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Abstract

Tensor product (TP) approximation with optimal tensor rank provides an interest-
ing alternative to the traditional Gaussian-type orbital (GTO) basis functions in elec-
tronic structure calculations. The GTO basis functions are commonly used in electronic
structure calculations for approximation of single-electron wavefunctions the so-called
orbitals. The rigorous results are available only for the H atom concerning the approxi-
mation errors of GTO bases for the solution of the single-electron Schrödinger equation.
In this paper, we apply the TP approximation to the H atom for computation of the
kinetic energy and potential energy. We then apply the TP approximation to the single-
electron systems with several nuclei and study the accuracy of the approximation. We
also study the sparse wavelet representation of univariate components of the TP ap-
proximation which paves the way for the fast computation of various integrals involving
the orbitals and orbital products in electronic structure methods.

This article is dedicated to Prof. Dr. Dr. h.c. Wolfgang Hackbusch
in honour of his sixtieth birthday.

1 Introduction

Tensor product approximations have a long and successful history in quantum chemistry.
Beylkin and Mohlenkamp [3, 4] initiated a program for low rank tensor product decomposi-
tions in electronic structure calculations. Recently, tensor product approximation [5, 6, 14, 11]
has been applied in electronic structure calculations for efficient computation of Coulomb in-
tegrals. The basic idea to represent certain quantities in tensor products is to factorize the
expensive parts of the calculation in order to reduce the dimensionality and thereby the com-
putational complexity. The prominent example for tensor products in quantum chemistry are
GTO basis sets for the approximation of single-electron wavefunctions (orbitals) and related
quantities like one-electron orbital product density and total electron density. The GTO basis
functions are widely used in electronic structure calculations. There are several advantages
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to use Gaussians, for instance the product of two Gaussian functions is again a Gaussian
and integral evaluation is much easier. The GTO basis functions achieve almost exponential
convergence rates σκ(ψH) ∼ e−µ

√
κ for the H atom [15, 1]. We propose an “optimal” TP

approximation for electronic structure calculations [5]. The TP approximation with “opti-
mal” tensor rank provides an interesting alternative to the traditional GTO basis functions
in quantum chemistry. The “optimal” TP approximation is performed in the sense that for
a given accuracy an approximate tensor representation with minimal rank is determined. It
is the so-called best tensor rank κ approximation. Using best tensor rank κ approximation
and wavelet techniques, we want to construct algorithms for the fast computation of various
integrals which appear commonly in electronic structure methods. These integrals are very
complicated and involve orbitals, orbital products and electron density. We therefore study
the TP approximation of single-electron systems and sparse wavelet representation. This
paves us the way for the fast algorithms to compute the complicated integrals in electronic
structure methods. For this we first study the TP approximation to the H atom, because
the rigorous results are available only for the H atom concerning the approximation errors of
GTO bases.

2 The TP approximation for the kinetic energy of the

H atom

To obtain the best tensor rank κ approximations to the H atom, we need to obtain the best
tensor rank κ approximations of the solution of the single-electron Schrödinger equation

[

−1

2
∆x −

∑

A

ZA

|x −RA|

]

ψGTO(x) = ε0 ψ
GTO(x), (1)

for the kinetic energy and also for the potential energy. We study here the error of the
best tensor rank κ approximation for the kinetic energy of the H atom. For this, we solve
the single-electron Schrödinger equation (1) by using MOLPRO (a standard quantum chem-
istry package) [18]. To solve the Schrödinger equation, we use an uncontracted GTO basis
with exponents taken from a V6Z basis set. The approximate solution of the single-electron
Schrödinger equation, i.e., the spatial orbital has the following form

ψGTO(x) =

K
∑

k=1

ck g
(1)
k (x1) g

(2)
k (x2) g

(3)
k (x3), (2)

where ck are the coefficients including normalization constants and K is the initial rank, i.e.,
the total number of Gaussians used to represent the spatial orbital ψGTO(x) and

g
(i)
k (xi) = e−αk(xi−A

(i)
k

)2 for i = 1, 2, 3. (3)

Here A
(i)
k for i = 1, 2, 3 are the centres of the Gaussians, and αk are the exponents of the Gaus-

sians. The individual Gaussians in each direction are represented in terms of interpolating
scaling functions

g
(i)
k (xi) ≈

∑

a

b
(i)
k,j,a φj,a(xi) with b

(i)
k,j,a = 2−j/2 g

(i)
k (2−ja). (4)

2



We use here the interpolating scaling functions φj,a(x) := 2j/2φ(2jx− a); j, a ∈ Z of Deslau-
riers and Dubuc [9]. It should be mentioned that j ∈ Z is the resolution level and a ∈ Z

is the translation parameter. These interpolating scaling functions are very good to repre-
sent the polynomials up to the degree 5. In the next step we obtain the best tensor rank κ
approximations of the spatial orbital

ψGTO(x) ≈
κ

∑

k=1

h
(1)
k (x1) h

(2)
k (x2) h

(3)
k (x3) := ψTPA(x) (5)

=

κ
∑

k=1

(

∑

a1

f
(1)
k,a1

φj,a1(x1)
)(

∑

a2

f
(2)
k,a2

φj,a2(x2)
)(

∑

a3

f
(3)
k,a3

φj,a3(x3)
)

, κ≪ K.(6)

The error of the approximations with fixed rank κ may be defined via

σκ(ψ
GTO) := inf

h
(i)
k

∈ l2(R)

∥

∥

∥

∥

∥

ψGTO −
κ

∑

k=1

h
(1)
k ⊗ h

(2)
k ⊗ h

(3)
k

∥

∥

∥

∥

∥

l2(R3)

(7)

and is minimized with respect to the l2-norm. This problem is solved by using variations of
the Newton method. More details have already been discussed in our previous article [5] and
also in [6]. Once we have got the best tensor rank κ approximations of the spatial orbital, we
can obtain the corresponding approximation error for the kinetic energy of the H atom. The
kinetic energy operator of the H atom is

TKE = −1

2
∆x . (8)

The expectation value of the kinetic energy for orbital ψGTO(x) is

T = 〈TKE〉 = −1

2

∫

R3

ψGTO(x) ∆x ψ
GTO(x) dx. (9)

If we substitute the best tensor rank κ approximation of the spatial orbital for the H atom
(5) in Eq. (9), we obtain

T ≈ −1

2

∫

R3

ψTPA(x) ∆x ψ
TPA(x) dx

= −1

2

κ
∑

k=1

κ
∑

k′=1

{

[(

∑

a1

∑

b1

f
(1)
k,a1

f
(1)
k′,b1

〈φj,a1|△1|φj,b1〉
)

(

∑

a2

∑

b2

f
(2)
k,a2

f
(2)
k′,b2

〈φj,a2|φj,b2〉
)(

∑

a3

∑

b3

f
(3)
k,a3

f
(3)
k′,b3

〈φj,a3|φj,b3〉
)]

+
[(

∑

a1

∑

b1

f
(1)
k,a1

f
(1)
k′,b1

〈φj,a1|φj,b1〉
)(

∑

a2

∑

b2

f
(2)
k,a2

f
(2)
k′,b2

〈φj,a2|△2|φj,b2〉
)

(

∑

a3

∑

b3

f
(3)
k,a3

f
(3)
k′,b3

〈φj,a3|φj,b3〉
)]

+
[(

∑

a1

∑

b1

f
(1)
k,a1

f
(1)
k′,b1

〈φj,a1|φj,b1〉
)(

∑

a2

∑

b2

f
(2)
k,a2

f
(2)
k′,b2

〈φj,a2|φj,b2〉
)

(

∑

a3

∑

b3

f
(3)
k,a3

f
(3)
k′,b3

〈φj,a3|△3|φj,b3〉
)]

}

. (10)
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Eq. (10) is the kinetic energy obtained from the best tensor rank κ approximation of the
solution of the single-electron Schrödinger equation. The kinetic energy integrals

〈φj,a1|△1|φj,b1〉 =

∫

φj,a1(x1)△1 φj,b1(x1) dx1 (11)

and overlap integrals

〈φj,a1|φj,b1〉 =

∫

φj,a1(x1)φj,b1(x1) dx1 (12)

that appear in Eq. (10) are computed by using an iterative method originally suggested by
Beylkin [2], Dahmen and Micchelli [7]. More details for the computation of overlap integrals
〈φj,a1|φj,b1〉 and kinetic energy integrals 〈φj,a1|△1|φj,b1〉 are given in Appendix A. Fig. 1 shows
the error in the kinetic energy for the best tensor rank κ approximation for varying tensor
rank κ. As we can see, the error decreases almost exponentially with increasing tensor rank.

3 The TP approximation for the potential energy of the

H atom

In this section, we study the TP approximation error for the potential energy of the H atom.
The external Coulomb potential seen by an electron in the H atom is

TPE = − 1

|x −RA|
. (13)

The expectation value of the potential energy for the orbital ψGTO(x) is

V = 〈TPE〉 = −
∫

R3

ψGTO(x)
1

|x − RA|
ψGTO(x) dx

= −
∫

R3

ρGTO(x)

|x − RA|
dx, (14)

where
ρGTO(x) = ψGTO(x)ψGTO(x) (15)

is the so-called one-electron orbital product density. If we use an “approximate resolution of
identity”, i.e., a projection onto span {β̃j,a : a ∈ Z

3}

I ≈
∑

a

|βj,a〉〈β̃j,a|, (16)

then the potential energy can be expressed as
∫

R3

ρGTO(x)

|x −RA|
dx ≈

∑

a

〈 1

|x −RA|
|βj,a〉〈β̃j,a|ρGTO〉, (17)

where RA ∈ 2−j
Z

3. Here, βj,a(x) = φj,a1(x1)φj,a2(x2)φj,a3(x3) are isotropic 3d interpolat-
ing scaling functions and β̃j,a(x) are dual scaling functions. The Coulomb potential can be
expressed in terms of an integral over a Gaussian function [10]

1

|x − RA|
=

2√
π

∫ ∞

0

exp[− | x −RA |2 t2] dt. (18)
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This representation enables factorization of the following three-dimensional integral of Eq. (17)

〈 1

|x − RA|
|βj,a〉 =

∫ +∞

−∞

φj,a1(x1)φj,a2(x2)φj,a3(x3)

|x − RA|
dx

=
2√
π

2−j/2

∫ ∞

0

I(t, a,A) dt, (19)

where
I(t, a,A) = G(t, a1, A1)G(t, a2, A2)G(t, a3, A3) (20)

and

G(t, a, A) =

∫ +∞

−∞
exp[−(x+ a−A)2t2]φ(x) dx. (21)

The general procedure to compute integrals (21) is discussed by Flad et al. [10]. We then
need an efficient quadrature formula for the integral on the right-hand side of Eq. (19). We
therefore use an exponential quadrature formula [17]

∫ ∞

0

I(t, a,A) dt ≈ τ
M

∑

m=−M

emτ I(emτ , a,A), (22)

for τ =
√

2πδ
M

with δ < π
4
, which provides a uniform error bound with respect to the translation

parameter a. The integration error decreases almost exponentially with respect to the total
number of quadrature points 2M + 1. If we use Eq. (22) and Eq. (19) in Eq. (17), then
Eq. (17) becomes

∫

R3

ρGTO(x)

|x −RA|
dx ≈ 2τ√

π
2−j/2

∑

a

M
∑

m=−M

emτ I(emτ , a,A)〈β̃j,a|ρGTO〉. (23)

We now need the best tensor rank κ approximation of one-electron orbital product density
ρGTO(x). It can be obtained as in the case of the solution of the single-electron Schrödinger
equation for the H atom. It is given as

ρGTO(x) ≈
κ

∑

k=1

̺
(1)
k (x1) ̺

(2)
k (x2) ̺

(3)
k (x3) := ρTPA(x), κ≪ K(K + 1)/2. (24)

If we insert the best tensor rank κ approximation of one-electron orbital product density for
the H atom (24) in Eq. (23), then

V = −
∫

R3

ρGTO(x)

|x − RA|
dx

≈ − 2τ√
π

2−j/2

κ
∑

k=1

M
∑

m=−M

emτ

{

[

∑

a1

G(emτ , a1, A1) 〈φ̃j,a1|̺
(1)
k 〉

]

[

∑

a2

G(emτ , a2, A2) 〈φ̃j,a2|̺
(2)
k 〉

]

[

∑

a3

G(emτ , a3, A3) 〈φ̃j,a3|̺(3)
k 〉

]

}

. (25)
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Figure 1: Error in the kinetic energy (hartree) versus tensor rank κ of the best tensor rank κ
approximations for the H atom.
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Figure 2: Error in the potential energy (hartree) versus tensor rank κ of the best tensor rank
κ approximations for the H atom by using the different number of quadrature points 2M +1.

Eq. (25) is the potential energy obtained the best tensor rank κ approximation of the
solution of the single-electron Schrödinger equation. The accuracy of the approximation
depends on the number of quadrature points 2M + 1 used to compute the integral (22).
Fig. 2 shows the error in the potential energy for the best tensor rank κ approximation for
varying κ for the H atom with different number of quadrature points. In order to get the
accuracy of 3.0 × 10−6 hartree of the best tensor rank κ = 9 approximation, we had to use
2M+1 = 163 quadrature points. With the approximations of the kinetic energy and potential
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energy of the H atom, we can get the best tensor rank κ approximations of the total energy by
taking their sum. Then we can compare the quality of our approximations with the standard
GTO bases. In order to compare our results, we need to have the energy of the H atom from
the standard quantum chemistry GTO bases at the same rank. For this we compute the
total energy of the H atom from Hackbusch’s bases [13] and also from the standard quantum
chemistry GTO bases.

4 Accuracy of the total energy of the H atom

In this section, we present the error of the total energy of the H atom from the best tensor
rank κ approximations and also from best radial Gaussian approximations of Hackbusch [13]
at similar ranks. Hackbusch optimized the coefficients and exponents with respect to the
weighted L∞ norm. This is the so-called best radial Gaussian approximation. We present the
total energy data from his bases and also from the standard quantum chemistry bases at same
ranks. As we can see from Table 1, the energy of the H atom obtained from Hackbusch’s bases

Table 1: The total energy of the H atom from Hackbusch’s bases and also from the standard
quantum chemistry bases at same ranks. The exact energy of the H atom is -0.5 hartree.

Rank Energy of the H atom Name of the basis set
(hartree)

5 -0.49974836 Hackbusch
-0.49929917 Dunning-SVP+
-0.49933432 AVDZ
-0.49980981 VTZ

6 -0.49992452 Hackbusch
-0.49972903 Chipman
-0.49982118 AVTZ
-0.49994048 H06

7 -0.49997567 Hackbusch
-0.49994832 AVQZ
-0.49997607 H07

8 -0.49999166 Hackbusch
-0.49994269 VANDUI
-0.49997282 ROOS

9 -0.49999699 Hackbusch
-0.49999478 AV5Z
-0.49999652 H09

is fairly close to the energy from standard quantum chemistry basis sets. For particular ranks
the total energy from his bases is even better. Now we can compare our best tensor rank κ
approximations for the total energy of the H atom to the best radial Gaussian approximations
[13] at the same rank. Once we have got the kinetic energy (10) and potential energy (25)
from the best tensor rank κ approximations of the solution of the single-electron Schrödinger
equation, we can get the best tensor rank κ approximations of the total energy for the H

7



5 6 7 8 9
Tensor rank

10
−6

10
−5

10
−4

10
−3

E
rr

or
 in

 to
ta

l e
ne

rg
y 

(h
ar

tr
ee

)

 Radial Gaussian approximation
 Tensor product approximation

Figure 3: Error in the total energy (hartree) of the best tensor rank κ approximations and
best radial Gaussian L∞(R+) approximations for the H atom.

atom. Fig. 3 shows errors in the total energy of the best tensor rank κ approximations for the
H atom. These are compared with the best radial Gaussian approximations of the same rank.
As we can see from Fig. 3, both approaches give the same approximation errors. In fact, the
best tensor rank κ approximation performs a little bit better. Hence our results indicate that
the Gaussians already provide almost optimal approximations for the H atom. However, this
does not seem to be the case for molecules with several nuclei as will be shown in the next
section.

5 Single-electron systems with several nuclei

To study the accuracy of the total energy of single-electron systems with several nuclei, we
consider positively charged ions like HHe2+ and H2+

3 and then solve the Schrödinger equa-
tion (1). In order to solve the Schrödinger equation within a Galerkin scheme, we use an
uncontracted (8s4p3d) GTO basis for each atom with exponents taken from V5Z basis sets.
Once we have calculated the wavefunctions of these systems, we obtain the best tensor rank
1 ≤ κ ≤ 15 approximations for the above mentioned ions. Like in the case of the H atom, we
compute the total energy from the best tensor rank κ approximations of the kinetic energy
and potential energy. It should also be mentioned that the approximation error of the best

tensor rank κ approximations might depend on the orientation of the ions with respect to
the coordinate axes. A linear combination of two Gaussians with different centres and same
exponents can be written as a rank-one tensor if they are oriented along an axis. Therefore
the dimers H+

2 , HHe2+ and a linear trimer H2+
3 are oriented along the diagonal in order to

avoid such kind of rank reductions due to symmetry. Furthermore, we consider the triangular
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Figure 4: Error in the total energy (hartree) versus tensor rank κ of the best tensor rank κ
approximations for various positively charged dimers H+

2 (K = 58), HHe2+ (K = 58), and
trimers H2+

3 (K = 126, triangle), H2+
3 (K = 75, linear). Nuclei are located on the diagonal

or on the axes to form a triangle and the reference wavefunctions were calculated in an
uncontracted V5Z GTO bases.

structure for H2+
3 with each nucleus located on an axis to form a triangle. Errors in the total

energy of ions H+
2 , HHe2+ and H2+

3 are shown in Fig. 4. As we can see from Fig. 4, the overall
convergence rate for these systems is very similar. An error in total energy of ≤ 10−4 hartree
can be achieved at tensor rank κ ≤ 15. This error roughly corresponds to the basis set error
of the GTO bases. This is a considerable reduction when we compare these tensor ranks κ
with the initial ranks K of the GTO bases. The initial rank is K = 58 for H+

2 , K = 58 for
HHe2+, K = 75 for the linear structure of H2+

3 and K = 126 for the triangular structure of
H2+

3 .

6 The behaviour of the univariate components

We now want to show the behaviour of univariate components h
(i)
k of Eq. (5) of the best

tensor rank κ approximations for some single-electron systems. Fig. 5 shows the univariate
components h

(1)
k of the best tensor rank κ = 5 approximation for H+

2 ion oriented along the

x3-axis. The univariate components h
(3)
k of the best tensor rank κ = 5 approximation are

depicted in Fig. 6 where the H+
2 ion oriented along the x3-axis. Fig. 7 shows the univariate

components h
(1)
k of the best tensor rank κ = 5 approximation for H2+

3 ion oriented along
the diagonal. Here we want to mention that the behaviour of univariate components in x1-
direction, x2-direction and x3-direction are the same if the ion is oriented along the diagonal.
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Figure 5: The univariate components h
(1)
k (x1) of the best tensor rank κ = 5 approximation

for H+
2 ion oriented along the x3-axis.
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Figure 6: The univariate components h
(3)
k (x3) of the best tensor rank κ = 5 approximation

for H+
2 ion oriented along the x3-axis.
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Figure 7: The univariate components h
(1)
k (x1) of the best tensor rank κ = 5 approximation

for H2+
3 ion oriented along the diagonal.

7 The sparsity of univariate components

Sparsity of univariate components plays an important role to compute the integrals very
efficiently. We therefore study the sparsity of univariate components h

(i)
k of the TP approxi-

mation for the solution of the single-electron Schrödinger equation (1). One of the important
aspects of the best tensor rank κ approximations is the sparse representation of univariate
components h

(i)
k of Eq. (5). So far the univariate components have been represented in the

interpolating scaling function basis (4) on a uniform grid with the spacing h = 2−j bohr. It
becomes rather inefficient for systems which contain heavy nuclei, because the resolution level
j of Eq. (4) has to be adjusted such that our grid spacing h = 2−j bohr should be less than the
standard deviation obtained from the largest exponent in the VDZ basis set. This criterion
is necessary to deal with the electron-nuclear cusp. Therefore, instead of working with the
scaling function representation of univariate components h

(i)
k , it is favourable to work with

the wavelet representation where adaptive refinement is feasible. Besides, wavelets allow us
to make a second compression step on univariate components h

(i)
k for i = 1, 2, 3. For more

details about wavelets, we refer to [8, 12].

7.1 Transformation of coefficients

Sometimes, it is convenient to switch between interpolating wavelet bases and Daubechies
wavelet bases. For example, it is appropriate to approximate smooth functions by the so-
called “interpolating scaling function” basis. But the corresponding biorthogonal wavelet
basis turns out to be less convenient for certain computations within the tensor product for-
mat than orthogonal Daubechies wavelets. Therefore we transform the interpolating scaling
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function coefficients of univariate components h
(i)
k (5) along any direction to the scaling func-

tion coefficients in Daubechies wavelet bases. Then we perform the wavelet decomposition by
using the Daubechies wavelet family of different degrees and study the sparsity of univariate
components h

(i)
k . Now let us see how we can transform the scaling function coefficients of

univariate components h
(i)
k (5) to those in Daubechies wavelet bases,

h
(i)
k (x) =

∑

a

Cj,a φj,a(x) ≈
∑

b

C
′

j,b φ
′

j,b(x), (26)

where φj,a(x) := 2j/2φ(2jx− a), a ∈ Z. Cj,a are the univariate interpolating scaling function
coefficients and C

′

j,b are the scaling function coefficients in Daubechies wavelet basis. To define

C
′

j,b, we project onto the Daubechies wavelet bases:

∑

a

Cj,a

∫

φj,a(x)φ
′∗
j,b(x) dx =

∑

b

C
′

j,b

∫

φ
′

j,b(x)φ
′∗
j,b(x) dx. (27)

If we use the orthonormality relation
∫

φ
′

j,b(x)φ
′∗
j,b(x) dx = δb,b′ , b, b

′ ∈ Z (28)

then, Eq. (27) becomes

C
′

j,b =
∑

a

Cj,a 〈φ
′

j,b|φj,a〉. (29)

The overlap integrals 〈φ′

j,b|φj,a〉, can be computed by using the iterative method of Beylkin
[2], Dahmen and Micchelli [7]. The refinement relations of scaling functions are used to get
a linear system of equations for these integrals. Once we have obtained the linear system
of equations, we can solve numerically. More details for the computation of such overlap
integrals will be given in Appendix A.

7.2 Distribution of Daubechies wavelet coefficients

We present the distribution of Daubechies wavelet coefficients of univariate components h
(i)
k at

different resolution levels j for H+
2 and H2+

3 ions. We also present the distribution of wavelet
coefficients in different Daubechies wavelet bases, for instance, D10 and D18. Once we have
obtained the scaling function coefficients (29) in Daubechies wavelet bases, we perform the
wavelet decomposition and obtain Daubechies wavelet coefficients dj,a at different resolution
levels j. Fig. 8 shows the spatial distribution of Daubechies wavelet coefficients of the uni-
variate component h

(1)
1 (x1) for H+

2 ion oriented along the x3-axis, with the initial rank K = 42
and tensor rank κ = 5. Here we used the Daubechies wavelet family of degree m = 10, i.e.,
D10. It has m/2 vanishing moments and it can suppress the parts of the function which are
polynomials up to the degree m/2−1. We also study the distribution of wavelet coefficients of
the univariate components for other Daubechies wavelets, e.g., D18. The spatial distributions
of wavelet coefficients for different Daubechies wavelets are shown in Fig. 9.

The spatial distribution of Daubechies wavelet coefficients of the univariate component
h

(1)
1 (x1), for H2+

3 ion oriented along the diagonal, is shown in Fig. 10 and the percentage of
Daubechies wavelet coefficients is shown in Fig. 11. It can be seen from Fig. 8 to Fig. 10 that
there are only a few significant coefficients at finer levels. Smaller values of j correspond to
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coarser levels and larger values of j correspond to finer levels. When we go from a finer level to
a next coarser level, the number of wavelet coefficients will be halved. It is clear from Fig. 11
that the percentage of wavelet coefficients |dj,a| > 10−6 decreases exponentially with respect
to the resolution level j and there are only a few significant wavelet coefficients (> 10−6) at
finer resolution level j = 5. This is also the case for other single-electron systems. From these
observations, one might construct an algorithm for the fast computation of various integrals
involving orbitals, orbital products and electron density in electronic structure methods.
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Figure 8: The spatial distribution of Daubechies wavelet coefficients of the univariate com-
ponent h

(1)
1 (x1) by using D10 for H+

2 ion oriented along the x3-axis.
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Figure 9: The spatial distribution of Daubechies wavelet coefficients of the univariate com-
ponent h
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1 (x1) at j = 5 for H+

2 ion oriented along x3-axis.
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3 ion oriented along the diagonal. The percentage of Daubechies
wavelet coefficients with |dj,a| > 10−6 is shown for different resolution levels j..

14



8 Conclusion

We have studied tensor product approximation of single-electron systems and also accuracy
of the approximation. It turned out that the Gaussians already provide almost optimal
approximations for the H atom. But this did not seem to be the case for molecules with
several nuclei. We also studied the sparse wavelet representation of univariate components of
the tensor product approximation. We observed that the percentage of wavelet coefficients
decreases exponentially with respect to the resolution level and there are only a few significant
wavelet coefficients at finer resolution levels. From these observations, one might construct
algorithms for the fast computation of various integrals involving orbitals, orbital products
and electron density in electronic structure methods.
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Appendix

A Computation of overlap and kinetic energy integrals

We use iterative method of Beylkin [2], Dahmen and Micchelli [7] to compute the overlap
integrals (12) and kinetic energy integrals (11). The basic is to use filter coefficients [8, 12]
and the scaling function relations, i.e., the integrals at resolution level j are related to the
same kind of integrals at the next coarser resolution level j−1. Let us first assume the overlap
integral

〈φj,a|φj,b〉 =

∫

φj,a(x)φj,b(x) dx

=

∫

2j/2φ(2jx− a) 2j/2φ(2jx− b) dx. (30)

Now let 2jx− b = x̃, then

〈φj,a|φj,b〉 =

∫

φ(x̃− (a− b))φ(x̃) dx̃

= 〈φ0,a−b|φ0,0〉
= 〈φ0,a′ |φ0,0〉, (31)

where a′ = a− b. We can now use the refinement relation for scaling functions,

φ(x̃− a′) = 2
∑

c

hc φ(2x̃− 2a′ − c) (32)
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and
φ(x̃) = 2

∑

e

he φ(2x̃− e). (33)

Then the integral (31) becomes

〈φ0,a′|φ0,0〉 = 22
∑

c

∑

e

hc he

∫

φ(2x̃− 2a′ − c)φ(2x̃− e) dx̃, (34)

now let 2x̃− e = x′, then

〈φ0,a′|φ0,0〉 = 2
∑

c

∑

e

hc he

∫

φ(x′ − 2a′ − c+ e)φ(x′) dx′. (35)

Again let −2a′ − c+ e = −b′ , then Eq. (35) becomes

〈φ0,a′ |φ0,0〉 = 2
∑

b′

∑

e

hb′−2a′+e he

∫

φ(x′ − b′)φ(x′) dx′

= 2
∑

b′

∑

e

hb′−2a′+e he 〈φ0,b′|φ0,0〉, (36)

where hb′−2a′+e and he are filter coefficients of Daubechies wavelet basis. Now Eq. (36) is a
linear system of equations. Furthermore an additional condition

∑

a′

〈φ0,a′|φ0,0〉 = 1 (37)

is required in order to obtain a unique solution to Eqs. (36), which corresponds to the overlap
integrals (31). Eqs. (36) can be solved with the iterative process of Beylkin [2], Dahmen
and Micchelli [7]. For this, we start with initial guesses ca′ for the integrals 〈φ0,a′|φ0,0〉 which
satisfy the condition (37), i.e.,

c
(0)
a′ = δ0,a′ . (38)

With the guess c
(m−1)
a′ , Eq. (36) leads to

c
(m)
a′ = 2

∑

b′

(

∑

e

hb′−2a′+e he

)

c
(m−1)
b′ . (39)

In each iteration, the condition
∑

a′

c
(m)
a′ = 1 (40)

holds, i.e., the condition (37).
The same technique will be used to compute the kinetic energy integrals, i.e., 〈φj,a1|△1|φj,b1〉.

The linear system of equations

〈φ0,a′ |△1|φ0,0〉 = 23
∑

b′

(

∑

e

hb′−2a′+e he

)

〈φ0,b′|△1|φ0,0〉 (41)

has to satisfy the condition [2]
∑

a′

(a′)2 〈φ0,a′|△1|φ0,0〉 = 2 (42)

to compute the kinetic energy integrals. More details are also given in [10, 16].
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G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan,
A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W.
Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J.
Stone, R. Tarroni and T. Thorsteinsson. Molpro, Version 2006.1, a package of ab initio

programs, 2006.

18


