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Abstract

Statistical complexity is a measure of complexity of discrete-time stationary stochastic processes,
which has many applications. We investigate its more abstract properties as a non-linear functional on
the space of processes and show its close relation to Knight’s prediction process. We prove lower semi-
continuity, concavity, and a formula for the ergodic decomposition of statistical complexity. On the
way, we show that the discrete version of the prediction process has a continuous Markov transition.
We also prove that, given the past output of a partially deterministic hidden Markov model (HMM),
the uncertainty of the internal state is constant over time and knowledge of the internal state gives no
additional information on the future output. Using this fact, we show that the causal state distribution is
the unique stationary representation on prediction space that may have finite entropy.

Keywords:prediction process, statistical complexity, lower semi-continuity, ergodic decomposition,
concavity, partially deterministic hidden Markov model, HMM.
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1 Introduction

An important task of complex systems sciences is to define “complexity”. Measures that quantify com-
plexity are of both theoretical (e.g. [16]) and practical interest. In applications, they are widely used to
identify “interesting” parts of simulations and real-world data (e.g. [9]). There exist various measures of
different kinds of complexity. In particular,statistical complexityconstitutes a complexity measure for
stationary stochastic processes in doubly infinite discrete time and discrete state space. It was introduced
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by Jim Crutchfield and co-workers within a theory calledcomputational mechanics1 ([5, 18, 1]). Statistical
complexity is applied to a variety of real-world data, e.g. in [4]. An important, closely related concept
of computational mechanics is the so-calledε-machine. It is a particular partially deterministic HMM
that encodes the mechanisms of prediction. Partially deterministic HMMs are often calleddeterministic
stochastic automatato emphasise their close connection to a key concept of theoretical computer science,
namelydeterministic finite state automata([8]).

In this paper, we look at more abstract features of statistical complexity as well as partially determin-
istic HMMs. We consider statistical complexity to be a non-linear functional from the space of∆-valued
stationary processes (∆ countable) to the setR+ = R+ ∪ {∞} of non-negative extended real numbers.
Here, we identify stationary processes with their law, i.e.with shift-invariant probability measures on the
sequence space∆Z, and equip the space of measures with the usual weak-∗ topology (often called “weak
topology”). Because∆ is discrete, this topology is equal to the topology of finite-dimensional convergence.
In ergodic theory, Kolmogorov-Sinai entropy is studied as afunction of the (invariant) measure, and the
questions of continuity properties, affinity, and behaviour under ergodic decomposition arise naturally (e.g.
[10]). We believe that these questions are worthwhile considering also for complexity measures. A formula
for the ergodic decomposition of excess entropy, another complexity measure for stochastic processes, was
obtained in [6, 7]. Our results presented here include the corresponding formula for statistical complexity,
and this formula directly implies concavity. The most important result is lower semi-continuity of statisti-
cal complexity. We consider this a desirable property for a complexity measure, as it means that a process
cannot be complex if it can be approximated by non-complex ones.

In Section 2, we define statistical complexity and show its relations to a discrete version of Frank
Knight’s prediction process([11, 13]). The prediction process is the measure-valued process of conditional
probabilities of the future given the past. It takes values in the spaceP(∆N) of probability measures
on ∆N, called prediction space. In our formulation, statisticalcomplexity is the marginal entropy of the
prediction process. This is equivalent to the classical definition as entropy of a certain partition of the past.
We only replace equivalence classes with the respective induced probabilities on the future. In this section,
we also show that the discrete (and thus technically vastly simplified) version of the prediction process has
a continuous Markov transition kernel (Proposition 2.5).

In Section 3, we investigate properties of partially deterministic HMMs. Here, we use a general notion
of HMM (sometimes called edge-emitting HMM), where new internal state and output symbol are jointly
determined and may have dependencies conditioned on the last internal state. Partial determinism means
that this dependence is extreme in the sense that last internal state and output together uniquely determine
the following internal state. We show that, if one knows the past output trajectory, the remaining uncertainty
(measured by entropy) of the internal state is constant overtime, although it may depend on the ergodic
component (Proposition 3.7). Furthermore, the distribution of future output is the same for any internal
state that is compatible with the past output (Corollary 3.9). In Subsection 3.3, we construct a canonical
Markov kernel, such that taking any measureν on prediction spaceP(∆N) (i.e.ν is a measure on measures)
as initial distribution, we obtain a partially deterministic HMM of a processP ∈ P(∆N). This processP
coincides with the measurer(ν) represented byν in the sense of integral representation theory, and ifν

is appropriately chosen, we obtain theε-machine of computational mechanics (or something isomorphic)
as special case. Using the properties of partially deterministic HMMs, we obtain that there is no invariant
representation on prediction space with finite entropy other than, possibly, the causal state distribution,
which may have finite or infinite entropy (Proposition 3.12).

Section 4 contains our results about statistical complexity. We show that the complexity of a process
is the average complexity of its ergodic components plus theentropy of the mixture (Proposition 4.1).
As a direct consequence, statistical complexity is concave(Corollary 4.2) and non-continuous (even w.r.t.
variational topology). But it does have a continuity property. Namely, using the results of the previous
sections, we show in Theorem 4.7 that it is weak-∗ lower semi-continuous.

1Here “computational mechanics” is unrelated to computer simulations of mechanical systems
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2 Prediction dynamic & statistical complexity

For the whole article, fix a countable set∆ with at least two elements and discrete topology. We identify
∆-valued stochastic processesXZ := (Xk)k∈Z, defined on some probability space(Ω, A,P), with their
respective lawsP := P ◦ X−1Z ∈ P(∆Z). Here,P denotes the set of probability measures. IfXZ is
stationary,P is in the setPinv(∆

Z) of shift-invariant probability measures. LetX ′
k : ∆Z → ∆ be the

canonical projections. ThenX ′Z is a process on(∆Z, B(∆Z), P ) with the same distribution asXZ. Here,
B denotes the Borelσ-algebra. We often decompose the time setZ into the “future”N and the “past”Z \ N = −N0, whereN0 = N ∪ { 0 }. For simplicity of notation, we denote the canonical projections
on ∆N with the same symbols,X ′

k, as the projections on∆Z. If not stated otherwise, product spaces are
equipped with product and spaces of probability measures are equipped with weak-∗-topology. We use the
arrow

∗
⇀ to denote weak-∗ convergence.

2.1 Discrete version of Knight’s prediction process

Given a Lusin space valued, measurable stochastic process with time setR+, Frank Knight defines the
correspondingprediction processas a process of conditional probabilities of the future given the past. This
theory originated in [11] and was developed in [15, 12, 13]. The most important properties of the prediction
process are that its paths are right continuous with left limits (cadlag), it has the strong Markov property
and determines the original process. The continuous time set and the generality of the state space lead to a
lot of technical difficulties. In our simpler, discrete setting, these difficulties mostly disappear, and useful
properties of the prediction process, such as having cadlagpaths, become meaningless. A new aspect,
however, is added by considering infinite pasts of stationary processes via the time-setZ. The marginal
distribution (unique due to stationarity) of the prediction process is an important quantity, used to define
statistical complexity. For this subsection, fix astationaryprocessXZ with distributionP ∈ Pinv(∆

Z).
We use the following notation concerning Markov kernels andconditional probabilities. IfK is a

kernel fromΩ to a measurable spaceM , we considerK as measurable function fromΩ to P(M) and
write K(ω; A) := K(ω)(A).Given random variablesX, Y on Ω, we writeK = P(X | Y ) if K is the
conditional probability kernel ofX givenY , i.e.K(ω; A) = P({X ∈ A }

∣∣ Y
)
(ω).

Definition 2.1. Let ZZ = ZPZ be theP(∆N)-valued stochastic process of conditional probabilities defined
by Zk := P (X ′

[k+1,∞[ | X ′

]−∞,k]) for k ∈ Z. ThenZZ is calledprediction processof XZ. P(∆N) is
calledprediction space.

It is evident that the Markov property of the prediction process in continuous time also holds in discrete
time. Nevertheless, we give a proof, because it is elementary in our discrete setting. The corresponding
transition kernel works as follows. Assume the prediction process is in statez ∈ P(∆N). The transition
kernel mapsz to a measure on measures, namelyP (Z1 | Z0 = z) ∈ P

(
P(∆N)

)
. Note thatz is a state

of the prediction process but at the same time a probability measure. Thus it makes sense to consider the
conditional probability givenX ′

1 = d w.r.t. the measurez. It is intuitively plausible that the next state will
be one of those conditional probabilities withd distributed according to the marginal ofz. The resulting
measure has to be shifted by one as time proceeds. Withς : ∆N → ∆N, we denote the left shift.

Proposition 2.2. For z ∈ P(∆N), let φz : ∆N → P(∆N), φz(ω) := z(ς−1
( · ) | X ′

1)(ω). The prediction
processZZ is a stationary Markov process. The kernelS : P(∆N) → P

(
P(∆N)

)
with S(z) = z ◦ φ−1

z ,
i.e.

S(z)(B) := S(z; B) := z
(
{φz ∈ B }

)
, z ∈ P(∆N), B ∈ B

(
P(∆N)

)
,

satisfiesP (Zk | Zk−1) = S ◦ Zk−1 a.s. Thus,S is the transition kernel of the prediction process.

Proof. Stationarity is obvious from stationarity ofXZ. We obtain a.s.

S(Z0; B) = Z0

({
Z0(ς

−1
( · ) | X ′

1) ∈ B
})

= P
({

P (X ′

[2,∞[ | X ′

]−∞,1]) ∈ B
} ∣∣∣ X ′

−N0

)

= P
(
{Z1 ∈ B }

∣∣ X ′
−N0

)
.
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In particular,P
(
{Z1 ∈ B }

∣∣ X ′
−N0

)
is σ(Z0)-measurable (moduloP ) and together withσ(Z0) ⊆

σ(X ′
−N0

) we obtain

P
(
{Z1 ∈ B }

∣∣ Z0

)
= P

(
{Z1 ∈ B }

∣∣ X ′
−N0

)
= S(Z0; B), (1)

as claimed. We still have to verify the Markov property. But because theσ-algebra induced byZ−N0

is nested between those induced byZ0 andX ′
−N0

, i.e. σ(Z0) ⊆ σ(Z−N0
) ⊆ σ(X ′

−N0
), we obtain the

Markov property from the first equality in (1).

Definition 2.3. We call the Markov transitionS of the prediction processprediction dynamic.

Note that although the prediction processZZ obviously depends onP , prediction spaceP(∆N) and
prediction dynamicS do not. In the case of general Lusin state space, it is non-trivial to prove the existence
of regular versions of conditional probability such thatφz(ω) is jointly measurable in(z, ω) (see [13]). For
countable∆, however, we even obtain essential continuity in an elementary way. This enables us to prove
continuity of the prediction dynamic.

Lemma 2.4. Let z, zn ∈ P(∆N) andzn
∗
⇀ z. There is a clopen (i.e. closed and open) setΩz ⊆ ∆N with

z(Ωz) = 1 such thatφzn

∗
⇀ φz , uniformly on compact subsets ofΩz.

Proof. Let Aω := X ′
1
−1(

X ′
1(ω)

)
andΩz :=

{
ω ∈ ∆N ∣∣ z(Aω) > 0

}
. Because∆ is discrete and

countable,Ωz is clopen withz(Ωz) = 1. Uniform convergence on compacta is equivalent toφzn
(ωn)

∗
⇀

φz(ω) wheneverωn → ω in Ωz . For sufficiently largen, X ′
1(ωn) = X ′

1(ω) and becauseς−1 maps cylinder

sets to cylinder sets,φzn
(ωn) = zn(Aω∩ ς−1( · ))

zn(Aω)

∗
⇀ φz(ω).

Proposition 2.5. The prediction dynamicS is continuous.

Proof. Let zn, z ∈ P(∆N) with zn
∗
⇀ z andΩz as in Lemma 2.4. We have to show

∫
g dS(zn) =

∫
g ◦ φzn

dzn
n→∞
−→

∫
g ◦ φz dz =

∫
g dS(z) (2)

for any bounded continuousg. According to Prokhorov’s theorem,(zn)n∈N is uniformly tight and we can
restrict the integrations to compact subsets. Becauselimn→∞ zn(Ωz) = z(Ωz) = 1, we can restrict to
compact subsets ofΩz. There, the convergence ofφzn

is uniform, thus (2) holds.

2.2 Statistical complexity

In integral representation theory, a measureν ∈ P
(
P(∆N)

)
represents the measurez ∈ P(∆N) if2

z = r(ν) :=

∫

P(∆N)

idP(∆N) dν, (3)

wherer : P(P(∆N)) → P(∆N) is calledresolvent or barycentre map (see [3]) andid is the identity
map. z = r(ν) means thatz is a mixture (convex combination) of other processes, and the mixture is
described byν. A trivial representation forz is given byδz, the Dirac measure inz. The measureν is
calledS-invariant if νS = ν, whereνS :=

∫
S dν. In other words, it isS-invariant if iterating with the

prediction dynamicS does not change it. We see in the following lemma that generally iterating withS

shifts the represented measure, i.e.νS representsz ◦ ς−1.

Lemma 2.6. r(νS) = r(ν) ◦ ς−1. In particular,S-invariantν represent stationary processes.

Proof. Becauser(νS) =
∫ ∫

idP(∆N) dS dν, it is sufficient to consider Dirac measuresδz, z ∈ P(∆N)
(the general claim follows by integration overν). For Dirac measures we have

r(δzS) =

∫
idP(∆N) dS(z) =

∫
φz dz =

∫
z
(
ς−1( · )

∣∣ X ′
1

)
dz = z ◦ ς−1.

2Measure valued integrals are Gel’fand integrals. That is,µ =
R

K dν for some kernelK means
R

f dµ =
R R

f dK( · ) dν for
all continuous, real-valuedf or, equivalently,µ(B) =

R

K( · ; B) dν for all measurable setsB.
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If ν is S-invariant, we also say thatν represents the stationary extension ofr(ν) to ∆Z. The marginal of
the prediction process is an important such representation, which we call causal state distribution because
of its close relation to the causal states of computational mechanics.

Definition 2.7. ForP ∈ Pinv(∆
Z), thecausal state distributionµC(P ) is the marginal distribution of the

prediction process, i.e.µC(P ) := P ◦ Z−1
0 ∈ P(P(∆N)

)
.

The causal state distribution ofP is anS-invariant representation ofP .

Lemma 2.8. LetP ∈ Pinv(∆
Z). ThenµC(P ) is S-invariant and representsP .

Proof. From Proposition 2.2 we know thatP (Z1 | Z0) = S ◦ Z0 andZZ is stationary. Thus
∫

S dµC(P ) =

∫
S ◦ Z0 dP =

∫
P (Z1 | Z0) dP = P ◦ Z−1

1 = µC(P ).

Furthermore,µC(P ) representsP because we have

r
(
µC(P )

)
=

∫
Z0 dP =

∫
P (X ′N | X ′

−N0
) dP = P ◦ X ′N−1

.

Remark. In computational mechanics, slightly different definitions are used. There, one works with equiv-
alence classes of past trajectories (calledcausal states) instead of probability measures on the future. Be-
cause past trajectoriesx, y ∈ ∆−N0 are identified ifP (X ′N | X ′

−N0
= x) = P (X ′N | X ′

−N0
= y), the two

approaches are equivalent. The advantage of working on prediction spaceP(∆N) is that it has a natural
topology and the prediction processes of all∆-valued stochastic processes are described in a unified way
on the same space with the same transition kernel.

Example 2.9. µC is not continuous. LetP be a non-deterministic i.i.d. (independent, identically dis-
tributed) process. Obviously, the causal state distribution of an i.i.d. process is the Dirac measureδPN in
its restrictionPN := P ◦ X ′N−1 to positive time. According to [17], periodic measures are dense in the
stationary measures and we find an approximating sequencePn

∗
⇀ P of periodic measuresPn. But the

past of a periodic process determines its future. Thus its causal state distribution is supported by the set
of Dirac measures on∆N. Because the set of Dirac measures is closed inP

(
P(∆N)

)
, the topological

supportssuppµC(Pn) are disjoint from the supportsuppµC(P ) = {PN }. Consequently,µC(Pn) cannot
converge toµC(P ). ♦

With statistical complexity, we measure complexity of a processP by the “diversity” of its expected fu-
tures, given observed pasts (i.e. ofµC(P )). As measure of “diversity” of a probability measureµ, Shannon
entropyH(µ) is used. Withϕ(x) := −x log(x), it is defined as

H(µ) := sup
{ n∑

i=1

ϕ
(
µ(Bi)

) ∣∣ n ∈ N, Bi disjoint, measurable
}
. (4)

Definition 2.10. For P ∈ Pinv(∆
Z), the quantityCC(P ) := H

(
µC(P )

)
∈ R+ is calledstatistical

complexity of P .

Note that if the probability space is sufficiently regular (e.g. separable, metrisable),H(µ) can only be
finite if µ is supported by a countable setA. In this case

H(µ) =
∑

a∈A

ϕ
(
µ({ a })

)
.

Probably, lower semi-continuity of the entropy is well-known. We give a proof in the appendix.

Lemma 2.11. Let M be a separable, metrisable space. Then the entropyH : P(M) → R+ is weak-∗
lower semi-continuous.
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3 Partially deterministic HMMs

Probability measures on prediction space induce hidden Markov models (HMMs) with an additional partial
determinism property, and it turns out to be helpful to investigate such HMMs. In Section 3.1, we define
HMMs and introduce the notation we need for the further discussion. In Section 3.2, we define the partial
determinism property and obtain our results about the HMMs satisfying this property. In Section 3.3, we
show how measures on prediction space induce partially deterministic HMMs and apply the results from
Section 3.2 to prove that the causal state distribution is the only invariant representation on prediction space
that can have finite entropy.

3.1 HMMs

We use the term HMM in a wide sense, meaning a pair(T, µ), whereµ is an initial probability measure on
some Polish spaceM of internal states andT is a Markov kernel fromM to ∆×M . The HMM generates
on (Ω, A,P) a ∆-valued output processXN and a (coupled)M -valued internal processWN0

, such that
W0 is µ-distributed and the joint process is Markovian withP({Xk ∈ D, Wk ∈ B }

∣∣ Xk−1, Wk−1

)
= T (Wk−1; D × B) a.s.

We call(T, µ) an HMM of z ∈ P(∆N) if z = P ◦ X−1N . If µ(B) =
∫

T ( · ; ∆ × B) dµ, we say that the
HMM is invariant and extend the generated processes to stationary processesXZ andWZ. We need some
further notation.

Definition 3.1. Let (T, µ) be an HMM,m ∈ M , d ∈ ∆, andν ∈ P(M).

a) Theoutput kernel K : M → P(∆) is defined byK(m) := Km := T (m; · × M) ∈ P(∆). We also
use the notationŝKd(m) := Km(d) := Km

(
{ d }

)
andKν :=

∫
K dν.

b) Theinternal operators Ld : P(M) → P(M) ∪ { 0 } are defined as follows.Ld(ν) = 0 if Kν(d) = 0
and

Ld(ν)(B) :=

∫
T ( · ; { d } × B) dν

Kν(d)
otherwise.

Remark. a) Km is the distribution of the next output symbol when the internal state ism, i.e. Km =P(X1 | W0 = m) a.s. Further,Kµ is the law ofX1.

b) The internal operatorLd describes the update of knowledge of the internal state whenthe symbold ∈ ∆
is observed. For Dirac measures, we obtain

Ld(δm) = P(W1 | W0 = m, X1 = d) a.s.

Be warned thatLd is not induced by a kernel in the following sense. There is no kernelld : M → P(M)
such thatLd(ν) =

∫
ld dν. To see this, note thatLd(ν) 6=

∫
Ld ◦ ιdν for ι(m) = δm, becauseLd(ν)

is normalised outside the integral as opposed to an individual normalisation of theLd(δm) inside the
integral on the right-hand side.

It directly follows from the definition of(XN, WN0
) by a Markov kernel that the conditional probability,

given that the internal state ism, is obtained by starting the HMM inm. In other words, it is generated by
the HMM (T, δm). Similarly, the conditional probability given an observedsymbolX1 = d is obtained
by starting the HMM in the updated initial distributionLd(µ). We formulate these observations in the
following lemma and give a formal proof in the appendix.

Lemma 3.2. Let (T, µ) be an HMM with internal and output processesWN0
, XN. Then a.s.(T, δW0(ω))

is an HMM ofP(XN | W0)(ω), and
(
T, LX1(ω)(µ)

)
is an HMM ofP(X[2,∞[ | X1)(ω).

Definition 3.3 (YZ andHZ). Given an invariant HMM, letYZ be theP(M)-valued process of expectations
over internal states given byYk := P(Wk | X]−∞,k]). Let HZ be the process of entropies of the random
measuresYk, i.e.Hk(ω) := H

(
Yk(ω)

)
, where entropyH is defined by (4).
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Remark. Yk describes the current knowledge of the internal state, given the past.Hk is the entropy of the
valueof Yk and measures “how uncertain” the knowledge of the internal state is. It is important to bear
in mind that this is different from the entropy of therandom variableYk. To avoid confusion, we always
write HP(X) when referring to the entropy of a random variableX defined on a probability space with
measureP.

The following lemma justifies the idea of the internal operator Ld being an update of knowledge of the
internal state. Furthermore, it enables us to condition onY0 instead ofX−N0

. The conditional probability
of the internal state given the past,Y0, contains as much information aboutX1 (and in factXN, but we do
not need that here) as the pastX−N0

does.

Lemma 3.4. a) Y1(ω) = LX1(ω)

(
Y0(ω)

)
a.s.

b) P({X1 = d }
∣∣ Y0

)
(ω) = P({X1 = d }

∣∣ X−N0

)
(ω) = KY0(ω)(d) a.s.

Proof. Conditional independence of(X1, W1) andX−N0
givenW0 implies that a.s.P(X1, W1 | W0) =P(X1, W1 | W0, X−N0

) and thus
∫

T dY0 =

∫ P(X1, W1 | W0) dP( · | X−N0
) = P(X1, W1 | X−N0

). (5)

a) Letd = X1(ω) and forB ∈ B(M) setFB := {X1 = d, W1 ∈ B }. We obtain a.s.

Ld(Y0)(B)
(5)
=

P(FB | X−N0
)P(FM | X−N0
)

(d = X1(ω))
= P({W1 ∈ B }

∣∣ X−N0
, X1

)
= Y1( · )(B).

b) The second equality follows directly from (5). The first follows because, due to the second equality,P({X1 = d }
∣∣ X−N0

)
is σ(Y0)-measurable moduloP.

The previous lemma enables us to prove thatYZ is Markovian and compute its transition kernel. We
already know thatLd(ν) is the updated expectation of the internal state when it previously wasν andd

is observed. Thus it is not surprising that the conditional probability of Yk givenYk−1 = ν is a convex
combination of Dirac measures inLd(ν) for differentd (note thatYk is a measure-valued random variable,
thus its conditional probability distribution is indeed a measure on measures). The mixture is given by the
output kernelK, more precisely byKν .

Lemma 3.5. For an invariant HMM,YZ andHZ are stationary.YZ is a Markov process with transition
kernel P(Yk+1 | Yk = ν) =

∑

d∈∆

Kν(d) · δLd(ν) ∈ P
(
P(M)

)
∀ν ∈ P(M).

Proof. Stationarity is obvious. Forν0, . . . , νk ∈ P(M) andν := νk we obtainP(Yk+1 | Y[0,k] = ν[0,k])
(lem. 3.4a)

= P(LXk+1( · )(ν)
∣∣ Y[0,k] = ν[0,k]

)

=
∑

d∈∆

P({Xk+1 = d }
∣∣ Y[0,k] = ν[0,k]

)
· δLd(ν).

σ(Y[0,k]) is nested betweenσ(Yk) and σ(X]−∞,k]). Therefore, Lemma 3.4 b) implies that we haveP({Xk+1 = d }
∣∣ Y[0,k] = ν[0,k]

)
= Kνk

= Kν and hence the claim follows.

3.2 Partial determinism

If the transitionT of an HMM is deterministic, i.e. if the internal state determines the next state and output
(and thus the whole future) uniquely, the HMM is called(completely) deterministic. In a deterministic
HMM, all randomness is due to the initial distribution. Thisis a very strong property, and a weaker
partial determinism property is useful. In a partially deterministic HMM, the output symbol is determined
randomly, but the new internal state is a functionf(m, d) of the last internal statem and the new output
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symbold. If the internal spaceM is finite, such HMMs are stochastic versions ofdeterministic finite state
automata (DFAs), an important concept of theoretical computer science (see[8, Chap. 2]). The function
f directly corresponds to the transition function of the DFA,but the start state is replaced by the initial
distribution and the HMM assigns probabilities to the outputs via the output kernelK. A difference in
interpretation is that the symbols from∆ are consideredinput of the DFA andoutput of HMMs. To
emphasise their close connection to DFAs, partially deterministic HMMs are often calleddeterministic
stochastic automata, although they are not completely deterministic.

Definition 3.6. An HMM (T, µ) is calledpartially deterministic if there is a measurable functionf : M×
∆ → M , calledtransition function , such thatT (m) = Km ⊗ δfm( · ) for all m ∈ M , i.e.

T (m; D × B) = Km

(
D ∩ f−1

m (B)
)

∀m ∈ M, D ⊆ ∆, B ∈ B(M),

wherefm(d) := f̂d(m) := f(m, d) andB(M) is the Borelσ-algebra onM .

Remark. For partially deterministic HMMs we obtain

Ld(ν)(B) =
1

Kν(d)

∫

f̂−1

d
(B)

K̂d dν and Ld(δm) = δfm(d). (6)

The second equation impliesWk = fWk−1
(Xk) a.s., justifying the name transition function forf .

The following proposition is crucial for understanding partially deterministic representations. It states
that, given the past output, the uncertaintyHk = H(Yk) about the internal state is constant over time
and the next output symbol is independent of the internal state. The proof is along the following lines. If
we know the internal state at one point in time, we can maintain knowledge of the internal state due to
partial determinism. More generally, the uncertaintyHk of the internal state cannot decrease on average
and thus is a supermartingale. But because it is also stationary, the trajectories have to be constant. If two
possible internal states would lead to different probabilities for the next output symbol, we could increase
our knowledge of the internal state by observing the next output. But because of partial determinism,
this would also decrease the uncertainty of the following internal state, in contradiction to the constant
trajectories ofHZ.

Proposition 3.7. Let (T, µ) be a partially deterministic, invariant HMM withH(µ) < ∞. ThenHZ has
a.s. constant trajectories, i.e.Hk = H0 a.s., and the restrictionK↾supp(Y0) of the output kernelK to the
supportsupp(Y0) ⊆ M of the random measureY0 is a.s. a constant kernel, i.e.

Km = Km̂ ∀m, m̂ ∈ supp
(
Y0(ω)

)
a.s. (7)

Proof. We show thatHZ is a supermartingale to use the following well-known property.

Lemma.Every stationary supermartingale has a.s. constant trajectories.

BecauseH(µ) < ∞, we may assume w.l.o.g. thatM is countable. Note thatϕ(x) = −x log(x) satisfies
ϕ(
∑

xi) ≤
∑

ϕ(xi). We obtain

H
(
Ld(ν)

) (6)
=

∑

m̂∈M

ϕ




∑

m∈f̂
−1

d
(m̂)

ν(m)
Km(d)

Kν(d)



 ≤
∑

m∈f̂
−1

d
(M)=M

ϕ

(
ν(m)

Km(d)

Kν(d)

)
.

We use the filtrationFk := σ(Y]−∞,k]). Markovianity ofYZ yieldsE(Hk+1 | Fk) = E(Hk+1 | Yk).

E
(
Hk+1

∣∣ Yk = ν
) (lem. 3.5)

=
∑

d∈∆

Kν(d) · H
(
Ld(ν)

)
≤ −

∑

d,m

ν(m)Km(d) · log

(
ν(m)

Km(d)

Kν(d)

)

= HP(Wk | Xk+1, Yk = ν) ≤ HP(Wk | Yk = ν) = H(ν), (8)

where the second equality holds becauseP({Wk = m, Xk+1 = d }
∣∣ Yk = ν

)
= ν(m)Km(d) andP({Xk+1 = d }

∣∣ Yk = ν
)

= Kν(d). ThusHZ is a supermartingale w.r.t.(Fk)k∈Z and has a.s. constant
trajectories. In particular, inequality (8) is actually anequality. BecauseH(µ) < ∞ andµ =

∫
Yk dP, the

entropy ofYk(ω) is a.s. finite. Thus,HP(Wk | Xk+1, Yk = ν) = HP(Wk | Yk = ν) implies thatWk and
Xk+1 are independent givenYk = ν, i.e.K↾supp(ν) is constant.
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The finite-entropy assumption is indeed necessary for the second statement of Proposition 3.7. The
shift, for example, defines a deterministic HMM that does not(in general) satisfy (7).

Example 3.8 (shift HMM). The shift HMM is defined as follows. The internal state consists of the whole
trajectory,M := ∆Z. T = T ς outputs the symbol at position one and shifts the sequence tothe left. More
formally with m = (mk)k∈Z ∈ M andς(m) = (mk+1)k∈Z we have

T ς(m) = δm1
⊗ δς(m) = δ(m1,ς(m)).

If P ∈ Pinv(∆
Z), it is obvious that(T ς , P ) is an invariant, deterministic (in particular partially determinis-

tic) HMM of P . Here,P is the law of bothXZ andW0; in fact evenXZ = W0. We claim that, generically,
(T ς , P ) does not satisfy (7) (and of course the internal state entropy H(P ) is infinite). Indeed,Km = δm1

and thusKm = Km̂ impliesm1 = m̂1. BecauseY0(ω) = P(XZ | X−N0
)(ω), equation (7) implies that

X−N0
determinesX1 uniquely, which is generically not true. The analogously defined one-sided shift on

M = ∆N also does not satisfy (7). Note that, because future trajectories are equivalent to internal states,
the associated processYZ is essentially the prediction process in the sense thatYk = Zk ◦ XZ. ♦

Proposition 3.7 tells us that the next output symbol of a partially deterministic HMM is conditionally
independent of the internal state, given the past output. But even more is true. The whole future output is
conditionally independent of the internal state. Thus, if we know the past, the internal state provides no
additional information useful for predicting the future output.

Corollary 3.9. Let (T, µ) be partially deterministic, invariant, andH(µ) < ∞. ThenP(XN | W0 = m) = P(XN | W0 = m̂) ∀m, m̂ ∈ supp(Y0) a.s.

Proof. According to Proposition 3.7,P(X1 | W0 = ·) = K is constant onsupp(Y0). To obtain the
statement forX[1,n], consider then-tuple HMM defined as follows. The output space is∆n, the internal

space isM , whereas the output and internal processesX̂Z andŴZ are given byX̂k = X[(k−1)n+1,kn] and

Ŵk = Wnk. This is achieved by the HMM(T̂ , µ) with T̂ : M → P(∆n × M), T̂ (m) = P(X[1,n], Wn |
W0 = m). The HMM is obviously partially deterministic with transition functionfdn

◦ · · · ◦ fd1
and

invariant. Thus Proposition 3.7 implies thatP(X[1,n] | W0 = ·) = P(X̂1 | Ŵ0 = ·) is constant on

supp(Ŷ0). Because we can couple the processes such thatŶ0 = Y0, the claim follows.

3.3 Representations on prediction space

We can interpret any probability measureµ on prediction spaceP(∆N) as initial distribution of an HMM.
The “internal state update” of the corresponding transition T C follows the same rule as the prediction
dynamicS, described by the conditional probability given the last observation. The difference is that
now we include output symbols from∆. We want to construct the HMM in such a way that if it is
started in the internal statez ∈ P(∆N), its output process is distributed according toz (which is also a
measure on the future). Thus, the distribution of the next output d has to be equal to the marginal ofz.
The next internal state has to be the conditionalz-probability of the future givenX ′

1 = d. Recall that
φz(ω) = z(ς−1

( · ) | X ′
1)(ω).

Definition 3.10. We define the Markov kernelT C fromP(∆N) to ∆ × P(∆N) by

T C(z; D × B) := z
(
{X ′

1 ∈ D, φz ∈ B }
)
, z ∈ P(∆N), D ⊆ ∆, B ∈ B

(
P(∆N)

)
.

Note thatT C(z; ∆ × B) = S(z; B), i.e. marginalisingT C(z) to the internal component yields the
prediction dynamic. Thus, ifµ = µC(P ) is the causal state distribution (Definition 2.7) of some process
P ∈ Pinv(∆

Z), then the internal state process of the induced HMM(T C, µ) coincides with the prediction
processZZ of P . From the following lemma we conclude that the output process XZ is, as expected,
distributed according toP . More generally, ifµ ∈ P

(
P(∆N)

)
represents a processz ∈ P(∆N) in the

sense of integral representation theory as a mixture of other processes, it also induces an HMM ofz, namely
(T C, µ). Recall thatr is the resolvent, defined in (3), and associates the represented process toµ.
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Lemma 3.11. Letµ ∈ P
(
P(∆N)

)
. Then(T C, µ) is a partially deterministic HMM ofr(µ). In particular,(

T C, µC(P )
)

is an invariant HMM ofP ∈ Pinv(∆
Z).

Proof. Partial determinism follows directly from the definition ofT C, with Kz = z ◦ X ′
1
−1 and transition

functionf given byfz ◦X ′
1 := φz , which is well defined due to theσ(X ′

1)-measurability ofφz. Obviously
T C(z; D × B) = Kz

(
D ∩ f−1

z (B)
)
. We assume w.l.o.g. thatµ is a Dirac measure (the general claim

follows by integration overµ). Thus letµ = δz with z = r(µ). Recall that, according to Lemma 3.2,(
T C, T C

d (δz)
)

is an HMM of the conditional probability ofX ′

[2,∞[ givenX ′
1 = d (w.r.t. the output process

of (T C, δz)). With T C
(
z; { d } × P(∆N)

)
= z
(
{X ′

1 = d }
)

and

r
(
T C

d (δz)
) (6)

= r
(
δfz(d)

)
= fz(d) = z

(
ς−1( · ) | X ′

1 = d
)
,

the claim follows by induction.

Remark (ε-machine). (T C, µC(P )) corresponds to theε-machine of computational mechanics. It is in
some sense a minimal predictive model but not always the minimal HMM of P (see [14]).

Given a processP ∈ Pinv(∆
Z), there are (usually) many invariant representations on prediction space

(i.e. S-invariantν ∈ P
(
P(∆N)

)
with r(ν) = PN). The next proposition shows that the causal state

distribution ofP is distinguished among them as theonlyone that can have finite entropy.

Proposition 3.12. Let ν ∈ P
(
P(∆N)

)
beS-invariant, andP ∈ Pinv(∆

Z) the measure it represents. If
ν 6= µC(P ), thenH(ν) = ∞.

Proof. Let H(ν) < ∞. According to Lemma 3.11,(T C, ν) is an invariant HMM ofP and satisfies the
conditions of Corollary 3.9. LetWZ be the correspondingM = P(∆N)-valued internal process. For a.e.
fixed ω, Lemma 3.2 tells us that(T C, δW0(ω)) is an HMM ofP(XN | W0)(ω), but it is also an HMM of
r(δW0(ω)) = W0(ω) due to Lemma 3.11. Thus,P(XN | W0) = W0 and

z = P(XN | W0 = z)
(cor. 3.9)

= P(XN | W0 = ẑ) = ẑ ∀z, ẑ ∈ supp
(
Y0(ω)

)
.

This means
∣∣supp(Y0)

∣∣ = 1, i.e.Y0(ω) is a Dirac measure. ThusY0 = P(W0 | X−N0
) = δW0

a.s. and

Z0 ◦ XZ = P(XN | X−N0
) =

∫ P(XN | W0 = · ) dY0 = P(XN | W0) = W0 a.s.

BecauseW0 is ν-distributed andµC(P ) is the law ofZ0, we obtainν = µC(P ).

We conclude this section with two examples of representations on prediction space. They are extreme
cases. The first one,ν1, is maximally concentrated, namelyν1 is the Dirac measure in (the future of) the
process we want to represent. Thus it has no uncertainty in itself, but the (unique) process in its support
can be arbitrary. The second example,ν2, is supported by maximally concentrated processes, i.e. byDirac
measures on∆N, but the mixtureν2 is as diverse as the original process. The HMM correspondingto ν2

is equivalent to the one-sided shift (Example 3.8).

Example 3.13. Let P ∈ Pinv(∆
Z), PN = P ◦ X−1N andν = δPN . Thenν is a representation ofPN with

H(ν) = 0. This is no contradiction to Proposition 3.12 becauseν is notS-invariant (ifP is not i.i.d.) ♦

Example 3.14 (lifted shift). Let P ∈ Pinv(∆
Z) andν = PN ◦ ι−1, whereι : ∆N → P(∆N), ι(x) = δx

is the embedding as Dirac measures.ν is anS-invariant representations ofP and(T C, ν) is equivalent to
the one-sided shift. The only difference is that trajectoriesx ∈ ∆N are replaced by corresponding Dirac
measuresδx ∈ P(∆N). In other words,ι is an isomorphism. This is no contradiction to Proposition 3.12
becauseH(ν) = ∞ (if P is not concentrated on countably many trajectories). ♦
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4 Properties of the statistical complexity functional

Recall that the statistical complexityCC(P ) (Definition 2.10) of a processP ∈ Pinv(∆
Z) is defined as the

entropyH
(
µC(P )

)
of its causal state distribution. In this section, we investigateCC as a functional on the

space of processes. First, we consider the problem of ergodic decomposition. With ergodic decomposition
of P , we denote a probability measureν on the ergodic measuresPe(∆

Z) ⊆ Pinv(∆
Z) that satisfies

P = r(ν) =

∫

Pe(∆Z)

idPe(∆Z) dν.

Such a measureν always exists and is uniquely determined byP . In [6, 7], Łukasz Dębowski investigated
another complexity measure,excess entropy, and gave a formula for its ergodic decomposition. Here,
we obtain the corresponding result for statistical complexity. It is the average complexity of the ergodic
components plus the entropy of the mixture.

Proposition 4.1 (ergodic decomposition).Let ν ∈ P
(
Pe(∆

Z)
)

be the ergodic decomposition ofP ∈
Pinv(∆

Z). Then

CC(P ) =

∫
CC dν + H(ν).

Proof. First note thatµC(P1) andµC(P2) are singular for distinct ergodicP1, P2 ∈ Pe(∆
Z). Indeed,

there exist disjointA1, A2 ∈ σ(X ′
−N0

) and disjointB1, B2 ∈ σ(X ′N) s.t. Pk(Ak) = 1 andPk(Bk |
X ′

−N0
)↾Ak

≡ 1. Consequently, ifν is not supported by a countable set,µC(P ) cannot be supported by a
countable set andCC(P ) = H(ν) = ∞. Thus assumeν =

∑
k∈N νkδPk

for someνk ≥ 0 and distinct
Pk ∈ Pe(∆

Z). Then there are disjointAk ∈ σ(X ′
−N0

) s.t.Pk(Ak) = 1. We claim

P ( · | X ′
−N0

) =
∑

k∈N 1Ak
Pk( · | X ′

−N0
) P -a.s.

Indeed, theσ(X ′
−N0

)-measurability is clear, and forA ∈ σ(X ′
−N0

), F ∈ B(∆Z) we have

∫

A

∑

k∈N 1Ak
Pk(F | X ′

−N0
) dP =

∑

j∈N νj

∫

A

∑

k∈N 1Ak
Pk(F | X ′

−N0
) dPj

(Pj(Aj) = 1)
=

∑

j

νj

∫

A∩Aj

Pj(F | X ′
−N0

) dPj

=
∑

j

νjPj(F ∩ A ∩ Aj) = P (F ∩ A).

As P (Ak) = νk, it follows thatµC(P ) =
∑

k νkµC(Pk). Mutual singularity of theµC(Pk) implies

CC(P ) = H

(
∑

k

νkµC(Pk)

)
=
∑

k

νkH
(
µC(Pk)

)
+ H(ν).

Several corollaries follow directly from this proposition. The setPC := C−1
C

(R) of stationary pro-
cesses with finite statistical complexity is convex,CC is concave but not continuous, and the setP∞ :=
Pinv(∆

Z) \ PC of processes with infinite statistical complexity is dense.

Corollary 4.2 (concavity). PC is a convex set andCC is concave. Moreover, for allν ∈ P(N), νk := ν(k)
andPk ∈ Pinv(∆

Z)

∑

k∈N νkCC(Pk) ≤ CC

(∑

k∈N νkPk

)
≤
∑

k∈N νkCC(Pk) + H(ν).

Proof. Use ergodic decomposition of thePk and Proposition 4.1.
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Corollary 4.3 (non-continuity). CC↾PC
is not continuous in anyP ∈ PC w.r.t. variational topology, let

alone w.r.t. weak-∗ topology.

Proof. Let Qn ∈ PC with limn→∞
1
n
CC(Qn) → ∞ and Pn := n−1

n
P + 1

n
Qn. ThenPn → P in

variational topology, butCC(Pn) ≥ 1
n
CC(Qn) → ∞ by Corollary 4.2.

Corollary 4.4. P∞ is dense inPinv(∆
Z) w.r.t. variational- and a fortiori w.r.t. weak-∗-topology.

Proof. Let P, Q ∈ Pinv(∆
Z) with CC(Q) = ∞. ThenP∞ ∋ n−1

n
P + 1

n
Q → P .

We give a simple example of a situation where statistical complexity is not continuous.

Example 4.5 (non-continuity). Let Qp be the Bernoulli process on∆ = { 0, 1 } with parameter0 < p <

1, i.e.Qp(X
′
1 = 1) = p. Consider the process of throwing a coin which is either slightly biased to0 or 1,

each with probability12 , i.e.Pε = 1
2Q 1

2
+ε + 1

2Q 1
2
−ε with 0 < ε < 1

2 . ThenPε
∗
⇀ P0 = Q 1

2
for ε → 0,

butCC(Pε) = log(2) for ε > 0 andCC(P0) = 0. ♦

The proof of our most important result about statistical complexity, namely its lower semi-continuity,
makes use of the propositions given in Sections 2.1 and 3 It also uses a compactness argument. To this end
we need, in the case of infinite∆, a lemma guaranteeing thatµC preserves relative compactness.

Lemma 4.6. Let M ⊆ Pinv(∆
Z) be relatively compact. ThenµC(M) :=

{
µC(P )

∣∣ P ∈ M
}

is
relatively compact inP

(
P(∆N)

)
.

Proof. Using Prokhorov’s theorem, we have to show thatµC(M) is tight provided thatM is tight. Let
ε > 0 andKn ⊆ ∆Z compact withP (Kn) ≥ 1 − ε 2−n

n
for all P ∈ M. We defineK ′

n := X ′N(Kn),

K̃ :=
{

z ∈ P(∆N)
∣∣ z(K ′

n) ≥ 1 − 1
n
∀n ∈ N} andfn := P

(
{X ′N ∈ K ′

n }
∣∣ X ′

−N0

)
. ForP ∈ M

∫
fn dP ≥

∫
P (Kn | X ′

−N0
) dP = P (Kn) ≥ 1 − ε 2−n

n
.

We obtainP
(⋃

n { fn < 1 − 1
n
}
)

≤
∑

n n(1 −
∫

fn dP ) ≤
∑

ε 2−n = ε and, as a consequence,

µC(P )(K̃) = P
(
{Z0 ∈ K̃ }

)
= P

(⋂
n { fn ≥ 1 − 1

n
}
)
≥ 1 − ε for all P ∈ M. We still have to show

compactness of̃K. It is closed becausezk
∗
⇀ z impliesz(K ′

n) ≥ lim supk zk(K ′
n) due to closedness of

K ′
n. It is tight by definition because theK ′

n are compact. Therefore,̃K is compact.

Theorem 4.7 (lower semi-continuity). The statistical complexity functional,CC : Pinv(∆
Z) → R+, is

weak-∗ lower semi-continuous.

Proof. Let Pn, P ∈ Pinv(∆
Z) with Pn

∗
⇀ P . Every subsequence of

(
µC(Pn)

)
n∈N has an accumulation

point (a.p.), according to Lemma 4.6. Consequently,

lim inf
n→∞

CC(Pn) = lim inf
n→∞

H
(
µC(Pn)

) (H lsc)
≥ inf

{
H(ν)

∣∣ ν a.p. of(µC(Pn))n∈N }.
Every µC(Pn) is S-invariant. According to Proposition 2.5,S is continuous and thus every a.p.ν of(
µC(Pn)

)
n∈N is alsoS-invariant. The resolventr : P

(
P(∆N)

)
→ P(∆N) is continuous (see [3]), and

thusν representsP . Therefore, according to Proposition 3.12,H(ν) ≥ CC(P ). In total we obtain

lim inf
n→∞

CC(Pn) ≥ CC(P ).

We argue that, from a theoretical point of view, every complexity measure should be lower semi-
continuous. While it is not counter intuitive that it is possible to approximate a simple system by un-
necessarily complex ones (and hence the complexity is not continuous), it would be strange to consider
a process complex if there is an approximating sequence with(uniformly) simple processes. Therefore,
an axiomatic characterisation of complexity measures (although, of course, we are far from having such a
characterisation) should include lower semi-continuity.There are also slightly more practical reasons why
semi-continuity is a nice property.
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In a model selection task, for instance, it might be desirable to impose some upper bounda ∈ R+ on the
complexity of considered processes (e.g. to avoid overfitting). An important consequence of lower semi-
continuity is that the setC−1

C

(
[0, a]

)
=
{

P ∈ Pinv(∆
Z)
∣∣ CC(P ) ≤ a

}
of processes with complexity

bounded bya is closed. This makes the complexity constraint technically easier. Consider any complete
metric onPinv(∆

Z) compatible with weak-∗ (or any stronger) topology (e.g. Prokhorov, Kantorovich-
Rubinshtein or variational metric). Then due to closedness, for everyP ∈ Pinv(∆

Z) with arbitrary com-
plexity, there is a (not necessarily unique) closest “sufficiently simple” processPa with complexity not
exceedinga. Another consequence is that the set of processes with infinite complexity is generic in the
following sense.

Corollary 4.8. P∞ contains a denseGδ-set.

Proof. Because allC−1
C

(
[0, n]

)
are closed,P∞ is aGδ-set. It is dense according to Corollary 4.4.

Example 4.9. Consider the experiment of first choosing a random coin with success probabilityp uni-
formly in [0, 1] and then generating an i.i.d. sequence with this coin. More precisely, letQp be the Bernoulli
process with parameterp on ∆ = { 0, 1 } andP =

∫
Qp dp. ThenP has infinite statistical complexity

according to Proposition 4.1. We might approximateP by Pn
∗
⇀ P (e.g. with ergodicPn). Then Theo-

rem 4.7 implies that the complexity ofPn necessarily tends to infinity. ♦

Example 4.10. Let ∆ be finite, thenPinv(∆
Z) is compact. Assume we made observations of a∆-valued

process and want to fit someP ∈ Pinv(∆
Z). From the observations, we might derive a set of closed

constraints, e.g.P
(
{X ′

1 = X ′
2 }
)
∈ [a, b], P

(
{X ′

1 = d }
)
≥ ε, andP

(
{X ′

2 = d }
∣∣ X ′

1 = d
)
∈ [a, b]

(the third is closed only in presence of the second). Furtherclosed constraints may be given by modelling
assumptions. Because the resulting set of admissible processes is compact, lower semi-continuity implies
that there is at least one process of minimal complexity satisfying all constraints. ♦

A Appendix

Proof of Lemma 2.11 (lower semi-continuity of the entropy).Recall thatϕ(x) := −x log(x) and denote the boundary
of a setB by ∂B. Define

bH(µ) := sup
˘ nX

i=1

ϕ
`
µ(Bi)

´ ˛̨
n ∈ N, Bi disjoint, µ(∂Bi) = 0

¯
.

Obviously, bH ≤ H . Recall thatµn
∗
⇀ µ impliesµn(A) → µ(A) for all A with µ(∂A) = 0 (e.g. [2]). ThusbH is

clearly lower semi-continuous and it is sufficient to show

H(µ) ≤ bH(µ).

If µ is not supported by any countable set,bH(µ) = ∞ due to separability ofM . Let µ =
P∞

i=1 aiδxi
(ai ∈

[0, 1], xi ∈ M), andd a compatible metric onM . For fixedn ∈ N, we can choose a radiusrn > 0, such that
Bn

i := {x ∈ M | d(xi, x) < rn }, i = 1, . . . , n, are disjoint andµ(∂Bn
i ) = 0. We get

nX

i=1

ϕ(ai)
(ϕ′ ≥ −1)

≤

nX

i=1

ϕ
`
µ(Bn

i )
´

+

nX

i=1

`
µ(Bn

i ) − ai

´
≤ bH(µ) +

∞X

i=n+1

ai.

Therefore,H(µ) = limn→∞

Pn

i=1 ϕ(ai) ≤ bH(µ).

Proof of Lemma 3.2.We first prove that(T, δW0
) is an HMM of P(XN | W0). Let GT (m) ∈ P(∆N) be the

distribution of the output process of(T, δm). BecauseGT is measurable,GT ◦ W0 is σ(W0)-measurable. From the
definition of(WN0

, XN) it follows for measurableB ⊆ M, A ⊆ ∆N thatP`
{W0 ∈ B } ∩ {XN ∈ A }

´
=

Z

B

GT ( · ; A) dµ =

Z

W
−1
0

(B)

GT

`
W0( · ); A

´
dP,

where the second equality holds becauseW0 is distributed according toµ. ThusGT ◦ W0 is the claimed conditional
probability. To see that

`
T, LX1

(µ)
´

is an HMM ofP(X[2,∞[ | X1), let d ∈ ∆ and observe
Z

GT ( · ; A) dLd(µ) =
1

Kµ(d)

Z Z

{d}×M

GT ( · ; A) dT dµ =
P`

{X1 = d, X[2,∞[ ∈ A }
´P`

{X1 = d }
´ .
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