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PATTERN FORMING INSTABILITIES DRIVEN BY
NON-DIFFUSIVE INTERACTION

I. Primi', A. Stevens? and J. J. L. Veldzquez?®

Abstract

Analogous to the analysis of minimal conditions for the formation of Turing pat-
terns or diffusion driven instabilities, in this paper we discuss minimal conditions
for a class of kinetic equations with mass conservation, which form patterns with
a characteristic wavelength. The related linearized systems are analyzed and the
minimal number of equations is derived, which is needed to obtain specific pat-
terns.

1 Introduction

Pattern formation is ubiquitous in biological and chemical systems. To be able
to distinguish between the possible underlying mechanisms driving these pat-
terns and their related function, is an important aim for a better understanding
and for experimental control. Patterns generated by diffusive instabilities are
by now quite well understood. In his pioneering work (cf. [24]) Turing proved,
that for chemical reactions of activator and inhibitor type, diffusion can drive an
otherwise stable system towards pattern formation with a characteristic wave-
length or characteristic time period. This idea of diffusive morphogens or Turing
instabilities has later been applied to many pattern forming biological systems
(cf. [12, 18], [19]), to name only a few of the many references.

A main part of Turing’s analysis was devoted to linearized reaction-diffusion
systems. This is often sufficient in order to obtain estimates on the basic quan-
titative features of the observed patterns, like their characteristic wavelength;
or in the case of dynamic patterns, their speed of propagation. The linearized
analysis, however, predicts exponential growth of the chemical, respectively mor-
phogen concentrations. The picture can be completed if saturating chemical
kinetics are assumed.
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There are, however, structure forming processes in biology where diffusive
signals do not seem to play the major role. An example for this are for instance
the counter migrating rippling waves that occur before the final aggregation of
myxobacteria, [6]. These are assumed to result from local cell-cell interactions.
Also in a number of signaling processes within tissues local exchange of signals
seems to play a major role.

From a mathematical point of view examples for systems, where the patterns
result from local interactions, are kinetic equations of the type

Of (t,x,c) + U (c) - Opf (t,x,c) + O [K [f (t,z,c)]] = 0. (1.1)

Here {c} denotes a set of internal variables characterizing the state of the
cells. For cell movement in one spatial dimension this would also include the
direction of motion (right or left). In higher spatial dimensions {c} might in-
dicate cell orientation. Further variables like e.g. chemical/cell concentrations
and the fraction of occupied receptors could also be included. The set {¢} can
be continuous or discrete. In the discrete case the operator d, must be replaced
by a suitable ”discrete divergence operator” whose meaning will be specified
later.

The function f (¢, z,c) can be thought of as the cell density in the state space
(t,z,c). The operator K [f (t,z,¢)] in (1.1) is an additive or integral operator,
in general non-linear, which describes the cell fluxes with respect to the internal
variables {¢}. The most distinctive feature of this operator is, that it acts on the
densities f (¢,z,-) in a local manner. So the values of K [f (¢, z,-)] are depending
on the values of f (¢,z,-) at point z only. Some examples for equations of type
(1.1) being used as models for pattern formation in biology can be found in [7],
[8], [9], [10], [11], [15] [17], [21]. Sometimes more general models which include
noise and diffusion are considered. Further examples for equations of type (1.1)
will be described in detail later.

Mathematically, model (1.1) is rather different from the parabolic systems
considered by Turing. In particular, linearization around a homogeneous state
does not provide any specific wavelength, if the space of internal variables {c}
contains only two elements (cf. [17])). However, systems more general than
(1.1), which yield specific wavelengths for such type of linearizations have been
discussed by several authors. For instance, in [14] examples of systems with a
structure similar to (1.1) are given, but which contain an additional diffusive
factors in the spatial variable z that exhibits nontrivial patterns. On the other
hand, in [2] examples are discussed, where besides the terms like in (1.1), an
additional delay term occurs, which also produces nontrivial patterns near ho-
mogeneous states. It is then natural to ask if it is possible to obtain examples
for systems of type (1.1) which yield non trivial patterns near homogeneous
solutions, where neither diffusion nor explicit delays are responsible for pattern
formation.

In this paper we will provide sufficient conditions for equations of form (1.1)
that are able to select a wavelength in a similar way as it happens in Turing



systems. This means that the linearized system already shows this behavior.
In order to obtain pattern formation, both types of systems need a minimal
complexity. In the case of Turing systems at least two different species are
necessary. For the systems considered in this paper, we need at least three
equations to obtain nontrivial patterns on the linearized level. If the interactions
between the cells are assumed to satisfy additional symmetry assumptions, at
least four equations are needed.
In [13], Turing like instabilities for
1
at+Fam:M(bfa)+§,f(a+b) (1.2)
b, — Tb, :M(a—b)+%f(a+b)

were studied, with
(o7 B v 0 ur 0
= . b = = M =
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_ fi (7t17 712)
f (“‘) = ( fa (w1, u2)
A key feature of (1.2) is that the reactions between the species generally change
the total concentration [ Z?:] (a; + B;) dx. Therefore (1.2) is not of type (1.1)
where the total concentration [ [ f (t,z,c¢) dzdc is preserved.
In [13] several types of instabilities for the system (1.2) are considered. Among
them a kind of hyperbolic version of Turing’s instability. An intuitive expla-

nation for this is as follows. Consider the following asymptotic limit for the
solutions of (1.2)

3

M| = oo, |IT[| = 00, MT'T* = D,

where || - || denotes a typical matrix norm and D = < %] (? > with di,dy > 0.
2
Formally, solutions which have a characteristic wavelength larger than m
can be approximated by solutions of the parabolic system
us = Dug, + f(u) with u=a+b. (1.3)

System (1.3) can exhibit instabilities near homogeneous equilibria, according to
the Turing mechanism. Therefore, solutions of a suitable linearization of this
model near a homogeneous steady state yield pattern formation with a specific
wavelength of order one. Since solutions of (1.2) with large enough wavelengths
can be approximated by solutions of (1.3), one can expect instabilities analogous
to the ones obtained by Turing for problem (1.2) under suitable assumptions on
M and D. This is the case even if the dispersion relations associated to the last
system are very different from the ones for (1.3) for very large wavelengths due
to the change of character of the problem from hyperbolic to parabolic.



The instabilities we consider in the present paper for conservation laws of
type (1.1) are rather different. The resulting patterns are not stationary solu-
tions but traveling waves with a characteristic wavelength and wave velocity.
In [13] sets of parameters are studied which yield Hopf bifurcations for (1.2).
However, it is not clear from the analysis in [13] if a characteristic wavelength
can be obtained for the solutions associated to such bifurcations.

The plan of this paper is as follows. In Section 2 we give a precise definition
of what we call a pattern forming system in the present context. In Section 3
we briefly discuss some of Turing’s results. In Section 4 we study the pattern
forming properties of equations of type (1.1). In Subsection 4.2 we recall a
situation for which pattern formation can not be decided upon the analysis on
the linearized level. In Subsection 4.3 and the following subsections necessary
conditions for patterns with a defined wavelength are given on the linearized
level. In Section 5 minimal models for rippling of myxobacteria are discussed,
without the assumption of the existence of an internal clock or delays. Also,
natural conditions can be given for the increasing wavelength of the rippling
pattern in experiments with mixtures of wildtype and mutant cells, as well as
the loss of the rippling phenomenon when too many mutants are present.

2 Pattern Forming Equations

We will restrict our analysis to linearized equations. So in abstract terms we
are interested in problems of the form

u = Au (2.1)

where A is a linear operator, invariant under spatial translations x — z + a,
z € RV, a € RV, acting in a suitable functional space. The function z — u (z, )
maps RV into some functional space X, describing the variables needed to char-
acterize a "macroscopic” region [z,x + dz]. Typically X will include variables
measuring chemical concentrations, internal cell variables, cell orientations and
others. We will restrict ourselves to the class of operators which for any fixed
vector k € RN can be written as

A(e*V) = [M (k) V]e*r | VeX,

where M (k) is a linear operator acting on X. We can then look for solutions
of (2.1) of the form

u = ewt+1kmv ,
where V' is a eigenfunction of

wV =M(k)-V (2.2)



Typically, under some general compactness assumptions, the eigenvalues of (2.2)
are a discrete set of values for each k € RV, e.g. {wi (k), wa (k),...}. Given
a perturbation u (z,0) = ug (z) = Vpe'*® with wave number k we obtain its
corresponding growth rate by

Q (k) = max {Re () (K))} - (2.3)
J
We use the following definition for a pattern generating system in the present
context

Definition 1 FEquation (2.1) is said to generates patterns, if there exists a set
of non-zero real numbers such that

keRN\I{I}C?f(,...,km} () (ko) 1 s (2.4

Q (ko) = Q(koj) , forall i,j=1,..¢ (2.5)

If (2.4) is satisfied, then solutions of (2.1) with suitable initial data develop pat-
terns with wavelength \; = ,fT’T

These patterns can also have oscillatory parts if Im (wg (ko)) # 0 for some
i=1,....0. Then we will say that (2.1) generates oscillatory patterns.

If (2.4) and (2.5) are satisfied for any |k| > § > 0, then we will say that equation
(2.1) generates oscillatory patterns for wavelengths smaller than QT”

If Im (wy (ko)) = O for every i = 1,...,¢ we will say that (2.1) generates sta-
tionary patterns.

3 Turing Instabilities

Let us briefly recall the classical instability results derived by Turing (cf. [24]) for
reaction-diffusion systems within the above mentioned terminology. Although
Turing’s paper contains also problems in higher spatial dimensions, we restrict
ourselves to the one-dimensional analysis. For this case in [24] the pattern-
forming properties of equations of type

Dy 0 0 0 0
0 Dy 00 0

du=1| 0 0 . 0 0 |d2u+Au (3.1)
0 0 0 . 0
0 0 0 0 Dy

was studied. Here u = u (z,t) is a function with values in RN, D; > 0 for
i=1,...,N,and Ais areal N x N matrix. Denote the set of such matrices by
My (R). System (3.1) is typically obtained from the linearization of a reaction-
diffusion system without cross-diffusion terms near a homogeneous state.



Theorem 2 (Turing, cf. [24]).

e For N =1 equation (3.1) does not generate patterns for any A € R in the
sense of Definition 1.

e Let N =2, A= 11 G2 and D = Dy 0 . Then system
az,1 Qa22 0 D,

(3.1) generates stationary patterns in the sense of Definition 1 if

a1y +as <0 and detA >0,
a1 Dy + axa D1 > 2/ Dy DydetA > 0 . (32)

On the other hand, equation (3.1) does not generate oscillatory patterns
for any choice of A € M, (R).

e Let N = 3. Then there exists an open set of matrices A € M3 (R) such
that equation (3.1) generates oscillatory patterns.

Remark 3 Several results for Turing-like instabilities, also by Turing himself,
have been derived in bounded domains with periodic or Neumann boundary con-
ditions. Here we consider equations in the whole space. Thus the discrete char-
acter of the spectrum of the operators does not have to be taken into account.

Linear reaction-diffusion equations can generate nontrivial patterns with spe-
cific wavelengths, if at least two chemical species are involved. Moreover, pat-
terns with nontrivial characteristic length and time scales can be generated, if
at least three chemical species involved.

It is well known that conditions (3.2) can be interpreted by the interplay between
a short range acting chemical activator and a long range acting inhibitor, where
the diffusion coefficient of the inhibitor is larger than the one of the activator.

4 Pattern Formation Without Diffusive Interac-
tions

First we define the general framework for our analysis. We will study some of
the pattern formating properties of equations of type

Ouf (tyx,c) + U (¢) - O f (t,z,¢) + O [L[f]] (t,2,¢) =0, (4.1)

where f is the concentration of ”cells” in the state {c} at a given time ¢, and L
is a linear operator acting on f as explained in the introduction. Let the space
of states be measurable and p (-) be a suitable related measure. Equations of
type (4.1) naturally arise when systems of the form (1.1) are linearized around
a spatially homogeneous (”patternless”) state. The set {¢} can be continuous
or discrete. In the discrete case the differential operator 9. has to be replaced



by a suitable discrete derivative. This will be explained in examples later. In
general, we will assume that the operator 0. is a kind of ”flux”, i.e.

0c9 (t,x,c) = /ch g(t,z,c)du(c /ch (t,z,c)du(c) .

In the discrete case such operators reduce to finite sums. Their most relevant
property is preservation of mass

/8cgtazcdu //ch (t,2,¢) dp () du (c)
[ [ K9 dudnte) -

Therefore, these interactions locally preserve

[tz .

Now we consider some simple examples. Suppose that the space of internal
states {c} is the real line and let u be the classical Lebesgue measure du (¢) = dc.
Let

1
K (¢,d) = E&g((:f(:'fh) ,

where dg is the Dirac measure. Then

g(t,az,c—h) + g(t,ZU,C)
h h '

0cg (t,x,¢) = —
Define
L{f](t,z,c) =a(c) f(t,z,c) (4.2)
for a suitable function a (¢). Then

(Z(C 7 h) f (t,.’IJ,C _ h) (1((3) f (t,.’IJ,C)
h + h ’

aﬁ' (L [f] (t,.’li,{j)) = -

and for h — 0 we obtain

0cg (t,z,c) = % a(c)g(t z,c)

Therefore (4.1) becomes

atf(t,x,c)+U(c)-amf(t,a:,c)—|—%[a(c)f(t,a:,c)] =0.

This equation naturally arises, when studying stage structured models with spa-
tial dynamics. See for instance in [7], [8]. Some general references for modeling



and analysis of stage/age structured populations are for instance [4], [5], [20],
[23], and [22].
A typical choice of internal variables is a discrete set

{c} = {s1,%2,83,...,5N}-
Define the ”shift operator”
7y (SK) = Sgy1, for k=1,..., N and define syy1 =51 .

The discrete derivative 8. will then be defined by

Beg (2,¢) = (2,74 (0) ) = gla.c) . (4.3)
On the other hand L [f] is defined as in (4.2). So (4.1) becomes

Onf (t,x,¢) + U (e) - O f (8, ¢) +a(ry (¢) f (82,71 (¢) —ale) f(t,7,¢) =0,

Since the set {c} is discrete, this equation is a finite dimensional system of
equations for N variables, namely

f,x,81), f(t,x,89), ..., f (t,x,8n) .

Models of type (1.1) and (4.1) naturally arise when modeling systems of cells
which interact via direct contact and not by means of any diffusive chemical.
The transport of information between different, spatial regions for the models
discussed here is purely due to the cell motion.

In [13] Turing like instabilities for equations without diffusive interactions
were studied. However, the interactions in (4.1), unlike the ”chemical reactions”
in [13], preserve the number of ”cells” which are involved. Thus pattern for-
mation occurs solely due to cell interaction and does not relate to growth and
death processes.

4.1 A Model Problem

Here we describe a class of models whose linearization yields problems of type
(4.1). Although we do not aim for detailed biological modeling at this stage, the
problems considered are motivated by the intriguing counter migrating wave-like
patterns observed before the final aggregation of myxobacteria (cf. [6]). Dur-
ing an alignment process and before final self-organization the bacteria move in
opposite directions and reverse their direction of motion, mainly due to contact
with counter migrating cells. As a result, characteristic counter-migrating con-
centration waves occur. A major question is, if such patterns can result from
purely local interaction of the bacteria or rather not.

Of course, the instabilities described in the following can also arise in other
biological or physical contexts. But for simplicity we stick with the basic phe-
nomenon of rippling in myxobacteria here.



Consider cell, which exist in two different states 1 and 2, and move along a one
dimensional axis. Let u;, v; denote the densities of cells which move towards the
right, respectively the left, with internal state i« = 1,2. First, the cells change
their state e.g. from 1 to 2. Then, in a second step, they reverse their direction
of motion. The most characteristic feature of this mechanism is the presence of
an intermediate state for the cells before they reorient. This can be interpreted
e.g. by the local transfer of a signal during cell interaction, bringing the cell to
an excited state or preparing to switch the motor for movement itself, before it
reverses its direction. We are interested in the minimal mathematical features
such a model must have, to be able to account for nontrivial patterns. The four
cellular states then evolve according to the following transition

U1 — Uy — V1 — Vg — U .

Translating the previously described kinetics into a system of differential equa-
tions, we obtain

(u1); + (u1), = So (u1,us,v1,v2) — T (w1, u2,v1,02) (4.4)
(u2); + (u2), = Th (ur,u2,v1,v2) — To (w1, us, v1,02) (4.5)
(v1), = (v1), =T (ur, ug,v1,v2) — Sq (ur,u2,v1,02) (4.6)
(v2); — (v2), = S1 (u1,uz,v1,v2) — S (ur,uz,v1,v2) . (4.7)

In order to further simplify the functional dependences, we assume that the
system is invariant under the change of variables

(z,u3,v;) = (—z,v5,u;) , 1=1,2. (4.8)
As a consequence
T; (uy,ug,v1,v2) = Sj (v1,v2,ur,ug) , i=1,2.

And (4.4)-(4.7) can be rewritten as

(w1), + (w1), =T (v1,v2,ur,u2) — T (wq,u2,v1,02) (4.9)
(u2), + (u2), =Th (ur,u2,v1,v2) — To (w1, uz,v1,02) (4.10)
(v1); — (v1), = To (ur,uz,v1,v2) — T (v1,v2, U1, us) (4.11)
(v2); — (v2), =T (v1,v2,u1,uz) — To (v1,v2, U1, us) (4.12)

We will now study systems of type (4.1), which are obtained by linearizing

systems of type (4.9)-(4.12) around a homogeneous equilibrium, having the same
values for u1, v1 and us,vs. Thus there exists a solution for the algebraic system

Ty (u1,0, u2,0,u1,0, U2,0) = T (41,0, U2,0, U1,0,U2,0) - (4.13)

For generic functions Ty, Ty a curve of stationary states solving (4.13) in the
plane (u1,0, u2,0) is to be expected. This is a major difference in comparison with
Turing instabilities, where only an isolated non-zero homogeneous steady state



occurs. This continuum of steady states relates to the fact that the individual

cell populations may have different total cell densities. Moreover, prescribing the

total cell density o = (u1 + ua + v1 + v2), an additional equation is obtained,
a

namely ui g + u2,0 = §. So the homogeneous steady state can be determined

uniquely. Under our symmetry condition the total cell density is given by
Ng = 2 (ULO + 'U/Q’O) . (414)

If ng is fixed we must solve (4.13) with the constraint (4.14). For generic func-
tions Ty, T, we can expect this problem to have a unique solution, at least
locally near uq,0 = us,9. The stationary values for ui, us, v, vo are assumed
to fulfill

Uy =01 =Uro , U2 =V =U20 -

This symmetry assumption is reasonable due to (4.8). As a consequence

oTy
ou;

oTy
ov;

(U1,07U2,0=U170=U270) = (U1707U2,0=U170=U270) - (4-15)

Define Ty ; = 0T (u1,0, U2,0, U1,0, U2,0), Where j = 1,2 denotes derivatives with
respect to uy, us and k = 3,4 denotes derivatives with respect to vy, vy. Using
(4.15), the linearization of (4.4)-(4.7) becomes

(wl)t + (@l)m =(Tos—Ti1)p1+ (Toa—Ti2) o

+ (Toq —Th3) Y1 + (To2 — Tia) b2 (4.16)
(p2) + (p2), = (T11 —To1) 1 + (Th2 — To2) 2

+ (T3 —To3) 1 + (Tha — Tou) o (4.17)
(W), = (W), = (Toq = Ti3) o1 + (Top — T 4) @2

+ (To3 —Tha) Y1 + (Toa — Ti2) 2 (4.18)
(2); — (2), = (Th 3 — To3) o1 + (Tha — Tra) @2

+ (Thq—Toq) 1 + (Th2 — To0) o (4.19)

with U; = Uj.0 + Yi 5, Vi = V50 +’(Z17 5 1= 1/2 and |(,07‘ << Ui 0, ‘d)l| << Vi,0-
Problem (4.16)-(4.19) is of type (4.1), with a point measure du (¢) containing

o aemans 61 = {( 1), (2 )0 (1) (2 )} 1ot totowing

we analyze systems of type (4.16)-(4.19) and variations, which yield oscillatory
patterns. Systems having some analogies with (4.4)-(4.7) but include time-
delays have been considered in [2]. More precisely, models of the form

(W), + (w), = file —vr,t = 71) = fr (2,1) (4.20)
(u2), + (u2), = fi(z,t) = filx —vr,t —7) (4.21)
(v1); — (1), = fr(®x+or,t — 1) — fi(x,1) (4.22)
(02), — (2), = fo (0.8) — fo (w4 vryt 1) (423)

10



were studied, where f,., f; are suitable functions of the variables uy, us, v1, vs.
In [2] it was shown that the linearization of (4.20)-(4.23) around an homogeneous
solution generates oscillatory patterns in the sense of Definition 1. One of the
major differences between systems (4.4)-(4.7) and (4.20)-(4.23) is the presence of
the delay 7 in the second model, that might be interpreted as an ”internal clock”
or refractory time. The main result of our paper is to show that the structure
of the nonlinearities in (4.4)-(4.7) is rich enough to generate oscillatory patterns
without including delay terms in the equation. Further mathematical models
for pattern formation in myxobacteria can be found in [1] and [3], to only name
a few references.

4.2 The Non-Pattern Forming Case

First we recall some of the results derived in [17] and relate these to the case
N =11in Theorem 2. Consider a system with two internal variables {c¢} denoted
by + and —. To connect with the notation in [17], we write

flz,+t) =uy(z,t) , fz,—t)=u_(z,t) , U(+)=Us ,U(-)=U_.

The most general local operator L[f] in (4.1) is of the form

L[fh — aj1  ai2 Uy

L{fl_ az1  A22 u_
with a; ; € R for i,j € {1,2}. The ”discrete derivative” operator (4.3) then
becomes

Therefore, (4.1) reduces to

5tu,+ U+8mu+ _ ay1uq + ay2u a2 1U4 + a2 21U

< Oru_ ) + < U_0,u_ > N < a2 1U4 + as p2u_ > B < a1y + ag pu_ >
Making the change of variables x — x — %t, we can assume w.l.o.g. that
U, = —U_ = U. Such a transformation does not change the non-pattern or
pattern forming behavior of the system. Also, the characteristic wave length of
the patterns, if existent, does not change. However, any standing pattern could
change to a traveling wave type of pattern or vice versa. We will assume that
the system under consideration has the form

8t’U/+ Uazu+ T -S U4 _
< O ) + ( —Udu_ + -T 8 u_ ) 0 (4.24)
with T = —a1 + a1 S = —Q2,2 + a2 . (425)

11



Systems of type (4.24) were obtained in [17] from

(2 Yo (S Yo (Dpm 2 )

Oyu_ —Udu_ “Au_yup)u + A (ugp,us ) ug

for a general class of functions A by linearization around homogeneous stationary
solutions. System (4.26) is a simplified version of (4.16)-(4.19) for a problem
with two internal states. The following result obtained in [17], will now be
restated in the above given terminology.

Theorem 4 ([17]) The linear system (4.24) does not generate patterns in the
sense of Definition 1 for any choice of U, T, S € R.

Proof. W.l.o.g. assume U # 0, otherwise w = w (k) in (2.3) is independent
on k. The dispersion relation associated to (4.24) can be computed by solving

wHikU+T =S -
det( 7 wik:U+S>0’

or equivalently (w)” + k2U2 + (T + S)w + ikU (S —T) = 0 . Then
1 ‘ 3
we = {(T+S)i [(T+S)2 74(ikU(SfT)+k2U2)] } .

In order to analyze the behavior of 2 (k) = max {Re (w4 (k)),Re (w_ (k))} it is
sufficient to study

h (k) = Re { (T +9)° — 4(ikU (S~ T) + KU?)] ;}

= Re {\/(a2 T2k2) + mk} ,

with a2 = (T + S)*, b2 = 4U?, ¢ = —4U (S = T) = 4U (T — S), and /- being
the complex root with positive real part. By symmetry h (k) = h (—k). We will
show that h (k) is monotone in [0, 00). Using again symmetry, we can restrict

our analysis to the case ¢ > 0. Since U # 0 we have b2 > 0. Notice that

4 1 -k
h(k) = \/((12 — 12k2)% + 2k2 cos (5 arctan <m>) ,

where arctan () € [0,7]. Therefore h (k) > 0. Elementary trigonometric calcu-
lations yield

1+ cos (arctan (7“12 f,’)“gkg) ))

— M2 _121.2)2 217.2
h(k) = {/(a? — 02k2)? + 2k 5

with cos () € [0,7]. Thus after some computations we obtain



where

H (k) = \/(a2 —0%k2)% + k2 + (a® - B’E?) .

In order to check the monotonicity for H (k) we calculate

dH (k)
dk
= <2b2 (a® = b*k*) + ¢ — 262\/((12 — 12k2)* + (:214:2)
V(@ = 2k 4+ k2
k

= _ (¢ —2b°H (k)) , and H (0) = 2a® .
V(@2 = 1212)° + 22

So H (k) is increasing if 4a2b® < ¢2, and decreasing if 4a?b® > c2. If 4a®b® = ¢?,
H (k) is constant. Thus H (-) and also h (k) are monotone, and our theorem
follows. m

4.3 The Pattern Forming Case

In this subsection we study a particular class of equations of type (4.1), namely

Of+U-0.f+DAf=0, (4.27)
where
1 0 1 u, 0 0
D= -1 1 0 U= 0 U, 0 (4.28)
0 -1 1 0 0 Un

and A is a square matrix in M (IRN). For this problem the space of ”internal
cell states” {c} is the set of integers {1,2, ..., N}. It would be natural to assume
certain symmetry conditions for U, A, and positivity for all or some of the
coefficients of A. However, first we will begin our analysis with generic matrices
A and U. The dispersion relation associated to (4.27) solves

2w+ ikU -w + DAw =0 (4.29)

Here and in the following we often omit the identity matrix in arithmetic ex-
pression with scalar quantities and matrices.

In the subsequent arguments the following properties of the matrix DA will
be relevant.
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Proposition 5 Let D be given as in (4.28). Then, the matriz DA has a zero
eitgenvalue. Moreover

b=(1,---,1) (4.30)
is an element of the kernel of (DA)T, which is the transposed matriz of DA.

Proof. We have det (DA) = det (D) det (A) = 0 since det D = 0. Therefore
0 € o(DA). Since DTb =0,

(DAY ' b=ATD"b=AT(0)=0. (4.31)

Thus b € ker ((DA)"). =

4.4 Case 1: Nondegenerate U and non-symmetric A.

Definition 6 We will call the matriz U in (4.28) nondegenerate, if U; # U;
fori # j.

In this subsection we show how to obtain a class of matrices A for which
(4.27) exhibits nontrivial patterns when U is nondegenerate. The key idea is
to choose A = Ay + M, where Ay yields a "hyperbolic” dispersion relation for
(4.27). Thus the most unstable part of the spectrum of Ay is contained in the
imaginary axis. The matrix e M will then be chosen as a small perturbation
of Ay that will change such a part of the spectrum to a curve yielding pattern
formation properties in the sense defined before. More precisely, we assume the
following

Assumption 1) The set of eigenvectors with zero eigenvalue of DAy is the linear subspace
generated by e; = (1,0, -- ,O)t. The eigenvectors of DAy are a basis of
RN, Moreover U; # 0.

As a consequence, the set of solutions of the family of eigenvalue problems
2w+ kU -w+DAw =0, keR (4.32)
contains the straight line {z = —ikU;}. This means that the spectrum associ-

ated to Ag is "hyperbolic”.

Assumption 2) All solutions of (4.32) which are not contained in {z = —ikU,} are located
in the half-plane {Re (z) < —vp} for some vy > 0.

Remark: For convenience we have chosen e; as distinguished eigenvector for
DAy from the canonical basis of RV . But e; cannot be rotated without modify-
ing the matrix U. Thus we do not have the most general choice of matrices Ag
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yielding hyperbolic behavior. The main goal of this paper is to find examples for
instabilities. It would be interesting though to classify the matrices Ay, which
yield hyperbolic behavior for the spectrum.

The condition Uy # 0 is essential, since without a characteristic speed it would
not be possible to obtain a characteristic wavelength. W.l.o.g. U; > 0. To avoid
lengthy calculations involving Jordan canonical forms the assumption that the
eigenvectors of DA are a basis of RV is convenient.

Now we analyze the dispersion relation associated to (4.29) for
A=Ay +eM (4.33)

where € > 0 is small and M will be defined later. The spectrum of (4.29)
can be computed in a perturbative manner and the following lemma yields a
preliminary estimate of its position.

Lemma 7 Suppose that Ay satisfies Assumptions 1) and 2). Let A be given by
(4.83). Then, there exist positive constants C = C (Ao, M), 8 and &g, inde-
pendent of €, such that for each k € R and |e| < g the spectrum associated to
problem (4.29) consists of

(i) an eigenvalue z, = z (k) satisfying |Re (21)| < CeP.

(ii) at most (N — 1) eigenvalues located in the half-plane
{Re(z) < vy + Cef} .

Proof. This result follows from classical perturbation theory of eigenvalue
problems as it can be found e.g. in [16]. For the uniformicity estimates for the
change of eigenvalues as |k| — o0, let p; (B) denote the subset of the complex
plane such that the inverse matrix (B + zI) ' exists. Due to Assumptions 1)
and 2) we have

{z€ C: Re(z) > —yg and z # —ikU,} C p4 (ikU + DAy) . (4.34)
Moreover, using for a matrix B that B~! = % and the fact that the

numbers of zeros of the determinant of a N x N-matrix is less or equal than N
it follows that

- L(Ri,R
(21 + ikU + D Ay) 1HS (R1, R») .
|dist (z,py (ikU + DAy))|

(4.35)

for |k| < Ry, |z| < Ra, where L = L(R;, Ry) is a constant independent of k
and z. For Ry > ik ||U]| + ||[DA|| we obtain that z € py (ikU + DA).

Let |z| < Ry, Re (2) > —vp + Ce~ or [Re(z)| > Cen~, where C is a constant to
be determined. We then compute by Neumann series

(2] +ikU + DA)™!

_ (i(n" | (21 + kU + DAy) ! DM] n) (21 +ikU + DAg) "

n=0

15



which converges for ‘

e (2T +ikU + DAg) ™" DMH < 1. Using (4.34), (4.35) and
the constraints for the values of z one obtains

L(Ri,R>)||[DM|e [L(R)|DM
( )IIN I _< ()CllV II><1=

Hg (21 +ikU + DAg) " DMH <

‘Cf—:ﬁ

for C > (L (R1,R2) ||DM||)1/N. Since the spectrum of the matrices depends
continuously on the parameters, we obtain the properties (i) and (ii) for |k| <
R]7 |Z| S RQ.

In order to prove our Lemma for |k| > R; we rewrite (4.29) as

1
%w +U-w+ EDAU) =0. (4.36)

Then, if |k| is large enough, (4.36) becomes a perturbation of the eigenvalue
problem for U. It is well known that the eigenvalues of (4.36) are analytic func-
tions w.r.t. the perturbation parameter. So

24 1 .
== Uj+Jj <7k> L i=1,..,N, (4.37)

where the f; () are differentiable in a neighborhood of the origin of coordinates
(cf. [16], p. 82, Theorem 2.3). Moreover

£i(Q ~ X (DAY C+0 (1) s ¢ =0, (4.38)

where A; (DA) are the eigenvalues of the projection of the matrix DA onto
the subspace of eigenvectors associated to a given eigenvalue U; (cf. [16]). In
particular, such eigenvalues are roots of polynomials with maximal degree N.
Therefore

1Aj (DA) — \; (DAg)| < Ce¥ | (4.39)

where C depends on the norms of U, A and M. Due to Assumptions 1) and 2)
the A; (DAg) are either zero, or their real part is smaller than —vy. Then, using
(4.37)-(4.39) for |k| > Ry, we obtain (i) and (ii) of our Lemma for large values
of |k| and the previous estimates for |k| < R;. m

Due to Lemma 7 we have for small €, that the only relevant eigenvalue for the
pattern formation properties of (4.27) is contained in the strip |Re (21)| < Cef.
This eigenvalue can be obtained as a perturbation of the eigenvalue z = —ikU;
of problem (4.29). To compute the asymptotics of this eigenvalue for ¢ — 0 we
will use classical perturbation methods for eigenvalue problems.

First we introduce some notation. Let (-,-) denote the scalar product in RV,
let BT denote the transposed matrix of B and let span (a,b, ..., z) denote the
linear subspace of RV generated by the vectors a,b, ..., z.
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Lemma 8 Let Aqy satisfy Assumptions 1) and 2). Then, for each k € R there
exists a unique vector e] = el (k) € CN, which solves the linear system

[fikUl +ikU + (DAO)T} T =0 (4.40)
and with
(eF e)=1. (4.41)

Proof. Assumptions 1) and 2) imply that for each k € R,
ker (—ikUy +ikU + DAp) = span (e1). Therefore

rank (—ikU, + ikU + DAg) = rank (—ikU1 kU + (DAO)T) —N-1.

So there exists a vector w = w (k) € CN such that
ker (—ikU1 +ikU + (DAO)T) = span (w). To obtain a unique e! solving (4.40),

(4.41) with e] = Cw for some C' € R when (w,e;) # 0, we notice that, due to
Assumption 1)

0 t]72 t]’3 t]’N

0 t272 t2’3 tQ’N
—ikUy + kU + DAy =

0 tn2 tng tn,N

with coefficients t; ; = ¢; ; (k). Due to Assumption 2) the characteristic polyno-
mial of this matrix has a simple root at ( = 0. Therefore

det #0. (4.42)

Thus when solving
—ikU, +ikU + (DA)" | w =0

the first component of w can be chosen as a free parameter w;. In particular,
for w; = 1, and el = w we obtain the desired solution of problem (4.40), (4.41).
]

Now we can compute the asymptotics of the eigenvalue of (4.29) as a per-
turbation of z = —ikU;.

Proposition 9 Let Ay satisfy Assumptions 1) and 2). Let A be defined as in
(4.33) and eI = el (k) as in Lemma 8. Then, there exist positive constants
C, eo which depend on ||Aol|,||M|| but are independent of k and €, such that
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for each 0 < e < g the spectrum associated to problem (4.29) consists of one
eigenvalue z1 = z1 (k) satisfying

Ce?
+ikU; +e (el ,DMe,)| < —— 4.43
‘zl kU, s<e] 6]>‘ ST ( )
and at most (N — 1) eigenvalues which are contained in the half plane
Yo

Proof. Estimate (4.44) is a consequence of Lemma 7, (ii). To obtain (4.43)
suppose that |k| < R for some constant R > 0. General perturbation theory for
eigenvalues of matrices ensures that

z=—ikU +6 (4.45)
w=e +7r, (4.46)

where § = 6 (k,e) and r = r (k, ) are small for ¢ — 0. Plugging this into (4.29)
and using Assumptions 1) and 2) we obtain

—ikUir + 6ey +0r +ikUr + DAgr +eDMe; +eDMr =0 . (4.47)

Assume, w.l.o.g. that the eigenvector w satisfies (e{ ,w) = 1. Then (4.41) and
(4.45) yield

(ef,r)=0. (4.48)
Therefore, multiplying (4.47) by el and using (4.48) it follows
0 +¢c (el ,DMe1) +e (el ,DMr) = 0. (4.49)
Neglecting quadratic terms we obtain the following approximation
§~ —c{el,DMe;) as ¢ —0. (4.50)

This gives the leading order term in the asymptotic expansion (4.43). The error
term for |k| < R can be obtained by classical perturbation theory for eigenvalue
problems (cf. [16]). To obtain (4.43) for |k| > R we rewrite (4.29) as

z DAO £

— . —DM -w=0. 4.51

7:kw—l—<U+ 714’) w+ik w=0 (4.51)
The correction of the eigenvalue of problem (4.51) for ¢ = 0, & = —U, can be

computed perturbatively, similar as above. Arguing like in the proof of Lemma
7 it follows that

2

z S T 9

Z =-U,— = (el ,DMe —
ik U1 ik <€1, 91> +O (|k2>
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for e — 0, uniformly for |k| > 1. Thus (4.43) follows. m

To understand the pattern forming properties of (4.27) for small £ we use
Proposition 9 and study

n(k)=— (el . DMe;) . (4.52)

To prove that (4.27) shows pattern formation in the sense of Definition 1, we
show that 1 (k) reaches its maximum at a discrete set of values kg ; # 0. Since
n (k) is analytic this property will be a consequence of

Proposition 10 Under Assumptions 1) and 2), the asymptotics of n (k) defined
in (4.52) are given by
n(k) ~—{ei,DMey) for |k| — o0 (4.53)
n (k) ~ —ik (g, DMey) — k* (1, DMey) + ... for |k| — 0. (4.54)

Here ¢y and 1 are unique solutions of

(U—U1)b+(DA) o =0, (¢o,e1)=
— (U —U) o+ (DA 1 =0, (¢r,e1) =

with b as in (4.50).

Proof. Due to (4.52) the problem reduces to deriving the asymptotic be-
havior of the vector e] which solves (4.40), (4.41). To show (4.53) for |k| — o
problem (4.40), (4.41) can be approximated by using the fact that under suitable
normalization conditions solutions of linear systems of equations depend con-
tinuously on their parameters. So we can approximate the solutions of (4.40),
(4.41) by the solutions of

[—iU +iUle] =0 , (ef,e;)=1. (4.57)

Since the matrix U is diagonal and nondegenerate, both equations in (4.57)
are solved for e{ = e;. Therefore lim; o €] = e1. Then (4.53) follows from
(4.50).
For k — 0 the asymptotics of 7 (k) can again be computed by perturbative
methods. Consider (4.40), (4.41) as perturbation of
(DA el =0
<e{, el> =1
which is solved, due to (4.31), by el = b. Assume

el = b+ ik + k%1 + ... (4.58)
(Yo, €1) = (Y1,e1) = ... =0 (4.59)
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where g, 1,... will be determined later. Plugging (4.58) into (4.40) and
separating terms with the same powers of & we obtain

(DAY)" 4o + (U —U1)b=0
(DA ¥ — (U ~U1)tho =0 . (4.60)

Equations (4.60) combined with the normalization conditions (4.59) can be
solved due to (4.42) and since < b, (u — uq)e; >= 0. Plugging (4.58) into (4.52)
we obtain (4.54), since DTbh = 0. So

(b, DMey) = (Db, Me;) =0 . (4.61)

The convergence of the series in (4.58) can be shown by using (4.42) and stan-
dard perturbation theory, [16] m

Now we can formulate the main result of this subsection.

Theorem 11 Suppose that Ay satisfies Assumptions 1) and 2). Let A be given
as in (4.33), with M satisfying

(e1,DMer) >0 , (1hy,DMe;y) <0, (4.62)

where Y1 is as in (4.55), (4.56). Then, for e > 0 small enough, system (4.27)
generates oscillatory patterns in the sense of Definition 1.

Proof. The asymptotics (4.53), (4.54) as well as (4.62) imply that Re (5 (k))
has a global maximum in R for some bounded set of values ko; € R\ {0}.
On the other hand, n (k) is analytic w.r.t. %k and therefore the set of points
where Re (1 (k)) achieves its maximum is finite. Using the asymptotic formulas
(4.43), it follows that Re(z; (k)) reaches its maximum for some set of values
koi € R\ {0}, if € > 0 is small enough. Since z (k) is contained in the set of
zeros of an analytic function, this maximum is achieved in a finite number of
points. On the other hand, since for such a point kg ; # 0, it follows from (4.43)
that Im (21 (ko;)) # 0, if € is small enough. Thus the result follows. m

The key problem now is to show the existence of matrices Ag, M which
satisfy the properties of Theorem 11.

The case N = 3. First we describe the assumptions for the matrices U, Ag, M
in Theorem 11 if the internal sets of variables contain three elements. Let

ui, 0 0 1 0 -1
U= 0 U 0 |, UzUjifi#j , D=| -1 1 0
0 0 Us 0o -1 1

ai,1 Gr2 G1.3 mi1 M1z M3

Ag=| a1 azp azs , M =1 ma1 maz mag

a3l asza as;3 m31 Mm32 M33
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Then

11 —asn ap2 — azz2 a13 —ass
DAy =| —ai1+ax1 —aip+azs —aiz+azs
—az1+as1 —az2+aze —a23+ass

Assumption DAge; = 0 implies

11 — Az = a1 — G271 = Q21 —a3;1 = 0,

thus
ai1 =az1 =az; (4.63)
and
0 ai2—asp a1z —ass
DAy=| 0 —ajp+ass —ajz+asgs (4.64)

0 —azp+azp —az3+asgs

In order to fulfill the second condition of Assumption 1) the matrix

B [ M2 ‘a2 —ai3z+ass (4.65)
—az2 +azs —as3z+ass

must be diagonalizable. A sufficient condition for this is to have different eigen-
values, or respectively, that the polynomial

—a12+azs —x —a13+azgs
det ’ ’ ’ ’ =Pz 4.66
( —a22 + a3, 2 —a2;3 + azs — T > ( ) ( )

must, have different non-vanishing roots. This is the case if

(12 +as3 —ass —ass) —
4 (a17za2,3 — 01,203,3 — G2,303,2 + A2 2033 — G1,302,2 + G173G372) 7é 0 (4-67)

1,202 3 — (1,203,3 — 42,3032 + A2.203 3 — A1 3022 + a1 3032 7 0 (4.68)

Therefore, Assumption 1) reduces to (4.63), (4.67), (4.68), if N = 3. In this

case Assumption 2) reduces to the following. Let B be given as in (4.65).

The roots of det <z[ + ik < [{)2 [? ) + B) = (0 are located
3
in the half-plane {Re (z) < —wp} for some vy > 0. (4.69)

Choose M such that (4.61), (4.62) hold. Due to (4.59) we have

P1 = (0,91,2,91,3)" (4.70)
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for suitable numbers 91 2, 91 3. On the other hand

mi1 — M3 mi,2 —M32 mi,3 —M33
DM = | —my1+moy —mi2+mos —miz+mag3
—mg 1 +m31 —Moo+m3o —Ma3z+m3g

Then, (4.62) reduces to

mii1 —m31 2 0 and (471)
(1/)17DM€1) = [1/11,2 - 1/11,3] (m2,1 - m],]) +1/J1,3 (m371 - m],]) <0.

In order to show the existence of a matrix M satisfying the conditions (4.71),
we only need to have v » # 91 3. The vector ¢; is defined by (4.59), (4.60) and
can be expressed in terms of the matrices U and A. The result is not giving
very much insight though. So it is more convenient to give specific values of
U, Ap and M satisfying (4.63), (4.67), (4.68), (4.69), (4.71). Let D be given as
before and

100 a
U=|020], 4=|a (4.72)
00 3 a

O N =
N = O

with arbitrary @ > 0. Then
0

DAy=1 0 1 1
0

and (4.60) reduce to

0

1 -2\ [ v 1
(o)) (2)
() )= )-
1 1 V1,3 299 3

(2)=(1)  (oe)=(3) am

Using (4.71) these conditions further reduce to

o

So

4(myy —maoy) < (mig —msy) andmy; —mg; >0 .
There are infinitely many different choices for M which yield this inequalities.
If Ag is given by (4.72), then the polynomial defined in (4.66) equals

1

P(w)—det( 1:; 12 > =2 —2r+3.
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So (4.67) and (4.68) are automatically satisfied. It remains to check (4.69). We

have
1 0 . 2 0 1 1
w3 )03 ) (5 1)
=27 +22 -6k +3+i(52k+5k) = Q (2, k)
and the roots of Q) (z, k) are given by

1
z=-1- giki 5V(=8 k).

Since the real part of these roots is —1, we obtain (4.69).
Let

2 0 0
M=1| 19 0 0 (4.74)
1 00

Then the dispersion relation consists in finding the roots of the polynomial
det(z +ikU + DA) =0 (4.75)

for D asin (4.4), U, Ap asin (4.72) with a = 0.5, and A = Ag+eM for e = 0.01,
which are calculated numerically for given & € R with respect to the variable
z. Figure 1 shows the branch with the largest real part. All other roots have
negative real parts.

Figure 1: Plot of the root with the largest real part of (4.75) close to the
imaginary axis for D as in (4.4), U, Ag as in (4.72), with a = 0.5, M as in

3

(4.74), A= Ag +eM, and £ = 0.01.

The case N = 2. Assumptions 1) and 2) as well as (4.62) cannot be satisfied
if N =2 as expected from the results in [17], (cf. Theorem 4). In this a case

we have
a1 a2 my1 Mmip2
AO — 9 ) , M — 9 9
a1 a2 ma1 M22
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_ 1 -1 (U 0
p=(4 ) o=(% n)
Since DAgper = 0 it follows that a1,1 = a21. Condition (4.62), which is
(er,DMey) > 0, implies my 1 —mgoy > 0. Condition (1, DMe;) < 0 results in

Uz = Uh)?

~2 7V gy —mag) <0
(a1,2 — a2,2)? (ma1 = ma)

by using (4.55), (4.56). Therefore, (my,1 —m21) < 0, which is a contradiction.
Thus the assumptions for pattern formation in Theorem 11 cannot be satisfied
for N = 2. The inequalities required impose a minimal degree of complexity for
system (4.27), or, more precisely, the need for at least three different variables.

4.5 Examples with reflection-symmetry and nondegener-
ate matrix U.

In this subsection we will study systems of the form (4.27) which fulfill some
symmetry properties, which naturally arise in models for pattern formation in
myxobacteria.

Assume that N = 2n is an even number and that f in (4.27) is of the form

f=<i>,%wew-

Further assume that system (4.27) is invariant under the transformation

(Tv(p/w) - (7'7:711]7(10) (476)

Due to this invariance and by explicit calculations it can be seen that the ma-
trices U and A must have the form

vV 0 Y Z

U:<0_V>,A:<ZY>, (4.77)
and D is as usual. Here V,Y, Z are n x n matrices. To check the formulas for

U and A, it is convenient to write A = < o4 ) and use

Zy Y,
0 I
(7 a)(%)-(7) 4
0 I vV 0 vV 0 0 I

(I 0)(0—1/)_(0—1/)(1 0) (4.79)

0 I Yi Zv\ (Yo Z 0 I
(70)(zw)=(z %)(7e) 6™



On the other hand, we can rewrite D as

1 0 -1
-1 1 0 0
D= - ( 7 A ) (4.81)
0 -1 1 0 g
0 0o -1 1
where o and A\ are n X n matrices with
1 0 0 0 0 0 -1
-1 1 0 0 0 0 0
o= , A=
0 -1 1 0 0 0 0
0 0 -1 1 0 0 0 0

Then
(10)(57)
— <‘; 2)(? é)—D(? é) (4.82)

.76) to system (4.27) we obtain

d(5) (0 Y2 )en (s £)(2)-0

I
0

i~

Applying the transformation

? > and using (4.78)-(4.82) we get

6f<i>+<‘g _0V>-6m<i>+D<}Z/? }Z,]Q)(z):o. (4.83)

This equation is equivalent to (4.27) if

Yi Zy\ _ Y, Z
(% )=r(n %)

respectively Yo = Y1 + G |, Zy = Z; + H, where

(G %)= (% )=

Since under this assumption the matrices G and H do not appear in the equa-
tion, we can assume Yo = Y, =Y , Zy, = Z; = Z, which yields the second
equation of (4.77). Further on, we assume in this subsection that the matrix V

is non degenerate. Under these symmetry assumptions the eigenvalue problem
(4.29) reduces to

() en(E 8 () (5 9) ()0 o
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where P = oY +AZ , @ = 0Z+ XY . Our goal is to study the eigenvalue problem
(4.84) as a perturbation of a problem which is as "hyperbolic” as possible. Let

A=Ag+eM (4.85)

M:(Z‘ Z),(?g):DM (4.86)

_( Yo Zo Py Qo ) _
A0<Zo Y0>7<Q0 P0>DAO'

Assuming e = 0, (4.84) reduces to

w1 . vV 0 w1 Py Qo w1 _
z( wo >+2k< 0o -V > ( wo >+<Q0 P, ) < wo ) =0. (4.87)

Notice that Assumptions 1) and 2) in Subsection 4.4 cannot be satisfied for the
eigenvalue problem (4.87), since due to the symmetry assumptions, some of the
eigenvalues are degenerate. Indeed, suppose that DAy has an eigenvector with
€1

0
Due to the symmetry of DAy we have

pan( )0

So the kernel of D Ag has at least dimension 2. Therefore, if A satisfies the sym-
metry conditions above, the assumptions defining the ”hyperbolic” character of
the problem (4.27) with A = Ay have to be modified. Instead of Assumptions
1) and 2) we need in this case

zero eigenvalue . This is equivalent to Pype; =0, Qge; = 0.

Assumption 3) The kernel of D Aq is the subspace generated by the vectors ( 601 ) , < PO > .
1

In particular Pye; = Qqe; = 0.

As a consequence the set of solutions of the eigenvalue problem (4.87) contains
the lines {z = —ikVy , z =ikVy , k € R}. Further we need

Assumption 4) All other solutions of the eigenvalue problem (4.87) are included in the
half plane {Re (z) < —vp} for some vy > 0.

Now we can study the spectrum of (4.87) for A given is asin (4.85),0<e << 1
and M satisfying the symmetry assumptions in (4.86). Then the analog to
Lemma 7 is

Lemma 12 Suppose that the matriz Ao satisfies Assumptions 3) and 4). Let
A be given by (4.85). Then there exist positive constants C = C (Ao, M),
and gq independent of € such that for each k € R and |e| < g the spectrum
associated to problem (4.84) consists of
(i) Two eigenvalues z1 = z1 (k), z2 = 25 (k) satisfying |Re (z1)] < Ce°.
(i) At most (N — 2) eigenvalues contained in the half-plane
{Re(2) < —vo + CeP}.
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Proof. The proof is identical to the proof of Lemma 7, since the arguments
given there do not use the non-degeneracy of the matrix U. m

Using perturbative methods, we now compute the changes of the part of the
spectrum of (4.87) contained in the lines {z = —ikV; , z =ikV; , k € R} for
€ = 0. Due to the degeneracy of these eigenvalues for k£ = 0, this computation
has to be done in a slightly different manner in comparison to the case for
non-degenerate matrices. The following analog of Lemma 8 holds

Lemma 13 Suppose that Ay satisfies Assumptions 3) and 4). Then, for each
k € R there exist vectors vl (k), vl (k) solving the adjoint problems

. PT T
zv] (k) +ik ( ‘(; _OV > v (k) + ( Q%u g{% > vl (k) =0 (4.88)
z = file
. vV 0 Pr r
zvy (k) + ik ( 0 v > vy (k) + ( Q% g(?T > vy (k) =0 (4.89)
z = 1kV;

and satisfying the normalization conditions

<U]T(k),<€(;>>—<vg’(k),<2 >>—1. (4.90)

Proof. The proof is basically identical to the proof of Lemma 8. The
only essential difference is, that for £ = 0 the subspace of solutions that solve
the eigenvalue problem (4.87) with z = 0 is of dimension two. Therefore, the
solution of the adjoint problem is two dimensional, and arguing as in Lemma §,
the basis of eigenfunctions v{ (0), v (0) can be chosen such that they satisfy
the normalization conditions (4.90), [16]. m

Arguing as in the proof of Proposition 9, we can now compute the changes
of the eigenvalues {z = +ikV;}.

Proposition 14 Suppose that Ag satisfies Assumptions 3) and 4), that A is
given as in (4.85) and vl = ol (k), vI = oI (k) are as given in Lemma
8. Here we additionally assume that |k| > & > 0. Then, there exist positive
constants C, ey depending on ||Aol|,||M]|,0, but independent of k and e, such
that for each 0 < e < g the spectrum associated to problem (4.29) consists of
two eigenvalues z1 = z1 (k) , zo = 22 (k) satisfying

2
|21 +ikVi — el | + |22 — ikVi — e6y] < ligk: ,  where (4.91)
6, = <U1T(k),<? g)(eol )> (4.92)
0 A 0
= (e () ()



and at most (N — 2) eigenvalues are contained in the half plane

Re(z) < f% . (4.93)

Proof. The argument is basically the same as for Proposition 9. Consider
solutions of (4.84) in the perturbative form

z1 = —ikVi + €61 + ... , 2o =ikVi + €6y + ...

with eigenvectors

'U]_<€1 >+8Z]+ , ’1)2_< 0 >+6Z2+
O €1

Plugging these formulas into (4.84), using Pye; = Qoe; = 0, and neglecting
quadratic terms in € we obtain

€1 . . 14 0 P(] Q()
01<0>7kV1Z1+7k<0 _V>Z1+<Q0 P(])Zl

+s<? g)(e‘&)—o (4.94)

0 . . VvV 0 Py Qo
02<e]>+ZkV1Z2+Zk<O _V>Z2+<Q0 P0>Z2

(98 (8) =0 459

Taking the scalar product of (4.94), respectively (4.95), with vT v as given in
Lemma 13, we obtain

z1 ~ —Zk‘/] +69] , 29~ Zk‘/] +692

with 6,0, as given in (4.92). This provides the terms of leading order in (4.91).
The error terms can be estimated as in the proof of Proposition 9. Finally (4.93)
follows from Lemma 12. =

To obtain sufficient conditions for pattern formation, we analyze the asymp-
totics as |k| — 0 and |k| — oo for the functions #; and 5. We need the following
auxiliary result

Lemma 15 Suppose that Ay satisfies Assumption 8). Then, there exists a basis
of ker ((DAO)T) given by two vectors {by,ba}, which satisfy

(5)) = ((2) )
(R () B R
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by = < ? é >b1 (4.97)

Proof. Assumption 3) implies dim ker ((DAO)T) = dimker (DA4y) = 2.

The two unique vectors by, by satisfying (4.96) can be found like in the proof of
Lemma 8. Relation (4.97) follows from the identity

T T T T
<?é><g§? gﬁ)(?é)-(g’% gﬂ%) (4.98)

Now we can compute the asymptotics of 1 and 65

Proposition 16 Under Assumptions 8) and 4) the asymptotics of 6, (k) and
0 (k) defined in (4.92) for |k| — oo and |k| — 0 are given by

61 ~ {e1,0e1) , Oy~ (e1,0e1) for |k| = oc0. (4.99)

For k — 0 we have

0, = <[b1 + itk 0 +k27/}1,1] ) <

C]
A
o (8o (8 ) o (31 )+
= (o (S )) = (o (

(4.101)
where Y19, and 1,1 are the unique solutions of
V 0 Pr 4
—Viby + ( 0 -V > b1 + < Q%r g{% ’I/J]’g =0 (4.102)

Vv 0
V11,/J1,0—< 0 —v )1/}1,0+

(
<< o >’¢”’>_<< y >7¢110>—0 (4.104)
() oy=((8)m)=0

and by is as in Lemma 15.

Y11 =0 (4.103)
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Proof. Arguing similarly as in the proof of Proposition 10, we obtain

vlT(k)rv(i)l) as |k| 2 o0 , UQT(k)rv( O) as |k| = o0 .

€1

Thus (4.99) follows. To compute the asymptotics of 8y, 8 as |k| — 0 we expand
vl (k), vl (k) which solve (4.88), (4.89) as power series

'UlT (k}) == a]7]b] + a]’QbQ + Z'k’l/J]’() + kQ’l/J]’] + ... (4106)
1);1 (k‘) = (1271[)1 + Oz2’2b2 + 7:]{7’([]2’0 + ]{72’(112’1 + ... (4107)

where the coefficients a; ; must be determined. Plugging (4.106) into (4.88) and
using that z = —ikV, we obtain

vV 0

—ikVy (ap1br + ag9bs) + E*Vighy o + ik ( 0 _v

) (01,101 + a1.,2b2)

T T
— k2 ( ‘g ,OV )’I/J],()-F ( g%« g{% > (ik¢]’0+k2¢]’]) :O(k;q)

Separating the terms with powers k£ and multiplying them by < 601 > , < eo >
1

we obtain a set of compatibility conditions.

(3 ) (5) )

vV 0
+(€] , 0)( 0 -V >(Oé]’1b]+041’2b2)_0

(o)) o () )

1% 0
+ (0, e) < 0 -V ) (11b1 + a1 2b2) =0 .

Using the normalization conditions (4.96) as well as VT = V and V; # 0, it
follows that
—a11 Vi +Vi << 601 ) ,(a1,1b1 +a1,2b2)> =0

0
—a12Vi = Vi << e ) ,(a1,1b1 +a1,2b2)> =0,

respectively *(Xl,lvl =+ (11,1‘/1 =0 s *(Xl,gvl — (11,2‘/1 = 0, therefore 1,2 = 0. OII
the other hand, taking the limit k& — 0 in (4.90) we obtain ai,; = 1. Imposing the
additional normalization conditions (4.104) we have a unique solution for (4.102). The
compatibility conditions required for solving (4.103) are satisfied, namely

(3 ) (5 % Yo
() (5 % Yoy
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Imposing the compatibility conditions (4.105) we can solve (4.103) uniquely.
In a similar manner, plugging (4.107) into (4.89) we obtain

14 0
Vi [a2,1b1 + a2,2b2] + < 0 -V ) [@2,101 + a2,2b2]
Py Qg _
+ ( or Pl t2,0=10 (4.108)
Vo0 Py QF
— Vipa,o — ( 0 -V )d&,o + < QOOT jQD(:% )1!12,1 =0 (4.109)

€1

Multiplying by ( 0 ) , < PO ) and using (4.90) we obtain, as in the previous case,
°1

that a1 = 0, a2, = 1. Thus we can uniquely solve systems (4.108), (4.109) by
imposing the normalization conditions

(5 ) o) =(( 2 ) wa0) =0
((3)m)={(2) )=

To summarize, for |k| — co we obtained the asymptotics (4.99). Using (4.92), (4.106),
(4.107) we obtain the asymptotics (4.100) for |k| — 0. With a similar argument we
obtain for k¥ — 0 that

6> = <[b2+ik1/)2,o+k21/)2,1] ( i) g ) ( 601 >> (4.110)

:<b2,( ([;: )>+ik<l/)2,0,< 82 >>+k2<'¢)2,1,( g: >>+

Using (4.97) we get

0 I 0 I
¢2,0:*(I 0>¢1,0,1/)2,1:<I 0>1,/)1,1.

With this expression we can transform (4.110) into (4.101). m

Remark 17 There is a crucial difference between the asymptotics (4.100), (4.101)
in Proposition 16 and the asymptotics (4.54) in Proposition 10. In the later case

the zero’s order term in the expansion (4.54) vanishes due (4.61). In the case

of Proposition 16 the term <b1, ( (/?sl >> does not necessarily vanish.
°1

Now we can finally formulate some sufficient conditions for pattern formation
under the symmetry assumption (4.76).

Theorem 18 Let § > 0. Suppose that U, A satisfy (4.77) and Ay satisfies
Assumptions 3) and 4). Let A be given as in (4.85) with € > 0 sufficiently
small. Let 119, 11 be the unique solutions of (4.88)-(4.90) and by be given
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as in Lemma 15. Then, system (4.27) has oscillatory patterns with wavelength

smaller than 2% in the sense of Definition 1, if the following conditions are
fulfilled
®€1 _ 961
<b1, < Ae >> =0, <61,®el> <0, <’([11,1, < Aey >> >0. (4111)

Example: N =4, n = 2. Here we give a specific example of matrices U, A
satisfying the hypothesis of Theorem 18. Consider matrices satisfying (4.77).
These have the form

Vi 0 0 0
(Vi 0 _ 0o W 0 0
V—( 0 V2) , Vi#Ve , U= 0 0 -V 0 (4.112)
0 0 0 -V,
1 0 0 -1 Y11 Y12 211 21,2
-1 1 0 0 Y21 Y22 221 222
D= , Ag = ’ ) ' ' .(4.113
0 -1 1 0 0 z11 212 Yia Yio ( )
0 0o -1 1 22,1 222 Y2,1 Y22
Then
Y11 — 22,1 Y1,2 — 22,2 21,1 — Y21 21,2 — Y22
DAy = —Y11+Y21 —Yr2+Y22 —211+ 221 —212+ 222
21,1 — Y21 21,2 — Y2,2 Yi,1 — 22,1 Y12 — 222
—211+221 —z12+ 222 —WYi1t¥Y21 —Yi2t+ Y22

Assumption 3) implies that y1 1 = 221
and the matrix D Aj reduces to

0 Y1,2 — 22,2
0 —wy12+y22
0 z12—9y22
0 —z12+4+ 222

DAy =

y Y1, = Y21 5, 21,0 = Y21 5, R1,1 = 22,1

0 21,2 — Y22
0 —z124+ 29
0 Y1,2 — 222
0 —wy12+y22

Now we can compute by, by as in Lemma 15. These vectors solve

(Y12 —222)bi1 + (—y1,2 +y2,2) bio + (21,2 — Y2,2) bi 3

+ (=212 +222)bia =0 (4.114)
(z12 —Y2.2)bin + (—z12+ 222) bio+ (Y12 — 222) bi 3
+(—y12+Y22)bia =0, (4.115)

where b1 = (bi,labi,2; bivg,biA)t. NOtiCQ that (496) Yl@ldS b171 = 1 s b113 = O,
bag =1, by1 = 0. Thus system (4.114), (4.115) reduces to

3

(—y12+Y22)bio+ (—2z12+ 222)b1a=— (Y12 — 22,2) (4.116)
(mz124+202) b1+ (=v12+y22) b1a = — (212 — Y2,2) (4.117)
(—y12+y22)bao + (—212 + 222) b2a = — (212 — ¥2,2)
(—z12+ 222) b2+ (—y12 +y22) b2a = — (y1,2 — 22,2)
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Notice that by o = b1,4, b2,4 = b1 2. Therefore the solutions obtained this way sat-
isfy (4.97) and the problem reduces to the system of equations (4.116), (4.117).

In order to solve this system we have to assume(—y; » + y272)2 #(—z12+ 2272)2.
Then the vectors by, by are given by
bi = (1,b1,9,0,b14)" , by = (0,b1,4,1,b19)" .

Due to the normalization conditions (4.104) the vectors 11 g, 11,1 satisfy

Y10 = (0,%1,0,2,0,¢1,04)" 5 Y11 = (0,91,1,2,0,1,1,4)

and
(—y12+y22) 102+ (—z12+ 222) Y104+ (Vo —V1)b12=0
(—z124+222) Y102+ (—y12 +y22) Y104 — (Vi +V2)b1a=0
(Y124 y22) 112+ (m2z12+ 202) Y100 — (Vo = V1) 102 =0
(—z12+222) 112+ (—Y12+y22) Y100+ (Vi + Vo) 104 =0.
Defining

I = (—y12+Y22) (=212 + 22,2)
T\ (22t 222) (—yi2 ty22)

these systems, as well as (4.116), (4.117) can be written in the form

L< b1,2 ) _ < Y1,2 — 222 ) —w
b4 21,2 — Y2,2
1,02 Vo =13 0 bi o
L 7’ ’ =0
( 1,04 + 0 - (Vi +Va) b1,4

I a2 ) [ Va—W 0 Y102 _0
Vi1.4 0 - (Vi +Va) 1,04 '
On the other hand

mii1 Mi12 Ni11 ni2
ma1 M22 N21 2.2
M — 9 9 ) )
nia Ni2 M11 M2
UPR N2 Mo M232

mi1 —N2n my2 —N232 Ny, —Mman N2 — M2 32
DM — —mi1+ma1 —Mmyi2+mao  —Ny1+N2 —MN12+ N2

nii1—Mman Ni2 —M32 mii1 — N2 mio2 —N32

—Ni1,1 + N2 —MNi2+N22 —Mi1+Ma —Mio+ Moo

S (23)
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Then
mi 1 — ne ni1 — me
Oe;, = 1,1 2,1 , Ael — 1,1 2,1 .
—mi,1 + M2 —N1,1 + N2
The sufficient conditions for pattern formation, (4.111), then reduce to

(mig—m21)+bia(—mi1+ma1)+bra(—mn11+n21)=0
mi1 —nN2n <0
Yra2(mig—not)+ Y114 (—n1i1+n21) >0

Therefore, as in the previous case, we need the linear independence of
(b1,2,01,0)" 5 (h11,2,01,1.4)"

As a specific example we can chose

I < 2 -1 > _ ( (—y12+y22) (—2z12+22) )

-1 2 (—z12+ 222) (—y12+Y22)

Y12 —Y22=-2, 2120 —220=1, 230 —Y12=a.

Thus 212 — Y12 = 1+a ; 21,2 — Y22 = —1+a.
w—( a >__<y1,222,2>
1—-a 212 — Y22
r_ (1 0\_ (VW 0
"~ o0 -3)° 0 — (Vi + W)

with V1 = Q,VQ =1.
1 1
br.2 =L 'w= 31a * %
b174 —za+ 3

V11,2 — I'RL'RL 'w = %a—gj
Y114 ' ' La— 52
and the desired condition is satisfied.

On the other hand, Assumption 4) requires that the rest of the spectrum of
zw+ kU -w+ DAgw =0 , keR (4.118)

is below a half plane contained in {Re (z) < 0}. The spectrum reduces to the
roots of

z+1kVy Y1,2 — 22,2 0 21,2 — Y2,2
d 0 —Y1,2 + Y22+ (z + ikV3) 0 —21,2 + 222
et .
0 21,2 — Y2,2 z — kW Y1,2 — 22,2
0 —z12 + 222 0 —y1,2 + Y22 + (2 — ikV2)
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= 0, respectively

(Y2,2 — y1,2) + (2 + ikV3) (22,2 — 21,2)

1A% —ikV1) det i
(z +ikV1) (z — ikVh) de < (220 — 21.) (Y22 — y1.2) + (2 — ikVa)

=0.
Therefore we have to solve
(Y22 — y1,2)2 +2(y22 —y12) 2+ 27 + KV — (222 — 21,2)2 =0,

whose solutions are
1

3
z2=—(y22 —y12) [(yz,Q - y172)2 — (y2,2 — y172)2 + (22,2 — z172)2 — K’V
1

=—(y22—y12) £ [(2‘2,2 - 2‘1,2)2 — KV} c

Then, if |z22 — 21 2| < (y2,2 — y1.2) we obtain the desired condition.
Summarizing, we choose

Y12 — Y22 = -2, 212 — 222 = 1, 222 —Y12=0a, 212 — Y22 = —1+4+a.

For instance we can take y2 0 = 2.5, y12 =05, 200 =054+a, 212 = 1.5+a.
For a = 0 we obtain

Y22 = 2.5 , Y12 = 0.5 , 22,2 = 0.5 , 21,2 = 1.5 ,

Y =221 5, Yi,1 =Y2,1 , 21,1 =Y2,1 5, 21,1 = 22,1,

c 05 ¢ 1.5
c 25 ¢ 0.5
Ao = c 15 ¢ 0.5 (4.119)
c 05 ¢ 25
Then
b1 2 _ % Y112 _ —%
b4 -2 ’ V1,14 —5 '
And the conditions for m , n become mgy 1 = n21 — 2my 1 + 2n1 1,
86 (77,2’1 — 77,171) < 55 (77,271 — ml,l) ,mi1 — N2 < 0. For instance for
mi = 1 , N2 = 1.5 , Mg = 1.3 , Mo = 2.1
1 0 13 0
21 0 15 0
M = 130 1 0 (4.120)
15 0 21 0

The root with the largest real part of (4.75) for this choice of data and with
€ = 0.001 can be seen in Figure 2

Note, that the plotted curve does not start at the origin. This is due to some
higher order terms, which produce the shift. The effect is rather small though.
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Figure 2: The case N = 4. The root with the largest real part of (4.75) close to
the imaginary axis for U as in (4.112), with V3 =2,V, =1, D as in (4.113), Ay
as in (4.119) and M as in (4.120). Here € = 0.001.

5 Choices of Ay, M, which relate to Rippling
Dynamics of Myxobacteria

The previous analysis provides a variety of matrices A such that (4.27) is in-
variant under the transformation (z,p,%) = (—z, ¥, ), and yields oscillatory
instabilities in the sense of Definition 1. So far the coefficients of Ag , M where
chosen without any specific application in mind. We have chosen Aq such that a
dispersion relation ”as hyperbolic as possible” resulted (cf. Assumptions 3 and
4). Then Ay was suitably perturbed by a matrix e M.

In this section we will construct two specific examples of systems of type

(4.27), where A is a 4 x 4 matrix satisfying the symmetry conditions (4.77).
Here A is obtained by linearizing a system of the form (4.9)-(4.12) with functions
Ty, T, satisfying suitable dependencies.
Coming back to the behavior of myxobacteria, which under starvation conditions
first align from a basically two-dimensional motion to a one-dimensional axis
and then move into two opposite directions, we are interested in how many
reasonable types of cells (two are not enough) are needed on the linearized
level of analysis to observe counter migrating ripples of cell density waves. The
rationale for our example is that the bacteria moving into one direction can be
in two different states. The cells pass from a non-excited state to an excited
state, which is induced by the cells moving into the opposite direction. First
we assume that the cells in the excited state move with slower speed than the
non-excited cells. In a second model the excited cells are not moving at all.
Similar pattern forming properties can be derived if the speed of the excited
cells is larger than the speed of the normal cells, but we omit further details for
that case here.

First we show, that if both states of cells move with the same speed, then
no pattern formation can be observed in the 4 x 4 case.

36



5.1 Degenerate matrices U, symmetric under reflections,
do not yield pattern formation near ”hyperbolic” 4 x 4
matrices A.

Here we show that under suitable generic conditions on the coefficients, system
(4.27) with 4 x4 matrices can not yield patterns in the proximity of ”hyperbolic”
matrices, if U contains only two opposite velocities and (4.27) is invariant under
the transformation (z,p, %) = (—x,%,¢). To see this, consider A = Ag + eM
with

Yl Y12 21,1 21,2 mi1 Mmi2 Ni11 ni2
Ap = Y21 Y22 22,1 222 M = ma1 M22 N21 n2 2
21,1 21,2 Y11 Y12 ni1 MNi2 M1 M12
22,1 22,2 Y21 Y22 UPR Mg Mo M232
(5.1)
V o0 0 0 1 0 0 -1
0o Vv 0 0 -1 1 0 0
= D:
and U 0 0 -V 0 : 0o -1 1 0 |°
0 O 0o -V 0 0 -1 1

where V € R, V # 0 and € > 0 is small. By rescaling we can assume w.l.o.g.
that V = 1.
First we precise the meaning of a hyperbolic matrix.

Definition 19 The matriz Ag given as in (5.1) is a nonsingular hyperbolic ma-

Y11 Y12
o Y21 Y22 . . .
triz if the vectors i , . generate a linear subspace of dimension
1,1 1,2
221 22,2
one and
A (0) £0, (5.2)
where
2tk +y1,1 — 22,1 Y1,2 — 22,2 21,1 — Y21
Ay (k) = det —y1,1 + Y21 2ik —y12+ Y22 —2z11+ 221
21,1 — Y21 21,2 — Y22 Y11 — 221
2tk +y1,1 — 22, Y1,2 — 22,2 21,2 — Y22
+ det —Y1,1 + Y21 2ik —y12+ Y22 —z12 + 222
—z11 + 221 —2z1,2t 222 —Y1,2 T Y22

Remark 20 Here (5.2) is a technical condition that ensures that the dispersion
relation associated to (4.27) can be computed perturbatively for € — 0 and is
satisfied generically.
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The meaning of ” hyperbolic ” in Definition 19 is, that a large portion of the
dispersion relation associated to the evolution problem (4.27), for the matrix

A = Ag lies on the imaginary axis as it would be the case for the wave equation.
This is a consequence of

Proposition 21 Assume that Ay is a nonsingular hyperbolic matriz in the
sense of Definition 19. Then, there exist two real numbers aq, as with (a1)2 +
(a2)” # 0 and

(03] 0
(&3] _ 0 _

DA 0 =0, DAg a =0 (5.3)
0 Q2

The numbers oy, s are uniquely determined, up to multiplication by C # 0.
Moreover, for each k € R the spectrum of the matriz — (ikU + D Ag) contains
the eigenvalues —ik and ik.

Proof. Due Definition 19 there exist «a;, as as stated in Proposition 21
with

Yin Y1,2
Y21 Y22
ar | Y tas | Y =0. (5.4)
21,1 21,2
22,1 22,2
On the other hand
Y11 — 221 Y1,2 — 22,2 21,1 — Y21 21,2 — Y22
DA, = —Y1,1t Y21 Y12t Y22 —211t+ 221 —212+ 222
21,1 — Y21 21,2 — Y22 Y11 — 221 Y12 — 222

—211+t221 —Z12+t222 —Yi1t+Y21 —Yi2t+ Y22

a a1
Formula (5.3) then follows from (5.4). Since U 062 = 062 and
0 0
0 0
U 0?1 = N E the mentioned properties about the spectrum of
Qg Qg

— (ikU 4+ DAyp) follow immediately. m

So an additional technical assumption on the matrix Aq is needed in order
to obtain the desired pattern forming properties.

Definition 22 A matriz Ag is a stable nonsingular hyperbolic matriz, if it is
nonsingular hyperbolic and for each k € R the spectrum of —ikU — D Ay consists
of the eigenvalues —ik, ik and two more eigenvalues contained in the half-plane
Re(z) < 0.
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Now we can state the main result of this section

Theorem 23 Suppose that Ay is a stable nonsingular hyperbolic matriz in the
sense of Definition 22. Let A = Ay +eM. Define

2k +y1,1 — 22,1 Y1,2 — 22,2 21,1 — Y21
Ay (k) = det —Y1,1 + Y21 21k — Y12+ Y22 —211+ 22,1
21,1 — Y21 21,2 — Y22 Yi,1 — 22,1
2k +y1,1 — 22, Y1,2 — 22,2 21,2 — Y2,2
+ det —y1,1 +Y2,1 2k — 12+ Y22 —z12+ 229
—z11 + 221 —2z12+ 222 —Y1,2 T Y22
2ik + Y11 — 221 Y12 — 222 21,1 — Y21 Ni2 —M22
det —Y11 T Y21 2ik —y12+ Y22 —z11+ 221 N2+ Nop
21,1 — Y21 21,2 —Y2,2 Y11 — 22,1 my2 —N232
—21,1 + 22,1 —21,2+ 22,2 —Y1,1+t Y21 —Mio+ Mmoo
2ik + Yi,1 — 22,1 Y12 — 22,2 ni1p —ma 21,2 — Y22
+ det —Y1,1 + Y21 2tk —yr12+ Y22 —Migt+neg —2i12+ 222
21,1 — Y21 21,2 — Y22 mi1 —nN2n Y12 — 22,2
—21,1 + 22,1 —21,2 + 22,2 —mi+m21 —Yi1,2 + Y22

And define functions Py (k,a), Py (k,a) by
det ((ik + ae) + ikU + DAg + eDM) = Py (k,a) + Py (k,a)e + O (¢*) . (5.5)
Then Ay (k), Ay (k) can be written in the form
Ay (k) = (26k) [ ki + 1], Ao (k) = (26k) [uki + va] . (5.6)

On the other hand the equation

P()(k,(l)-l-Pl(k,(l)E:O (57)
defines a function A (k) = Re(a) that is monotone in case p1, o, V1,V2 as
defined in (5.6) satisfy

H1
0. 5.8
o (53)

Remark 24 The function ( = ik+ae with a = a (k) defined by (5.7) provides a
linear approximation in € of the eigenvalue z = z (k,€) of the eigenvalue problem

(z+ikU+ DAy +eDM)v =0, (5.9)

such that z = 0 for e = 0. The fact that the function A (k) is monotone does
not imply monotonicity of Re (z (k,€)), because classical perturbation theory for
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eigenvalue problems just implies z (k,e) = ik + ac + O (52) as € — 0. The
uniformicity of this approzimation breaks down in general for k — 0, since
2(0,0) is a double eigenvalue. Some care is required to show uniformicity of the
approzimation as k — oo. Therefore, from Theorem 23 we can only conclude
that for the whole eigenvalue problem (5.9) patterns with wavelengths of order
one for € small are absent, if condition (5.8) holds. However, this Theorem does
not rule out the onset of patterns with very small, or very large wavelengths for
e = 0 under the condition (5.8). Moreover, if condition (5.8) fails, there could
be patterns with wavelengths of order ome arising from quadratic terms on €.
Nevertheless, the analysis of such higher order pattern would require the use of
methods different from the ones presented in this paper.

Proof. We can expand the left hand side of (5.5) as

2ikI+E F )
det( 7 B ) +0 (%), (5.10)
where
E = Y1,1 — 22,1 F €M1 —EN2 1 + AE Y1,2 — 22,2 + EM1 2 — ENg 2
N —Y1,1 +Y2,1 — €M1 +EM2; —Y1,2+ Y22 — €M1 2 +EM232 + ae

F= Z1,1 — Y21 +HEN1 1 —EM2 Z1,2 — Y22 +ENL2 —EM2 3
—211+t 2210 —€N11 +EN21 —2Z12+ 222 —EN12 +EN2 2

The first term in (5.10) can be expanded in €. Arguing as in the proof of
Proposition 21 it follows that if € = 0 the last two columns of (5.10) are linearly
dependent, so the determinant vanishes. Therefore, using the multilinearity of
the determinant we can rewrite Py (k,a), P; (k,a) as

P(](]{?,(I):O, Pl(kl(l):Al(k)(l-i-AQ(k) .

Then, the solution of (5.7) yields a = —2—?. Formulas (5.6) are a consequence
Y11 Y12

of the linear dependence of the vectors 22’1 , 22’2 . Due to (5.2) we
1,1 1,2
22,1 22,2

have v # 0 and to the leading order

poki 4 vo s + Bok?
= | == d Re == - 5.11
“ (,uﬂm'%—m) an 9((1) @ +ﬁ]k}2 ( )

for some ai,B1,a2,82 € R ;a1 # 0. The right hand side of (5.11) depends
monotonically on k, if (5.8) is satisfied, whence our theorem follows. m
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5.2 Bacteria in the excited state are less motile than in
the non-excited state.

We need the matrix U to be nondegenerate. More precisely, assume that

2.0 0 0
01 0 0

U=| 4 0 —o o (5.12)
00 0 -1

On the other hand we obtain (4.27) by linearizing (4.9 )-(4.12), with A given by

Tvy Ty Tz Tig
To1 Thp Toz Toy
Tvs Tva Tig Thps
Tog Tou Ton Tho

:A0+EM.

Further, we will make the following ”reasonable” assumptions

Ty =T (uy +us +v1 +v9,u1,01 + v2) (5.13)
Ty =Ts (us) - (5.14)

The bacteria change through the states in the following way: u; — us — v1 —
vo . Thus cells of the non-excited type u; get excited (i.e. prepare for turning)
in dependence of the total cell density, the collisions with counter-migrating
cells and by the cell density of their own kind. Turning is then ”automatic” and
depends on the distribution us itself. Assume, as above, that the eigenvector
associated to the eigenvalue (—2ik) for the unperturbed problem z + ikU +
DAg =01is (1,0,0,0)". Then the matrix Ay has the form (cf. Assumption 3)

Y12 € 212
Y22 C 222
212 € Y12
222 C Y22

Ag =

o0 00

for some ¢ € R. In order to obtain the constraints (5.13), (5.14) and since ¢ is
arbitrary we may assume ¢ = 21 2 = 222 = (0. Then

0 w12 0 O
0 Y2,2 0 0
0 0 0 y]72
0 0 0 y272

Ap =

Due to (5.13), (5.14) we must have

mi1 M2 Nij n11
0 ma 9 0 0
nia N1 M1 Mi12

O O O m272
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Since we are interested in A = Ag+¢eM the values of m », m» > can be absorbed
in y1,2, y2,2 respectively. So we chose

0 Y1,2 0 0 mi1 0 n11 n1
0 20 0 O 0 0 0 0

Ay = N M =
0 0 0 0 w12 ’ nyy niy omyp 0
0 0 0 w2 0 0 0 0

The corresponding dispersion relation associated to (4.27) can then be computed
by solving

det (z + ikU + DAg +eDM) =0 . (5.15)

We compute solutions of (5.15) near the ”hyperbolic line” z = —2ik pertur-
batively. To do this we take an expansion that is uniform on the whole line
kel

z=—-2tk+ac+ ...
Keeping only terms of linear order in € we obtain

m iY2,2U1,2 — DY ok + 4ik? + y1 ok — iy%g
—ma1,1 — - - - )
5y1.2k — iyiy — Syaok 4 4ik? —iys o + 2iy2 0y 2

In order to have the remaining part of the spectrum in the region Re(z) < 0 we
need

Y12 — Y22 < 0. (5.16)
Then we get the following asymptotics
Y2,2 my1y1,2 — INi1y2.2 ‘
Re(a) ~ (m11 —ny1) - 5 5 B+
Yro— Y22 (Y12 = Y22) (Y50 + Y7o — 292,001.2)
for k—0 and lim a=—my, .
k— oo

Therefore, the following conditions ensure oscillatory pattern formation for
(4.27)

miayi2 — 9”171211272
(111,2 - l/2,2)

mii1 =ni1, — >0, mi >0.

W.lo.g. assume that m;; = ny; = 1. Taking into account (5.16), a sufficient

condition for pattern formation for small € > 0 is

Y12 —22>0, y22 —312>0.

A possible choice is y10 = =1, y2» = —0.5. So with

0 -1 0 0 101 1
0 —05 0 0 0000

=10 o o0 M=|1 71 0] >0 617
0 0 0 —05 0000
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we obtain oscillatory patterns for (4.27). The root with the largest real part
corresponding to the dispersion relation for this choice of matrices is shown in
Figure 3.

Let us summarize

Theorem 25 The differential equation (4.27) with A = Ay +eM, and Ay, M
as in (5.17), U as in (5.12) and € > 0 sufficiently small generates oscillatory
patterns in the sense of Definition 1.

-0.0008 -0.0006 -0.0004 -0.0002

Figure 3: The root with the largest real part for (5.15) close to the imaginary
axis for the situation in Theorem 25 with € = 0.001.

Also other examples were found, where the roles of 1 and 2 in U where
exchanged. The conclusion in these cases is the same, including the signs of the
coefficients. In all cases, the functions show an inhibitory character for some of
the interactions, which seems untypical for the behavior of myxobacteria.

5.3 The cells in the excited state are not moving

We now assume

10 0 0
00 0 0

U= 460 10 (5.18)
00 0 0

In this case it is not possible to obtain oscillatory patterns with functional de-
pendences as given in (5.13), (5.14) for the transition rates. We need slightly
more detailed dependencies for T, and with these, we can obtain pattern forma-
tion without inhibitory effects, which is more realistic in the context of pattern
formation in myxobacteria. A first natural generalization, namely

Ty =T (uy +us +v1 +v9,u1,01 + v2)
Ty = Ty (ug + us + v1 + va,u2)
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does also not give oscillatory patters at the linearized level for e. So we assume

T] :T] (U] + uo + -|—’U27U]7’U]7’U2) (519)
To =To (ug + us +v1 +v9) . (5.20)
A set of matrices A, Ay, M consistent with this are

C Y12 C Z12 min 0 ni1 0

c ¢ ¢ ¢ 0 0 0 0
A = . M= 5.21
0 c 212 C Y12 nig 0 myg O ( )

c ¢ ¢ ¢ 0 0 0 0

A= A() +eM .

We then solve (5.15) near the line of hyperbolicity z = —ik, i.e. we expand
z=—tk+ac+ ...
The solution of (5.15) to order € yields

N1,1C+MiY1,2 —MiC—Ni121,2 +imy ik
—2ck + 2iyy ac + 022 5 + ik? + 2y1 ok — iy? 5, — 2iz1 0¢

a =

Then we have the following asymptotic formulas
1

2 2
Re(a) ~ — (=2maicyr o +maizi o +miayl s

; P
2 2
(2cy1,2 + 219~ Yia2 — 221 2¢)
2 2 2
—=2my 121 2¢ + 201 1¢y1,2 — 200,167 4 2my 17— 20y 121 0Y1 2 + 201121 ,20) k

for £ = 0, and limg_y00 @ = —my 1.
The part of the spectrum of — (ikU + D Ag) not contained in the line Re (z) =0
is given by

z2=y12 —2c+z12,2=—z12+Y1,2 -

Therefore the following conditions ensure existence of oscillatory patterns for
€ > 0 sufficiently small

—2mycyr 2 + mmZ]Q,Q + m171y1272 —2myz12¢+ 20 1¢cY1,2 — 2”17102
+ 2m1,102 —2n1121,2Y1,2 + 201 ,121,2¢ < 0
mi1 >0, 912 —-2c+212<0, —212+y12<0
The following choice in (5.21) satisfies all these inequalities
c=15,y12=05, z1o=1, and ;M1 =2, n1=1. (5.22)

The form of the root of (5.15) with largest real part for this choice of matrices
is given in Figure 4.

In summary we have

Theorem 26 The differential equation (4.27) with A = Ay +eM, and Ay, M
as giwen in (5.21) with coefficients as in (5.22), U given as in (5.18), and e > 0
sufficiently small, generates oscillatory patterns in the sense of Definition 1.
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Figure 4: The root with largest real part of (5.15) close to the imaginary axis
for the conditions as described in Theorem 26 with £ = 0.01.

5.4 Pattern formation in a symmetric 6 X 6 system for
degenerate U

We have seen before that a generic 4 X 4 system cannot yield oscillatory patterns
near hyperbolic settings if the matrix U contains only two opposite velocities.
In this section we will show an example of a 6 x 6 system, which is invariant
under the transformation (z,p, ) = (—x,%,¢) and yields pattern formation.
Let

1 0 0 O 0 0
01 0 O 0 0
0 01 O 0 0
U= 0 00 -1 0 0 (5.23)
000 0 -1 0
0 0 0 0 0 -1
Here
1 0 0 0 0 -1
-1 1 0 0 0 0
0o -1 1 0 0 0
D= 0 0 -1 1 0 0
0 0 0o -1 1 0
0 0 0 0o -1 1

We consider linearizations of systems like (4.9)-(4.12) containing two additional
variables (ugz,v3). We assume that the transition probabilities are

T] = T] (U],U] + vy + ’1)3) (524)
Ty = T (ua,uy + us + ug + v1 + v9 + v3) (5.25)
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We did not succeed to find simpler functional dependencies than (5.24)-(5.26).
In particular replacing (5.25) by Ty = T» (u2) is too simple to generate oscillatory
patterns. The linearized matrix A compatible with (5.24)-(5.26) has the form

yig O 0 z11 z11 211
Y21 Y22 Y2,1 Y21 Y21 Y21
0 0 w33 O 0 0
21,1 21,1 21,10 Y1 0 0 ’
Y21 Y21 Y21 Y21 Y22 Y21

(5.27)

with A = Ay + eM where Aq is "hyperbolic”. We assume a particular form of
”hyperbolic” behavior, namely

DAy (1,0,0,0,0,0)" = DAy (0,0,0,1,0,0) =0 . (5.28)

Now (5.28) is satisfied if y1 1 = y21 = 21,1 = 0. Let

0 0 0O 0 O 0
0 Y2,2 0 0 0 0
_ 0 0 Ys3,3 0 0 0
Ad=19 0 0 0 0 o0 (5.29)
0 0 0 0 g2 O
0 0 0 0 0 wys3
Then A = Ay + M is of the form (5.27) if
mi 0 0 N1 Mg N1
mo 1 0 mo1 M21 M21 M2
0 0 0 0 0 0
M = . 5.30
ni1 Mg migg mig 0 0 (5-30)
Mo M21 M1 Maj 0 maa
0 0 0 0 0 0

The spectrum of — (ikU + D Ag) is given by the eigenvalues
{—ik, =ik —y22, —ik —y3 3,1k, ik — Y22,k — y3 3} .

Therefore, to obtain that the most unstable branch of the dispersion relation
for small ¢ is a perturbation of +ik we have to assume

Yoo >0, ys3 > 0. (5.31)
As before, the dispersion relation associated to (4.27) is given by
det (z +ikU + DAy +eDM) =0, (5.32)
and we can look for perturbative solutions of (5.32) of the form

z=ik+ac+ ...
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Solving (5.32) to the leading order in £ we obtain

72]477711,1(1/3,3 + y2.2) +iy2.2ysa(ni —my 1) +4ik®>my 1 — 2kma 1ys3
—iY2,2Y3,3 + 2kys o + 2kys 3 + 4ik? :

a =

The function a has the following asymptotics

2 2
(n11 —m21)Y2,2y3,3 + n1,1Y39 + (n1q — mz,l)y&g
2 3
Y32 2Y33

for k—0, and a(k)—-miq1 for k—oc.

(L(k}) ~ (’n]’] —m]’]) —4

A sufficient condition for oscillatory patterns is then

nyp =myq >0
2 2
(M1 —mo1)y22y33 + (N1 — m271)y3,3 TNy

— >0.
2 .2
Y2 2933

—4

There are many different choices of coefficients y; ;, n; ; satisfying these inequal-
ities, e.g.

mi1 = N1 =1, Y2,2 = Y3,3 = 1, ma =4.

The form of the most unstable branch of the dispersion relation associated to
these coefficients is given in Figure 5.

~0.001 R E—— e V)

-15.

Figure 5: Plot of the root of (5.32) with the largest real part near the imaginary
axis for conditions as given in Theorem 27 with € = 0.001.

To summarize

Theorem 27 The differential equation (4.27) with A = Ag +eM, and Ay, M
as in (5.29), (5.30), U as in (5.23) and € > 0 sufficiently small, generates
oscillatory patterns in the sense of Definition 1.
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5.5 Transition between oscillatory patterns and absence
of patterns in myxobacteria - wildtype and mutants

Pattern formation in biology relates often to certain functional mechanisms. In
myxobacteria there is a peculiar phenomenon, that makes it possible to test sug-
gested models for rippling on their reliability. There exist mutants which can
be mixed with wildtype populations, that move the way the wildtype does, but
which do not produce the signal, which upon contact with counter-migrating
bacteria make these bacteria change their orientation. The mutants themselves
can receive the signal and thus turn, but they do not induce turning for other
bacteria. When mixing these two types of bacteria still rippling patterns oc-
cur, but with an increasing number of mutants the wave length of the ripples
increases also. For a too large fraction of mutants in the total population, the
rippling pattern is finally lost.

We can see all these effects of rippling, increasing of the wavelength of the
rippling pattern, and the loss of the rippling phenomenon in the following basic
6 x 6 model for the wildtype and its naturally extended version for the wildtype-
mutant situation. In the wildtype and mutant system a bifurcation for a critical
value of the mutant fraction is generated, where the pattern is lost. For this to
happen, we exchanged the roles of the dependencies of 77 and 75, in comparison
to the model discussed before.

We assume that the bacteria are described by a system with 3 states that
can move in opposite spatial directions. So we have the sequence of states

U1 — Uy — U3 — V] — Uy — V3 — U7 .

Then the following set of transition rates (if mutants are absent) can also gen-
erate oscillatory patterns and additionally is able to produce the desired bifur-
cations in the population, when mutants are present

T1 = T1 (5’,11,1) s T2 = )\2 (1)1 + vy + 1)3) Uus Tf; = )\311,3 , (533)

where 6 = uy + uy + ug + v1 + Vo + v3.

So the right moving bacteria of type 1 become type 2 - e.g. excited, respectively
able to receive or send the signal to induce turning in other bacteria - in de-
pendence of the total cell density and their own density, for instance, when the
total population density is high enough. The bacteria of type 2 become type
3 bacteria - e.g. able to turn - upon contact with counter migrating cells v;,
i = 1,2,3. The bacteria of type 3 then turn with a certain probability.

For the model with mutants and wildtype cells we have the following. Since
the counter-migrating mutants do not produce the signal, they do not occur in
the collision term associated to the rate T5. Only wildtype cells produce the
signal upon collision, which makes the counter-migrating cells, which receive
the signal, turn. Here and in the following we define

o=u; +us+us+v +v+v3+u +uy+us+ v+ 02+ 03,
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where @;,v; denote the corresponding concentrations of mutants. Further, we
assume

T]:T] (07’11,]) s TQZAQ(U]+U2+U3)U2 s T3:)\3U3

Tl = T1 (0’, 17,1) 5 TQ = )\2 (’Ul + 09 +’U3)’I7,2 s Tf; = )\377‘; .

Using our approach to derive coefficients, which yield bifurcations near ”hyper-
bolic” matrices, for functional dependences as in (5.33), we obtain the following
choice of coefficients

7

T

0 0
+Tl7u = Em,l’l 5 T

1,0

= Em,l’g s T207u = y272 s (534)

0 _ 0 _
T3,u =Y3,3, T],E =E&ni,2 -

Here T}, denotes the derivative of the transition coefficient T; with respect to
w evaluated at the corresponding equilibrium values for the system in absence
of the wildtype, which means a = 0. So only mutants are present.

We will simply use T;,, in case a # 0. We obtain oscillatory patterns for the
following choice of coefficients

mig=mi; =1 (5.35)

—Y2,293,3 + M21Y3,3Y22 + N21Ys5 — Yso —Yag >0, ¥22 >0, ys3 >0 (5.36)

and e sufficiently small. Condition (5.35) is not strictly needed to generate
patterns. However, it is convenient, since then the linear correction to the
most unstable branch of the dispersion relation associated to the linearization
of model (5.33) vanishes for ¥ = 0 up to higher order terms. Since the dispersion
relation does not change too much for small values of &, this is practical in order
to study bifurcations w.r.t. a and to obtain neutral stability for £ = 0. Then
the change of stability can be associated to transforming the local minimum for
k = 0 into a local maximum.
An important consequence of (5.34) and (5.35) is that

Ty, =0 for 0 <a <r andsuitable r <1.

Therefore, the function 77 in (5.33) does not explicitly depend on u;. Thus at
equilibrium the concentrations of us, s, us, g take constant values. Notice
that ue, e, us, u3 being constant implies that @; is negative for (1 — ) small,
where « is the fraction of wildtype cells in the system. In order to deal with
this problem we will assume

Tr =\ (0) ¥ (g—;) ,

where the total cell concentration o is large and 0 < § < 1. Typically the
concentration of u; is of order o, when the total cell density is large. Therefore
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v (;‘—;) is approximately of order one and thus the transition rate T} is basically

independent of u; and mainly depending on the total cell concentration. In case
uy is very small, nearly no transition to the next state is happening.
Moreover, we assume that

U(¢)~¢& as £€—0 and T(&) ~1 as £ = c.

This type of choice will avoid negative concentrations at equilibrium, since the
concentration of mutants will be of order (1 — @) and then, the function T
will approximately be given by the simpler functional dependence

Ty =X (o) for (1—a)>>c",
respectively (1 —a)>>0’"" and a>>0%D . (537)
We will restrict our analysis to this situation for which we can use (5.37). The

homogeneous equilibria for the concentrations of wildtype cells and mutants are
characterized by

T1:T2:T3,T1:T2:T3, andu,;:v,;,m:m 5 7:1,213

as well as

(1—04)0.

aoc _ _
7/,1+u2+u3:7,7/,1+u,2+u,3: 5

The solutions of these equations under approximation (5.37) are

o M (o) . i (0) _— A1 (o) . :)\1 (o)
TN T TN R TRE T
_ao ~ac M(o)  M\(o)

u177—(u2+u3)*7_)\2(0f2_0’)_ Az

. (l-a)e = (1-a)o A(o) (o)

uliT—(ug+U3)* D) _)\2(%)_ Az

As indicated above, if the A; are of order one we have u; ~ ac and u; =~
(1 — a) 0. The linearized problem near the homogeneous states is of the form

U o D 0
8tf+(0 U>8zf+<0 D)Af_o, (5.38)

where

100 0 0 O 1 0 0 0 0 -1

010 0 0 O -1 1 0 0 0 0

001 0 0 0 0 -1 1 0 0 0
U=looo0o -1 0 o D=1"09 0o -1 1 0 o0

000 0 -1 0 0 0 0 -1 1 0

000 0 0 -1 0 0 0 0 -1 1
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A= 2P g with

T] o Tl,cr T]7U' TLo' Tl,cr TLo'

A = 0 Thy O s Ae= | Toe Toe Tog
0 0 Tsa 0 0 0

Tl o Tl,o' Tl o B 71,0‘ ]:11,(7 Tl o

As = 0 A= 0 T, 0

0 0 0 0 0 T34

B jjl,o‘ j:l,(r jjl,o‘ B Tl,o’ 71,0' Tl,o’
A2 = T27£ T21§ T27£ ) A3 - 0 O 0
0 0 0 0 0 0

Using the transition rates (5.33), (5.37) we obtain the following linearized coef-
ficients at the homogeneous states

Tl,a = TLU :Tloﬁ ) Tl,u = Tl,u =0

_ Ay (&2 _
T2,u = T2,u = )\22((2)) T207u ) T27§ = TQ@ =

_ 7 _ 70
T3,u — T3,u — T3,u .

The transition between the choice of coefficients yielding oscillatory patterns and
the ones that does not produce such patterns is characterized by the reversal of
the first inequality in (5.36). To obtain such a switch we choose

/\2({12_”): a) where o) = e 1
o[y = 0() vhere 9@ ="

The superexponential growth of the function ¢ seems to be crucial to obtain
the desired bifurcation with this scheme. This type of superexponential growth
is known in chemical reactions and can result from a threshold activationenergy
that is able to produce exponential dependences. With this functional choices
we have

T107(7 ) T],u - Tl,u =0

=
Q

I
-
Q

Il

2
ae® 1

2 — 13
Ty =Tow=e" Ty, Trg=Tog = — T = aTy,

We choose the coefficients for ”small” mutant concentrations as in (5.34).
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Figure 6: a = 1.0
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Figure 7: a = 0.7
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Figure 8: a =0.65
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Figure 9: a = 0.5
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Figure 10: Here the scale is magnified in comparison with previous figures.
a=0.6

The following figures show the branch with the root with the largest real
part for the dispersion relation corresponding to (5.38) for different values of a.
For arbitrary « it contains a ”"neutral” bifurcation branch given by the values

z=+ik , keR.

Calculating the dispersion relation reduces to solving a polynomial equation of
degree ten. Figures 6, ..., 11 show the form of the most unstable branch for
a =1, 0.7, 0.65, 0.5 and for a magnified scale near the bifurcation value for
a = 0.6, 0.61.
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