 1, 2,

Ẇ 1
q,Γ2

(Ω) :=
{
f ∈ Ẇ 1

q (Ω) : f |Γ2 = 0
}
, Ẇ−1

q,Γ2
(Ω) :=

(
Ẇ 1

q′,Γ2
(Ω)

)′

If g ∈ Lq(Ω), then we say g ∈ Ẇ−1
q,Γ2

(Ω) if there is some R ∈ W 1
q,Γ1

(Ω)d such that
g = divR. In this case we de�ne

〈gR, ϕ〉Ẇ−1
q,Γ2

(Ω),Ẇ 1
q′,Γ2

(Ω) = −(R,∇ϕ)Ω for all ϕ ∈ Ẇ 1
q′,Γ2

(Ω).

The element gR ∈ Ẇ−1
q,Γ2

(Ω) is independent of the choice of R ∈ W 1
q,Γ1

(Ω)d such that
g = divR since

(R1 −R2,∇ϕ) = 0 for all ϕ ∈ Ẇ 1
q′,Γ2

(Ω)

if R1, R2 ∈ W 1
q,Γ1

(Ω)d and divR1 = divR2. The latter identity can be easily proved
by approximating R1−R2 by compactly supported functions inW 1

q,Γ1
(Ω)d. Moreover,

we have g = gR in D′(Ω) in the sense that

〈gR, ϕ〉Ẇ−1
q,Γ2

(Ω),Ẇ 1
q′,Γ2

(Ω) = (g, ϕ)Ω for all ϕ ∈ C∞
0 (Ω).
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Therefore we will identify gR with g in the following. Finally, we have

‖g‖Ẇ−1
q,Γ2

(Ω) ≤ inf
R∈W 1

q,Γ1
(Ω),div R=g

‖R‖Lq(Ω).

Moreover, we recall the general class of domains considered in [5].

Assumption 2.1 Let 1 < q < ∞, let d < r1, r2 ≤ ∞ such that q, q′ ≤ min(r1, r2).
Moreover, let Ω ⊆ R

d, d ≥ 2, be a domain and ∂Ω = Γ1 ∪ Γ2 with Γ1,Γ2 closed and
disjoint satisfying the following conditions:

(A1) There is a �nite covering of Ω with relatively open sets Uj, j = 1, . . . ,m,

such that Uj coincides (after rotation) with a relatively open set of Rd
γj
, where

R
d
γj

:= {(x′, xd) ∈ R
d : xd > γj(x

′)}, γj ∈ W
2− 1

r 2
r2 (Rd−1). Moreover, suppose

that there are cut-o� functions ϕj, ψj ∈ C∞
b (Ω), j = 1, . . . ,m, such that ϕj,

j = 1, . . . ,m, is a partition of unity, ψj ≡ 1 on suppϕj, and suppψj ⊂ Uj,
j = 1, . . . ,m.

(A2) For every f ∈ Ls(Ω)d, s = q, q′, there is a unique decomposition f = f0 + ∇p
with f0 ∈ Js(Ω) and p ∈ Ẇ 1

s,Γ2
(Ω) where

Js(Ω) :=
{
f ∈ C∞

(0)(Ω ∪ Γ2)d : div f = 0
}Ls(Ω)

,

Ẇ 1
s,Γ2

(Ω) :=
{
p ∈ Ẇ 1

s (Ω) : p|Γ2 = 0
}
.

(A3) For every p ∈ Ẇ 1
s,Γ2

(Ω), s = q, q′, there is a decomposition p = p1 + p2

such that p1 ∈ W 1
s (Ω) with p1|Γ2 = 0, p2 ∈ Ls

loc(Ω) with ∇p2 ∈ W 1
s (Ω) and

‖(p1,∇p2)‖W 1
s (Ω) ≤ C‖∇p‖s.

We refer to [5, Section 2] for some basic result for function spaces de�ned on domains
Ω satisfying the assumptions above. We note that the standard Sobolev embedding
theorem holds for domains as above. In particular, we have W 1

r (Ω) →֒ L∞(Ω) and

‖fg‖W 1
q (Ω) ≤ Cq,r‖f‖W 1

r (Ω)‖g‖W 1
q (Ω) (2.1)

for all 1 ≤ q ≤ r and r > d.
Now we provide some examples of domains satisfying the assumptions above:

De�nition 2.2 Let Ω ⊆ R
d, d ≥ 2, be a domain and let d < r ≤ ∞. Then

1. Ω is called an exterior domain with W
2− 1

r
r -boundary, if R

d \ Ω is compact and

∂Ω is locally the graph of a W
2− 1

r
r -function in a suitable coordinate system.
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2. Ω is called a perturbed half space with W
2− 1

r
r -boundary, if Ω ∪ BR(0) = R

d
+ ∪

BR(0) for some R > 0 and ∂Ω is locally the graph of a W
2− 1

r
r -function in a

suitable coordinate system.

3. Ω is called aperture domain with W
2− 1

r
r -boundary if Ω ∪ BR(0) = R

d
+ ∪ R

d
− ∪

BR(0) for some R > 0, where R
d
− = {x ∈ R

d : xd < −c} for some c > 0 and

∂Ω is locally the graph of a W
2− 1

r
r -function in a suitable coordinate system.

4. Ω is called an in�nite cylinder with W
2− 1

r
r -boundary if Ω = Ω′ × R, where

Ω′ ⊂ R
d−1 is a bounded domain with W

2− 1
r

r -boundary.

5. Ω is called an asymptotically �at layer with W 2− 1
r

r -boundary if

Ω =
{
x ∈ R

d : a+ γ−(x′) < xd < b+ γ+(x′)
}
,

where x = (x′, xd), a < b, and γ± ∈ W
2− 1

r
r (Rd−1) such that γ+(x′)−γ−(x′)+b−

a ≥ κ > 0 for all x′ ∈ R
d−1, lim|x′|→∞ γ±(x′) = 0, and lim|x′|→∞∇γ±(x′) = 0 if

r = ∞.

Obviously, all domains above satisfy the condition (A1). In the case of pure Dirichlet
boundary conditions (A2) is known to be valid for all 1 < q < ∞, cf. [4, 12, 13, 22,
11, 24], where ∂Ω ∈ C1 is only needed. In the Appendix we will show that (A2) is
also valid for the domains above in the case that Γ2 is compact.

Lemma 2.3 Let Ω ⊂ R
d, d ≥ 2, be a bounded domain, an exterior domain, a

perturbed half-space, an aperture domain, an asymptotically �at layer or an in�nite

cylinder with W
2− 1

r2
r2 -boundary. Moreover, assume that Γ2 is compact unless Ω is

an asymptotically �at layer. Moreover, we assume that Γ1 6= ∅ in the case of an
asymptotically �at layer. Then assumptions (A1)-(A3) are valid.

Proof: It is easy to see that (A1) is ful�lled for all kinds of domains with W
2− 1

r2
r2 -

boundary mentioned above.
First let Γ2 = ∅. Then the (A2) holds because of the standard Lq-Helmholtz

decomposition for these kinds of domains, cf. [4, 12, 13, 22, 11, 24], where ∂Ω ∈ C1

is only needed. If Ω is an asymptotically �at layer and Γ2,Γ1 6= ∅, then (A2) follows
from [4, Corollary A.3]. The case Γ2 6= ∅ and Ω is not an asymptotically �at layer is
proved in the Appendix, cf. Corollary A.2 below.

Finally, we come to the prove of (A3). First let Γ2 = ∅. We note that (A3) is valid
if Ω = R

d. In this case p = p1 + p2 with p2 = F−1[ϕ(ξ)f̂(ξ)] for some ϕ ∈ C∞
0 (Rd)

with ϕ ≡ 1 on B1(0) satis�es the conditions in (A3), cf. [4, Remark 2.6.2]. Moreover,
(A3) holds true if the following extension property is satis�ed: For every p ∈ Ẇ 1

q (Ω)

there is an extension p̃ ∈ Ẇ 1
q (Rd) such that p̃|Ω = p and ‖∇p̃‖q ≤ C‖∇p‖q. This

is the case for every (ε,∞)-domain, cf. [8], in particular, for exterior domains and
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aperture domains. This extension property does not hold for asymptotically �at
layers, cf. [4, Section 2.4], and also not for in�nite cylinders by similar arguments.
Nevertheless (A3) is also valid in asymptotically �at layers due to [4, Lemma 2.4]. If
Ω = Ω′ × R is an in�nite cylinders, then for every p ∈ Ẇ 1

q (Ω) we have

p̃1 =
1

|Ω′|

∫

Ω′

f(x′, xd) dx
′ ∈ Ẇ 1

q (R), p̃2 = p− p1 ∈ W 1
q (Ω)

due to Poincaré's inequality in Ω′. Now p̃1 = p̃3 + p2 for some p̃3, ∂xd
p2 ∈ W 1

q (R) as
seen above in the case Ω = R

d. Hence p1 = p̃2 + p̃3 and p2 satisfy the conditions in
(A3).

Finally, if Γ2 is compact, then the construction for the case Γ2 = ∅ can be easily
modi�ed to obtain p1|Γ2 = p2|Γ2 = 0. If Γ2 6= ∅ and Ω is an asymptotically �at layer,
then (A3) is trivial since Ẇ 1

q,Γ2
(Ω) = W 1

q,Γ2
(Ω) := {f ∈ W 1

q (Ω) : f |Γ2 = 0}.

As an immediate consequence of the existence of an Lq-Helmholtz decomposition
due to (A2) we obtain:

Lemma 2.4 Let Ω, q be as in Assumption 2.1. Then for every F ∈ Ẇ−1
q,Γ2

(Ω) and

a ∈ W
1− 1

q
q (Γ2) there is some p ∈ Ẇ 1

q (Ω) such that

(∇p,∇ϕ)Ω = 〈F, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q,Γ2

for all ϕ ∈ Ẇ 1
q′,Γ2

(Ω), (2.2)

p|Γ2 = a on Γ2. (2.3)

If Γ2 6= ∅, p is uniquely determined. If Γ2 = ∅, then p is uniquely determined up to
a constant. Moreover, there is some constant Cq independent of F, a such that

‖∇p‖Lq(Ω)d ≤ Cq

(
‖F‖Ẇ−1

q,Γ2
(Ω) + ‖∇A‖Lq(Ω)

)
.

We refer to [5, Lemma 2] for the proof.
Recall that the anisotropic Sobolev-Slobodeckij space is de�ned as

W 2s,s
q (M × (0, T )) = Lq(0, T ;W 2s

q (M)) ∩W s
q (0, T ;Lq(M))

for s ≥ 0 normed by

‖u‖q

W 2s,s
q

= ‖u‖q
Lq(0,T ;W 2s

q (M)) + ‖u‖q
W s

q (0,T ;Lq(M)),

where M ∈ {Ω, ∂Ω,Γ1,Γ2}. Moreover, we de�ne Wm,0
q (QT ) = Lq(0, T ;Wm

q (Ω)),
m ∈ N,

Using an extension operator E : W
1− 1

q
q (Γ2) → W 1

q (Ω), cf. [5, Corollary 2], and
(2.1), one easily gets

‖νa‖
Lq(0,T ;W

1− 1
q

q (Γ2))
≤ Cq,r1‖ν‖BUC([0,T );W 1

r1
(Ω))‖a‖

Lq(0,T ;W
1− 1

q
q (Γ2))
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for any ν ∈ BUC([0, T );W 1
r1

(Ω)), a ∈ Lq(0, T ;W
1− 1

q
q (Γ2)), and 1 < q ≤ r1, r1 > d.

Moreover, if ν|Γ2 ∈ C
1
2 ([0, T );L∞(Γ2)), then

‖νa‖
W

1
2q′

q (0,T ;Lq(Γ2))

≤ Cq,r1‖ν‖C
1
2 ([0,T );L∞(Γ2))

‖a‖
W

1
2q′

q (0,T ;Lq(Γ2))

since W
1

2q′

q (0, T ;X) is normed by

‖a‖q

W

1
2q′

q (0,T ;X)

= ‖a‖q
Lq(0,T ;X) +

∫ T

0

∫ T

0

‖a(s) − a(t)‖q
X

|s− t|1+
q

2q′

dt ds.

Altogether we obtain

‖νa‖
W

1
q′

, 1
2q′

q

≤ Cq,r1

(
‖ν‖BUC([0,T );W 1

r1
(Ω)) + ‖ν‖

C
1
2−ε([0,T );L∞(Γ2))

)
‖a‖

W

1
q′

, 1
2q′

q

(2.4)

provided that 1 < q ≤ r1, r1 > d, and ε > 0 is su�ciently small.
Finally, we need some extension results for the traces spaces of W 2,1

q (QT ).

Lemma 2.5 Let Ω ⊂ R
d, d ≥ 2, 1 < q <∞ with q 6= 3

2
, 3, be as in Assumption 2.1,

and let 0 < T ≤ ∞. Then

1. For every u0 ∈ W
2− 2

q
q (Ω) with u0|Γ1 = 0 if q > 3

2
there is some u ∈ W 2,1

q (QT )
with u|t=0 = u0, u|Γ1×(0,T ) = 0 if q > 3

2
. Moreover, there is some C > 0

independent of T ∈ (0,∞] such that

‖u‖W 2,1
q (QT ) ≤ C‖u0‖

W
2− 2

q
q (Ω)

.

2. For every a ∈ W
1− 1

q
, 1
2
(1− 1

q
)

q (Γ2 × (0, T ))d with a|t=0 = 0 if q > 3 there is some
A ∈ W 2,1

q (QT )d with A|t=0 = 0, A|Γ1 = 0, and

(n · 2νDA)τ |Γ2 = aτ , divA|Γ2 = an.

Moreover,

‖A‖W 2,1
q (QT ) ≤ C‖a‖1− 1

q
, 1
2
(1− 1

q
),q

where C can be chosen independently of T ∈ (0,∞].

Proof: With the aid of the coordinate transformations due to [5, Proposition 1] and
the partition of unity due to Assumption 2.1 the �rst statement is easily reduced to
case of a half-space R

d
+, which is well-known, cf. e.g Grubb [19, Appendix].
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In order to prove 2., let A ∈ W 2,1
q (QT )d with A|t=0, A|∂Ω = 0, and ∂nA|Γ2 = ν−1a

such that ‖A‖2,1,q ≤ C‖a‖1− 1
q
, 1
2
(1− 1

q
),q. � As before, the existence of A can be reduced

to the corresponding statement in R
d
+. � Then

(n · 2νDA)τ |Γ2 = (ν∇τAn + ν∂nAτ )|Γ2 = 0 + aτ ,

divA|Γ2 = (divτ Aτ + ∂nAn)|Γ2 = 0 + an.

The constant C can be chosen independently of T since we can extend a to ã ∈

W
1− 1

q
, 1
2
(1− 1

q
)

q (Γ2 × (0,∞))d such that ‖ã‖1− 1
q
, 1
2
(1− 1

q
),q ≤ C‖a‖1− 1

q
, 1
2
(1− 1

q
),q, where C

does not depend on T , and restrict the corresponding Ã ∈ W 2,1
q (Ω × (0,∞))d to

(0, T ) afterwards. The latter extension to (0,∞) can be done by �rst extending a in
an even way around t = T to a function de�ned on (0, 2T ) and then extending by
zero, which yields an ã ∈ W

1− 1
q
, 1
2
(1− 1

q
)

q (Γ2 × (0,∞))d since ã|t=2T = a|t=0 = 0 if q > 3.

3 Nonstationary Stokes Equations

As in the case of the generalized Stokes resolvent equations, cf. [5], (1.1)-(1.5) can
(at least formally) be reduced to the nonstationary reduced Stokes equations

∂tv − div(ν∇v) + ∇Pνv −∇νT∇vT = fr in QT , (3.1)
v|Γ1 = 0 on Γ1 × (0, T ), (3.2)
T ′

1u = ar on Γ2 × (0, T ), (3.3)
v|t=0 = v0 in Ω, (3.4)

For given ν = ν(t) the reduced Stokes operator Aq,ν on Lq(Ω)d is de�ned as

Aq,νv = − div(ν∇v) + ∇Pνv −∇νT∇vT (3.5)
D(Aq,ν) =

{
v ∈ W 2

q (Ω)d : v|Γ1 = 0, T ′
1,νv|Γ2 = 0

}
,

where T ′
1,νv is de�ned by

(T ′
1,νv)τ = (n · 2νDv)τ |Γ2 , (T ′

1v)n = ν div v|Γ2 . (3.6)

Moreover, Pνv ≡ p1 ∈ Ẇ 1
q (Ω) with p1|Γ2 ∈ W

1− 1
q

q (Γ2) is de�ned as the solution of

(∇p1,∇ϕ)Ω = (ν(∆ −∇ div)v,∇ϕ)Ω + (Dv, 2∇ν ⊗∇ϕ)Ω, (3.7)
p1|Γ2 = 2ν∂nvn (3.8)

for all ϕ ∈ Ẇ 1
q′,Γ2

(Ω) =
{
ϕ ∈ Ẇ 1

q′(Ω) : ϕ|Γ2 = 0
}
. Note that the right-hand-side of

(3.7) de�nes a bounded linear functional on Ẇ 1
q′,Γ2

(Ω). The existence of a solution of
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(3.7)-(3.8) that is unique (up to a constant if Γ2 = ∅) follows from the existence of a
unique Helmholtz decomposition, i.e., (A2), cf. Lemma 2.4. Hence

Pν : W 2
q (Ω)d →

{
p ∈ Ẇ 1

q (Ω) : p|Γ2 ∈ W
1− 1

q
q (Γ2)

}

is a bounded linear operator.
Finally, we note that the domain of Aq,ν depends on t unless ν(x, t) is independent

of t or Γ2 = ∅. In the case that ν is independent of t the following result follows from
[5, Theorems 1,2, and 3].

Theorem 3.1 Let 1 < p < ∞, 0 < T < ∞, and let Ω, q be as in Assumption 2.1.
Then for every f ∈ Lp(0, T ;Lq(Ω)d) there is a unique solution v ∈ W 1

p (0, T ;Lq(Ω)d)∩
Lp(0, T ;D(Aq)) of

v′(t) + Aqv(t) = f(t), 0 < t < T,

v(0) = 0

Moreover,
‖v′‖Lp(0,T ;Lq) + ‖Aqv‖Lp(0,T ;Lq) ≤ C‖f‖Lp(0,T ;Lq).

If Ω is a bounded domain and Γ1 6= ∅, then the statement is also true for T = ∞.

From the latter theorem and Lemma 2.5, we deduce:

Theorem 3.2 Let 0 < T <∞ and let Ω, q, ν be as in Assumption 2.1. Moreover, let

(fr, ar, v0) ∈ Lq(QT )d×W
1− 1

q
, 1
2
(1− 1

q
)

q (Γ2×(0, T ))d×W
2− 2

q
q (Ω)d satisfy the compatibility

conditions

1. v0|Γ1 = 0 if q > 3
2
.

2. (n · 2νDv0)τ |Γ2 = aτ |t=0 if q > 3.

Then there is a unique solution v ∈ W 2,1
q (QT )d of (3.1)-(3.4), which satis�es

‖v‖W 2,1
q (QT ) ≤ C

(
‖fr‖Lq(QT ) + ‖ar‖

W
1− 1

q , 12 (1− 1
q )

q (Γ2×(0,T ))
+ ‖v0‖

W
2− 2

q
q (Ω)

)

The constant C can be chosen independently of T ∈ (0, T0] for every 0 < T0 <∞. If
Ω is a bounded domain, an in�nite cylinder or an asymptotically �at layer, Γ1 6= ∅,
limt→∞ ν(x, t) = ν∞ in W 1

q (Ω), and limT→∞ ‖ν − ν∞‖
C

1
2 ([T,∞);L∞(Γ2))

= 0, then the

statements hold true for T = ∞.

Proof: First assume that ν = ν(x) is independent of t ∈ (0, T ). Then the theorem
follows immediately from Theorem 3.1 if ar = u0 = 0. The general case ar, u0 6= 0
can be easily reduced to the latter case by �rst subtracting a suitable extension of
u0 and then a suitable extension of ar, cf. Lemma 2.5.
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Next let ν = ν(x, t) be time-dependent and �x some t0 ∈ [0, T ). Then by the �rst
part the theorem holds if ν is replaced by νt0(x) := ν(x, t0). Moreover,

‖ div(2νDv) − div(2νt0Dv)‖Lq(QT ) ≤ C‖ν − νt0‖BUC([0,T );W 1
r1

(Ω))‖v‖W 2,1
q (QT )

due to (2.1) and

‖n · Tν(v, p) − n · Tνt0
(v, p)‖

W
1− 1

q , 12 (1− 1
q )

q

≤ C
(
‖ν − νt0‖BUC([0,T );W 1

r1
(Ω)) + ‖ν − νt0‖C

1
2−ε([0,T );L∞(Γ2))

)

·

(
‖v‖W 2,1

q (QT ) + ‖p|Γ2‖
W

1− 1
q , 12 (1− 1

q )

q

)

due to (2.4) for ε > 0 su�ciently small. Hence by a standard perturbation argument
the theorem holds true provided that

‖ν − νt0‖BUC([0,T );W 1
r1

(Ω)) + ‖ν − νt0‖C
1
2−ε([0,T );L∞(Γ2))

≤ δ0

for some δ0 = δ0(t0) > 0 and ε > 0 as before. Choosing t0 = 0, this implies that the
theorem is true if T is replaced by 0 < T ′ ≤ T su�ciently small. Now let 0 < Tm ≤ T

be the supremum of all T ′ ∈ (0, T ] such that the statement of the theorem is true if T
is replaced by T ′. Then Tm = T since otherwise we can extend the solution operator
by solving the system on [Tm, Tm + κ) for some κ > 0 such that

‖ν − νTm
‖BUC([Tm,Tm+κ);W 1

r1
(Ω)) + ‖ν − νTm

‖
C

1
2−ε([Tm,Tm+κ);L∞(Γ2))

≤ δ0(T
′).

Therefore the statement of the theorem holds true for any 0 < T < ∞ with some
C = C(T ). If Ω is a bounded domain, then the statement holds for T = ∞ since
it holds for [0,∞) replaced by [T ′,∞) for some T ′ > 0 su�ciently large due to
limt→∞ ν(t) = ν∞ in W 1

q (Ω) and limT→∞ ‖ν − ν∞‖
C

1
2 ([T,∞);L∞(Γ2))

= 0.

Now we are able to proof Theorem 1.1. For a similar proof in the case of constant
viscosity and an asymptotically �at layer with mixed boundary conditions we refer
to [3].

Proof of Theorem 1.1: For almost every t ∈ (0, T ) let p2(., t) ∈ Ẇ 1
q (Ω) with

p2|Γ2 ∈ W
1− 1

q
q (Γ2) be the solution of

(∇p2(., t),∇ϕ) = (f(t) + ν∇g(t),∇ϕ)Ω + 〈∂tg(t), ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

(3.9)

for all ϕ ∈ Ẇ 1
q′,Γ2

(Ω) and p2|Γ2 = −an, cf. Lemma 2.4. Now we de�ne fr = f−∇p2 +
ν∇g. Then

‖fr‖q ≤ C
(
‖(f,∇g)‖q + ‖∂tg‖Lq(0,T ;Ẇ−1

q,Γ2
) + ‖an‖1− 1

q
, 1
2
(1− 1

q
),q

)



11

with C independent of T . Moreover, let (ar)τ = aτ and (ar)n = g|Γ2 .
Now let v ∈ W 2,1

q (QT )d be the solution of the reduced Stokes equations with right-
hand side (fr, a

+
r ). Then (v, p) with ∇p = ∇Pνv + ∇p2 solves (1.1) and (1.3)-(1.5)

by construction. Hence it only remains to prove that div v = g.
First of all, because of (3.9),

−(fr(t),∇ϕ)Ω = 〈∂tg(t), ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

,+(ν∇g(t),∇ϕ)Ω (3.10)

for all ϕ ∈ Ẇ 1
q,Γ2

(Ω) and almost every t ∈ (0, T ). On the other hand, since v ∈
W 2,1

q (Ω)d solves (3.1)-(3.4),

−(fr,∇ϕ)Ω = 〈∂t div v, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

+ (ν∇ div v,∇ϕ)Ω (3.11)

for all ϕ ∈ Ẇ 1
q,Γ2

(Ω) because of

(div(ν∇v),∇ϕ)Ω − (∇Pνv,∇ϕ)Ω + (∇νT∇vT ,∇ϕ)Ω (3.12)
= (ν∆v,∇ϕ)Ω − (∇Pνv,∇ϕ)Ω + (Dv, 2∇ν ⊗∇ϕ)Ω = (ν∇ div v,∇ϕ)Ω

for all ϕ ∈ Ẇ 1
q,Γ2

(Ω) and almost every t ∈ (0, T ) due to (3.7). Moreover, since
div v − g ∈ Ẇ 1

q,Γ2
(Ω), Proposition 3.3 below implies div v = g.

Proposition 3.3 Let Ω, q be as in Assumption 2.1 and let u ∈ Lq(0, T ;W 1
q,Γ2

(Ω)),

0 < T <∞, be such that ∂tu ∈ Lq(0, T ;W−1
q,Γ2

(Ω)), u|t=0 = 0, and

∫ T

0

〈∂tu, ϕ〉W−1
q,Γ2

,W 1
q′,Γ2

+ (ν∇u,∇ϕ)QT
= 0 (3.13)

for all ϕ ∈ Lq′(0, T ;W 1
q′,Γ2

(Ω)). Then u = 0.

Proof: Let ψ ∈ Lq′(0, T ; Ẇ 1
q′,Γ2

(Ω)) be arbitrary and let v ∈ W
2,1
q′ (QT )d be a solution

of the reduced Stokes equations (3.1)-(3.4) with right-hand side f̃ = ∇ψ, a = 0, and
v0 = 0. Then by (3.11)

−(∇ψ,∇ϕ)QT
=

∫ T

0

〈∂t div v, ϕ〉W−1
q′,Γ2

,W 1
q,Γ2

dt+ (ν∇ div v,∇ϕ)QT

for all ϕ ∈ Lq(0, T ;W 1
q,Γ2

(Ω)). Now, choosing ϕ(x, t) = u(x, T−t) ∈ Lq(0, T ;W 1
q,Γ2

(Ω)),
we obtain

−(∇u(T − .),∇ψ)QT

=

∫ T

0

〈∂t div v(t), u(T − t)〉W−1
q′,Γ2

,W 1
q,Γ2

dt+ (ν∇ div v,∇u(T − .))QT

=

∫ T

0

〈(∂tu)(T − t), div v(t))〉W−1
q,Γ2

,W 1
q′,Γ2

dt+ (ν∇u(T − .),∇ div v)QT
= 0



12 4 DOMAINS OF FRACTIONAL POWERS FOR STOKES OPERATORS

due to (3.13). Here we have used

∫ T

0

〈∂tv, w〉W−1
q,Γ2

,W 1
q′,Γ2

dt = 〈v(t), w(t)〉
W

1− 2
q

q ,W
1− 2

q′

q′

∣∣∣∣∣

T

t=0

−

∫ T

0

〈v, ∂tw〉W 1
q,Γ2

,W−1
q′,Γ2

dt

for all v ∈ Lq(0, T ;W 1
q,Γ2

) ∩W 1
q (0, T ;W−1

q,Γ2
), w ∈ Lq′(0, T ;W 1

q′,Γ2
) ∩W 1

q′(0, T ;W−1
q′,Γ2

),

where we note that Ls(0, T ;W 1
s ) ∩W 1

s (0, T ;W−1
s ) →֒ BUC([0, T ];W

1− 2
s

s ) for all 1 <
s <∞.

Since ψ ∈ Lq′(0, T ; Ẇ 1
q′,Γ2

(Ω)) was arbitrary, we conclude ∇u(t) = 0 for almost
every t ∈ (0, T ) due to Lemma 2.4. Hence ∂tu = 0 due to (3.13) and therefore u = 0
since u|t=0 = 0.

4 Domains of Fractional Powers for Stokes Opera-

tors

In the following let ν(x) = ν∞ + ν ′(x) with ν ′ ∈ W 1
r1

(Ω) be independent of t and
ν(x) ≥ ν0 > 0 for all x ∈ Ω. For simplicity we denote Aq = Aq,ν from now on. As
shown in [5] we have

D((c+ Aq)
α) = (Lq(Ω)d,D(Aq))[α],

where (., .)[α] denotes the complex interpolation functor. This is a consequence of the
bounded imaginary powers of c + Aq, cf. [5, Theorem 1] and [17, Proposition 6.1].
Here again c ∈ R is such that c+Aq is invertible and admits a bounded H∞-calculus.
This is the case for c > 0 su�ciently large and for c = 0 if Ω is a bounded domain
with W

2− 1
r2

r2 -boundary and Γ1 6= ∅.
In the following we will restrict ourselves to the case of pure Dirichlet boundary

conditions, i.e., Γ1 = ∂Ω, Γ2 = ∅. Then

D(Aq) =
{
u ∈ W 2

q (Ω)d : u|∂Ω = 0
}

= D(∆q)
d,

where ∆q denotes the Dirichlet realization of the Laplacian ∆ on Lq(Ω), i.e., D(∆q) ={
u ∈ W 2

q (Ω) : u|∂Ω = 0
}
. Moreover, we have:

Lemma 4.1 Let Ω ⊆ R
d, d ≥ 2, satisfy (A1) for some d < r2 ≤ ∞ and let 1 < q <

∞ with q ≤ r2. Then

(Lq(Ω),W 2
q (Ω) ∩W 1

q,0(Ω))[α] =

{{
u ∈ H2α

q (Ω) : u|∂Ω = 0
}

if 1
q
< 2α ≤ 2,

H2α
q (Ω) if 0 ≤ 2α < 1

q
.

Here H2α
q (Ω) is the restriction of the Bessel potential space H2α

q (Rd) to Ω equipped
with the quotient norm.
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Proof: First of all, the statement can be localized as follows: Let ϕj, ψj, j = 1, . . . ,m
be the cut-o� functions due to (A1). Then the mapping

R : W k
q (Ω) →

m∏

j=1

W k
q (Rd

γj
) with Rv = (ϕjv)

m
j=1

is bounded for every 1 < q < ∞ and k = 0, 1, 2. By complex interpolation
R : H2α

q (Ω) →
∏m

j=1H
2α
q (Rd

γj
) for all 1 < q < ∞ and 0 ≤ α ≤ 1 since Hk

q (Ω) =

W k
q (Ω). Moreover, the mapping

Q :
m∏

j=1

H2α
q (Rd

γj
) → H2α

q (Ω) with Qw =
m∑

j=1

ψjwj

is bounded for all 1 < q < ∞ and 0 ≤ α ≤ 1 and QRv = v for all v ∈ H2α
q (Ω). This

shows that H2α
q (Ω) is a retract of

∏m
j=1H

2α
q (Rd

γj
). Therefore the statement can be

reduced to the case of Ω = R
d
γ, γ ∈ W

2− 1
r2

r2 (Rd−1). Using the coordinate transforma-
tion Fγ : R

d → R
d with Fγ|Rd

+
: R

d
+ → R

d
γ due to [5, Proposition 1, Corollary 1], we

have

F ∗
γ : H2α

q (Rd) → H2α
q (Rd), F ∗

γ : H2α
q (Rd

γ) → H2α
q (Rd

+)

for all 1 < q ≤ r2, 0 ≤ α ≤ 1, where (F ∗
γ v)(x) = v(Fγ(x)). Hence the statement for

Ω = R
d
γ follows from the case of a half-space, cf. [15].

Corollary 4.2 Let Ω,Γ1,Γ2, q be as in Assumption 2.1 and assume that Γ2 = ∅.
Then

D((c+ Aq)
α) =

{{
u ∈ H2α

q (Ω)d : u|∂Ω = 0
}

if 1
q
< 2α ≤ 2

H2α
q (Ω)d if 0 ≤ 2α < 1

q
,

where c = 0 in the case of a bounded domain and c > 0 su�ciently large else.

Finally, we derive a corresponding result for a variant of the standard Stokes operator,
namely

Aq,σv := PqAqv = −Pq div(ν∇v) − Pq∇ν
T∇vT , v ∈ D(Aq,σ),

D(Aq,σ) := D(Aq) ∩ Jq(Ω) =
{
v ∈ W 2

q (Ω)d : div v = 0, v|∂Ω = 0
}
.

In an important relation between the Stokes operator Aq,σ and the reduced Stokes
operator Aq is given by the following proposition, which is a variant of [2, Lemma 3.1]:

Lemma 4.3 Let Ω ⊆ R
d, n ≥ 2, 1 < q <∞, and δ ∈ (0, π) be as in Assumption 2.1.

Moreover, assume that (λ+As,σ)−1 exists for some λ ∈ Σδ = {z ∈ C\{0} : | arg z| <
δ} with |λ| ≥ R and s = q, q′. Then (λ+ Aq,σ)−1 exists and

Aq|Jq(Ω) = Aq,σ, (λ+ Aq)
−1|Jq(Ω) = (λ+ Aq,σ)−1. (4.1)
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Proof: The �rst statement can be seen as follows: If v ∈ D(Aq) ∩ Jq(Ω), then

(− div(ν∇v) + ∇Pv + ∇νT∇vT ,∇ϕ)Ω = (ν∇ div v,∇ϕ)Ω = 0

for all ϕ ∈ Ẇ 1
q′(Ω) because of (3.12). Hence − div(ν∇v) +∇Pνv +∇νT∇vT ∈ Jq(Ω)

due to (A.3) below. Thus

Aqv = − div(ν∇v) + ∇νT∇vT + ∇Pνv = Pq(− div(ν∇v) + ∇νT∇vT ) = Aq,σv

for all v ∈ D(Aq) ∩ Jq(Ω).
In order to prove the second relation let v = (λ + Aq)

−1f with f ∈ Jq(Ω). Then
multiplying (λ+ Aq)u = f by ∇ϕ, ϕ ∈ W 1

q′(Ω) and using (3.12) we obtain

λ(div v, ϕ)Ω + (ν∇ div v,∇ϕ)Ω = 0 for all ϕ ∈ W 1
q′(Ω).

Hence div v = 0 because of Lemma 4.4 below if λ 6= 0. If λ = 0 and Ω is a bounded
domain, we get div v = 0 too by the unique solvability Lemma 2.4. Hence v ∈ Jq(Ω).
Since by the �rst statement λ+Aq,σ = (λ+Aq)|Jq(Ω) is injective, we �nally conclude
that (λ+ Aq,σ)−1f = u = (λ+ Aq)

−1f for every f ∈ Jq(Ω).

Lemma 4.4 Let Ω ⊂ R
d, n ≥ 2, and 1 < q <∞ be as in Assumption 2.1. If λ+Aq′

is surjective for λ 6∈ (−∞, 0], then there is no non-trivial g ∈ W 1
q (Ω) solving

λ(g, ϕ)Ω + (ν∇g,∇ϕ)Ω for all ϕ ∈ W 1
q′(Ω). (4.2)

Proof: Let f ∈ Lq′(Ω)d be arbitrary and let u ∈ D(Aq′) such that (λ + Aq′)u = f .
Then multiplying f with ∇g we observe that div u ∈ W 1

q′(Ω) solves

−λ(div u, g) − (ν∇ div u,∇g) = (f,∇g) for all g ∈ W 1
q (Ω)

due to (3.12). Hence, if g ∈ W 1
q (Ω) solves (4.2), then (f,∇g) = 0 for all f ∈ Lq′(Ω)d

and therefore ∇g = 0. Because of (4.2) and λ 6= 0, we conclude g = 0.

THEOREM 4.5 Let Ω ⊆ R
d, n ≥ 2, 1 < q < ∞, and δ ∈ (0, π) be as in Assump-

tion 2.1 and let Aq,σ be as above. Then there is some R ≥ 0 such that (λ + Aq,σ)−1

exists for all λ ∈ Σδ with |λ| ≥ R and

‖(λ+ Aq,σ)−1‖D(Jq(Ω)) ≤
C

1 + |λ|
for all λ ∈ Σδ \BR(0).

If Ω is a bounded domain, then the statement even holds for R = 0 and λ ∈ Σδ ∪{0}.
Moreover, R + Aq,σ (with R = 0 for bounded domains) possesses bounded imaginary
powers w.r.t. Σπ−δ and we have

D(Aα
q,σ) =

{{
u ∈ H2α

q (Ω)d : u|∂Ω = 0
}
∩ Jq(Ω) if 1

q
< 2α ≤ 2,

H2α
q (Ω)d ∩ Jq(Ω) if 0 ≤ 2α < 1

q
.
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Proof: Except for the last statement the theorem is an immediate consequence of
Lemma 4.3 and [5, Theorems 1, 2, and 3]. The last statement follows from Corol-
lary 4.2 and

D(Aα
q,σ) = (Lq(Ω)d,D(Aq))[α] ∩ Jq(Ω),

which we prove by a modi�cation of the arguments of [16, Lemma 6]. First of all,
since Aq,σ possesses bounded imaginary powers, we have

D(Aα
q,σ) = (Jq(Ω),D(Aq,σ))[α]

due to [17, Proposition 6.1]. Moreover, since the space on the right-hand side is
independent of the choice of ν, it is su�cient to consider the case ν ≡ 1 in the
following. We de�ne a projection P̃q : D(Aq) → D(Aq,σ) by

P̃qf = −(c+ Aq,σ)−1Pq(c+ Aq)f, f ∈ D(Aq).

Because of Aq|Jq(Ω) = Aq,σ, we have Pqf = f for all f ∈ D(Aq,σ). Hence P̃q : D(Aq) →
D(Aq,σ) is a projection onto D(Aq,σ). Moreover,

(P̃qf, g)Ω = ((c+ Aq,σ)−1Pq(c+ Aq)f, g)Ω

= ((c− ∆)f, (c+ Aq′,σ)−1g)Ω = (f, (c− ∆)(c+ Aq′,σ)−1g)Ω

for all f ∈ D(Aq) and g ∈ Jq′(Ω) because of (Aq,σv, w)Ω = (v, Aq′,σw)Ω for all
v ∈ D(Aq,σ), w ∈ D(Aq′,σ). Hence

∣∣∣(P̃qf, g)Ω

∣∣∣ ≤ C‖f‖Lq(Ω)‖g‖Jq′ (Ω)

for all f ∈ D(Aq) and g ∈ Jq′(Ω). Hence P̃q extends to a bounded projection from
Lq(Ω)d onto Jq(Ω) since D(Aq,σ) is dense in Jq(Ω). With the aid of P̃q and [27,
Theorem 1.2.4] we conclude

(Jq(Ω),D(Aq,σ))[α] = P̃q(L
q(Ω)d,D(Aq))[α] = (Lq(Ω)d,D(Aq))[α] ∩ Jq(Ω).

This �nishes the proof.

5 Nonstationary Stokes System in Fractional Sobolev

Spaces

Let c = 0 if Ω is a bounded domain and let c > 0 be so large that c+Aq is invertible
and has bounded imaginary powers else. Because of Lemma 4.3, c+Aq,σ is invertible
and has bounded imaginary powers too. Therefore we denote by A either c + Aq

de�ned on X = Lq(Ω)d or c+ Aq,σ de�ned on X = Jq(Ω). Moreover, let

Xα = D(Aα) = {x ∈ X : Aαx ∈ X}
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if α ≥ 0 equipped with the norm ‖x‖Xα
= ‖Aαx‖X and let Xα be the completion

of X with respect to ‖x‖Xα
= ‖Aαx‖X if α < 0. Then by [6, Theorem 1.5.4,

Proposition 1.5.5., Chapter V] Aα : D(Aα) ⊂ Xα → Xα with Aαx = Ax for all
x ∈ D(Aα) := X1+α is an invertible operator with bounded imaginary powers for
arbitrary α ∈ R. Hence by the result by Dore and Venni we obtain:

THEOREM 5.1 Let 1 < p < ∞, α ∈ R, 0 < T ≤ ∞, and let Ω, q be as in
Assumption 2.1 and let Aα, α ∈ R, be as above. Then for every f ∈ Lp(0, T ;D(Aα))
and v0 ∈ (Xα, X1+α)1− 1

p
,p there is a unique solution v ∈ W 1

p (0, T ;Xα)∩Lp(0, T ;X1+α)

of

v′(t) + Av(t) = f(t), 0 < t < T,

v(0) = v0

Moreover, there is a constant C independent of f, v0, T such that

‖v′‖Lp(0,T ;Xα) + ‖Av‖Lp(0,T ;Xα) ≤ C

(
‖f‖Lp(0,T ;Xα) + ‖v0‖(Xα,X1+α)

1− 1
p ,p

)
.

Proof: By Lion's trace method, cf. e.g. [21, Proposition 1.2.10], for every v0 ∈
(Xα, X1+α)1− 1

p
,p there is some w ∈ W 1

p (0,∞;Xα)∩Lp(0,∞;X1+α) such that w|t=0 =

v0 and the norm of w is bounded by a constant times the norm of v0. Hence sub-
tracting w from v we can reduce to the case v0 = 0. The latter case now follows from
Dore and Venni [10, Theorem 3.2] if T < ∞ and from Giga and Sohr [18, Theorem
2.1] if T = ∞.

Finally, we note that Corollary 4.2 can know be used to obtain a more ex-
plicit characterization of the condition f ∈ Lp(0, T ;D(Aα)) and v ∈ W 1

p (0, T ;Xα) ∩
Lp(0, T ;X1+α).

A Helmholtz Decomposition for Mixed Boundary

Conditions

In the following we will show that (A2) is also valid for bounded domains, exterior
domains, perturbed half-spaces, and aperture domains with C1-boundary provided
that Γ2 is compact. To this end we use:

Proposition A.1 Let Ω ⊆ R
d, d ≥ 2 and let 1 < q < ∞. Then (A2) holds true if

and only if there is a constant Cq > 0 such that for every s = q, q′ and p ∈ Ẇ 1
s,Γ2

(Ω)

‖∇p‖Ls(Ω) ≤ Cq‖F‖Ẇ−1
s,Γ2

, (A.1)

where F ∈ Ẇ−1
s,Γ2

(Ω) is de�ned by

(∇p,∇ϕ)Ω = 〈F, ϕ〉Ẇ−1
s,Γ2

,Ẇ 1
s,Γ2

for all ϕ ∈ Ẇ 1
s′,Γ2

(Ω). (A.2)
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Moreover, if (A2) holds, then for s = q, q′ and F ∈ Ẇ−1
s,Γ2

there is a unique solution

p ∈ Ẇ 1
s,Γ2

(Ω) (up to a constant if Γ2 = ∅) such that (A.2) holds. Finally, if (A2)
holds, then

Js(Ω) =
{
f ∈ Ls(Ω)d : (f,∇ϕ)Ω = 0 for all ϕ ∈ Ẇ 1

s,Γ2
(Ω)

}
(A.3)

Proof: First assume that (A2) holds. Identifying Ẇ 1
s′,Γ2

(Ω) with a closed subspace
of Lq(Ω)d via ϕ 7→ ∇ϕ, we can �nd for every F ∈ Ẇ−1

s,Γ2
(Ω) some f ∈ Ls(Ω)d such

that
〈F, ϕ〉Ẇ−1

s,Γ2
,Ẇ 1

s,Γ2

= (f,∇ϕ)Ω for all ϕ ∈ Ẇ 1
s′,Γ2

(Ω)

and ‖f‖Ls(Ω) ≤ ‖F‖Ẇ−1
s,Γ2

(Ω) by the Hahn-Banach theorem. Now let f = f0 + ∇p be

the decomposition due to (A2). Then p ∈ Ẇ 1
s,Γ2

(Ω) solves

(∇p,∇ϕ)Ω = (f,∇ϕ)Ω = 〈F, ϕ〉Ẇ−1
s,Γ2

,Ẇ 1
s,Γ2

for all ϕ ∈ Ẇ 1
s′,Γ2

(Ω) because of

(f0,∇ϕ)Ω = 0 for all ϕ ∈ Ẇ 1
s′,Γ2

(Ω)

due to the density of
{
f ∈ C∞

(0)(Ω ∪ Γ2)
d : div f = 0

}
in Js(Ω) by de�nition.

The proof of the converse implication is a modi�cation of the arguments in [24,
Proof of Theorem 1.4], which we include for the convenience of the reader. First of
all, if (A.1) holds, then −∆s : Ẇ 1

s,Γ2
(Ω) → Ẇ−1

s,Γ2
(Ω) with

〈−∆sp, ϕ〉Ẇ−1
s,Γ2

,Ẇ 1
s′,Γ2

= (∇p,∇ϕ)Ω for all ϕ ∈ Ẇ 1
s′,Γ2

(Ω)

is a bounded linear operator with closed range and trivial kernel. Moreover, (−∆s)
′ =

−∆s′ . Therefore R(−∆s′) = Ẇ−1
s,Γ2

(Ω) by the closed range theorem. Hence we can
de�ne Psf = f −∇p, where p is the unique solution of (A.2) for 〈F, ϕ〉Ẇ−1

q,Γ2
,Ẇ 1

q′,Γ2

=

(f,∇ϕ)Ω. Then Ps : Ls(Ω)d → Ls(Ω)d with

R(Ps) =
{
f ∈ Ls(Ω)d : (f,∇ϕ)Ω = 0 for all ϕ ∈ Ẇ 1

s′,Γ2
(Ω)

}
,

N (Ps) =
{
∇p ∈ Ls(Ω)d : p ∈ Ẇ 1

s,Γ2
(Ω)

}
.

Moreover, Ps has closed range since I −Ps has closed range and it is easy to see that
(Ps)

′ = Ps′ . Obviously, Js(Ω) ⊆ R(Ps) since Psf = f for all f ∈ Js(Ω). For the
converse inclusion it is enough to prove

(Js(Ω))⊥ ⊆ N (Ps′),

where Z⊥ = {f ∈ X ′ : 〈f, x〉 = 0 for all x ∈ X}. Then the closed range theorem
implies R(Ps) = N (Ps′)

⊥ ⊆ Js(Ω). Therefore let f ∈ (Js(Ω))⊥ ⊆ Ls′(Ω)d. Then due
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to [24, Theorem 1.1] there is some p ∈ W 1
s′,loc(Ω) such that f = ∇p almost every-

where. Because of ∂Ω ∈ C1 and [23, Théorème, p.114], p ∈ W 1
s′,loc(Ω) and therefore

f = ∇p ∈ N (Ps′). In particular, this shows that (A.3) holds and �nishes the proof.

Corollary A.2 Let 1 < q < ∞ and let Ω ⊆ R
d, d = 2, 3, be a bounded domain, an

exterior domain, a perturbed half-space, or an aperture domain with W
2− 1

r
r -boundary

for some d < r ≤ ∞. Then (A2) holds for any choice of closed and disjoint Γ1,Γ2 ⊆
∂Ω such that Γ1 ∪ Γ2 = ∂Ω provided that Γ2 is a compact and locally a C1-manifold.

Proof: As noted in the proof of Lemma 2.3 in the case Γ2 = ∅ the validity of (A2)
is well-known. Therefore let Ω and Γ1,Γ2 with Γ2 6= ∅ be as in the assumptions. We
prove (A2) with the aid of Proposition A.1. First of all, we note that by the Lemma
of Lax-Milgram (A.2) has a unique solution p ∈ Ẇ 1

2,Γ2
(Ω) for any F ∈ Ẇ−1

2,Γ2
(Ω).

Moreover, Ẇ−1
2,Γ2

(Ω) ∩ Ẇ−1
r,Γ2

(Ω) is dense in Ẇ−1
r,Γ2

(Ω) for any 1 ≤ r < ∞, which can
be easily using the representation 〈F, ϕ〉 = (f,∇ϕ), f ∈ Lr(Ω)d from above. Hence
it is enough to show that there is a constant Cq such that

‖∇p‖Ls(Ω) ≤ Cq‖F‖Ẇ−1
s,Γ2

(Ω) for all F ∈ Ẇ−1
s,Γ2

(Ω) ∩ Ẇ−1
2,Γ2

(Ω), s = q, q′.

To this end let F ∈ Ẇ−1
s,Γ2

(Ω) ∩ Ẇ−1
2,Γ2

(Ω) and let p ∈ Ẇ 1
2,Γ2

(Ω) be the solution of
(A.2) for q = 2. Moreover, and let ψ ∈ C∞

0 (Rd) be such that suppψ ⊆ Γ2,ε = {x ∈
R

d : dist(x,Γ2) < ε} and ψ ≡ 1 on Γ2,ε/2 and let Ωb ⊆ R
d be a bounded domain with

C1-boundary such that Ωb ∩ Γ2,ε = Ω ∩ Γ2,ε for some ε > 0 su�ciently small. Then
p0 := (1 − ψ)p ∈ Ẇ 1

s (Ω) and p1 = ψp ∈ W 1
s,0(Ωb). Moreover,

(∇p0,∇ϕ)Ω = 〈F, ψϕ〉Ẇ−1
s,Γ2

,Ẇ 1
s′,Γ2

+ (2(∇ψ)p,∇ϕ)Ω + ((∆ψ)p, ϕ)Ω

for all ϕ ∈ Ẇ 1
s′(Ω), where ϕ is chosen such that

∫
Γ2,ε∩Ω

ϕdx = 0. Hence

‖∇p0‖Ls(Ω) ≤ C
(
‖F‖Ẇ−1

s,Γ2
(Ω) + ‖p‖Ls(Ω∩Γ2,ε)

)

because of (A2) in the case Γ1 = ∂Ω and Proposition A.1. Similarly, one obtains

‖∇p1‖Ls(Ωb) ≤ C
(
‖F‖Ẇ−1

s,Γ2
(Ω) + ‖p‖Ls(Ω∩Γ2,ε)

)

by standard results for the Laplace equation with Dirichlet boundary conditions a
bounded C1-domains. Altogether, this implies

‖∇p‖Ls(Ω) ≤ C
(
‖F‖Ẇ−1

s,Γ2
(Ω) + ‖p‖Ls(Ω∩Γ2,ε)

)
.

Now we use a standard compactness argument to prove (A.1). Provided there is
no Cq > 0 such that (A.1) holds, there is a sequence pj ∈ Ẇ 1

s,Γ2
(Ω) such that
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‖∇pj‖Lq(Ω) = 1 and Fj ∈ Ẇ−1
s,Γ2

(Ω) de�ned by (A.2) with u replaced by uj satis�es
‖Fj‖Ẇ−1

s,Γ2

→j→∞ 0. Hence there is some p ∈ Ẇ 1
s,Γ2

(Ω) such that pj ⇀j→∞ p in

Ẇ 1
s,Γ2

(Ω) up to a subsequence. Therefore p solves (A.2) with F ≡ 0. Hence the same
localization procedure as above shows p ∈ Ẇ 1

2,Γ2
(Ω), where one uses that Pq = P2

on Jq(Ω) ∩ J2(Ω) in the case of Γ2 = ∅, cf. [12, Lemma 5.6] and [13, Lemma 3.2]
or [14, Theorem 5] for the case of an aperture domain. Therefore ∇p = p = 0 since
Γ2 6= ∅. Finally, since pj →j→∞ p in Ls(Ω ∩ Γ2,ε) because of the compact embedding
W 1

s (Ω ∩ Γ2,ε) →֒ Ls(Ω ∩ Γ2,ε), we conclude

1 = ‖∇pj‖Ls(Ω) ≤ C
(
‖Fj‖Ẇ−1

s,Γ2
(Ω) + ‖pj‖Ls(Ω∩Γ2,ε)

)
→j→∞ 0,

which is a contradiction. Hence (A.1) holds for some Cq and s = q, q′. Therefore
(A2) holds due to Proposition A.1.
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