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Abstract

We study the fully entangled fraction (FEF) of arbitrary mixed states.

New upper bounds of FEF are derived. These upper bounds make

complements on the estimation of the value of FEF. For weakly mixed

quantum states, an upper bound is shown to be very tight to the exact

value of FEF.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

Quantum entanglement plays crucial roles in quantum information processing such as

quantum computation [1, 2], quantum teleportation [3, 4], dense coding [5], quantum cryp-

tographic schemes [6], entanglement swapping [7] and remote states preparation (RSP) [8–

10]. For instance in terms of a classical communication channel and a quantum resource

(a nonlocal entangled state like an EPR-pair of particles), the teleportation protocol gives

ways to transmit an unknown quantum state from a sender to a receiver that are spatially

separated. When the sender and receiver share a maximally entangled pure state, the state

can be perfectly teleported. However when the shared entangled state is an arbitrary mixed

state ρ, then the optimal fidelity of teleportation is given by [4, 11],

f(ρ) =
dF(ρ)

d + 1
+

1

d + 1
, (1)

which solely depends on the fully entangled fraction (FEF) F(ρ) of ρ.

In fact the quantity FEF plays essential roles in many other quantum information pro-

cessing such as dense coding, entanglement swapping and quantum cryptography (Bell in-

equalities). Thus it is very important to compute the FEF of general quantum states.

Unfortunately, precise formula of FEF has been only obtained for two qubits systems [12].

For high dimensional systems, it becomes quite difficult to derive an analytic formula for

FEF. In [13] we have derived an upper bound of FEF to give an estimation of the value
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of FEF. In this paper, we derive more tight upper bounds for FEF. These bounds make

complements on the estimation of FEF.

Let H be a d-dimensional complex vector space with computational basis |i〉, i = 1, ..., d.

The fully entangled fraction of a density matrix ρ ∈ H ⊗H is defined by

F(ρ) = max
φ∈ǫ

〈φ|ρ|φ〉, (2)

where ǫ denotes the set of d × d-dimensional maximally entangled pure states. (2) can be

also alternatively expressed as

F(ρ) = max
U

〈ψ+|(I ⊗ U †)ρ(I ⊗ U)|ψ+〉, (3)

where the maximization is taken over all unitary transformations U , |ψ+〉 = 1√
d

d
∑

i=1

|ii〉 is the

maximally entangled state and I is the corresponding identity matrix.

Let h and g be d × d matrices such that h|j〉 = |(j + 1) mod d〉,g|j〉 = ωj|j〉, with

ω = exp{−2iπ
d

}. We can introduce d2 linear-independent d × d-matrices Ust = htgs, which

satisfy

UstUs′t′ = ωst′−ts′Us′t′Ust, Tr(Ust) = dδs0δt0. (4)

{Ust} also satisfy the condition for bases of unitary operators in the sense of [14], i.e.







tr
(

UstU
+

s′t′

)

= dδtt′δss′ ,

UstU
+
st = I.

(5)

{Ust} form a complete basis of d × d-matrices, namely, for any d × d matrix W , W can be

expressed as

W =
1

d

∑

s,t

tr(U+

stW )Ust. (6)

From {Ust}, we can introduce the generalized Bell-states,

|Φst〉 = (I ⊗ U∗
st)|ψ+〉 =

1√
d

∑

i,j

(Ust)
∗
ij|ij〉, and |Φ00〉 = |ψ+〉, (7)

|Φst〉 are all maximally entangled states and form a complete orthogonal normalized basis

of H⊗H.

Theorem 1: For any quantum state ρ ∈ H ⊗H, the fully entangled fraction defined in

(2) and (3) fulfills the following inequality:

F(ρ) ≤ max
j

{λj}, (8)
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where λjs are the eigenvalues of the real part of the matrix M =





T iT

−iT T



, T is a d2×d2

matrix with entries Tn,m = 〈Φn|ρ|Φm〉 and Φj is the maximally entangled basis states defined

in (7).

Proof: From (6), any d × d unitary matrix U can be represented as U =
∑d2

k=1
zkUk,

where zk = 1

d
Tr(U †

kU), Uk are the unitary matrices defined in (4). Define

xl =







Re[zl], 1 ≤ l ≤ d2;

Im[zl], d
2 < l ≤ 2d2

and U
′

l =







Ul, 1 ≤ l ≤ d2;

i ∗ Ul, d
2 < l ≤ 2d2.

(9)

Then the unitary matrix U can be rewritten as U =
∑

2d2

k=1
xkU

′

k. The necessary unitary

condition of U , Tr(UU †) = d, requires that
∑

k x2
k = 1. Set

F (ρ) ≡ 〈ψ+|(I ⊗ U †)ρ(I ⊗ U)|ψ+〉 =
2d2

∑

m,n=1

xmxnMmn, (10)

where Mmn is the entry of the matrix M defined in theorem. From the hermiticity of ρ it is

easily verified that

M∗
mn = Mnm. (11)

To maximize F (ρ) under constraints we get the following equation

∂

∂xk

{F (ρ) + λ(
∑

l

x2

l − 1)} = 0. (12)

Taking into account (11) we obtain an eigenvalue equation,

2d2

∑

n=1

Re[Mk,n]xn = −λxk. (13)

Therefore

F(ρ) = max
U

F (ρ) ≤ max
j

{ηj}, (14)

where ηj = −λj is the corresponding eigenvalues of the real part of matrix M . ¤

The upper bound derived in [13] says that for any ρ ∈ H⊗H, the fully entangled fraction

F(ρ) satisfies

F(ρ) ≤ 1

d2
+ 4||NT (ρ)N(P+)||KF , (15)

where N(ρ) denotes the correlation matrix with entries nij(ρ) given in the expression of ρ

ρ =
1

d2
I ⊗ I +

1

d

d2−1
∑

i=1

ri(ρ)λi ⊗ I +
1

d

d2−1
∑

j=1

sj(ρ)I ⊗ λj +
d2−1
∑

i,j=1

nij(ρ)λi ⊗ λj, (16)

3



λi, i = 1, ..., d2 − 1, are the generators of the SU(d) algebra with Tr{λiλj} = 2δij, ri(ρ) =
1

2
Tr{ρλi(1) ⊗ I}, sj(ρ) = 1

2
Tr{ρI ⊗ λj(2)}, nij(ρ) = 1

4
Tr{ρλi(1) ⊗ λj(2)}, P+ stands for

the projection operator to |ψ+〉, N(P+) is similarly defined to N(ρ), NT stands for the

transpose of N , ||N ||KF = Tr
√

NN † is the Ky Fan norm of N . This upper bound was used

to improve the distillation protocol proposed in [15]. Here we show that the upper bound

in (8) is different from that in (15) by an example.

Example 1: We consider the bound entangled state [16]

ρ(a) =
1

8a + 1
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. (17)

From Fig. 1 we see that for 0 ≤ a < 0.572, the upper bound in (8) is larger than that in

(15). But for 0.572 < a < 1 the upper bound in (8) is always lower than that in (15), i.e.

the upper bound (8) is tighter than (15) in this case.

0.5 0.6 0.7 0.8 0.9 1.0
a

0.334

0.336

0.338

0.340

0.342

Upper Bound

FIG. 1: Upper bound of F(ρ) from (8) (solid line) and upper bound from (15) (dashed line).

By using the operator norm, we have further
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Theorem 2: For any ρ ∈ H ⊗H, the fully entangled fraction F(ρ) satisfies

F(ρ) ≤ max
i

{λi} (18)

where λis are the eigenvalues of ρ.

Proof: For any quantum state ρ and unitary U , we have

〈ψ+|(I ⊗ U †)ρ(I ⊗ U)|ψ+〉 ≤ ‖〈ψ+|‖‖(I ⊗ U †)ρ(I ⊗ U)|ψ+〉‖
≤ ‖(I ⊗ U †)ρ(I ⊗ U)‖‖|ψ+〉‖2 = ‖ρ‖‖|ψ+〉‖2 = ‖ρ‖, (19)

where ‖ρ‖ stands for the operator norm, ‖ρ‖ = sup(‖ρ|x〉‖ : ‖|x〉‖ = 1), ‖|x〉‖ =
√

〈x|x〉.
We have used the Cauchy-Schwarz inequality to obtain the first inequality. The second

inequality is due to the basic property of operator norm. The followed equality follows from

the fact that unitary transformation does not change the operator norm.

From [17] ‖ρ‖ is an eigenvalue of ρ, actually, it is the maximal eigenvalue of ρ, i.e.

‖ρ‖ = maxi{λi} where λis are the eigenvalues of ρ, which ends the proof. ¤

This bound can give rise to further

Corollary: Let |ψ〉 =
∑

ij aij|ij〉 with |||ψ〉|| = 1 be the normalized eigenvector of ρ

with respect to the maximal eigenvalue λmax. If the matrix A with elements Aij =
√

daij

are unitary, the upper bound derived in (18) becomes the exact value of FEF.

Proof: A simple computation shows that

F(ρ) ≤ λmax = 〈ψ|ρ|ψ〉 =
1

d

∑

ij,kl

√
da∗

ij〈ij|ρ
√

dakl|kl〉

=
∑

i,k

1

d
〈ii|I ⊗ A†ρI ⊗ A|kk〉 = 〈ψ+|I ⊗ A†ρI ⊗ A|ψ+〉 ≤ F(ρ).

Thus we have F(ρ) = λmax. ¤

According to the corollary, we can find out when the upper bound derived in theorem 2

becomes the exact value of FEF.

Example 2: Consider the 3 ⊗ 3 state [18]

ρ =
2

7
|ψ+〉〈ψ+| +

α

7
σ+ +

5 − α

7
σ−, (20)

where σ+ = 1

3
(|01〉〈01| + |12〉〈12| + |20〉〈20|), σ− = 1

3
(|10〉〈10| + |21〉〈21| + |02〉〈02|). ρ is

entangled when 3 < α ≤ 5. The maximal eigenvalue of ρ is 2

7
, with the corresponding

normalized eigenvector { 1√
3
, 0, 0, 0, 1√

3
, 0, 0, 0, 1√

3
}. The matrix A related to this eigenvector

is just the 3× 3 identity matrix which is obviously unitary. Thus we have for the state (20),

F(ρ) = 2

7
.

The following upper bound of FEF gives a very tight estimation of FEF for weakly mixed

quantum states.
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Theorem 3: For any bipartite quantum state ρ ∈ H⊗H, the following inequality holds:

F(ρ) ≤ 1

d
(Tr

√
ρA)2, (21)

where ρA is the reduced matrix of ρ.

Proof: Note that the FEF for pure state |ψ〉 is given by [15]

F(|ψ〉) =
1

d
(Tr

√

ρ
|ψ〉
A )2, (22)

where ρ
|ψ〉
A is the reduced matrix of |ψ〉〈ψ|.

For mixed state ρ =
∑

i piρ
i, we have

F(ρ) = max
U

〈ψ+|(I ⊗ U †)ρ(I ⊗ U)|ψ+〉

≤
∑

i

pi max
U

〈ψ+|(I ⊗ U †)ρi(I ⊗ U)|ψ+〉

=
1

d

∑

i

pi(Tr
√

ρi
A)2 =

1

d

∑

i

(Tr
√

piρ
i
A)2. (23)

Let λij be the real and nonnegative eigenvalues of the matrix piρ
i
A. Recall that for any

function F =
∑

i(
∑

j x2
ij)

1

2 subjected to the constraints zj =
∑

i xij with xij being real and

nonnegative, the inequality
∑

j z2
j ≤ F 2 holds. It follows that

F(ρ) ≤ 1

d

∑

i

(

∑

j

√

λij

)2

≤ 1

d





∑

j

√

∑

i

λij





2

=
1

d
(Tr

√
ρA)2, (24)

which ends the proof. ¤

We now give an example to show that when the quantum state is weakly mixed, theorem

3 will be a very good estimation for the FEF.

Example 3: Consider the following 3 ⊗ 3 mixed state: ρ = 1−p

9
I9 + p|ψ〉〈ψ|, where

|ψ〉 =
√

x2+2

3
{x, 0, 0, 0, 1, 0, 0, 0, 1} is a pure state with one parameter x. To show the

effectiveness of (21), we compare it with the single fraction of entanglement Fs = 〈ψ+|ρ|ψ+〉.
As seen from the Fig. 2, for weakly mixed states (with larger parameter p), the bound

provides excellent estimation of the FEF.

We have studied the fully entangled fraction that has tight relations with many quantum

information processing. New upper bounds for FEF have been derived. They make comple-

ments on estimation of the value of FEF. The conditions for the bounds to be exact or to be

more tight have been analyzed. These bounds provide a better estimation of FEF and can

be use in related information processing, e.g. to detect the entanglement of the non-local

source used in quantum teleportation.
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FIG. 2: Upper bound of F(ρ) from (21) (solid line) and single fraction of entanglement Fs
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