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Abstract The approximation of the functions 1/x and 1/
√

x by exponential sums
enables us to evaluate some high-dimensional integrals by products of one-dimensio-
nal integrals. The degree of approximation can be estimated via the study of ratio-
nal approximation of the square root function. The latter has interesting connections
with the Babylonian method and Gauss’ arithmetic-geometric process.
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1 Introduction

The approximation of transcendental or other complicated functions by polynomi-
als, rational functions, and spline functions is at the centre of classical approxima-
tion theory. In the last decade the numerical solution of partial differential equations
gave rise to quite different problems in approximation theory. In this paper we will
study the approximation of x−α (α = 1/2 or 1) by exponential sums. Here a simple
function is approximated by a more complicated one, but it enables the fast com-
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putation of some high-dimensional integrals which occur in quantum physics and
quantum chemistry.

A model example is an integral of the form

∫
g1(x1) · · ·gd(xd)

‖x− y‖0
dx (1)

on a domain in R
d , where ‖ · ‖0 refers to the Euclidean norm. When we insert the

approximation
1√
x
≈

n

∑
j=1

α je
−t jx,

then the integral is reduced to a sum of products of one-dimensional integrals

n

∑
j=1

α j

d

∏
i=1

∫
gi(xi)exp[−t j(xi − yi)2]dxi,

and a fast computation is now possible (at least in the domain, where the approxi-
mation is valid, see Section 6.2 for more details). Other examples will be discussed
in Sections 5 and 6.

There are only a few problems in nonlinear approximation theory for which the
degree of approximation can be estimated. Surprisingly, the problem under consid-
eration belongs to those rare cases. The functions x−α (α > 0) are monosplines for
the kernel e−tx. For this reason, results for the rational approximation of the square
root function provide good estimates for the degree of approximation by exponential
sums.

In principle, rational approximation of the square root function is well known
for more than a century from Zolotarov’s results. Elliptic integrals play a central
role in his investigations. We find it more interesting, direct, and less technical to
derive approximation properties from the Babylonian method for the computation
of a square root. Gauss’ arithmetic-geometric process yields a fast computation of
the decay rate of the approximation error.

The rest of the paper is organised as follows. Section 2 is devoted to the connec-
tion of the approximation of x−α by exponential sums with the rational approxima-
tion of

√
x. The investigation of the latter with the help of the Babylonian method

and Gauss’ arithmetic-geometric mean is the main purpose of Section 3. The results
for the approximation of 1/x by exponential sums on finite and infinite intervals
are presented in Section 4. Numerical results show that the theory yields the correct
asymptotic law, while an improvement is possible for infinite intervals. The role
of the approximation problem for the computation of high-dimensional integrals is
elucidated with several examples in Sections 5 and 6. The numerical computation of
the best exponential sums is discussed in Section 7. Appendix A provides auxiliary
results for small intervals. Properties of complete elliptic integrals that are required
for the derivation of the asymptotic rates, are derived in Appendix B. Finally it is
shown in Appendix C that a competing tool yields the same law for infinite intervals.
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2 Approximation of completely monotone functions by
exponential sums

Good estimates for the degree of approximation are available only for a few classes
of nonlinear approximation problems. Fortunately, the asymptotic behaviour is
known for the functions in which we are interested. The functions 1/x and 1/

√
x

are completely monotone for x > 0, i.e., they are Laplace transforms of non-negative
measures:

f (x) =
∫ ∞

0
e−txdμ(t), dμ ≥ 0.

In particular,
1
x

=
∫ ∞

0
e−txdt,

1√
x

=
∫ ∞

0
e−tx dt√

πt
.

In order to avoid degeneracies, we assume that the support of the measure is an
infinite set. We will also restrict ourselves to ℜex ≥ 0.

We consider best approximations in the sense of Chebyshev, i.e., the error is to
be minimised with respect to the supremum norm on a given interval. A unique best
exponential sum of order n,

un(x) =
n

∑
ν=1

αν e−tν x (2)

exists for a given completely monotone function f , while this is not true for arbitrary
continuous functions. Moreover, the coefficients αν in the best approximation are
non-negative (cf. [4]).

Our error estimates require the solution of a nonlinear interpolation problem that
is also solvable for completely monotone functions.

Theorem 2.1. Let f be completely monotone for x > 0 and 0 < x1 < x2 < .. . < x2n.
Then there exists an exponential sum un such that

un(x j) = f (x j), j = 1,2, . . . ,2n.

Moreover
un(x) < f (x) for 0 < x < x1 and x > x2n.

If in addition f is continuous at x = 0, also un(0) < f (0) holds.

Sketch of proof. The complete monotonicity allows us to apply deformation argu-
ments from nonlinear analysis. The best approximation un on the interval [ 1

2 x1,x2n +
1] has an alternant of length 2n + 1 (see Definition 3.1). Therefore, f − un has 2n
zeros y1 < y2 < .. . ,y2n. Set

x j(s) := (1− s)y j + sx j, 0 ≤ s ≤ 1, j = 1,2, . . . ,2n.

The set of numbers s ∈ [0,1] for which the interpolation at the points x j(s) is solv-
able, contains the point s = 0. The rules on the zeros of extended exponential sums
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∑ j(α j +β jx)e−t jx and the Newton method imply that the set is open. It follows
from compactness properties of exponential sums that the set is also closed. Hence,
the value s = 1 is included.

The given function f and the approximating exponential sums are analytic func-
tions in the right half plane of C, and the complete monotonicity provides some a
priori bounds. For this reason, we can derive error bounds for our approximation
problem in the interval [a,b] from the knowledge of a function with small values in
[a,b] and symmetry properties. The latter is provided by the rational approximation
of the square root function and is related to other fast computations, as we will see
in the next section.

The extra assumption in the following lemma concerning the continuity of f at
x = 0 will be no drawback, since a shift x �→ x+1/n will recover it.

Lemma 2.1. Let f be completely monotone for x > 0 and continuous at x = 0. As-
sume that pn and qn−1 are polynomials of degree n and n− 1, respectively, and
that ∣∣∣∣ pn(x)

qn−1(x)
−
√

x

∣∣∣∣≤ ε
√

x for x ∈ [a2,b2] (3)

or

∣∣∣∣ pn(x)/qn−1(x)−
√

x
pn(x)/qn−1(x)+

√
x

∣∣∣∣≤ ε for x ∈ [a2,b2], (4)

holds for some ε > 0. Assume also that pn/qn−1 −
√

x has 2n zeros in the interval
[a2,b2]. Then there exists an exponential sum un with n terms such that

| f (x)−un(x)| ≤ 2ε f (0) for x ∈ [a,b].

Proof. Put x = z2. Obviously, we can restrict ourselves to the case ε < 1. Now (3)
implies (4) and by assumption

∣∣∣∣ pn(z2)− zqn−1(z2)
pn(z2)+ zqn−1(z2)

∣∣∣∣≤ ε for z ∈ [a,b].

Set P2n(z) := pn(z2)− zqn−1(z2) and write
∣∣∣∣ P2n(z)
P2n(−z)

∣∣∣∣≤ ε for z ∈ [a,b]. (5)

Obviously, ∣∣∣∣ P2n(z)
P2n(−z)

∣∣∣∣= 1 for ℜez = 0 or |z| → ∞.

Let un be the interpolant of f at the 2n zeros of P2n. The last inequality in

| f (z)| ≤ f (0), |un(z)| ≤ un(ℜez) ≤ un(0) < f (0) for ℜez ≥ 0

follows from Theorem 2.1. Hence,
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∣∣∣∣P2n(−z)
P2n(z)

(
f (z)−un(z)

)∣∣∣∣≤ 2 f (0) (6)

holds at the boundary of the right half-plane. By the maximum principle for analytic
functions (6) holds also in the interior, and

| f (z)−un(z)| ≤ 2 f (0)
∣∣∣∣ P2n(z)
P2n(−z)

∣∣∣∣
completes the proof.

A similar method is sketched in Appendix 10. The maximum principle is applied
to an analytic function on a sector of the complex plane and with properties different
from (5). The inequality (5) is related to the capacity of a capacitor with the plates
[a,b] and [−b,−a]. We are looking for a rational function, whose absolute value is
small on [a,b] and large on [−b,−a].

Lemma 2.1 provides only upper bounds for the degree of approximation. Sur-
prisingly, numerical results in Section 3 lead to the conjecture that the asymptotic
behaviour and the exponential decay is precisely described for finite intervals. The
estimates for infinite intervals reflect the asymptotic behaviour, but are not optimal,
although they are sharper than the estimate obtained via Sinc approximation meth-
ods [7] and §11.

3 Rational approximation of the square root function

3.1 Heron’s algorithm and Gauss’ arithmetic-geometric mean

At the beginning of the second century, Heron of Alexandria described a method to
calculate the square root of a given positive number a using some initial approxi-
mation. The method was probably also known to the Babylonians. A modification
– more precisely a rescaling – will help us to construct best rational approximations
of the square root function in the sense of Chebyshev [22].

Let xn be an approximation of
√

a. Obviously
√

a is the geometric mean of xn

and a/xn. Heron replaced it by the arithmetic mean, i.e., in modern notation:

xn+1 =
1
2
(xn +

a
xn

).

Convergence follows from the recursion relation for the error

xn+1 −
√

a =
(xn −

√
a)2

2xn
. (7)

Gauss considered the two means in a different context. At an early age, he became
enamoured of a sequential procedure that is now known as the arithmetic-geometric
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process (see, e.g., [3]). Given two numbers 0 < a0 < b0 , one successively takes the
arithmetic mean and the geometric mean:

a j+1 :=
√

a jb j, b j+1 :=
1
2
(a j +b j). (8)

He expressed the common limit as an elliptic integral (see Appendix 9). The distance
of the two numbers is characterised by λ j := b j/a j. A direct calculation yields

λ j+1 =
1
2

(√
λ j +

1√
λ j

)
or λ j =

(
λ j+1 +

√
λ 2

j+1 −1
)2

. (9)

The mapping λ �→ (λ +
√

λ 2 −1)2 is called the Landen transformation. The num-
bers in the table below show that a few steps forwards or backwards brings us either
to large numbers or to numbers very close to 1. – Finally, we mention that the num-
bers (λ +1)/(λ −1) and λ ′ with (λ ′)−2 +λ−2 = 1 are moved by the same rule, but
in the opposite direction.

Table 1 Arithmetic-geometric process with λ0 = 1+
√

2 and λ−2
j +(λ ′

j)
−2 = 1

j λ j
λ j+1
λ j−1 λ ′

j

−4 6.825 ·1014 1+2.930 ·10−15 1+1.07 ·10−30

−3 1.306 ·107 1+1.531 ·10−7 1+2.930 ·10−15

−2 1807.08 1.001107 1+1.531 ·10−7

−1 21.26 1.099 1.001107

0 2.414 2.414 1.099

1 1.099 21.26 2.414

2 1.001107 1807.08 21.26

3 1+1.531 ·10−7 1.306 ·107 1807.08

4 1+2.930 ·10−15 6.825 ·1014 1.306 ·107

3.2 Heron’s method and best rational approximation

In view of Lemma 2.1 we are interested in the best relative Chebyshev approxima-
tion of

√
x by rational functions in Rn,n−1. Specifically, vn is called a best approxi-

mation if it yields the solution of the minimisation problem:

En,n−1 := En,n−1,[a,b] := inf
vn∈Rn,n−1

∥∥∥vn −
√

x√
x

∥∥∥
L∞[a,b]

.
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Definition 3.1. An error curve η(x) has an alternant of length �, if there are � points
x1 < x2 < .. . . < x� such that

signη(xi+1) = −signη(xi) for i = 1,2, . . . �−1 (10)

and
|η(xi)| = ‖η‖L∞ for i = 1,2, . . . � (11)

holds.

The following characterisation goes back to Chebyshev. Some degeneracies that
are possible with rational approximation, cannot occur here.

Theorem 3.1 (characterisation theorem). vn is optimal in Rn,n−1 if and only if the
error curve (vn −

√
x)/

√
x has an alternant of length 2n+1.

Fig. 1 Alternant of length 7

Let pn/qn−1 ∈ Rn,n−1 be an approximation of
√

x. The application of one step of
Heron’s algorithm yields the rational function

1
2

(
pn

qn−1
+

x
pn/qn−1

)
=

p2
n + xq2

n−1

2pnqn−1
∈ R2n,2n−1

From (7) we conclude that the associated error curve is non-negative and cannot be
a best approximation; see Figure 2. A rescaling before and after the procedure, how-
ever, will yield a solution. This was already observed by Rutishauser [22], although
he stopped at (12) and did not mention the connection with Gauss’ arithmetic-
geometric process.

Let vn be the best approximation in Rn,n−1. By definition,

1−En,n−1 ≤
vn(x)√

x
≤ 1+En,n−1 .

The corresponding relations for wn := 1√
1−E2

n,n−1

vn are

√
1−En,n−1

1+En,n−1
≤ wn(x)√

x
≤
√

1+En,n−1

1−En,n−1
.

The result of a Heron step is denoted by w2n and
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1 ≤ w2n(x)√
x

=
1
2

(
wn(x)√

x
+

√
x

wn(x)

)

≤ 1
2

(√
1+En,n−1

1−En,n−1
+

√
1−En,n−1

1+En,n−1

)
=

1√
1−E2

n,n−1

.

We rescale the new rational function, set v2n :=
2
√

1−E2
n,n−1

1+
√

1−E2
n,n−1

w2n, and obtain

2
√

1−E2
n,n−1

1+
√

1−E2
n,n−1

≤ v2n(x)√
x

≤ 2

1+
√

1−E2
n,n−1

.

Fig. 2 Error curves and Heron’s procedure

Figure 2 elucidates that the number of sign changes is doubled, and the equili-
bration above yields the desired alternant of length 4n+1. Hence,

E2n,2n−1 =
2

1+
√

1−E2
n,n−1

−1 =
1−
√

1−E2
n,n−1

1+
√

1−E2
n,n−1

=
E2

n,n−1(
1+
√

1−E2
n,n−1

)2 (12)

or

E−1
2n,2n−1 =

(
E−1

n,n−1 +
√

E−2
n,n−1 −1

)2

. (13)

Remark 3.1. The inverse E−1
2n,2n−1 is obtained from E−1

n,n−1 by the Landen transfor-
mation. In particular,

(
1
4

En,n−1)2 ≤ 1
4

E2n,2n−1. (14)

We will make repeated use of the following consequence: The inequality E2n,2n−1 ≤
4A2 with some A > 0 implies En,n−1 ≤ 4A.

A start for the recursive procedure is the best constant function. The best constant
for the interval [a2,b2] and the approximation error follow from a simple optimisa-
tion of the constant:

v0,0 =
2ab

a+b
, E0,0,[a2,b2] =

b−a
b+a

=:
1
ρ

. (15)
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Here ρ is the parameter of the ellipse on which the square root is an analytic func-
tion, if the interval [a2,b2] is transformed into the interval [−1,+1]; cf. Appendix 8.
Another important parameter is

κ :=
a
b

.

Note that v0,0 is the harmonic mean of the function values at the end points.
When Heron’s method is applied to a constant function, a linear function with an

alternant of length 3 is produced. Hence, E−1
1,0 =

(
E−1

0,0 +
√

E−2
0,0 −1

)2
, and Landen

transformations provide the sequence

ρ = E−1
0,0 → E−1

1,0 → E−1
2,1 → E−1

4,3 → E−1
8,7 → . . . (16)

The asymptotic behaviour of En,n−1 for n = 2m can be determined already from this
sequence. There are the trivial inequalities for the sequence (9)

4λ j ≤ (4λ j+1)2. (17)

Let

ω := ω(κ) := ω [a2,b2] := lim
m→∞

(
1
4

E2m,2m−1,[a2,b2]

)−1/2m+1

. (18)

By (14) the sequence on the right-hand side is monotone, the limit exists, and the
monotonicity also implies that

En,n−1,[a2,b2] ≤ 4ω−2n (19)

holds for n = 2m. We will establish the inequality for all n ∈ N. Moreover, ω(κ)
will be expressed in terms of elliptic integrals although the fast convergence of the
arithmetic-geometric process is used for its fast computation, as we will see below.

Remark 3.2. We focus on upper bounds for the degree of rational approximation
although lower bounds can be obtained by suitable modifications. We elucidate this
for a bound corresponding to (19). Let λ j ≥ 1

4 A+ 2
A for some A > 1. Hence,

λ j−1 ≥
[

1
4

A+
2
A

+

√
(

1
16

A2 +1+
4

A2 )−1

]2

≥
(

1
2

A+
2
A

)2

≥ 1
4

A2 +
2

A2 .

The bound of λ j−1 has the same structure as the bound for λ j. Now we obtain by
induction and from (18)

En,n−1,[a2,b2] ≥
4

ω2n +8ω−2n (20)

for n = 2m. A comparison with (19) elucidates the fast convergence.
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3.3 Extension of the estimate (19)

A transformation of the interval will be used for the extension of inequality (19)
which was previously announced. It enables us to derive sharp estimates from the
results for small intervals in Appendix 8. We encounter the arithmetic-geometric
process once more.

Lemma 3.1. Let n ≥ 1 and (a j,b j) be a sequence according to the arithmetic-
geometric mean process (8). Then

En,n−1,[a2
j+1,b

2
j+1] = E2n,2n−1,[a2

j ,b
2
j ]
. (21)

Proof. Set r(x) := (x + a jb j)/2. The function r2(x)/x maps the two subintervals
[a2,ab] and [ab,b2] monotonously onto [a jb j,(a j + b j)2/4] = [a2

j+1,b
2
j+1]. Next,

note that
√

x = r(x)
√

x/r2(x) = r(x)
√

ξ where ξ = x/r(x)2.
Let p/q ∈ Rn,n−1 be the best approximation to

√
x on [a2

j+1,b
2
j+1]. Then

P(x)
Q(x)

:= r(x)
p(x/r2(x))
q(x/r2(x))

∈ R2n,2n−1

provides an approximation for the original interval with the same size of the maxi-
mal relative error as p/q on the smaller interval. The monotonicity of the mapping
r2(x)/x assures that there is an alternant of length 4n+1. Therefore, P/Q is the best
approximation, and the proof is complete.

As a by-product we obtain a closed expression for the approximation by linear
functions. For completeness, we also recall (15):

E1,0,[a2,b2] =
(√b−

√
a√

b+
√

a

)2
, E0,0,[a2,b2] =

b−a
b+a

. (22)

Theorem 3.2. Let ω be defined by (18). Then the degree of approximation is
bounded by (19) for all n ∈ N.

Proof. Let [a2
0,b

2
0] be the interval for which the degree of approximation in Rn,n−1

is to be estimated and ω = ω [a2
0,b

2
0]. Moreover, let � = 2k. By Lemma 3.1 we know

that
E0,0,[a2

k+1,b
2
k+1] = E1,0,[a2

k ,b
2
k ] = E�,�−1,[a2

0,b
2
0] ≤ 4ω−2�.

From (45) it follows that the parameter of the regularity ellipse associated to the
interval [a2

k+1,b
2
k+1] is the inverse, i.e.,

ρ =
1
4

ω2�.

By (44) we have
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En,n−1,[a2
k+1,b

2
k+1] ≤ 4(4ρ −3)−2n ≤ 4(ω2�−3)−2n.

By using the preceding lemma once more we return to the original interval,

E2�n,2�n−1,[a2
0,b

2
0] ≤ 4(ω2�−3)−2n.

The degree of the numerator is 2�n = 2k+1n. Now we perform k + 1 Landen trans-
formations in the opposite direction and recall Remark 3.1 to obtain

En,n−1,[a2
0,b

2
0] ≤ 4(ω2�−3)−2n/2� = 4ω−2n(1−3ω−2�)−2n/2�.

Since we may choose an arbitrarily large �, the proof is complete.

3.4 An explicit formula

The asymptotic behaviour of the degree of approximation was determined for finite
intervals without the knowledge of elliptic integrals – in contrast to [32]. Explicit
formulae will be useful for the treatment of the approximation with exponential
sums on infinite intervals. The relevant properties of complete elliptic integrals are
provided in Appendix 9.

Theorem 3.3. Let k = a/b, then

En,n−1,[a2,b2] ≤ 4ω−2n, for n = 1,2,3, . . . (23)

with

ω(k) = exp

[
πK(k)
K′(k)

]
. (24)

Proof. Set κ− j := E2 j ,2 j−1 and λ− j := 1/κ− j := for j = 0,1,2, . . . and extend the
two sequences by the backward Landen transformation. From (16) we know that λ− j

obeys the rule of the arithmetic-geometric process, and κ− j+1 = 2
√κ− j/(1+κ− j).

By Lemma 9.1 and (53) we obtain

lim
j→∞

(
1
4

E2 j ,2 j−1

)−1/2 j

≥ exp

[
πK′(κ0)
2K(κ0)

]
= exp

[
2πK′(κ2)
K(κ2)

]

= exp

[
2πK(κ ′

2)

K′(κ2)

]

= exp

[
2πK(

1−κ1

1+κ1
)
/
K′(

1−κ1

1+κ1
)
]

. (25)

It follows from κ1 = E0,0 and (22) that
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1−κ1

1+κ1
=

a
b

.

Now the left-hand side of (25) can be identified with ω2, and the proof is complete.

Example 3.1. We consider the approximation problem on the interval [1,2], and
from (22) we know that E0,0 = (

√
2 − 1)/(

√
2 + 1). The sequence (16) and the

successive calculation of square roots for modelling (18) yields the tableau

√
2−1√
2+1

= 5.828427 → 133.87475 → 4613.84 → 71687.79

×4 ↓
23.140689 ← 535.4915 ← 286751.2

Since K(1/
√

2) = K′(1/
√

2), the evaluation of ω by formula (18) is easy. We get
ω = exp(π) = 23.1406924 in accordance with the result in the tableau above.

4 Approximation of 1/xα by exponential sums

4.1 Approximation of 1/x on finite intervals

The symbol En,[a,b]( f ) with only one integer index refers to the approximation by
exponential sums of order n. In order to have a short notation we start with the
approximation of 1/x: First we note that

En,[a,b](1/x) =
1
a

En,[1,b/a](1/x). (26)

Indeed, let un be the best approximation of 1/x on the interval [1,b/a]. The trans-
formation x = at yields

1
x
− 1

a
un

( x
a

)
=

1
a

[
1
t
−un(t)

]
. (27)

Since the alternant is transformed into an alternant, we have (26).

Theorem 4.1. Let 0 < a < b and k = a/b. Then

En,[a,b](1/x) ≤ c(k)
a

nω(k)−2n

with ω(k) given by (24) and c(k) depending only on k.

Proof. By (26) it is sufficient to study approximation on the interval [1,1/k]. To this
end, we consider the approximation of f (x) := 1

x+1/n on the interval [1−1/n,1/k−
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1/n]. Since we are interested in upper bounds, we may enlarge the interval to [1−
1/n,1/k]. It follows from Lemma 2.1, Theorem 3.3, and f (0) = n that

En,[1,1/k](1/x) ≤ En,[1−1/n,1/k](1/(x+1/n)) ≤ 2n4

[
ω
(

1−1/n
1/k

)]−2n

.

Since the function k �→ ω(k) is differentiable, we have

ω
(

1−1/n
1/k

)
= ω(k[1−1/n]) ≥ ω(k)(1− c

n
)

with c = c(k) being a bound of the derivative in a neighbourhood of k. We complete
the proof by recalling limn→∞(1− c/n)2n = e−2c.

Theorem 4.1 provides only an upper bound. The following examples for small
and large intervals, respectively, show that the order of exponential decay proved
there is sharp. The numerical results give rise to the conjecture that the polynomial
term is too conservative and that

En,[a,b](1/x) ≈ n1/2ω(k)−2n.

Example 4.1. The parameter for the (small) interval [1,2], i.e., [a2,b2] = [1,4] is
evaluated in the following tableau and is to be compared with the numbers in the
third column of Table 2.

3 → 33.970 → 4613.84 → 85150133
×4 ↓

11.655 ← 135.85 ← 18445.3 ← 340600530

Example 4.2. The parameter for the large interval [1,1000], i.e., [a2,b2] = [1,106] is
evaluated in the following tableau and is to be compared with the numbers in the
third column of Table 3.

1001/999 → 1.13488 → 2.79396 → 29.1906 → 3406.37
×4 ↓

1.813 ← 3.2869 ← 10.804 ← 116.728 ← 13625

4.2 Approximation of 1/x on [1,∞)

If we fix n and consider the approximation problem on the interval [1,R], then the
bound in Theorem 4.1 increases with R. This does not reflect the right asymptotic
behaviour.
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Table 2 Numerical results for 1/x (left) and 1/
√

x (right) on [1,2]

f 1/x 1/
√

x

n En
2n

2n−1
En−1

En
En

1 2.12794 ·10−2 1.26035 ·10−2

2 2.07958 ·10−4 136.43 9.28688 ·10−5

3 1.83414 ·10−6 136.06 6.83882 ·10−7

4 1.54170 ·10−8 135.96 5.03516 ·10−9

5 1.26034 ·10−10 135.92 3.70688 ·10−11

6 1.01179 ·10−12 135.89 2.72889 ·10−13

Table 3 Numerical results for 1/x (left) and 1/
√

x (right) on [1,1000]

f 1/x 1/
√

x

n En
2n

2n−1
En−1

En
En

5 6.38478 ·10−4 1.21681·10−3

6 2.17693 ·10−4 3.1995 3.68730·10−4

7 7.15300 ·10−5 3.2776 1.11788·10−4

8 2.32088 ·10−5 3.2875 3.39264·10−5

9 7.46801 ·10−6 3.2905 1.03020·10−5

10 2.38880 ·10−6 3.2908 3.12940·10−6

11 7.60494 ·10−7 3.2907 9.50867·10−7

12 2.41164 ·10−7 3.2905 2.88981·10−7

13 7.62271 ·10−8 3.2903 8.78389·10−8

The error curve for the best approximation un has 2n zeros in [1,R]. It follows
from Theorem 2.1 that un(x) < 1/x and

∣∣∣∣1x −un(x)
∣∣∣∣< 1

x
<

1
R

holds for x > R. Hence, for all R > 1,

En,[1,∞](1/x) ≤ max

{
En,[1,R](1/x),

1
R

}
. (28)

It is our aim to choose R such that the right-hand side of (28) is close to the minimal
value.
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Table 4 Numerical results for 1/x (left) and 1/
√

x (right) on [1,∞)

f 1/x 1/
√

x

n Rn En En eπ
√

2n/ log(2+n) En

1 8.667 8.55641 ·10−2 6.62 1.399 ·10−1

2 41.54 1.78498 ·10−2 6.89 4.087 ·10−2

5 1153 6.42813 ·10−4 6.82 3.297 ·10−3

10 56502 1.31219 ·10−5 6.67 1.852 ·10−4

15 1.175 ·106 6.31072 ·10−7 6.62 2.011 ·10−5

20 1.547 ·107 4.79366 ·10−8 6.60 3.083 ·10−6

25 1.514 ·108 4.89759 ·10−9 6.60 5.898 ·10−7

30 1.198 ·109 6.18824 ·10−10 6.61 1.321 ·10−7

35 8.064 ·109 9.19413 ·10−11 6.62 3.336 ·10−8

40 4.771 ·1010 1.55388 ·10−11 6.64 9.264 ·10−9

45 2.540 ·1011 2.91895 ·10−12 6.66 2.780 ·10−9

50 1.237 ·1012 5.99210 ·10−13 6.68 8.901 ·10−10

In order to avoid the singularity at x = 0, we consider the approximation of
f (x) := 1/(x + 1/2) on the interval [ 1

2 ,R− 1
2 ]. The constant shift of 1/2 is better

suited for estimates on large intervals. Now it follows from Lemma 2.1, Theorem
3.3, and f (0) = 2 that

En,[1,R](1/x) ≤ 2 ·2 ·4exp

[
− 2nπK(k)

K′(k)

]

with k = 1/(2R−1). From (48) we know that K(k)≥ π/2. This inequality and (50)
imply

En,[1,R](1/x) ≤ 16exp

[
− π2n

log( 4
k +2)

]
≤ 16exp

[
− π2n

log(8R)

]
. (29)

The choice R = 1
8 exp[π

√
n] yields the final result:

En,[1,∞](1/x) ≤ 16exp
[
−π

√
n
]
. (30)

The results in Table 4 are based on numerically computed best approximations.
They lead to the conjecture that

En,[1,∞](1/x) ≈ logn · exp
[
−π

√
2n
]
. (31)

In particular, the exponents in (30) and (31) differ by a factor of
√

2. The same gap
is found with the method discussed in Appendix 10. (The approximation by sinc
functions leads even to a larger gap [7] and §11.)
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Table 5 Comparison of the approximation of
√

x by rational functions and 1/x by exponential
sums

k−1 E4,3,[1,k−2](
√

x) E4,[1,k−1](1/x)

2 1.174 ·10−8 1.542 ·10−8

10 8.935 ·10−5 5.577 ·10−5

100 9.781 ·10−3 1.066 ·10−3

500 2.220 ·10−2 1.700 ·10−3

The gap may be surprising since the numerical results in the Tables 2 and 3 show
that the theory provides sharp estimates for the asymptotic behaviour for large n. It
is the factor in front of the exponential term in Theorem 4.1 that is responsible. We
have compared the data for n = 4, i.e., for a small n in Table 5. They show that the
application of Lemma 2.1 provides estimates which are too conservative on large
intervals, although the behaviour for large n is well modelled.

The logarithmic factor in front of (31) also shows that it will not be easy to
establish sharper estimates for the infinite interval.

4.3 Approximation of 1/xα , α > 0

When more freedom in the exponent of the given function is admitted, there are no
substantial changes on finite intervals. Proceeding as in the proof of Theorem 4.1
we obtain with k = a/b:

En,[a,b](x
−α) ≤ c(k)

aα nα ω(k)−2n (32)

with ω(k) given in Theorem 4.1. The exponential term on the right-hand side that
dominates the asymptotic behaviour for large n is unchanged.

The situation on infinite intervals is different. Given R > 1, we obtain with k =
1/(2R−1) in analogy to (29)

En,[1,R](x
−α) ≤ 2α 8exp

[
− π2n

log( 4
k +2)

]
≤ 2α 8exp

[
− π2n

log(8R)

]
(33)

Moreover, we have En,[1,∞](x−α) ≤ max
{

En,[1,R](x−α),R−α} in analogy to (28). A

suitable choice is R = 1
8 exp[π

√
n/α]. It yields

En,[1,∞](x
−α) ≤ 2α 8exp[−π

√
αn ]. (34)

The asymptotic decay depends heavily on α .
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5 Applications of 1/x approximations

5.1 About the exponential sums

Let [a,b] ⊂ (0,∞] be a possibly semi-infinite interval, e.g. b = ∞ is allowed. The
best approximation in [a,b] is denoted by

1
x
≈ un,[a,b](x) = ∑n

ν=1 αν,[a,b] exp(−tν,[a,b] x).

The rule (27) is inherited by the coefficients,

αν,[a,b] :=
1
a

αν,[1,b/a], tν,[a,b] :=
1
a

tν,[1,b/a],

and allows us to reduce the considerations to intervals of the form [1,R]. Due to (26)
the approximation errors En,[a,b] are related by En,[a,b] = 1

a En,[1,b/a]. The coefficients
of vn,[1,R] for various n and R can be found in [31].

5.2 Application in quantum chemistry

The so-called Coupled Cluster (CC) approaches are rather accurate but expensive
numerical methods for solving the electronic many-body problems. The cost may be
O(N7), where N is the number of electrons. One of the bottlenecks is an expression
of the form

numerator
εa + εb + . . .− ε j − εi

,

where εi,ε j, . . . < 0 are energies related to occupied orbitals i, j, . . ., while εa,εb, . . . >
0 are energies related to virtual orbitals a,b, . . . The denominator belongs to an inter-
val [Emin,Emax], where the critical lower energy bound Emin depends on the so-called
HOMO-LUMO gap.

The denominator leads to a coupling of all orbitals a,b, . . . , i, j, . . ., whereas the
numerator possesses a partial separation of variables. Therefore one tries to replace
1/(εa + εb + . . .− εi − ε j) by a separable expression. Such a separation saves one
order in the complexity.

Any exponential sum approximation 1
x ≈ ∑n

ν=1 αν exp(−tν x) leads to the separa-
ble expression

1/(εa + εb + . . .− εi − ε j) ≈ ∑n
ν=1 αν e−tν εae−tν εb · · ·etν ε j etν εi .

In quantum chemistry, Almlöf [1] used the representation

1
x

=
∫ ∞

0
e−sxds
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together with a quadrature formula ∑n
ν=1 αν e−tν x. This ansatz has been used in many

places like the Møller-Plesset second order perturbation theory (MP2, cf. [1, 15, 16,
30]), computation of connected triples contribution in MP4 (cf. [15]), atomic orbital
(AO)-MP2 (cf. [16, 2, 19]), AO-MP2 energy gradient (cf. [16, 24]), combinations
with the resolution of the identity (RI)-MP2 (cf. [10, 9]), and the density-matrix-
based MP2 (cf. [27, 17]).

It is hard to adapt the quadrature to the interval [Emin,Emax] where the approxi-
mation is needed. The favourite choice among those used in quantum chemistry is
the Gauss-Legendre quadrature applied to the transformed integral

∫ ∞

0
e−sxds =

∫ 1

0
e−tx/(1−t) dt

(t −1)2 (s = t/(1− t)).

Best approximations are only considered with respect to a weighted L2-norm (cf.
[23]). Best approximations in the supremum norm has not been considered in
this community. The recent paper [28] contains a comparison between the Gauss-
Legendre approach and the best approximation un,[Emin,Emax] for various applications.
For instance, an error of size ≈ 0.005 of the MP2 energies for benzene with the
aug-cc-pCVTZ basis set is obtained by the Gauss-Legendre quadrature with 14
terms, while the same accuracy is already obtained by the best approximation with 4
terms (best approximations with 14 terms yield an accuracy of 2 ·10−10). The value
R = Emax/Emin for this example is about 278.

5.3 Inverse matrix

The previous application refers to the scalar function 1/x. Now we consider its
matrix-valued version M−1 for a matrix M with positive spectrum σ(M) ⊂ [a,b] ⊂
(0,∞]. Formally, we have

M−1 ≈ un,[a,b](M) = ∑n
ν=1 αν,[a,b] exp(−tν,[a,b]M).

Additionally, we assume that M is diagonalisable: M = T−1DT . Then a simple cal-
culation shows the estimate

∥∥M−1 −un,[a,b](M)
∥∥

2
≤ cond2(T )En,[a,b]

with respect to the spectral norm. We emphasize that the spectral norm estimate
hinges on a uniform estimate of 1

x − un,[a,b] on the spectral interval [a,b]. Approx-
imations of 1/x by exponential sums with respect to the L2-norm would not be
helpful.

The approximation of M−1 seems to be rather impractical since now matrix ex-
ponentials exp(−tν M) have to be evaluated. The interesting applications, however,
are matrices which are sums of Kronecker products.
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We recall that a differential operator L is called separable in x1, . . . ,xd , if L =
∑d

i=1 Li, where the operator Li applies only to the variable xi and the coefficients of
Li depend only on xi. Let the domain of the boundary value problem be of product
form: Ω = Ω1 × . . .×Ωd . Then a suitable discretisation leads to an index set I
of product form: I = ∏d

i=1 Ii, where Ii contains the indices of the i-th coordinate
direction.

The system matrix for a suitable discretisation has the form

M =
d

∑
i=1

I ⊗·· ·⊗M(i) ⊗·· ·⊗ I, M(i) ∈ R
Ii×Ii (35)

(factor M(i) at i-th position). We assume that all M(i) are positive definite with

smallest eigenvalue λ (i)
min. Since the spectrum of M is the sum ∑d

i=1 λ (i) of all

λ (i) ∈ σ(M(i)), the minimal eigenvalue of M is λmin := ∑d
i=1 λ (i)

min . Since λ (i)
min ap-

proximates the smallest eigenvalue of Li, we have λmin = O(1).
Now we take the best approximation E∗

n with respect [λmin,b] (b = ∑d
i=1 λ (i)

max or
b = ∞ ). We know that for the symmetric matrices

∥∥un(M)−M−1
∥∥≤ En,[λmin,b].

For the evaluation of un(M) = ∑n
ν=1 αν exp(−tν M) we make use of the identity

exp(−tν M) =
⊗d

i=1
exp
(
−tν M(i)

)

with M(i) from (35) (cf. [14, §15.5.2]) and obtain

M−1 ≈
n

∑
ν=1

αν
⊗d

i=1
exp
(
−tν M(i)

)
.

As described in [14, §13.3.1], the hierarchical matrix format allows us to approxi-
mate exp

(
−tν M(i)) with a cost almost linear in the size of M(i). The total number

of arithmetical operations is O(n∑d
i=1 #Ii log∗ #Ii). For #Ii = N (1 ≤ i ≤ d) this ex-

pression is O(ndN log∗ N) and depends only linearly on d.
Therefore, it is possible to treat cases with large N and d. In [11], examples can

be found with N = 1024 and d ≈ 1000. Note that in this case M−1 ∈ R
M×M with

M ≈ 103000.
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6 Applications of 1/
√

x approximations

6.1 Basic facts

Let [a,b]⊂ (0,∞] be as above. We consider the best approximation of 1/
√

x in [a,b]:

1√
x
≈ un,[a,b](x) = ∑n

ν=1 αν,[a,b] exp(−tν,[a,b] x).

In this case the relations

αν,[a,b] =
1√
a

αν,[1,b/a], tν,[a,b] =
1
a

tν,[1,b/a], En,[a,b] =
1√
a

En,[1,b/a] (36)

hold, and again it is sufficient to determine vn,[1,R] with R := b/a. The coefficients
of vn,[1,R] for various n and R can be obtained from [31].

The standard application uses the substitution x = ‖y‖2 = ∑d
i=1 y2

i with a vector
y ∈ R

d . Then we obtain the sum

Gn,[a,b](y) :=
n

∑
ν=1

αν,[a2,b2]

d

∏
i=1

exp(−tν,[a2,b2] y
2
i )

of Gaussians which is the best approximation of 1/‖y‖ for ‖y‖ ∈ [a,b]. Since, in
3D, 1/‖y‖ is the Newton potential or Coulomb potential, this function appears in
many problems.

6.2 Application to convolution

A further application refers to the convolution integral

Φ(x) :=
∫

R3

f (y)
‖x− y‖dy.

We assume that f can be written as a sum of simple products. For simplicity we
consider only one term:

f (y) = f1(y1) f2(y2) f3(y3). (37)

When we replace 1/‖x− y‖ by an approximation of the form

Gn(x− y) = ∑n
ν=1 αν

3

∏
i=1

exp(−tν (xi − yi)
2),

the convolution integral becomes
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Φn(x) :=
∫

R3
Gn(x− y) f (y)dy =

n

∑
ν=1

αν
3

∏
i=1

∫
R

exp(−tν (xi − yi)
2) fi(yi)dyi,

and the 3D convolution is reduced to three 1D convolutions. This fact reduces the
computational cost substantially. In the paper [13] this technique is applied for the
case that the functions fi are piecewise polynomials. However, there still remains
a gap is to be closed. We have used some best approximation Gn = Gn,[a,b] of
1/‖·‖. The value of b may be infinite or finite, if the support of f is finite and
the evaluation of Φ(x) is required for x in a bounded domain. The lower bound a
may be small but positive. Therefore the difference Φ(x)−Φn(x) contains the term
δΦn(x) :=

∫
‖x−y‖≤A

(
1

‖x−y‖ −Gn(x−y)
)

f (y)dy, where the approximation fails. This
contribution can be treated separately to obtain Φn + δΦn ≈ Φ . As shown in [13]
the numerical cost arising from the extra term, is low.

A related problem is the integral I :=
∫
R3
∫
R3

g(x) f (y)
‖x−y‖ dxdy which appears for ex-

ample as “two-electron integral” in Quantum Chemistry. It can be considered and
computed as the scalar product of g with the function Φ from above. Another ap-
proach is the replacement of 1/‖·‖ by the exponential sum Gn. Assuming again that
f and g are simple products like in (37), the identity

In :=
∫

R3

∫
R3

Gn(x− y)g(x) f (y)dxdy

=
n

∑
ν=1

αν
3

∏
i=1

∫
R

∫
R

exp(−tν (xi − yi)
2)gi(xi) fi(yi)dyi

shows that the six-dimensional integral is reduced to three two-dimensional ones.
Concerning the error analysis, we split the integral I = Inear + Ifar into the near-field
and far-field parts

Inear :=
∫
‖z‖≤r

∫
R3

g(z+ y) f (y)
‖z‖ dzdy, Ifar :=

∫
‖z‖≥r

∫
R3

g(z+ y) f (y)
‖z‖ dzdy.

Let In = Inear,n + Ifar,n be the corresponding splitting with 1/‖·‖ replaced by Gn. We
assume that f ,g ∈ C(R3) have bounded support1. Then for ‖z‖ ≤ r the error can
be bounded by |Inear,n|+ |Inear| �

∫
‖z‖≤r

dz
‖z‖ = O(r2). If an error ε is desired, we

need r ∼
√

ε. This requires the choice Gn = Gn,[
√

ε ,∞). The approximation error of

Gn is
∥∥∥1/‖·‖−Gn,[

√
ε ,∞)

∥∥∥
∞,‖z‖≥

√
ε
= En,[ε ,∞) = 1√

ε En,[1,∞) = O( 1√
ε exp(−c

√
n). To

equilibrate both terms, we have to choose n = O(log2 ε).

1 In Quantum Chemistry, the functions have infinite support but decay exponentially. Therefore,
similar error estimates hold.
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6.3 Modification for wavelet applications

Let f be the function which is to be approximated by an exponential sum En.
There are wavelet applications, where scalar products 〈 f ,ψ〉 with wavelets ψ ap-
pear. Wavelets have a certain number of vanishing moments, i.e., 〈p,ψ〉 = 0 for all
polynomials of degree ≤ � for some � ∈ N0. In order to keep the moments, one can
approximate f by the mixed ansatz

n

∑
ν=1

αν exp(−tν x)+
�

∑
ν=0

βν xν .

Let u∗n(x) + p∗�(x) be the best approximation of this form in the interval [a,b] ⊃
support(ψ). By definition we have

〈 f ,ψ〉 ≈ 〈u∗n + p∗� ,ψ〉 = 〈v∗n,ψ〉 .

Therefore, the polynomial part p∗� need not be stored, and the storage and quadrature
costs of 〈u∗n,ψ〉 are the same as for the usual best approximation un. Of course, the
approximation is improved:

∥∥ f −
(
u∗n + p∗�

)∥∥
∞,[a,b] ≤ ‖ f −un‖∞,[a,b] .

For an illustration we give the approximation accuracy for f (x) = 1/
√

x and n =
4, � = 1 in the interval [1,10]. The standard approximation is E4,[1,10] = 2.856 ·10−5,
while the new approach yields the better result E∗

4,[1,10] = ‖ f − (u∗4 + p∗1)‖∞,[1,10] =

2.157 ·10−6. When these approximations are used after the substitution x = ‖y‖2 =
∑d

i=1 y2
i , one has to take into account that p∗�(‖y‖2) is a polynomial of degree 2�,

i.e., a corresponding number of vanishing moments is required. More details can be
found in [12].

6.4 Expectation values of the H-atom

In [8, 18] the reduction similar to (1) is applied to the evaluation of expectation
values of the H-atom at the ground state. The error is given in terms of the integral

4α2
∫ ∞

0
{vn(r2)− r−1}e−2αrr2dr,

where v(x) = vn(r2) is an exponential sum that approximates 1/
√

x. It is indepen-
dent of α , if vn is adapted for each α in the spirit of (36). According to [8, p.138]
the asymptotic behaviour is

An1/2 exp

[
−π
√

4
3

n

]
. (38)

We will estimate the more conservative integral
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εn := 4
∫ ∞

0
|vn(r2)− r−1|e−2rr2dr. (39)

for (almost) best approximations vn. Without loss of generality we set α = 1. Specif-
ically, (39) is a weighted L1 norm, and the treatment is typical for the estimation of
weighted L1 norms of the error [6]. The infinite interval is split into three parts [0,a],
[a,b], and [b,∞). The points a and b are chosen such that the contributions of the
first and the third interval are small. A bound for the contribution of [a,b] is deter-
mined from the maximal error on this subinterval. Here the results of Section 4 are
applied.

We set a := β
√

2nexp[− 1
2 β

√
n] and b := 1

2 β
√

n with β to be fixed later with β ≥
1. Let vn be the best approximation or, more generally, be determined by a procedure
such that it interpolates

√
x at 2n points in [a,b]). In these cases |vn − r−1| < r−1

holds for x < a and x > b. Hence,

4
∫ a

0
|vn(r2)− r−1|e−2rr2dr ≤ 4

∫ a

0
rdr = 2a2 = 4β 2nexp[−β

√
n].

Similarly,

4
∫ ∞

b
|vn(r2)− r−1|e−2rr2dr ≤ 4

∫ ∞

b
e−2rrdr = (2b+1)e−2b

≤ 2β
√

nexp[−β
√

n].

Next, set E := maxa≤r≤b |vn(r2)− r−1| and observe that

4
∫ b

a
|vn(r2)− r−1|e−2rr2dr ≤ 4E

∫ ∞

0
e−2rr2dr = E.

The substitution x = r2 shows that we have to consider the approximation on the
interval [a2,b2]. Recalling (36) we apply the guaranteed bound (33) to the best ap-
proximation for R = (b/a)2 = 1

8 exp[−β
√

n]:

E = max
a2≤x≤b2

|vn(x)−
1√
x
| ≤ 1

a
12exp

[
− π2n

log(8R)

]

≤ exp[
1
2

β
√

n]
1

β
√

2n
12exp

[
− π2n

β
√

n

]

≤ 12exp

[
1
2

β
√

n− π2n
β

]
.

Finally we set β = π
√

2
3 to obtain E ≤ 12e−β

√
n. The collection of the integrals

yields

εn ≤ cnexp

[
−π
√

2
3

n

]
.
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This bound is not as good as (38), while the sinc method yields bounds for norms
of the error that are not as sharp as the results in Section 4; cf. [7] and §11.

7 Computation of the best approximation

Let f (x) be the function 1/x or 1/
√

x to be approximated. We make the ansatz
un(x;{αν},{tν}) = ∑n

ν=1 αν exp(−tν x) and define the error

ηn (x;{αν},{tν}) := un (x;{αν},{tν})− f (x).

As described in Definition 3.1, the best approximation in the interval [1,R] is charac-
terised by an alternant consisting of 2n+1 points x0 < x1 < · · ·< x2n in the interval
satisfying the equi-oscillation conditions (10) and (11).

Then En,[1,R] := |ηn(xi,{αν},{tν})| is the optimal error
‖un (·;{αν},{tν})− f‖∞,[1,R] over all {αν},{tν}. The Remez algorithm determines
the 2n unknown coefficients {αν} and {tν} from the 2n equations ηn(xi)=−ηn(xi+1).
Details of the implementation which we use will follow below.

There is a specific difference between best approximations by polynomials and
exponential sums. For polynomials, the error |ηn| approaches ∞ as |x| → ∞. Since
in our setting f (x) → 0 and En (x;{αν},{tν}) → 0 as x → ∞, the error satisfies
|ηn| → 0 for x → ∞ (cf. §4.2). As a consequence, for each n there is a unique Rn >
0 such that all best approximations in intervals [1,R] with R ≥ Rn have the same
alternants. In particular, x2n =Rn holds. Hence, best approximations in [1,Rn] are
already best approximations in [1,∞). On the other hand, best approximations in
[1,R] with R < Rn satisfy x2n = R and lead to larger errors |ηn(x)| > En,[1,R] for
x > R beyond the end of the interval.

From the equi-oscillation property (10) we conclude that there are zeros ξi ∈
(xi−1,xi) of ηn for 1 ≤ i ≤ 2n . Formally, we set ξ0 := 1 and ξ2n+1 := R. Then
ηn(xi) is the (local) extremum in the interval [ξi,ξi+1] for 0 ≤ i ≤ 2n. Remez-
like algorithms start from quasi-alternants, i.e., sets of points which satisfy (10),
but not yet (11). They replace xi by the true extrema in [ξi,ξi+1] and try to satisfy
ηn(xi) = −ηn(xi+1) or a relaxed version with updated exponential sums (cf. Remez
[21]).

Since the underlying equations are nonlinear, one must use Newton-like methods.
The natural choice of parameters of un are the coefficients {αν} and {tν}. How-
ever variations in these parameters may change the sign structure of ηn = un − f
completely2, but the Remez algorithms relies on the condition (10). Therefore,
we use the zeros ξi (1 ≤ i ≤ 2n) as parameters: un (x;{ξν}) . Since by definition
un (ξi;{ξν}) = f (ξi), the function un (·;{ξν}) can be considered as the interpolating
exponential sum.

2 Note that ηn might be very small, say 1E-12, for good approximations. Then tiny variations of tν
may yield a new ηn which is completely positive.
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In the case of polynomials we have explicit formulae (Lagrange representation)
for the interpolating polynomial. Here, we need a secondary Newton process to
compute the coefficients {αν} = {αν(ξ1, . . . ,ξ2n)} and {tν} = {tν(ξ1, . . . ,ξ2n)}.
This makes the algorithm more costly, but stability has priority. For the implemen-
tation leading to the results in [31] extended precision is used. Then it is possible
to determine, e.g., the approximation u7 of 1/x in [1,2], which leads to the error
E7,[1,2] =8.020E-15, which is rather close to machine precision.

We conclude this section with some practical remarks concerning the computa-
tion. Once a best approximation un is known in some interval [1,R], it can be used
as a good starting value for a next interval [1,R′] with R′ sufficiently close3 to R.
In general, computations with larger R are easier than those with smaller R because
the corresponding size of the error ηn. To determine the first un for a value n, one
should proceed as follows. For rather small n, it is not so difficult to get convergence
from reasonable starting values. Assume that un−1 is known (preferably for a larger
value of R). The structure of the coefficients {αν},{tν} and of the zeros ξi allow
to “extrapolate” for the missing starting values αn, tn and ξ2n−1, ξ2n. The search
for reasonable starting values becomes extremely simple, if one makes use of the
precomputed values in [31].

Appendices

8 Rational approximation of
√

x on small intervals

The rule for the transformation of the intervals allows us to extend the error bound
(3.1) from all powers of 2 to all n ∈N, if we verify them for small intervals. Here we
can use Newman’s trick that was first applied to the approximation of e x (see [20]).
It is based on the following observation. The special product of linear polynomials
is a linear and not a quadratic function if considered on the unit circle in C:

(z+β )(z̄+β ) = 2β ℜez+(r2 +β 2) if |z| = 1.

Moreover, the winding number of functions on a circle provide additional informa-
tion that gives rise to estimates from below.

In particular, given ρ > 1, we observe that

(ρ + z)(ρ + z̄) = ρ2 +1+2ρx = 2ρ(a+ x) for |z| = 1, x = ℜez,

where a := 1
2 (ρ + ρ−1). Setting f (z) :=

√
ρ + z, the induced function in the sense

of the lemma below is F(x) = 2ρ
√

a+ x. The quotient of the arguments at the left

3 Let ξ2n belong to [1,R]. Then R′ > ξ2n is required to maintain the quasi-alternant condition (10).
If one wants to get immediately the results for R′ < ξ2n, also the interpolation points ξν must be
diminished (e.g., by ξ ′

ν := (ξν −1) R′−1
R−1 +1).
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and the right boundary of the unit interval [−1,+1] is

a−1
a+1

=
(

ρ −1
ρ +1

)2

. (40)

We note that ρ equals the sum of the semi-axes of that ellipse in C with foci +1 and
−1 in which F(x) is an analytic function.

We emphasize that the symbols a and b are generic parameters in this appendix.
Next, we recall a simple formula for complex numbers: f f̄ −gḡ = 2ℜe[ f̄ ( f −g)]−
| f −g|2.

Lemma 8.1 (Newman’s trick). Let r > 0. Assume that f is a real analytic function
in the disk |z| < 1 and that q f − p with p/q ∈ Rmn has m + n + 1 zeros in the disk
while q and f have none. Moreover, let F(x) = f (z) f (z̄) where |z| = r, ℜez = rx,
Then

2min
|z|=r

∣∣∣∣ f
(

f − p
q

)∣∣∣∣≤ Em,n(F) (1+o(1)) ≤ 2max
|z|=r

∣∣∣∣ f
(

f − p
q

)∣∣∣∣ . (41)

Proof. Since we are concerned with the case | f − p/q| � | f |, we write

f̄ f − p̄
q̄

p
q

= 2ℜe[ f̄

(
f − p

q

)
]−
∣∣∣∣ f − p

q

∣∣∣∣
2

= 2ℜe[ f̄

(
f − p

q

)
] (1+o(1)), (42)

and the upper bound follows from the fact that p̄p/q̄q defines a function in Rm,n.
The lower bound will be derived by using de la Vallée–Poussin’s theorem. Note

that

ℜe

[
f̄

(
f − p

q

)]
=

⎧⎨
⎩

+
∣∣∣ f
(

f − p
q

)∣∣∣ if arg
[

f̄
(

f − p
q

)]
≡ 0 (mod 2π),

−
∣∣∣ f
(

f − p
q

)∣∣∣ if arg
[

f̄
(

f − p
q

)]
≡ π (mod 2π).

(43)

By assumption f−1q−1(q f − p) has m + n + 1 zeros counting multiplicities but no
pole in the disk |z|< r. The winding number of this function is m+n+1. The argu-
ment of f̄ ( f − p/q) = f−1q−1(q f − p)| f |2 is increased by (m+n+1)2π when an
entire circuit is performed. The argument is increased by (m+n+1)π as z traverses
the upper half of the circle. Since the function is real for z = +1 and z = −1, we
get a set of m+n+2 points with sign changes as in (10). By de la Vallée–Poussin’s
theorem, the degree of approximation cannot be smaller than the minimum of the
absolute values at those points, and the proof is complete.

The trick was invented by Newman [20] for deriving an upper bound of the error
when e x is approximated. The application to lower bounds may be traced back to
[5]. The treatment of the square root function followed in [3].



High-dimensional integrals and the approximation by exponential sums 65

A rational approximant pn/qn−1 ∈ Rn,n−1 to f (z) :=
√

ρ + z is given by

pn(z) = 1
2

{(√ρ +
√

ρ + z
)2n +

(√ρ −√
ρ + z

)2n
}

,

qn−1(z) =
1

2
√

ρ + z

{(√
ρ +
√

ρ + z
)2n −

(√
ρ −
√

ρ + z
)2n
}

,

and the error can be written in the form

√
ρ + z− pn

qn−1
= −

(√ρ −√
ρ + z

)2n

qn−1(z)
.

The error curve has a zero of order 2n at z = 0. Therefore, pn/qn−1 is a Padé ap-
proximant and Newman’s trick with x = ℜez (and r = 1) yields

2ρ
√

a+ x − pn(z)pn(z̄)
qn−1(z)qn−1(z̄)

= −2ℜe

[√
ρ + z̄

(√ρ −√
ρ + z

)2n

qn−1(z)

]
(1+o(1))

= 8ρ
√

a+ x ℜe
z2n

(√ρ −√
ρ + z

)4n − z2n
(1+o(1)).

Note that 4ρ −3 ≤ |(√ρ +
√

ρ + z)2| ≤ ρ +3. Having upper and lower bounds, the
winding number 2n yields 2n+1 points close to an alternant. The relative error is

En,n−1
(√

a+ x
)

=
4

(4ρ +δ )2n (1+o(1)) (44)

with some |δ | ≤ 3. The parameters a and ρ are related as given by (40). The ap-
proximation of

√
a+ x on the unit interval describes the approximation of

√
x on

[a−1,a+1]. From (22) and (40) it follows that

E0,0(
√

a+ x) =
1
ρ

. (45)

9 The arithmetic-geometric mean and elliptic integrals

Given two numbers 0 < a0 < b0, the common limit lim j→∞ a j = lim j→∞ b j of the
double sequence (8) is called the arithmetic-geometric mean of a0 and b0 and is
denoted as m(a0,b0). It can be expressed in terms of a complete elliptic integral

I(a,b) =
∫ ∞

0

dt√
(a2 + t2)(b2 + t2)

. (46)

Gauss’ crucial observation for establishing the relation between m(a,b) and I(a,b)
is that I(a,b) is invariant under the transformation (a,b) �→ (a1,b1) = (

√
ab, a+b

2 ).
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We see this by the substitution t = 1
2 (x− ab

x ). As x goes from 0 to ∞, the variable t
increases from −∞ to ∞. Moreover,

dt =
x2 +ab

2x2 dx, t2 +
(

a+b
2

)2

=
(x2 +a2)(x2 +b2)

4x2 , t2 +ab =
(x2 +ab)

4x2 .

Hence,

I(a1,b1) =
1
2

∫ ∞

−∞

dt√
(a2

1 + t2)(b2
1 + t2)

=
∫ ∞

0

dx√
(a2 + x2)(b2 + x2)

= I(a,b) (47)

yields the invariance.
Let m = m(a,b), and set a0 = a, b0 = b. By induction it follows that I(a0,b0) =

I(a j,b j) for all j, and by continuity I(a0,b0) = I(m,m). Obviously, I(m,m) =∫ ∞
0

dt
m2+t2 = π

2m , and we conclude that

m(a,b) =
π

2I(a,b)
.

The elliptic integrals are defined by K′(k) := I(k,1) and K′(k) = K(k′). Here
the module k and the complementary module k′ are related by k2 + (k′)2 = 1. A
scaling argument shows that

I(a,b) = b−1K′(a/b) for 0 < a ≤ b. (48)

Since the arithmetic-geometric mean of 1 and k lies between the arithmetic mean
and the geometric mean, we get an estimate that is good for k ≈ 1.

π
1+ k

≤K′(k) ≤ π
2
√

k
. (49)

An estimate that is good for small k is more involved:

K′(k) = 2
∫ √

k

0

dt√
(1+ t2)(k2 + t2)

≤ 2
∫ √

k

0

dt√
k2 + t2

= 2
∫ 1/

√
k

0

dt√
1+ t2

= 2log

(√
1
k

+

√
1
k

+1

)
≤ log

(
4

(
1
k

+
1
2

))
. (50)

As a consequence, we have (π/2)K′(k)/K(k) ≤ log( 4
k +2) and

1
k
≥ 1

4
exp

[
πK′(k)
2K(k)

]
− 1

2
. (51)

Lemma 9.1. Let λ0, λ−1,λ−2, . . . be a sequence generated by the Landen transfor-
mation and κ0 := 1/λ0. Then
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λ− j ≥
1
4

exp

[
2 j π K′(κ0)

2K(κ0)

]
. (52)

Proof. Let 0 < κ < 1 and κ1 = 2
√

κ
1+κ . Note that

κ1′ =
1−κ
1+κ

. (53)

From (47) and (48) it follows that

K′(κ) = I(κ,1) = I

(√
κ,

1+κ
2

)
=

2
1+κ

K′
(

2
√

κ
1+κ

)
=

2
1+κ

K′(κ1)

and with the two means of 1−κ and 1+κ:

K(κ1) = I(κ ′
1,1) = I

(
1−κ
1+κ

,1

)
= (1+κ) I(1−κ,1+κ)

= (1+κ) I
(√

1−κ2,1
)

= (1+κ)K(κ).

Hence,
K′(κ)
K(κ)

= 2
K′(κ1)
K(κ1)

(54)

and by induction K′(κ− j)/K(κ− j) = 2 j K′
/(κ0)K(κ0). Now (51) yields the pre-

liminary estimate

λ− j ≥
1
4

exp

[
2 j π K′(κ0)

2K(κ0)

]
− 1

2
.

If we apply the estimate to j + 1 instead of j, return to j noting that
√

A2 −2 ≥
A+2/A, we see that we can drop the extra term 1/2, and the proof is complete.

10 A direct approach to the infinite interval

There is also a one-step proof for the special function 1/x. It is based on a result
of Vjačeslavov [29] which in turn requires complicated evaluations of some special
integrals; see also [25]. Since constructions on finite intervals are circumvented, it
supports the argument that the non-optimal bound (30) is not induced by the limit
process with large intervals.

Given α > 0 and n ∈ N, there exists a polynomial p of degree n with n zeros in
[0,1] such that

∣∣∣∣xα p(x)
p(−x)

∣∣∣∣≤ c0(α) · e−π
√

αn for 0 ≤ x ≤ 1.
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Let p be the polynomial for α = 1/4 as stated above. Since p(z̄) = p̄(z), it follows
that p(z)/p(−z) = 1 for ℜez = 0 and

∣∣∣∣ p(z2)
p(−z2)

∣∣∣∣= 1 for ℜez = |ℑmz| ≥ 0. (55)

We consider P(z) := p2(1/z2) on the sector S := {z ∈ C : |argz| ≤ π/4}. By
construction P has n double zeros in [1,∞), and from (55) it follows that
∣∣∣∣ P(z)
P(−z)

∣∣∣∣= 1 for z ∈ ∂S ,
P(x)

xP(−x)
≤
(

c0(1/4) · e−π
√

n/4
)2

for x ≥ 1.

Now let un be the exponential sum interpolating 1/x and its first derivative at the
(double) zeros of P. Since 1/x− un has no more zeros than the specified ones, we
have un(x) ≤ 1/x for x ≥ 0. Hence,

|un(z)| ≤ un(ℜez) ≤ 1/ℜez ≤
√

2/|z| on the boundary of S .

Arguing as in Section 2, we introduce the auxiliary function g(z) :=( 1
z −un(z))z

P(−z)
P(z) .

We know that |g(z)| ≤ 1+
√

2 holds on the boundary of S and therefore in S . Fi-
nally, ∣∣∣∣1z −un(z)

∣∣∣∣=
∣∣∣∣g(z)

P(z)
zP(−z)

∣∣∣∣≤ (1+
√

2)c2
0(1/4)e−π

√
n.

11 Sinc quadrature derived approximations

The sinc quadrature discussed in this section approximates integrals of the form∫ ∞
−∞ F(t)dt under certain conditions on F . In particular, we are interested in func-

tions that depend on a further parameter x like F(t,x) = F1(t)exp[F2(t)x], and
the evaluation at a quadrature point t = τν yields αν e−tν x with αν := F1(τν) and
tν := F2(τν). Therefore the sinc quadrature applied to

f (x) :=
∫ ∞

−∞
F(t,x)dt (56)

is a popular method to obtain exponential sums even with guaranteed upper bounds
[8, 18]. Concerning literature we refer to the monograph of Stenger [26] or [14,
Anhang D]. Next, we introduce the sinc quadrature rule T (F,h), its truncated form
TN( f ,h), and its application to 1/x (the application to 1/

√
x is quite similar).

The sinc function sinc(x) := sin(πx)
πx is an analytic functions with the value one at

x = 0 and zero at x ∈ Z\{0}. Given a step size h > 0, the family of functions

Sk,h(x) := sinc(
x
h
− k) (k ∈ Z) ,
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satisfies Sk,h(νh) = δkν (δkν : Kronecker symbol). Let F ∈ C(R) decay sufficiently
fast for x →±∞. Then the sum

Fh(x) := ∑
k∈Z

F(kh)Sk,h(x)

converges and interpolates F at all grid points x = νh ∈ hZ. This fact suggests the
interpolatory quadrature rule

∫ ∞
−∞ F(t)dt ≈

∫ ∞
−∞ Fh(t)dt. Since

∫ ∞
−∞ sinc(t)dt = 1, the

right-hand side leads to the sinc quadrature rule

T (F,h) := h ∑
k∈Z

F(kh)

for
∫ ∞
−∞ F(t)dt, and T ( f ,h) can be considered as the infinite trapezoidal rule. The

next step is the truncation (cut-off) of the infinite series to the finite sum

TN( f ,h) := h
N

∑
k=−N

F(kh).

For convenience, we will use N as truncation parameter. It will be related to the
number n of terms in (2) by n = 2N +1.

Before we discuss the quadrature error of T (F,h), we show how to get exponen-
tial sums from this approach. As example we consider the representation of 1

x by∫ ∞
0 exp(−xs)ds. Let s = ϕ(t) be any differentiable transformation of (−∞,∞) onto

(0,∞). This yields the integral

1
x

=
∫ ∞

−∞
exp(−xϕ(t))ϕ ′(t)dt (57)

to which the sinc quadrature TN( f ,h) can be applied:

1
x
≈ TN(exp(−xϕ(·))ϕ ′(·),h) = h

N

∑
k=−N

ϕ ′(kh)e−xϕ(kh).

Obviously, the right-hand side is the exponential sum (2) with αν = hϕ ′((ν − 1−
N)h) and tν = ϕ((ν − 1−N)h) for 1 ≤ ν ≤ n = 2N + 1. Note that different trans-
formations ϕ yield different exponential sums.

A good candidate for ϕ is ϕ(t) := exp(t) leading to4

1
x

=
∫ ∞

−∞
exp(−xet)etdt. (58)

The exponential behaviour tν = const · eνh of the coefficients is sometimes used as
an explicit ansatz for (2). Indeed, the coefficients tν of the best approximations from

4 Also ϕ(t) = exp(At) for A > 0 is possible. The reader may try to analyse the influence of A to
the error analysis.
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Section 4 lead to similar quotients tν+1/tν for ν in the middle range with deviations
for ν close to 1 and n.

Next we study the quadrature error of TN . It is the sum of
∫ ∞
−∞ F(t)dt −T (F,h)

and T (F,h)−TN(F,h). The quadrature error of the sinc quadrature

η(F,h) :=
∣∣∣∣
∫ ∞

−∞
F(t)dt −T (F,h)

∣∣∣∣
tends to zero as h → 0. The truncation error |T (F,h)−TN(F,h)| vanishes as N → ∞.
Both discretisation parameters h and N will be related in such a way that both errors
are (asymptotically) equal.

The analysis of η(F,h) requires holomorphy of F in a stripe. Let

Dd := {z = x+ iy : x ∈ R, |y| < d} ⊂ C

be the open stripe along the real axis with width 2d. The function F is assumed to
be holomorphically extendable to Dd such that the L1 integral

‖F‖Dd
:=
∫

R

{|F(x+ id|+ |F(x− id|}dx

over the boundary of Dd exists and is finite. As proved in [26, p. 144 f] the error
η(F,h) of the infinite quadrature rule T (F,h) is bounded by

η(F,h) ≤ ‖F‖Dd
exp[−2πd/h]. (59)

The truncation error |T (F,h)−TN(F,h)| equals h
∣∣∑|k|>N F(kh)

∣∣ and depends on
the decay of F as x → ±∞ (note that this concerns only the behaviour on the real
axis, not in the stripe Dd).
If, for instance, |F(t)| ≤ c · e−α|t| holds, then |T (F,h)−TN(F,h)| ≤ (2c/α)e−αNh

follows. In this case, the error η(F,h) = O(e−2πd/h) and the truncation error
O(e−αNh) are asymptotically equal if −2πd/h = −αNh, i.e., h =

√
2απdN. This

leads to the estimate of the total error
∣∣∣∣
∫ ∞

−∞
F(t)dt −TN(F,h)

∣∣∣∣≤
(
‖F‖Dd

+
2c
α

)
exp[−

√
2πd/(αN) ]

for h =
√

2απdN. (60)

So far, F is a function of t only and the integral
∫ ∞
−∞ F(t)dt is a real number. Now

we replace F by F(t,x) as in (56) such that the integral defines a function f : D →R

on a domain D. The error estimate (60) is still correct, but it holds only pointwise for
x ∈ D. We note that ‖F‖Dd

becomes a function ‖F(·,x)‖Dd
of x, and even the width

d of the stripe may change with x. Moreover, if decay inequality |F(t,x)| ≤ c ·e−α|t|

holds with x-dependent factors c(x) and α(x), also these quantities in (60) become
variable. We have to take care that the estimate (60) (with ‖F(·,x)‖Dd

replaced by an
upper bound) is uniform in x∈D, and the error | f (x)−TN(F(·,x),h)| is uniform too.
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In the following, we will simply write F(t) instead of F(t,x), i.e., F(t) is understood
to be function-valued.

We apply this strategy to the error estimation of the integral in (58). The in-
tegrand F(t) = exp(−xet)et is an entire function in t, and to obtain a bounded
norm ‖F‖Dd

we choose d < π/2. Then |F(t ± id)| = exp(−xet cos(d))et implies

‖F‖Dd
= 1

xcos(d) . Inequality (59) yields

|η(F,h)| ≤ exp(−2πd/h)
xcos(d)

for all 0 < d < π/2.

Optimisation with respect to d yields d = arctan(2π/h) < π/2 and

|η(F,h)| ≤

√
1+(2π/h)2

x
exp(

−2π arctan(2π/h)
h

).

Concerning |T (F,h)−TN(F,h)|= h
∣∣∑|k|>N F(kh)

∣∣ notice the different behaviour
of F(kh) for k → ∞ and k →−∞. As k →−∞, the factor ekh describes a uniformly
exponential decay, while exp(−xekh) → 1. For k → +∞, the factor exp(−xekh)
shows a doubly exponential behaviour which, however, depends on the value of
x. The precise asymptotics are given by

h

∣∣∣∣∣ ∑
k<−N

F(kh)

∣∣∣∣∣≤ h ∑
k<−N

ekh ≤
∫ −Nh

−∞
exp(t)dt = e−Nh,

h

∣∣∣∣∣ ∑
k>+N

F(kh)

∣∣∣∣∣≤ h ∑
k>N

exp(−xekh)ekh

≤
∫ ∞

Nh
exp(−xet)etdt =

1
x

exp(−xeNh).

Here we assume xeNh ≥ 1 for the second inequality, so that the function exp(−xet)et

is monotonously decreasing in [Nh,∞). Altogether, we get the following error esti-
mate between the integral (58) and the exponential sum TN(F,h)

∣∣∣∣1x −TN(F,h)
∣∣∣∣≤
√

1+(2π/h)2

x
exp

(
−2π arctan(2π/h)

h

)

+ e−Nh +
1
x

exp(−xeNh). (61)

To simplify the analysis, we assume x ∈ [1,R], which implies the relation

1
x

exp(−xeNh) ≤ e−Nh−1,

i.e., the last term in (61) is smaller than the second one. Further, we use the asymp-
totic behaviour 2π arctan(2π/h) = π2 −h+O

(
h3
)

to show that
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exp
−2π arctan(2π/h)

h
= O(exp(−π2/h)).

Therefore, the right-hand side in (61) becomes O(
√

1+(2π/h)2 exp(−π2/h)) +
O(exp(−Nh)). The asymptotically best choice of h is h = π/

√
N which leads to

equal exponents: −π2/h = −Nh = −π
√

N. Inserting this choice of h, we get the
uniform estimate

∣∣∣∣1x −TN(F,h)
∣∣∣∣≤
(
O(1)+2

√
N
)

e−π
√

N ≤ O

(√
n exp

[
− π√

2

√
n

])

for all x ≥ 1, (62)

where the last expression uses the number n = 2N + 1 of terms in TN(F,h). The
exponential behaviour exp[−π

√
n/2] is not as good as exp [−π

√
n] from (30).

Although we get the same behaviour exp [−const
√

n] of the error as in (30), the
reason is a different one. In the case of the best approximation, we could show
an error behaviour exp [−const ·n] for finite intervals [1,R], whereas exp [−π

√
n]

was caused by the unboundedness of [1,∞). The exp[−π
√

n/2] behaviour of the
sinc quadrature is independent of the choice x ∈ [1,R], R finite, or x ∈ [1,∞).
Even if we restrict x to a single point x0, the error is like in (62). The reason for
exp [−const

√
n] in the sinc case is due to the fact that we have to equalise the expo-

nents in O(exp(−const/h))+O(exp(−const ·Nh)). The error O(exp(−const/h))
of the infinite sinc quadrature can hardly be improved (see (59)), but the truncation
error O(exp(−const ·Nh)) of |T (F,h)−TN(F,h)| depends on the decay behaviour
of F. If, for instance, |F(t)| ≤ c ·exp(−α |t|γ) holds for some γ > 1, this faster decay
yields the smaller truncation error O(exp(−α (Nh)γ)). Finally, h = O(N−γ/(γ+1))
leads to the total error exp

[
−const ·nγ/(γ+1)

]
. For large γ, the exponent comes close

to −const ·n.
An even better decay behaviour is the doubly exponential decrease |F(t)| ≤

c1 · exp(−c2ec3|t|). In this case, the total error can be estimated by

O
(
‖F‖Dd

exp
(

−2πdc3N
log(2πdc3N)

))
(cf. [14, Satz D.4.3]). To obtain a doubly exponential

decay, one can follow the following lines: Start with an integral
∫ ∞
−∞ F(t)dt, where F

has the usual exponential asymptotic |F(t)| ≤ c · exp(−α |t|). Then apply the trans-
formation t = sinhτ. The new integral is

∫ ∞
−∞ G(τ)dτ with the doubly exponential

integrand G(τ) = F(sinhτ)coshτ. The drawback is that one must ensure that G is
still holomorphic in a stripe Dd and that ‖F‖Dd

is finite. The mentioned transforma-
tion applied to F(t) = exp(−xet)et from above does not succeed. For any d > 0 the
real part of esinhτ may be negative in Dd and, because of the exponentially increas-
ing function exp(−xesinh(τ+id)), the integral with respect to τ ∈R does not exist, i.e.
‖F‖Dd

= ∞.
A possible approach is to replace the first transformation ϕ(t) := exp(t) : [0,∞)→

(−∞,∞) in (57) by ϕ(t) := log(1+ exp(sinh t)), which yields



High-dimensional integrals and the approximation by exponential sums 73

1
x

=
∫ ∞

−∞
exp
(
−x log

(
1+ et)) dt

1+ e−t ; (63)

cf. [14, §D.4.3.2]. The integrand F = exp(−x log(1+ et))/(1+ e−t) in (63) be-
haves simply exponential for t → ∞ and t →−∞. Thanks to this property, the sec-
ond transformation t = sinhτ succeeds in providing an integrand G which is holo-
morphic in Dd for d < π/2 with finite norm ‖G‖Dd

. However, pointwise finiteness
‖G(·,x)‖Dd

< ∞ is not enough. It turns out that in general ‖G(·,x)‖Dd
≤ O(ex),

which destroys the error estimates. For x ∈ [1,R] one has to reduce the stripe Dd

to the width d = d(R) := O(1/ logR). Then involved estimates show that the error∣∣ 1
x −TN(G,h)

∣∣ in 1 ≤ x ≤ R is bounded by

O

(
exp

(
− 2πd(R)N

log(2πd(R)N

))
with d(R) := O(1/ logR)

(cf. [14, §D.4.3.2]). Since a detailed analysis shows d(R)= π
2

1
log(3R) −O(log−2(3R)),

this estimate is almost of the form exp(−Cn) with C := 2π2

log(3R) log(2π2n/ log(3R)) and

may be compared with exp(−C∗n) from (29) with C∗ = π2

log(8R) . Obviously, C < C∗

holds for sufficiently large n, but even for small n, C < C∗ holds, e.g., for R ≤ 1600
(n = 4), R ≤ 24700 (n = 5), R ≤ 3.7105 (n = 6), R ≤ 5.5106 (n = 7), and R ≤ 8.1107
(n = 8). The latter bounds of R are (much) larger than the value R = 1

8 exp[π
√

n]
introduced in the line before (30). Hence, for values of R for which the best approx-
imation on [1,R] is not already a best approximation for [1,∞), (29) gives a better
result than the sinc estimate from above.
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