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Quasistatic delamination problem

Tomáš Roub́ıček∗†, Lucia Scardia‡, Chiara Zanini§

Abstract

We study delamination of two elastic bodies glued together by an adhesive
that can undergo a unidirectional inelastic rate-independent process. The
quasistatic delamination process is thus activated by time-dependent external
loadings, realized through body forces and displacements prescribed on parts
of the boundary. The novelty of this work consists of considering the glue as
infinitesimally thin and ideally rigid in the sense that a crack in the glue cannot
be seen before, speaking “microscopically”, all macromolecular links of the
adhesive are fully debonded. The concept of energetic solution is applied and
existence of such solutions is proved by showing Γ-convergence of a suitable
approximation that, in addition, allows for a direct computer implementation,
unlike the original problem.

Keywords: delamination, debonding, rate-independent processes, energetic formu-
lation, Γ-convergence.
Mathematics Subject Classification (2000): 49J40, 74G65, 74R05, 74M15, 35K90

1 Introduction

We are interested in the problem of several elastic bodies glued together by an adhe-
sive that can undergo an inelastic process of “delamination” (sometimes also called
“debonding”). Upon loading, “microscopically” speaking, some macromolecules in
the adhesive may break and we assume that they can never be glued back, i.e., no
“healing” is possible. This makes the process unidirectional (sometimes also called
irreversible) and its analysis becomes more difficult than if healing is allowed. On
the glued surface, we consider the delamination process as rate-independent and,
in the bulk, we neglect all inertial or viscous-like effects, so that the whole prob-
lem is rate-independent. Moreover, we confine ourselves to small strains and, just
for a notational simplicity, we consider only two bodies Ω1 and Ω2 glued together
along the contact surface Γc. At a current time, the “volume fraction” of debonded
molecular links will be “macroscopically” described by the scalar delamination pa-
rameter z : Γc → [0, 1]. The state z(x) = 0 means that the surface is completely
debonded at x ∈ Γc, the intermediate state 0 < z(x) < 1 means that there are some
molecular links which have been broken but the remaining ones are effective, while
z(x) = 1 means that the adhesive is still 100% undestroyed and thus fully effec-
tive. Activating the delamination process at a given point x ∈ Γc needs a certain
(phenomenologically prescribed) energy per unit area a(x) = a0(x) + a1(x) whose
part a0 is considered as stored into increase of energy by debonding the surface at
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x and another part a1 as dissipated, e.g. into chaotic lattice vibrations (i.e., heat,
cf. Remark 4.2 below).

We consider here the case of linearized elasticity for some energy functional
E∞ and of a non-symmetric dissipation potential R, see (2.10) and (2.7) below.
Moreover, we take into account the local non-interpenetration of matter by asking,
for the displacement u, that [u]Γc

· ν ≥ 0 on Γc, where ν denotes the unit normal to
Γc oriented, say, from Ω2 to Ω1 and then [u]Γc

= u+ − u−, with u+ (resp. u−) being
the trace on Γc of the restriction of u to Ω1 (resp. to Ω2).

The aim of this work is to obtain existence of special weak, so-called energetic,
solutions (u, z) associated with E∞ and R such that

[u(x)]Γc
= 0 for a.e. x such that z(x) > 0. (1.1)

This condition models the glue as infinitesimally thin and ideally rigid in the sense
that a crack in the glue at the “macroscopic” point x ∈ Γc cannot be seen before all
macromolecular links of the adhesive are fully debonded, i.e., before z(x) attains 0
at some time. Thus, at a current time, the crack set is defined by { x ∈ Γc|z(x) = 0 }.
For the concept of energetic solutions we refer to [20, 23, 24, 25].

Existence of a solution as well as its direct numerical implementation does not
seem straightforward because of the discontinuous character of the condition (1.1)
related with the ideal thinness and rigidity of the glue. Therefore the idea is to
consider first energetic solutions (uk, zk) associated with a modified energy func-
tional Ek and with the same dissipation potential R, and then, after proving that
Ek Γ-converges to E∞, apply the results in [22] obtaining an energetic solution (u, z)
associated with the original E∞ and R. The modified energy functional Ek we will
consider (see (2.14) below) actually differs from E∞ via the surface term

∫

Γc

kz[u]2Γc
dH

d−1, where we abbreviate [u]2Γc
:=

∣∣[u]Γc

∣∣2, (1.2)

replacing the theoretically and numerically troublesome condition (1.1) and repre-
senting the elastic energy stored in the adhesive, as also previously considered, e.g.,
in [18, 19]. In particular, existence of an energetic solution (uk, zk) for Ek and R
has been already established.

Notice that the energy Ek can be finite even for a displacement u for which
z[u]Γc

6= 0 on a subset of Γc with positive H d−1-measure. However, the product
z[u]2Γc

in (1.2) is highly penalized by the factor k, so that the constraint (1.1) is
obtained in the limit when k → ∞.

Our model is related to [16, 17, 26, 27], where the evolution of a single crack
with prescribed path is studied, in the case of a single crack tip. The present model
allows for more general crack sets although, for some specific loadings, it seems
possible that it would give the same response as the models mentioned above. The
approximating (and regularized) problem containing the surface term (1.2) has been
considered already in [18, 19], and is also related to [4, 5, 9], where a prescribed crack
path is considered for cohesive-zone models describing delamination with partially
debonded crack surfaces. Moreover, according to Barenblatt’s cohesive-zone model
[1], the energy density needed to produce a new crack (or to increase an existing
one) depends on the crack opening, namely on [u]Γc

.
Following the approach in [3], one might consider a non-negative measure µ tak-

ing values in {0,∞}, instead of the delamination parameter z. In this case, however,
it is not clear how to define the dissipation distance. Moreover, no implementable
numerical scheme has been devised for such model.
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2 The model, its energetic formulation and ap-

proximation

Let Ω ⊂ Rd (d = 2, 3) be a Lipschitz domain, and let us consider its decomposition
Ω = Ω1 ∪ Γc ∪ Ω2, where Ω1 and Ω2 are two disjoint Lipschitz sub-domains and Γc

is their common boundary. Thus, Γc represents a prescribed delamination (d−1)-
dimensional surface. We assume that ∂Ω is the union of two disjoint subsets ΓD

and ΓN, with

H
d−1(∂Ωi ∩ ΓD) > 0, i = 1, 2, (2.1)

where H d−1 denotes the (d−1)-dimensional Hausdorff measure. Moreover, we as-
sume Γc ∩ ΓD = ∅, cf. Figure 1. On the Dirichlet part of the boundary ΓD we
impose a time-dependent boundary displacement wD(t), while the remaining part
ΓN is assumed to be free. Therefore, any admissible displacement ũ : Ω \ Γc → Rd

has to be equal to a prescribed “hard-device” loading wD(t) on ΓD.

Ω1

Ω2

Γc
ΓN

ΓN

ΓD

ΓD

Fig. 1. Illustration of the geometry and of the notation.

As already outlined in Section 1, we assume, like in [18, 19], that Ω1 and Ω2 are
glued together along the surface Γc, and that the volume fraction of the debonded
molecular links in the adhesive is represented by the scalar delamination parameter
z : Γc → [0, 1].

We consider the case of linearized elasticity and assume that the elastic energy
V0 stored in the volume Ω is

V0(ũ) :=
1

2

∫

Ω1∪Ω2

Ce(ũ):e(ũ)dx =
1

2

∑

i=1,2

∫

Ωi

Ce(ũ):e(ũ)dx, (2.2)

where C ∈ Lin(Md×d
sym ) represents the elasticity tensor, and Md×d

sym is the set of (d×d)-

symmetric matrices, while e(ũ) := 1
2 (∇ũ)⊤ + 1

2∇ũ is the small-strain tensor. We
assume that C is a positive definite tensor, i.e.,

∃µ > 0 ∀A ∈ M
d×d
sym : CA:A ≥ µ|A|2. (2.3)

In order to make possible the application of [22, Theorem 3.1], we assume the
prescribed boundary displacement wD and the applied bulk force f to be qualified
as

wD∈C1([0, T ]; H1/2(ΓD; Rd)), f∈C1([0, T ]; Lr(Ω; Rd)), r >
{ 6/5 if d = 3,

1 if d = 2.
(2.4)

As already introduced in Sect. 1, [u]Γc
= u+−u− is the jump of u across Γc, and

[u]n,Γc
= [u]Γc

·ν is the jump of the normal displacement across Γc. We recall that
ν denotes the unit normal to Γc oriented from Ω2 to Ω1 and that u+ (resp. u−) is
the trace on Γc of the restriction of u to Ω1 (resp. to Ω2).
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The state of the system is represented by an element q = (ũ, z) of the state space
Q, defined by

Q := U × Z, with U := H1(Ω1 ∪ Ω2; R
d), Z := L∞(Γc). (2.5)

We define the stored energy functional Ẽ∞ : [0, T ]×Q → R ∪ {∞} as

Ẽ∞(t, ũ, z) :=





Ṽ(t, ũ) −

∫

Γc

a0zdH
d−1 if ũ = wD(t) on ΓD,

[ũ]n,Γc
≥ 0 and 0 ≤ z ≤ 1 on Γc,

[ũ(x)]Γc
= 0 if z(x) > 0,

∞ elsewhere,

(2.6a)

with Ṽ(t, ũ) := V0(ũ)−

∫

Ω1∪Ω2

f(t)·ũdx =

∫

Ω1∪Ω2

1

2
Ce(ũ):e(ũ) − f(t)·ũdx,

(2.6b)

where a0(x) ≥ 0 is the energy per unit (d−1)-dimensional area deposited “micro-
scopically” into broken interatomic links of the delaminated adhesive. Along the
glue, we assume that the energy needed for switching z(x) from 1 to 0 is irreversibly
dissipated. Namely, we consider the case when delamination is a unidirectional pro-
cess allowing no healing, and put

R(
.

z) :=

∫

Γc

δ(−∞,0](
.

z) − a1
.

zdH
d−1 =





−

∫
Γc

a1
.

zdH d−1 if
.

z ≤ 0 a.e. on Γc,

∞ elsewhere,
(2.7)

where a1(x) ≥ a1,min > 0 is an energy per unit (d−1)-dimensional area dissipated
by delaminating the surface at x ∈ Γc. Once delaminated, the surface cannot be
glued back, and this irreversibility behavior ultimately causes the non-symmetry of
R.

Here it is convenient, like in [13, Sect.4] or [16], to use the additive split ũ =
u + uD(t), uD(t) being an extension of wD(t) to Ω. In view of (2.4) and of the
assumption Γc ∩ ΓD = ∅, we can assume

uD∈C1([0, T ]; H1(Ω; Rd)) & uD|Γc
= 0. (2.8)

Note that, in particular, [u+uD(t)]Γc
= [u]Γc

. This will allow for the construction of
a joint recovery sequence (see (3.17)) and for passing to the limit in the regularized
problems. We remark that the regularized problems admit solutions even if Γc∩ΓD 6=
∅, cf. [18].

Accordingly, we thus define the energy functional E∞ : [0, T ]×Q → R∪{∞} by

E∞(t, u, z) := Ẽ∞(t, u + uD(t), z). (2.9)

Note that, when E∞(t, u, z) < ∞, the displacement u has to be equal to zero on
ΓD, in the sense of traces. In view of (2.6), the transformed energy E∞ from (2.9)
takes the form

E∞(t, u, z) =





V(t, u) −

∫

Γc

a0zdH
d−1 if u = 0 on ΓD,

[u]n,Γc
≥ 0 and 0 ≤ z ≤ 1 on Γc,

[u(x)]Γc
= 0 if z(x) > 0,

∞ elsewhere,

(2.10a)

with V(t, u) :=

∫

Ω1∪Ω2

1

2
Ce(u+uD(t)):e(u+uD(t)) − f(t)·(u+uD(t))dx. (2.10b)
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We are interested in the notion of energetic solution associated with E∞ and
R and with an initial condition q0 = (u0, z0) ∈ Q, as introduced by Mielke et
al. [23, 24, 25] (see also the survey [20]). We say that the process q(t) = (u(t), z(t))
is stable for (E∞,R) at time t ∈ [0, T ], if

E∞(t, u(t), z(t)) ≤ E∞(t, û, ẑ) + R(ẑ − z(t)) ∀ (û, ẑ) ∈ Q. (2.11)

Definition 2.1 (Energetic solution.) We call q = (u, z) : [0, T ] → Q an ener-
getic solution of the initial-value problem determined by the quadruple (E∞,R, u0, z0)
if
(i) q(0) = (u(0), z(0)) = (u0, z0),

(ii) t 7→ ∂tE∞(t, q(t)) ∈ L1(0, T ),

(iii) q(t) is stable for (E∞,R) at time t in the sense of (2.11),

(iv) E∞(t, q(t))+VarR(q, [0, t]) = E∞(0, q(0))+
∫ t

0 ∂sE∞(s, q(s))ds for all t ∈ [0, T ].

The R-variation VarR(q, [0, t]) of the function q(·) = (u(·), z(·)) over the time in-
terval [0, t] is defined as

VarR(q, [0, t]) := sup

N∑

i=1

R
(
z(ti) − z(ti−1)

)

where the supremum is taken over all N ∈ N and over all partitions 0 = t0 < t1 <
· · · < tN = t of the interval [0, t].

Note that if VarR(q, [0, t]) < ∞ then, for q = (u, z), the map z(·, x) is non-increasing
in time for a.e. x ∈ Γc and

VarR(q, [0, t]) = R
(
z(t) − z(0)

)
. (2.12)

Indeed this follows by the definition of R given in (2.7).
We observe that due to definition (2.10), we have that ∂tE∞(t, u, z) = ∂tV(t, u)

when E∞(t, u, z) < ∞, where

∂tV(t, u) =

∫

Ω1∪Ω2

Ce
(
u+uD(t)

)
:e

(
∂tuD(t)

)
− ∂tf(t)·(u+uD(t)) − f(t)·∂tuD(t)dx.

(2.13)

We define the approximating stored energy functionals Ek : [0, T ] × Q → R ∪ {∞}
as

Ek(t, u, z) :=





V(t, u) +

∫

Γc

(k[u]2Γc
− a0)zdH

d−1 if u = 0 on ΓD,

[u]n,Γc
≥ 0 and 0 ≤ z ≤ 1 on Γc,

∞ elsewhere,

(2.14)

with V defined in (2.10b). We notice that the regularizing term in Ek, describing
the elastic energy stored in the adhesive, is the same as in (1.2). Moreover, the
regularized problem can actually be implemented on computers after additional
time-spatial discretization, as documented in [18, Proposition 3.3].

Energetic solutions to (Ek,R, q0) are defined analogously as before, i.e., by Def-
inition 2.1 but with E∞ replaced by Ek. We note that ∂tEk = ∂tV = ∂tE∞.

Proposition 2.2 (Existence of energetic solutions to regularized problems
[18].) Let (2.1), (2.3), (2.4), and (2.8) be satisfied and let qk

0 = (uk
0 , z

k
0 ) be a

sequence of initial conditions, with qk
0 stable for (Ek,R) at time t = 0. Then for

every k ∈ N there exists an energetic solution (uk, zk) associated with (Ek,R, uk
0 , z

k
0 ).
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This existence result has essentially been proved in [18, Proposition 3.3]. The
proof consists of approximating the continuous-time problem by discrete-time prob-
lems, for which the solution is defined via an incremental minimization method. In-
deed, for each k ∈ N, let us fix a sequence of partitions {0 = tn0 < tn1 < · · · < tnn = T }
of the interval [0, T ] with max1≤i≤n(tni − tni−1) → 0 as n → ∞. For every n ∈ N the
pair (un

i , zn
i ) is defined by induction as follows. For i = 0 we set (un

0 , zn
0 ) := (uk

0 , zk
0 ),

while for i = 1, . . . , n we define

(un
i , zn

i ) ∈ Argmin { Ek(tni , u, z) + R(z−zn
i−1) | (u, z) ∈ U × Z }.

Existence of the “time-discrete” solution (un
i , zn

i ) follows from lower semicontinuity
properties and coercivity. Then it is convenient to define the piecewise constant
interpolants associated with the discrete solution via (un(t), zn(t)) := (un

i , zn
i ) for

t ∈ [tni , tni+1). A suitable choice for a test function provides the a priori estimate
‖un‖L∞(0,T ;U) ≤ C, while the a priori estimate ‖zn‖L∞(0,T ;Z) ≤ C follows easily
from the fact that |zn(t)| ≤ 1 for every n and t. Then there exists a subsequence
converging to some limit pair (u, z) and one has to show that it is an energetic
solution associated with Ek and R. This is nontrivial but well developed in the
literature (see, e.g. [8, 13, 20] and references therein).

3 Γ-convergence of the regularized problems

First, let us recall the notion of Γ-convergence introduced by De Giorgi in [10]. For
a comprehensive introduction to this topic, see also [2, 7].

In its more general setting, Γ-convergence applies to a family of functionals de-
fined on a topological space, with respect to the convergence induced by the topol-
ogy. In the particular case of functionals defined on a metric space, the definition of
this variational convergence simplifies, by means of the sequential characterization
of the convergence.

More precisely, for given G,Gk : X → R ∪ {∞}, where X is a metric space, we
say that the sequence {Gk}k∈N Γ-converges to G and that the functional G is the
Γ-limit of {Gk}k∈N if for every w ∈ X the following two conditions are satisfied:

(liminf inequality) ∀(wk)k∈N, wk
X
→ w : G(w) ≤ lim inf

k→∞
Gk(wk); (3.1a)

(recovery sequence) ∃ (ŵk)k∈N, ŵk
X
→ w : G(w) ≥ lim sup

k→∞

Gk(ŵk). (3.1b)

In the following we consider the case Gk = Ek(t, ·), for fixed t ∈ [0, T ] and X = Q,
so that w = q. We will derive the Γ- limit of the sequence (Ek(t, ·)) with respect to
the topology in Q defined by the convergence

qk
Q
→ q

def
⇐⇒

{
uk ⇀ u in U = H1(Ω1 ∪ Ω2; R

d),

zk
∗
⇀ z in Z = L∞(Γc).

Notice that due to the coercivity of the functionals Ek(t, ·), we work essentially with
bounded subsets of Q, where the Q-topology is metrizable (since H1 has a separable
dual and L∞ is the dual of the separable space L1). Therefore we can equivalently
work with sequences.

The following result reveals the functional E∞ defined in (2.10) as the correct
limit of the functionals Ek defined in (2.14) or, vice versa, the sequence (Ek) as the
correct approximation of E∞.

Lemma 3.1 (Γ-limit of the stored energy.) Let t ∈ [0, T ]. Under assumptions
(2.1), (2.3), (2.4), and (2.8), the sequence {Ek(t, ·)}k∈N Γ-converges (with respect to
the Q-topology) to E∞(t, ·), where E∞ is defined in (2.10).
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Proof: Compactness of sequences with equibounded energy. Let qk = (uk, zk) ⊂
Q be a sequence with equibounded energy, i.e.,

sup
k

Ek(t, qk) ≤ c < ∞. (3.2)

Then we can deduce in particular that, for i = 1, 2, and for every k,

1

2

∫

Ωi

Ce(uk + uD(t)) : e(uk + uD(t)) dx ≤ c. (3.3)

Therefore, since uk = 0 on ∂Ωi ∩ ΓD, and H d−1
(
∂Ωi ∩ ΓD

)
> 0 for i = 1, 2 by

(2.1), assumptions (2.3), (2.4), (2.8), and Korn’s inequality (see [15]) imply

sup
k

‖uk‖H1(Ω1∪Ω2;Rd) ≤ c. (3.4)

Hence, there exists u ∈ U = H1(Ω1 ∪ Ω2; R
d) such that

uk ⇀ u in U .

This entails in particular the convergence of the traces of uk on Γc to the corre-
sponding traces of the limit function u, i.e.,

u+
k → u+ and u−

k → u− in L2(Γc; R
d). (3.5)

Thus also [uk]Γc
→ [u]Γc

in L2(Γc; R
d). On the other hand, since supk ‖zk‖L∞(Γc) ≤

1, we directly deduce the existence of z ∈ Z = L∞(Γc), 0 ≤ z ≤ 1 a.e. on Γc, such
that

zk
∗
⇀ z in Z. (3.6)

From (3.5) and (3.6) it follows that

lim
k→∞

∫

Γc

zk[uk]2Γc
dH

d−1 =

∫

Γc

z[u]2Γc
dH

d−1. (3.7)

Therefore, since from (3.2) we have in particular that
∫

Γc

zk[uk]2Γc
dH

d−1 ≤
c

k
,

then, by (3.7) we get ∫

Γc

z[u]2Γc
dH

d−1 = 0.

Hence, in particular, z[u]Γc
= 0 H d−1-a.e. on Γc, or, equivalently, since z ≥ 0, we

have that (1.1) is satisfied.
Liminf inequality. Let q = (u, z) ∈ Q and let (qk)k∈N = (uk, zk)k∈N be such that

(uk, zk)
Q
→ (u, z) and supk Ek(t, uk, zk) < ∞. Then, by the compactness result pro-

vided in the first part of the proof we have that (u, z) belongs to the domain where
E∞ is finite. Moreover, by lower semicontinuity with respect to the convergence in
Q,

lim inf
k→∞

Ek(t, uk, zk) ≥ E∞(t, u, z). (3.8)

Limsup inequality. Let q = (u, z) ∈ Q be such that E∞(t, q) < ∞. The existence
of the recovery sequence in (3.1b) (where, clearly, X = Q, Gk = Ek(t, ·), and G =
E∞(t, ·)) is trivial; we can just take qk = q for every k.

Now we extend the result of the previous theorem, taking into account also the
dependence on the parameter t ∈ [0, T ]. More precisely, in what follows, X =
[0, T ]×Q, Gk = Ek, and w = (t, q).
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Corollary 3.2 Under assumptions (2.1), (2.3), (2.4), and (2.8), the sequence of
functionals {Ek}k∈N Γ-converges (with respect to the ([0, T ]×Q)-topology) to E∞.

Proof: Limsup inequality. Let (t, q) ∈ [0, T ] ×Q be such that E∞(t, q) < ∞.
It is then sufficient to define the sequence (tk, qk) := (t, q).

Liminf inequality. Let tk → t, and (uk, zk)
Q
→ (u, z) be such that supk Ek(tk, uk, zk) <

∞. Note that

Ek(tk, uk, zk) = Ek(t, uk, zk) +

∫

Ω1∪Ω2

[
Ce(uk):e(uD(tk)−uD(t))

+
1

2
Ce(uD(tk)):e(uD(tk)) −

1

2
Ce(uD(t)):e(uD(t))

− (f(tk)−f(t))·uk − f(tk)·uD(tk) + f(t)·uD(t)
]
dx.

Since ‖uk‖H1(Ω1∪Ω2;Rd) is equibounded (by the same argument as in the Compact-
ness part in the proof of Lemma 3.1), using also (2.4) and (2.8), we find that
Ek(tk, uk, zk) − Ek(t, uk, zk) converges to zero as k → ∞. Hence it is sufficient to
apply the same arguments as in the Liminf part in the proof of Lemma 3.1.

Existence of an energetic solution (u, z) associated with E∞ and R can now be
stated and proved.

Theorem 3.3 (Existence of solutions to the original problem.) Let the
assumptions of Proposition 2.2 be satisfied. Assume in addition that qk

0 = (uk
0 , zk

0 )

satisfy qk
0

Q
→ q0 and Ek(0, qk

0 ) → E∞(0, q0).Then the energetic solutions qk = (uk, zk)
for (Ek,R, qk

0 ) converge (in terms of subsequences) to an energetic solution q = (u, z)
associated with (E∞,R, q0), namely
(i) uk(t) ⇀ u(t) in H1(Ω1 ∪ Ω2; R

d) for any t ∈ [0, T ],

(ii) zk(t)
∗
⇀ z(t) in L∞(Γc) for any t ∈ [0, T ],

(iii) Ek(t, uk(t), zk(t)) → E∞(t, u(t), z(t)) for any t ∈ [0, T ],

(iv) ∂tEk(·, uk(·), zk(·)) → ∂tE∞(·, u(·), z(·)) in L1(0, T ).

The proof consists of an application of Theorem 3.1 in [22]. The crucial assump-
tion to be verified is the existence of a so-called joint recovery sequence. We recall
the property that a joint recovery sequence (q̂kℓ

) is required to satisfy.

∀ (tℓ, qkℓ
) stable sequence with (tℓ, qkℓ

)
[0,T ]×Q
−→ (t, q), ∀ q̂ ∈ Q ∃ q̂kℓ

Q
→ q̂ :

lim sup
ℓ→∞

(
Ekℓ

(tℓ, q̂kℓ
)+R(q̂kℓ

−qkℓ
)−Ekℓ

(tℓ, qkℓ
)
)
≤ E∞(t, q̂)+R(q̂−q)−E∞(t, q),

(3.9)

where, as in [22], we say that a sequence (tℓ, qkℓ
) ∈ [0, T ]×Q is a stable sequence if

qkℓ
is stable for (Ekℓ

,R) at time tℓ and sup
ℓ∈N

Ekℓ
(tℓ, qkℓ

) < ∞. (3.10)

Proof of Theorem 3.3: We first verify that the assumptions required in [22,
Theorem 3.1] on the dissipation potential R, on the energy functional E∞ and
on its power ∂tE∞ are easily satisfied in the present situation. Indeed, let us ob-

serve first that for stable sequences (tℓ, qkℓ
) and (tℓ, q̂kℓ

) with (tℓ, qkℓ
)

[0,T ]×Q
−→ (t, q),

(t̂ℓ, q̂kℓ
)

[0,T ]×Q
−→ (t̂, q̂), we have

R(q̂ − q) ≤ lim inf
ℓ→∞

R(q̂kℓ
− qkℓ

),
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which corresponds to [22, condition (2.5)]. We then observe that, if Ek(t, u, z) <
∞, then ∂tEk(t, u, z) = ∂tV(t, u) whose expression is given by (2.13). Hence, by
using our assumptions (2.4) and (2.8) on the data, the following three properties
(corresponding to [22, conditions (2.7)–(2.9)]) hold true:

Uniform control of ∂tEk:
∃ c0 ∈ R ∃ c1 > 0 ∀ k ∈ N ∪ {∞} ∀ t ∈ [0, T ] ∀ q ∈ Q with Ek(t, q) < ∞ :
Ek(·, q) ∈ C1([0, T ]) and

∣∣∂tEk(s, q)
∣∣ ≤ c1

(
c0 + Ek(s, q)

)
∀ s ∈ [0, T ].

Uniform time-continuity of the power ∂tE∞:
∀ ε > 0 ∀E ∈ R ∃ δ > 0 :
E∞(t, q) ≤ E and

∣∣t1 − t2
∣∣ < δ =⇒

∣∣∂tE∞(t1, q) − ∂tE∞(t2, q)
∣∣ < ε.

Conditioned continuous convergence of the power:

∀ stable sequence (tℓ, qkℓ
)

[0,T ]×Q
−→ (t, q) : ∂tEkℓ

(tℓ, qkℓ
) → ∂tE∞(t, q).

Moreover, the lower Γ-limit for Ek, which corresponds to [22, condition (2.10)], has
been just proved in Lemma 3.1 and Corollary 3.2.

Let now qk = (uk, zk) be an energetic solution for (Ek,R, q0). We need to

prove that qk(t)
Q
→ q(t) for all t ∈ [0, T ]. First of all we derive suitable a priori

estimates. By using (0, zk(t)) as test for the stability condition (2.11) for (Ek,R)
at time t, we obtain that Ek(t, uk(t), zk(t)) is bounded uniformly with respect to t.
By the assumptions (2.3), (2.4), and (2.8), we derive that ‖e(uk(t))‖L2(Ω1∪Ω1;Md×d

sym )

is bounded uniformly with respect to t. By Korn’s inequality we obtain that there
exists a positive constant C such that

sup
t∈[0,T ]

‖uk(t)‖H1(Ω1∪Ω2;Rd) ≤ C. (3.11)

Moreover, since 0 ≤ zk(t) ≤ 1 on Γc, we have also that

sup
t∈[0,T ]

‖zk(t)‖L∞(Γc) ≤ C, (3.12)

for a possibly different constant C.
As the delamination process is unidirectional and thus monotone (and, in partic-

ular, also of bounded variation), we can apply the classical Helly’s selection principle
that gives a subsequence (not relabeled) and a limit function z non-increasing in
time such that

zk(t)
∗
⇀ z(t) in L∞(Γc) ∀t ∈ [0, T ], (3.13)

as claimed in the point (ii).
By (3.11), there exists a (possibly t-dependent) subsequence (see also, e.g., [8,

13]) uk such that
uk(t) ⇀ u(t) in H1(Ω1 ∪ Ω2; R

d). (3.14)

Yet, due to (2.1) and Korn’s inequality, u(t) is determined uniquely by z(t) and
thus there is no need of selecting a further subsequence. Hence, point (i) is proved.

In order to apply [22, Theorem 3.1] it remains to exhibit a joint recovery sequence
as in (3.9). By [22, Proposition 2.2], in view of Lemma 3.1 and Corollary 3.2, we
can prove the following condition, which implies (3.9):

∀ stable sequence (tℓ, qkℓ
)

[0,T ]×Q
−→ (t, q), ∀ q̂ ∈ Q ∃ q̂kℓ

Q
→ q̂ :

lim sup
ℓ→∞

(
Ekℓ

(tℓ, q̂kℓ
) + R(q̂kℓ

− qkℓ
)
)
≤ E∞(t, q̂) + R(q̂ − q).

(3.15)

So, let q̂ ∈ Q, let (t, q) be fixed and let (tℓ, qkℓ
) be a stable sequence with (tℓ, qkℓ

) =
(tℓ, ukℓ

, zkℓ
) converging to (t, q) = (t, u, z). We need to construct a sequence

9



(tℓ, q̂kℓ
) = (tℓ, ûkℓ

, ẑkℓ
) satisfying (3.15). To this goal, we proceed similarly as in [21,

Formula (5.41)]; cf. also [19, Lemma 6.1] where a closely related rate-independent
delamination problem was considered. First of all we notice that the inequality
(3.15) is nontrivial only when the right-hand side is finite, i.e., for q̂ = (û, ẑ) such
that

0 ≤ ẑ ≤ z, (3.16a)

[û(x)]Γc
= 0 for a.e. x such that ẑ(x) > 0. (3.16b)

We claim that the recovery sequence q̂k in (3.15) can be taken as

ûkℓ
:= û, ẑkℓ

:=

{
zkℓ

ẑ/z where z > 0,

0 where z = 0.
(3.17)

Note that the convergence zkℓ

∗
⇀ z in L∞(Γc) assumed in (3.15) implies ẑkℓ

∗
⇀ ẑ in

L∞(Γc), as required in (3.15). Then it remains to verify the inequality for the limit
superior in (3.15). We note that for the term R we have an equality in the limit, as

lim
ℓ→∞

R(ẑkℓ
−zkℓ

) = lim
ℓ→∞

∫

Γc

a1(zkℓ
−ẑkℓ

)dH
d−1 =

∫

Γc

a1(z−ẑ)dH
d−1 = R(ẑ−z),

where we used that (3.16a) implies that 0 ≤ ẑkℓ
≤ zkℓ

on Γc. Moreover, for Ekℓ
we

have

lim
ℓ→∞

Ekℓ
(tℓ, q̂kℓ

) = lim
ℓ→∞

∫

Ω1∪Ω2

1

2
Ce(ûkℓ

+uD(tℓ)):e(ûkℓ
+uD(tℓ))

− f(tℓ)·(ûkℓ
+uD(tℓ))dx +

∫

Γc

(kℓ[ûkℓ
]2Γc

− a0)ẑkℓ
dH

d−1

= lim
ℓ→∞

∫

Ω1∪Ω2

1

2
Ce(û+uD(tℓ)):e(û+uD(tℓ))

− f(tℓ)·(û+uD(tℓ))dx +

∫

Γc

(kℓ[û]2Γc
− a0)ẑkℓ

dH
d−1

= E∞(t, q̂). (3.18)

Indeed, due to (3.17), it turns out that kℓẑkℓ
[û]2Γc

= 0 on the set { x ∈ Γc |z(x) = 0 }.
Actually, due to (3.16b), the same equality holds true also on the (complementary)
set { x ∈ Γc |z(x) > 0 }. Therefore q̂kℓ

= (ûkℓ
, ẑkℓ

) is indeed the sought joint recovery
sequence.

Altogether, we can apply [22, Theorem 3.1], showing that (u, z) is an energetic
solution to the original problem and also that points (iii)–(iv) hold true.

4 Concluding remarks

Remark 4.1 (Classical formulation of the regularized problem.) The energetic
formulation is related with the doubly-nonlinear evolution inclusions of the type
∂R(∂q

∂t )+ ∂qEk(t, q) ∋ 0, for k ∈ N∪{∞}, cf. [20, 24]. In the case of the regularized
problem governed by Ek and R it is even possible to rewrite the differential inclu-
sions in a classical formulation in terms of complementarity problems, like in [18].
More precisely, for given k ∈ N, an energetic solution (u, z) associated with Ek and
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R satisfies the following equations, where we set ũ = u + uD:

− div
(
Ce(ũ(t))

)
= f(t) on Ω1 ∪ Ω2, (4.1a)

ũ(t) = wD(t) on ΓD, (4.1b)

T (ũ(t)) = 0 on ΓN, (4.1c)
[
Ce(ũ(t))

]
Γc

ν = 0

2kz(t)ũt(t) − Tt(ũ(t)) = 0

ũn(t) ≥ 0

2kz(t)ũn(t) − Tn(ũ(t)) ≥ 0(
2kz(t)ũn(t) − Tn(ũ(t))

)
ũn(t) = 0

.

z(t) ≤ 0

k[ũ(t)]2Γc
− r(z(t)) ≤ a0 + a1

.

z(t)(k[ũ(t)]2Γc
− r(z(t)) − a0 − a1) = 0





on Γc. (4.1d)

In the previous equations, T (ũ) = Ce(ũ)|Γν denotes the traction stress on Γ = Γc or
Γ = ΓN. Moreover, its normal and tangential components on Γc are denoted with
Tn(ũ) = (T (ũ) ·ν)ν and Tt(ũ) = T (ũ)− (T (ũ) ·ν)ν, respectively, so that we have the
decomposition T (ũ) = Tn(ũ) + Tt(ũ). Similarly we decompose the jump [ũ]Γc

into
normal and tangential components, as [ũ]Γc

= ũn + ũt. We remark that, since by
our choice ν turns out to be the inner unit normal on Ω1, in (4.1d) there is a minus
sign in front of Tt(ũ) and Tn(ũ). Note also that, due to [Ce(ũ)]Γc

ν = 0 in (4.1d),
the traction stress T (ũ) is well defined on Γc by the formula T (ũ) = Ce(ũ)|Γν, no
matter from which side of Γc the limit is taken. Moreover, r(z) ∈ N[0,1](z) with
N[0,1] denoting the normal cone to [0, 1]. On the other hand, a classical formulation
of the original problem governed by E∞ and R does not seem obvious. This might
be due to loss of a linear-space structure of this problem.

Remark 4.2 (Thermodynamical context.) The classical formulation (4.1) reveals
that, from a purely mechanical viewpoint, only the sum a0 + a1 =: a plays a role,
and that such a has to be understood as an activation energy per unit area needed
to trigger the delamination process. This effect is due to the irreversibility of the
delamination process. Indeed, the stored energy a0(1−z) cannot be gained back
and is thus forever dissipated as well as the contribution a1(1−z) in the dissipation
potential. However, if the full thermodynamically consistent system of the mechan-
ical equations/inequalities like (4.1) and of a heat equation is considered, only the
part a1 contributes to the entropy and thus to the heat production, while the part
a0 is merely nondissipative in the sense that this part of total energy a spent by de-
lamination is irreversibly stored into the delaminated surface itself. This suggested
the splitting of a into a0 + a1 adopted in this paper. We underline that the case
a1 = 0 has been considered in [14], while the opposite case a0 = 0 has been adopted
in [18].

Remark 4.3 (Materials with nonlinear response.) Instead of a quadratic stored
energy as in (2.2), corresponding to a linearly elastic material, one can consider
a nonquadratic stored energy W : Md×d

sym → R of class C1 satisfying, for some
1 < p < ∞ and some constants ci > 0, the following estimate

∀A ∈ M
d×d
sym : c1|A|p − c2 ≤ W (A) ≤ c3(1 + |A|p). (4.2)

With this choice, the corresponding energy functionals E∞ and Ek are defined as in
(2.10a) and (2.14), where the stored bulk energy in (2.10b) is replaced with

V(t, u) :=

∫

Ω1∪Ω2

W (e(u+uD(t))) − f(t)·(u+uD(t))dx. (4.3)
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The mathematical arguments used above are preserved essentially as far as the weak
lower semicontinuity of V(t, ·) is guaranteed. This happens, e.g., if W is quasiconvex.
Then, from (4.2), one can derive an estimate for the derivative DW of the energy
density, namely

∀A ∈ M
d×d
sym : |DW (A)| ≤ c4(1 + |A|p−1)

for some constant c4 > 0. Under these assumptions, for the stored bulk energy V
given in (4.3), the existence of an energetic solution (uk, zk) associated with Ek and
R can be derived, as the assumptions of the general Theorem 4.5 of [19] are satisfied.
Moreover, it is easy to verify that Ek Γ-converges to E∞. The results of Section 3
can be therefore adapted to this situation, and the existence of an energetic solution
(u, z) associated with E∞ and R can be deduced, as an application of [22, Theorem
3.1]. Indeed, the existence of the joint recovery sequence was obtained by the lower
semicontinuity of the elastic energy, which is guaranteed also in this case. As pointed
out already by L. Tartar, the weak lower semicontinuity of V(t, ·) follows, in fact,
from a weaker assumption on W , the so-called A-quasiconvexity (cf. [6, 11, 12]) for
A being an operator whose kernel consists of all symmetric rotation-free fields.
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plan AV0Z20760514 (ČR), also as a research activity of “Nečas center for mathe-
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