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ON THE ORDERS OF PERIODIC SYMPLECTOMORPHISMS OF

4-MANIFOLDS

WEIMIN CHEN

Abstract. In this paper we investigate generalizations of the classical Hurwitz
theorem concerning bound of the order of automorphism group of a Riemann surface
of genus at least two to smooth 4-manifolds. In particular, it is shown that for a
simply connected symplectic 4-manifold (X, ω) with b+

2 > 1 and [ω] ∈ H2(X; Q),
the order of a periodic symplectomorphism of prime order is bounded from above
by a constant C, which depends on ω in a rather unstable way.

1. Introduction

A classical theorem of Hurwitz says that, for a complex curve Σ of genus g ≥ 2, the
order of its automorphism group Aut(Σ) satisfies the following topological bound:

|Aut(Σ)| ≤ 84(g − 1) = 42 deg KΣ.

Various attempts have been made to generalize this result to higher-dimensional pro-
jective varieties. For a minimal smooth projective surface X of general type, Xiao
obtained the optimal result in [27, 28] that |Aut(X)| ≤ 422 c1(KX)2, after a series of
earlier work by Andreotti [1], Howard and Sommese [14], Corti [9], Huckleberry and
Sauer [15] and Xiao [26]. For dimensions greater than 2, see recent work of D.-Q.
Zhang [30] and the references therein.

The purpose of this paper is to investigate generalizations of Hurwitz’s theorem to
finite automorphism groups of smooth 4-manifolds. For simplicity, we shall restrict
our consideration to simply connected 4-manifolds and cyclic automorphism groups of
prime order. More precisely, we initiate an investigation of the following question.

Main Question: With certain exceptions, for a given simply connected smooth 4-
manifold X, does there exist a constant C > 0, such that there are no nontrivial smooth
Zp-actions of prime order on X provided that p > C ?

In the above question we have excluded consideration of topological actions. This
is because of the following theorem of Edmonds [10]: For any simply connected 4-
manifold X and prime number p > 3, there exists a homologically trivial, locally
linear, pseudofree topological Zp-action on X.

The first issue is to understand what would be the exceptional smooth 4-manifolds
that one has to exclude from consideration. Obviously, if a 4-manifold admits a smooth

Date: July 12, 2009.
2000 Mathematics Subject Classification. Primary 57S15, 57R57, Secondary 57R17.
Key words and phrases. Bound of automorphisms; smooth four-manifold; symplectic.
The author was supported in part by NSF grant DMS-0603932.

1



2 WEIMIN CHEN

circle action, there is no chance for such a constant C to exist which bounds the order
p. The question is: if the 4-manifold does not admit a smooth circle action, to what
extent the answer to the Main Question is affirmative. In this regard, a theorem of
Baldridge [3] gives a useful criterion for smooth circle actions: Let X be a 4-manifold
admitting a smooth circle action with nonempty fixed point set. Then X has vanishing
Seiberg-Witten invariant when b+

2 > 1, and when b+
2 = 1 and X is symplectic, X is

diffeomorphic to a rational or ruled surface. Note that any circle action on a simply
connected 4-manifold must have a fixed point by the Lefschetz fixed point theorem.

Let’s first look at holomorphic actions on Kähler surfaces — these are the primary
examples of smooth actions on 4-manifolds. We observe

Theorem 1.1. Let X be the underlying smooth 4-manifold of a simply connected
compact Kähler surface which does not admit any smooth circle actions. Then given
any complex structure on X, there exists a constant C > 0 such that there are no
nontrivial holomorphic Zp-actions of prime order on X provided that p > C. (Here C
depends only on the Euler characteristic and the signature of X.)

Proof. (A sketch.) First of all, any Zp-action of prime order has to be homologically
trivial (in integral coefficients) provided that the order p is greater than the Euler
characteristic of X, cf. Lemma 2.1. So without loss of generality, we assume that the
actions are homologically trivial. Given such a holomorphic Zp-action, note that the
(−1)-curves (if there are any) must be invariant under the Zp-action. By equivariantly
blowing down the (−1)-curves, we can further assume without loss of generality that
X is minimal.

According to the Enriques-Kodaira Classification, X is either a K3 surface, a prop-
erly elliptic surface, or a surface of general type. With this understood, Theorem 1.1
follows readily from Xiao’s generalization of Hurwitz’s theorem when X is a surface
of general type, and in the case of K3 surfaces or properly elliptic surfaces, it follows
from the following homological rigidity theorem of Peters in [24]: a holomorphic action
which is trivial on H∗(X; Z) must be trivial.

�

We formulate the symplectic analog of Theorem 1.1 in the following conjecture.

Conjecture 1.2. Let X be a simply connected symplectic 4-manifold. Suppose X does
not admit any smooth circle actions. Then given any symplectic structure ω on X,
there exists a constant C > 0 such that there are no nontrivial symplectic Zp-actions
of prime order on X provided that p > C.

The main theorem of this paper gives some evidence for the above conjecture.

Theorem 1.3. (Main Theorem) Let X be a simply connected symplectic 4-manifold
with b+

2 > 1. Then given any symplectic structure ω with [ω] ∈ H2(X; Q), there exists
a constant C > 0 such that there are no nontrivial symplectic Zp-actions of prime
order on X provided that p > C.

We should point out that, unlike in Theorem 1.1, the constant C in the Main
Theorem not only depends on the Euler characteristic and the signature of X, but
also on the symplectic structure ω (in an interesting way). More precisely, since the
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class [ω] is rational, we let Nω be the smallest positive integer such that [Nωω] is an
integral class. Then the constant C in the Main Theorem depends on

Cω ≡ Nωc1(K) · [ω],

where K is the canonical bundle of (X, ω). Since c1(K) is a Seiberg-Witten basic class
of X, the constant C depends on the smooth structure of X as well. Note that the
constant Cω depends on [ω] in a rather unstable fashion because of the factor Nω,
therefore one can not remove the assumption that [ω] is rational by simply perturbing
ω into one which is of rational class.

Example 1.4. The following construction shows that, in the most general form of
Conjecture 1.2, the constant C should depend on the pairing c1(K) · [ω] (for simplicity,
we assume [ω] is integral so that Nω = 1).

Let X0 be the smooth rational elliptic surface given by the Weierstrass equation

y2z = x3 + v5z3.

For any prime number p ≥ 5, one can define an order-p automorphism g of X0 as
follows (cf. [29]):

g : (x, y, z; v) 7→ (µ−5
p x, y, µ−15

p z;µ6
pv), µp ≡ exp(2πi/p).

Then g preserves the elliptic fibration and leaves exactly the two singular fibers (at
v = 0 and v = ∞) invariant. Now we fix an integral Kähler form ω on X0. Let Xp

be the symplectic 4-manifold obtained from X0 by performing knot surgery (cf. [13])
using the trefoil knot on p copies of regular fibers of the elliptic fibration which are
invariant under the order-p automorphism g. Then Xp is homeomorphic to X0, and
the canonical class of Xp is given by the formula

c1(KXp) = (2p − 1) · [T ],

where [T ] is the fiber class of the elliptic fibration which pairs positively with the
Kähler form ω. It is clear that Xp inherits a periodic symplectomorphism of order p.
Since c1(KXp) · [ω] > 0 and c1(KXp)

2 = 0, Xp is not rational or ruled, cf. [18]. By
Baldridge’s theorem [3], Xp does not admit any smooth circle actions.

We thus obtained, for any prime number p ≥ 5, a symplectic 4-manifold Xp home-
omorphic to the rational elliptic surface, which admits no smooth circle actions but
has a periodic symplectomorphism of order p. Observe that the order p satisfies

p ≤ 1

2
(c1(KXp) · [ω] + 1).

Note that in the above example, the manifold Xp has b+
2 = 1. It is unclear, however,

that with the condition b+
2 > 1, whether the constant C can be made independent

of Cω. In particular, the symplectic analog of Xiao’s theorem remains open. More
precisely, assuming b+

2 > 1, c1(K)2 > 0 and (X, ω) minimal, it is not known whether
the constant C in the Main Theorem can be replaced by a multiple of c1(K)2. Notice
that the construction in Example 1.4 does not extend to the b+

2 > 1 case by simply
replacing the rational elliptic surface with some other elliptic surfaces with b+

2 > 1
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because of Theorem 1.1. On the other hand, there are simply connected symplectic 4-
manifolds (X, ω) with b+

2 > 1, which have the same topological type, but the constant
Cω can be made arbitrarily large.

For the smooth analog of Conjecture 1.2, the examples Xp in Example 1.4 also
indicate that the constant C should depend on the smooth structure in general.

In the examples Xp, the underlying topological 4-manifold does admit a smooth
structure which supports a smooth circle action, i.e., the rational elliptic surface X0.
What if we only consider 4-manifolds which do not admit smooth circle actions for
any smooth structures? By a theorem of Atiyah and Hirzebruch [2], a spin 4-manifold
with non-zero signature does not admit any smooth circle actions.

Question 1.5. Let X be a simply connected smoothable 4-manifold with even inter-
section form and non-zero signature. Does there exist a constant C > 0 depending on
the topological type of X only, such that for any prime number p > C, there are no
Zp-actions on X which are smooth with respect to some smooth structure ?

We remark that Question 1.5 is particularly interesting in the case of K3 surfaces.
It is a long-standing problem as whether the K3 surface (with the standard smooth
structure) admits any smooth finite group actions which are homologically trivial. It
is well-known that there are no such holomorphic actions, and recently it was shown
that there are no such symplectic finite group actions as well, cf. [6]. Since for p > 23,
any Zp-action of prime order on a homotopy K3 surface is homologically trivial, we
see that Question 1.5 is related to the above homological rigidity problem of smooth
actions on the K3 surface (or more generally, on a homotopy K3 surface).

Next we discuss the main ideas and ingredients in the proof of the Main Theorem.
Let (M,ω) be a symplectic 4-manifold and G be a finite group acting on M smoothly

and effectively which preserves the symplectic form ω. Denote by b2,+
G the dimension

of the maximal subspace of H2(M ; R) over which the cup-product is positive and
the induced action of G is trivial. Then an equivariant version of Taubes’ theorem
SW ⇒ Gr (cf. [25]) may be applied to (M,ω) provided that b2,+

G ≥ 2. More precisely,

when b2,+
G ≥ 2, the G-equivariant Seiberg-Witten invariant is well-defined and is non-

zero for the G-equivariant canonical bundle Kω. This implies that, for any r > 0,
the r-version of Taubes’ perturbed Seiberg-Witten equations has a solution ((α, β), a)
which is fixed under the action of G. Letting r → ∞ as usual, the zero set α−1(0)
converges to a finite set of J-holomorphic curves {Ci}, such that c1(Kω) =

∑

i niCi

for some integers ni > 0. Here J is any fixed choice of G-equivariant, ω-compatible
almost complex structure.

Since α is fixed under G, it follows easily that the set ∪iCi is G-invariant, and
furthermore, ∪iCi contains all the fixed points of G except for those isolated ones
at which the representation of G on the complex tangent space has determinant 1.
This in principle allows one to analyze the action of G near its fixed point set, and
sometimes even the induced representation of G on the second cohomology — the
two crucial pieces of informations about the action of G on M — by looking at the
restriction of the G-action in a neighborhood of ∪iCi. The main difficulty lies in the
fact that in general not much can be said about the structure of the set ∪iCi. Unlike
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the non-equivariant case where {Ci} can be made disjoint and embedded for a generic
choice of J , in the presence of group actions the set ∪iCi could be very complicated in
general even with a choice of generic equivariant J , cf. [4]. The only exceptional case
is when (M,ω) is minimal and c1(Kω)2 = 0. This was explored in [6] in investigating
the homological rigidity of symplectic finite group actions. For further applications
concerning group actions and exotic smooth structures, see [7, 8].

With the preceding understood, the proof of the Main Theorem relies in a crucial
way on the following technical lemma. Recall from [25], Section 5(e), that for any point
x ∈ ∪iCi, and for any embedded J-holomorphic disk D such that D ∩ (∪iCi) = {x},
a local intersection number intD(x) is defined. (Note that it was shown in [25] that
such embedded J-holomorphic disks D exist in abundance.)

Lemma 1.6. Let 1 6= g ∈ G and x ∈ ∪iCi such that g · x = x. Suppose the action of
g near x is given by

g · (z1, z2) = (λm1z1, λ
m2z2)

in an ω-compatible local complex coordinate system (z1, z2) centered at x, where λ =
exp(2πi/m) with m ≡ order(g), and 0 ≤ m1,m2 < m. Suppose further that x ∈ α−1(0)
for all r > 0. Then there exist non-negative integers a1, a2 with a1 + a2 > 0 satisfying
the congruence relation

(a1 + 1)m1 + (a2 + 1)m2 = 0 (mod m),

such that
intD(x) ≥ a1 + a2

for any embedded J-holomorphic disk D.

Remark 1.7. When the representation of g on the complex tangent space of x has
determinant 6= 1, i.e., when m1 + m2 6= 0 (mod m), the assumption that x ∈ α−1(0)
for all r > 0 is automatically satisfied. This is because when m1 + m2 6= 0 (mod m),
the representation of g on the fiber of the G-equivariant canonical bundle Kω at x is
non-trivial, so that α(x) = 0 has to be true since α is fixed by g.

The following recipe will be used frequently in determining the local intersection
number intD(x): suppose a branch of ∪iCi near x is parametrized by a holomorphic
map over a neighborhood of 0 ∈ C which is given in local coordinates by

z1 = zl, z2 = czl′ + · · · (higher order terms),

where l′ > l unless l = 1 and c = 0, and suppose the multiplicity of the branch is
n, then the contribution of the branch to intD(x) is equal to nl provided that the
J-holomorphic disk D is not tangent to z2 = 0 at x (i.e., the tangent space of the
branch at x). See Theorem 7.1 in Micallef and White [22].

We end with a few remarks about the remaining case of Conjecture 1.2, i.e., when
b+
2 = 1. A simply connected, symplectic 4-manifold with b+

2 = 1 is homeomorphic
to a rational or ruled surface, and when the manifold does not admit a smooth circle
action, the smooth structure must be an exotic one which is characterized by the
condition c1(K) · [ω] > 0, cf. [18]. Many symplectic exotic rational surfaces have been
constructed recently following the work of Jongil Park [23].



6 WEIMIN CHEN

Our proof of the Main Theorem breaks down in the case of b+
2 = 1, even though

the main line of arguments continues to work in this case. The missing ingredient
is the equivariant version of Taubes’ theorem, i.e., for any r > 0, the r-version of
Taubes’ perturbed Seiberg-Witten equations associated to the equivariant canonical
bundle has a solution which is fixed under the group action. Notice that with the
condition c1(K) · [ω] > 0, one can argue using the wall-crossing formula that the (non-
equivariant) r-version of Taubes’ perturbed Seiberg-Witten equations associated to
the square of the canonical bundle has a solution for sufficiently large r > 0 provided
that the dimension of the corresponding Seiberg-Witten moduli space is non-negative
(which is equivalent to c1(K)2 ≥ 0). One could argue similarly using wall-crossing to
get an equivariant version of this result which would be a good substitute of Taubes’
theorem for our purpose, but unfortunitely the non-negativity of the dimension of the
corresponding moduli space of equivariant Seiberg-Witten equations is much harder
to verify; the calculation of the dimension requires knowledge about the group action
near the fixed point set, which is not known a priori in general except for the case of
a homology CP2 due to the work of Edmonds and Ewing [12].

Theorem 1.8. Let X be a smooth 4-manifold which is a homology CP2. Then for
any symplectic structure ω with c1(K) · [ω] > 0, there exists a constant C > 0 such
that there are no nontrivial symplectic Zp-actions of prime order on X for p > C.

Remark 1.9. (1) Theorem 1.8 holds true more generally when X is only a Q-homology
CP2 provided that the Zp-actions are pseudofree, i.e., having only isolated fixed points.
The primary examples of a symplectic Q-homology CP2 with c1(K) · [ω] > 0 are com-
plex surfaces of general type with pg = 0 and c2

1 = 9, known as fake projective planes.
Many of them have nontrivial automorphism groups which always give pseudofree
actions, cf. [17].

(2) Since b2 = b+
2 = 1 in this case, one can always rescale ω so that [ω] is a generater

of H2(X). With this choice of ω, Nω = 1 and c1(K) · [ω] = 3, so that the constant C
in Theorem 1.8 is in fact independent of ω. It is an interesting problem to find out
the optimal value of C in Theorem 1.8.

The organization of this paper is as follows. Section 2 consists of a set of preliminary
lemmas preparing for the proof of the Main Theorem. In particular, it contains the
proof of Lemma 1.6. Section 3 is devoted to the proof of the Main Theorem, and the
proof of Theorem 1.8 is given in Section 4.

2. Preliminary lemmas

Lemma 2.1. Let X be a simply connected 4-manifold. Then for any prime number
p > χ(X) (the Euler characteristic of X), a locally linear topological Zp-action on X
is necessarily homologically trivial.

Proof. First of all, since p > χ(X) ≥ 2, p must be odd and the Zp-action must be
orientation preserving. By a theorem of Kwasik and Schultz [16], the induced Zp

integral representation on H2(X) is decomposed into a direct sum

H2(X) = Z[Zp]
r ⊕ Zt ⊕ Z[µp]

s
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for some integers r, t, s ≥ 0, where the group ring Z[Zp] is the regular representation of
Z-rank p, Z is the trivial representation of Z-rank 1, and Z[µp] is the representation of
cyclotomic type of Z-rank p−1, which is the kernel of the augmentation homomorphism
Z[Zp] → Z. (Here µp ≡ exp(2πi/p).) This gives rise to

b2(X) = rp + t + s(p − 1).

Now if p > χ(X) = b2(X) + 2, the only solution to the above equation is r = s = 0
and t = b2(X), which means that the induced action of Zp on H2(X) is trivial.

�

Thus without loss of generality, we may assume the Zp-action on (X, ω) under con-
sideration is homologically trivial by assuming that p > χ(X). Under this assumption,
the only 2-dimensional components in the fixed point set are 2-spheres, cf. [11].

Lemma 2.2. Let G be a finite group acting on a symplectic 4-manifold (M,ω), pre-
serving the form ω and inducing a trivial action on H2(M). Then there exists a
symplectic 4-manifold (M ′, ω′), which is a symplectic blowdown of (M,ω), with an in-
duced G-action preserving the form ω′ and inducing a trivial action on H2(M ′), such
that for any G-equivariant, ω′-compatible almost complex structure J , M ′ contains no
embedded J-holomorphic 2-spheres with self-intersection −1. Furthermore, if [ω] is
rational, so is [ω′], and one has Cω′ ≤ Cω.

Proof. Suppose there exists a G-equivariant, ω-compatible almost complex structure
J on M such that M contains an embedded J-holomorphic 2-sphere C with C2 = −1.
Since G acts trivially on H2(M), the class of g ·C equals the class of C for any g ∈ G.
This implies g · C = C, i.e., C is invariant under G, because otherwise (g · C) · C ≥ 0
by the positivity of intersections of J-holomorphic curves, which then contradicts the
identity (g · C) · C = C2 = −1.

We G-equivariantly blow down (M,ω) along C and obtain a symplectic 4-manifold
(M ′, ω′), which inherits a symplectic G-action from (M,ω). Clearly the induced action
of G on H2(M ′) is also trivial.

We shall prove that if [ω] is a rational class, so is [ω′], and one has Cω′ ≤ Cω. To see
this, let x ∈ M ′ be the image of C under the blowing down. Then there exist small
neighborhoods U of C in M and U ′ of x in M ′, such that (M\U, ω) and (M ′\U ′, ω′) are
symplectomorphic, cf. [20]. It follows easily that [Nωω′] is an integral class in H2(M ′).
(Here recall that Nω is the smallest positive integer such that [Nωω] is an integral class
in H2(M).) This implies Nω′ ≤ Nω, and since c1(KM ′) · [ω′] < c1(KM ) · [ω], one clearly
has Cω′ ≤ Cω.

This process will terminate because b2(M
′) = b2(M) − 1. At the end we obtain

a symplectic 4-manifold, still denoted by (M ′, ω′), such that for any G-equivariant,
ω′-compatible almost complex structure J , M ′ contains no embedded J-holomorphic
2-spheres with self-intersection −1.

�

A natural question is whether the manifold (M ′, ω′) is minimal. Recall that a
symplectic 4-manifold is said to be minimal if there exist no embedded symplectic
2-spheres with self-intersection −1. The next lemma gives an answer to this question.
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Lemma 2.3. Let (M,ω) be a symplectic 4-manifold which is not rational or ruled.
If there exists a ω-compatible almost complex structure J0 such that M contains no
embedded J0-holomorphic 2-spheres with self-intersection −1, then (M,ω) is minimal.

Proof. Suppose to the contrary that (M,ω) is not minimal, and let Σ be an embedded
symplectic 2-sphere with self-intersection −1 in M . Then there exists a ω-compatible
almost complex structure J ′ on M such that Σ is J ′-holomorphic. On the other hand,
by Corollary 3.3.4 in McDuff-Salamon [21], for any J an embedded J-holomorphic 2-
sphere with self-intersection −1 is always a regular point in the corresponding moduli
space of J-holomorphic curves, which is also the only point in the moduli space because
of positivity of intersections of J-holomorphic curves. This implies that the Gromov
invariant counting J-holomorphic 2-spheres in the class of Σ equals ±1. In particular,
there exists a finite set of J0-holomorphic curves {Γj} such that

[Σ] =
∑

j

ljΓj for some integers lj > 0.

Consider first the case where b+
2 > 1. By Taubes [25] the Gromov invariant

Gr(KM ) 6= 0, so that there exists a finite set of J0-holomorphic curves {Ci} such
that

c1(KM ) =
∑

i

niCi for some integers ni > 0.

Since c1(KM ) · [Σ] = −1 < 0, there exists a j such that c1(KM ) · Γj < 0. Because
of positivity of intersections of pseudo-holomorphic curves, there must be an i such
that Γj = Ci. Now c1(KM ) · Ci < 0 implies that C2

i ≤ 1
ni

c1(KM ) · Ci < 0, and by the
adjunction inequality one has

0 ≤ genus(Ci) ≤ C2
i + c1(KM ) · Ci + 2 ≤ (−1) + (−1) + 2 = 0,

which implies that Ci is an embedded 2-sphere with self-intersection −1, contradicting
the assumption on J0. Hence (M,ω) must be minimal in this case.

The case of b+
2 = 1 is slightly more involved. First, we symplectically blowdown

(M,ω) to get a minimal symplectic 4-manifold (M ′, ω′). Then because (M,ω) is not
rational or ruled, one must have c1(KM ′) · [ω′] > 0 and c1(KM ′)2 ≥ 0, cf. [18]. With
these conditions, one can show by a wall-crossing argument that the Gromov invariant
Gr(2KM ′) 6= 0. On the other hand, by the blowup formula of Gromov invariant
[19], if we denote by E1, · · · , En ∈ H2(M) the exceptional divisors of the symplectic
blowdown π : M → M ′ (i.e., the Poincaré duals of the symplectic (−1)-spheres in M),
then

Gr(2KM +

n
∑

s=1

Es) = Gr(π∗(2KM ′) −
n

∑

s=1

Es) = Gr(2KM ′) 6= 0.

Consequently, there exists a finite set of J0-holomorphic curves {Ĉk} such that

c1(2KM +

n
∑

s=1

Es) =
∑

k

n̂kĈk for some integers n̂k > 0.
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Finally, we observe that the Gromov invariant Gr(−Es) 6= 0 for each s. (Note that
we have proved this fact for the Poincaré dual of Σ.) Hence for each s, there exists a
finite set of J0-holomorphic curves {Γjs} such that

c1(−Es) =
∑

j

ljsΓjs for some integers ljs > 0.

Putting these together, one has

c1(2KM ) =
∑

k

n̂kĈk +
∑

j,s

ljsΓjs =
∑

i

niCi,

for a finite set of J0-holomorphic curves {Ci} and integers ni > 0. Again, since
c1(2KM ) · [Σ] = −2 < 0, there exists a j such that c1(2KM ) ·Γj < 0. Then there must
be an i such that Γj = Ci, and as we argued earlier, c1(KM ) ·Ci < 0 implies that Ci is
an embedded 2-sphere with self-intersection −1, contradicting the assumption on J0.
This proves that (M,ω) is also minimal in the case of b+

2 = 1.
�

We remark that Lemma 2.3 is false if one drops the assumption that (M,ω) is
not rational or ruled as shown by the following example: the Hirzebruch surface F3

contains no (−1)-holomorphic curves but it is not minimal as a symplectic 4-manifold.
(Thanks to Tian-Jun Li for pointing out an error in an earlier version of the paper
and communicating this example to me.)

Let G ≡ Zp. With the preceding lemmas understood (i.e., Lemma 2.1, Lemma
2.2 and Lemma 2.3), it suffices, for the proof of the Main Theorem, to consider the
following simplified version: (X, ω) is minimal and the Zp-action is trivial on H2(X)

by assuming p > χ(X). (Note that in particular, p ≥ 5.) Since b2,+
G = b+

2 > 1, the
equivariant version of Taubes’ theorem in [25] applies here, and as we have explained
earlier in Section 1, after fixing a generic choice of G-equivariant, ω-compatible almost
complex structure J , there is a finite set of J-holomorphic curves {Ci}, such that
c1(K) =

∑

i niCi for some integers ni > 0. Furthermore, the set ∪iCi is G-invariant,
and ∪iCi contains all the fixed points of G except for those isolated ones at which
the representation of G on the complex tangent space has determinant 1. Notice that
since (M,ω) is minimal, c1(K) ·Ci ≥ 0 and c1(K) ·Ci ≥ C2

i for any i. (We remark that
by the equivariant symplectic neighborhood theorem, J may be taken to be integrable
in a neighborhood of the fixed point set, even though J has to be chosen to be generic
in order to rule out certain possibilities.)

Lemma 2.4. (1) If there exists a Ci with genus(Ci) ≥ 2, then p ≤ 82c1(K)2.
(2) If there exists a Ci with genus(Ci) = 1 and c1(K) · Ci ≥ 1, then p ≤ c1(K)2.

Proof. (1) First consider the case where Ci is invariant under G. Since the 2-dimensional
fixed components of G are 2-spheres, the induced G-action on Ci is nontrivial. By
Hurwitz’s theorem, p ≤ 82(genus(Ci) − 1). On the other hand, by the adjunction
inequality,

genus(Ci) − 1 ≤ 1

2
(C2

i + c1(K) · Ci) ≤ c1(K) · Ci ≤ c1(K)2.
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Hence p ≤ 82c1(K)2 as claimed.
Now suppose Ci is not invariant under G. Then g · Ci 6= Ci for all 1 6= g ∈ G. This

implies that

c1(K)2 ≥ c1(K) · (
∑

g∈G

g · Ci) = p · c1(K) · Ci ≥ p,

because c1(K) · Ci ≥ 1
2(C2

i + c1(K) · Ci) ≥ genus(Ci) − 1 ≥ 1. The lemma follows.
(2) First consider the case where Ci is invariant under G. Since the 2-dimensional

fixed components of G are 2-spheres, the induced G-action on Ci is nontrivial. Since
we assume p ≥ 5, and by assumption genus(Ci) = 1, we see immediately that Ci

contains no fixed points of G. With this understood, the dimension of the moduli
space of the corresponding G-invariant J-holomorphic curves at Ci, which is given by

2(−1

p
c1(K) · Ci + 2(1 − genus(Ci/G))) = −2

p
c1(K) · Ci,

is negative because of the assumption c1(K) · Ci ≥ 1. Note that here since the G-
action on Ci is free, genus(Ci/G) = 1. By choosing a generic G-equivariant J , this
case can be ruled out. (Here and throughout the rest of the paper, moduli spaces
of G-invariant pseudo-holomorphic curves in X are canonically identified with the
corresponding moduli spaces of pseudo-holomorphic curves in the orbifold X/G.)

Suppose Ci is not invariant under G. Then

c1(K)2 ≥ c1(K) · (
∑

g∈G

g · Ci) = p · c1(K) · Ci ≥ p

as claimed. This finishes the proof of the lemma.
�

Lemma 2.5. For any i, if genus(Ci) = 1 and c1(K) ·Ci = 0, then Ci is an embedded
torus of self-intersection 0, which is disjoint from the rest of the set of J-holomorphic
curves {Ci}.
Proof. Since 0 = c1(K) · Ci ≥ C2

i , we have, by the adjunction inequality, that

0 ≥ C2
i + c1(K) · Ci ≥ genus(Ci) − 1 = 0,

which implies that C2
i = c1(K) ·Ci = 0, and Ci is embedded. If Ci is not disjoint from

the rest of the set of J-holomorphic curves {Ci}, we would have c1(K) · Ci > C2
i = 0,

which is a contradiction. Hence the lemma.
�

Since we assume p ≥ 5, the curves Ci as described in Lemma 2.5 will not contain any
fixed points of G. Furthermore, they will not make any contributions to the calculation
of either c1(K) · Ci for any i, or c1(K)2. So this kind of J-holomorphic curves will
play no role in our argument, and henceforth for simplicity we simply assume they do
not exist.

With the preceding understood, without loss of generality we may assume that each
curve in the set {Ci} is a 2-sphere, i.e., genus(Ci) = 0.

Lemma 2.6. If there exists a Ci (with genus(Ci) = 0) which is not invariant under
G, then p ≤ c1(K)2.
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Proof. Since Ci is not invariant under G, g ·Ci 6= Ci for any 1 6= g ∈ G. On the other
hand, G acts trivially on H2(X), so that C2

i = (g · Ci) · Ci ≥ 0.
If c1(K) · Ci ≥ 1, we have as before that

c1(K)2 ≥ c1(K) · (
∑

g∈G

g · Ci) = p · c1(K) · Ci ≥ p.

If c1(K) ·Ci = 0, then C2
i = 0 as well, which implies that (g ·Ci) ·Ci = 0 for all g ∈ G.

In particular g ·Ci and Ci are disjoint for any 1 6= g ∈ G, so that Ci contains no fixed
points of G. The dimension of the moduli space of the corresponding J-holomorphic
curves at Ci is given by

d = 2(−c1(K) · Ci + 2(1 − genus(Ci)) − 3) = −2,

so that by choosing a generic G-equivariant J , such a Ci does not exist.
�

Lemma 2.7. Suppose there exist i, j such that Ci 6= Cj and Ci and Cj intersect at a
point which is not fixed under G. Then p ≤ 2 + 2c1(K)2.

Proof. Suppose both of Ci, Cj are invariant under G; otherwise the lemma follows from
the previous lemma. Without loss of generality, we assume ni ≥ nj . Set δ = c1(K)·Cj .
Then

δ ≥ (niCi + njCj) · Cj ≥ nj(Ci · Cj + C2
j ) ≥ nj(p + C2

j ).

Here we used Ci ·Cj ≥ p, which follows from the fact that the set Ci∪Cj is G-invariant
and Ci, Cj intersect at a point not fixed under G. This gives δ ≥ 1

nj
δ ≥ p + C2

j .

Now by the adjunction inequality, we obtain

(δ − p) + δ + 2 ≥ C2
j + c1(K) · Cj + 2 ≥ 0,

which gives rise to p ≤ 2 + 2δ ≤ 2 + 2c1(K)2, as we claimed.
�

We end this section with the

Proof of Lemma 1.6

The local intersection number intD(x) is defined to be the limit

intD(x) = lim
n→∞

∫

D

i

2π
Fan

for a sequence of solutions ((αn, βn), an) to the rn-version of the Taubes’ perturbed
Seiberg-Witten equations, where rn → ∞ as n → ∞, cf. Proposition 5.6 in [25]. In
Lemma 5.8 of [25], Taubes gave a lower bound for intD(x) which takes the form

∫

D

i

2π
Fan ≥ m0 + z3(4

−n + ρ2),

where ρ > 0 can be taken arbitrarily small, and m0 is a positive integer (see (5.19)
and (5.20) in [25]). Here z3 is an independent constant. Clearly,

intD(x) ≥ m0.



12 WEIMIN CHEN

To explain m0, recall that by our assumption, x ∈ α−1
n (0) for all n. Fix a Gauss-

ian coordinate system at x and pull back the solutions ((αn, βn), an) to the Gaussian
system. After rescaling by a factor

√
rn, the solutions converge in C∞-topology over

compact subsets to a solution ((α0, 0), a0) to the r = 1 version of the Taubes’ per-
turbed Seiberg-Witten equations on C2. Moreover, the U(1)-connection a0 defines a
holomorphic structure on the trivial complex line bundle over C2 of which α0 is a
holomorphic section. Finally, α−1

0 (0) is the zero set of a polynomial on C2. With
the preceding understood, the number m0 is the local contribution at 0 ∈ C2 to the
intersection number of any complex line in C2 with α−1

0 (0).
Now write α0 = f(z1, z2) · s, where s is a non-zero holomorphic section, and

f(z1, z2) =
N

∑

i=1

ciz
a1,i

1 z
a2,i

2 + · · · (higher order terms).

Here a ≡ a1,i + a2,i > 0 which is independent of i = 1, 2, · · · , N . Then the above
interpretation of m0 shows that m0 ≥ a. On the other hand, the representation of
g on the fiber of the G-equivariant canonical bundle is given by multiplication by
λ−(m1+m2), where λ = exp(2πi/m), and m ≡ order(g). Apparently g · s = λ−(m1+m2)s
and g · α0 = α0, which implies that

f(g · (z1, z2)) = λ−(m1+m2) · f(z1, z2).

The above equation gives the congruence relation

a1,im1 + a2,im2 = −(m1 + m2) (mod m), ∀i = 1, 2, · · · , N.

The lemma follows easily by taking (a1, a2) to be any of the (a1,i, a2,i)’s.
2

3. Proof of main theorem

With the preliminary lemmas proved in the previous section, we may assume with-
out loss of generality that the curves in the set {Ci} satisfy:

(1) each Ci is a 2-sphere, which may be singular or immersed;
(2) each Ci is G-invariant, either being fixed by G or containing ≤ 2 fixed points;
(3) two distinct Ci, Cj intersect only at fixed points of G;
(4) each Ci is embedded away from the fixed points of G.

Here for the last condition, (4), if there is a Ci which is not embedded away from
the fixed points of G, we obtain a bound for p by the adjunction inequality: let yk,
k = 1, 2, · · · , p, be a subset of singular points of Ci which is invariant under G and
denote by δyk

the contribution of yk to the adjunction inequality, then δyk
≥ 2 and

c1(K)2 + 1 ≥ c1(K) · Ci + 1 ≥ 1

2
(C2

i + c1(K) · Ci) + 1 ≥ 1

2

p
∑

k=1

δyk
≥ p.

Before we start, it is useful to make observation of the following fact.

Lemma 3.1.
∑

i ni ≤ Cω, where c1(K) =
∑

i niCi. In particular, ni ≤ Cω for each i.

Proof. c1(K) · [ω] =
∑

i niω(Ci) ≥
∑

i ni · 1
Nω

, from which the lemma follows. �
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The following lemma eliminates the case of non-pseudofree actions.

Lemma 3.2. If there exists a Ci which is fixed under G. Then p ≤ 1 + Cω.

Proof. Let ni be the multiplicity of Ci. We pick a point x ∈ Ci such that x does not
lie in any other Cj 6= Ci. Let D be a J-holomorphic disk intersecting Ci transversely
and D ∩ (∪jCj) = {x}. Then the local intersection number

intD(x) = ni,

cf. [25], Section 5. Let g ∈ G be the element whose action near x is given g · (z1, z2) =
(z1, µpz2), where µp ≡ exp(2πi/p). Then by Lemma 1.6, there exist non-negative
integers a1, a2 satisfying (a1 + 1) · 0 + (a2 + 1) · 1 ≡ 0 (mod p) (here m1 = 0, m2 = 1),
such that intD(x) ≥ a1 + a2. It follows that ni = intD(x) ≥ a2 ≥ p − 1. This gives

p ≤ 1 + ni ≤ 1 + Cω.

�

We shall assume, in what follows, that the Zp-action is pseudofree.

Case (a): c1(K)2 = 0. First of all, notice that X has non-zero signature. Then
according to Corollary B of [6], the Zp-action must be trivial unless p = 1 (mod 4) or
p = 1 (mod 6). Moreover, from the proof of Corollary B, the following are also true:
(i) when p = 1 (mod 4), there must be Ci, Cj , both embedded, with ni = nj , such
that C2

i = C2
j = −2 and Ci, Cj intersect at a fixed point x with tangency of order

2; (ii) when p = 1 (mod 6), then either there is a Ci which is a 2-sphere with a cusp
singularity x fixed by G, or there are 3 distinct embedded (−2)-spheres Ci, Cj , Ck

intersecting transversely at a fixed point x of G. Furthermore, there are no fixed
points where the representation of G on the complex tangent space has determinant
1. By Remark 1.7, Lemma 1.6 applies here to all the fixed points of G. We fix a
J-holomorphic disk D whose tangent plane at x is different from that of any of the
J-holomorphic curves in {Ci}. In this case, intD(x) can be easily determined using
Theorem 7.1 of Micallef and White [22].

In case (i), Lemma 1.6 gives us

Cω ≥ ni + nj = intD(x) ≥ a1 + a2,

where a1, a2 satisfy (a1 + 1) · 1 + (a2 + 1) · 2 ≡ 0 (mod p). This implies that

p ≤ 2(a1 + a2) + 3 ≤ 2Cω + 3.

As for case (ii), in the former case of a cusp sphere, Lemma 1.6 gives us

2Cω ≥ 2ni = intD(x) ≥ a1 + a2,

where a1, a2 satisfy (a1 + 1) · 2 + (a2 + 1) · 3 ≡ 0 (mod p). This implies that

p ≤ 3(a1 + a2) + 5 ≤ 6Cω + 5.

In the latter case of (ii), Lemma 1.6 gives us

Cω ≥ ni + nj + nk = intD(x) ≥ a1 + a2,
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where a1, a2 satisfy (a1 + 1) · 1 + (a2 + 1) · 1 ≡ 0 (mod p). This implies that

p ≤ (a1 + a2) + 2 ≤ Cω + 2.

The proof of the Main Theorem for the case where c1(K)2 = 0 follows.

Case (b): c1(K)2 > 0. We start with the following lemma.

Lemma 3.3. By choosing a generic G-equivariant almost complex structure J , the
set ∪iCi contains no fixed points of G where the representation of G on the complex
tangent space has determinant 1.

Proof. Suppose x is such a fixed point, and x ∈ C0 ∈ {Ci}. Let f : S2 → X be a
J-holomorphic map parametrizing C0, and let t1, t2 ∈ S2 be the two points mapped to
fixed points under f such that f(t1) = x. Note that t1, t2 are fixed under the induced
action of G on S2. Let g1, g2 ∈ G be the elements which act by a rotation of angle
2π/p near t1, t2 respectively. Moreover, suppose the actions of g1, g2 near the fixed
points in X are given respectively by

gi · (z1, z2) = (µ
mi,1
p z1, µ

mi,2
p z2), i = 1, 2,

where µp = exp(2πi/p), 0 < mi,1,mi,2 < p. Then the dimension of the moduli space
of the corresponding G-invariant J-holomorphic curves at C0 is

d = 2(−1

p
c1(K) · C0 + 2 −

2
∑

i=1

mi,1 + mi,2

p
− 1)

= −2(
1

p
c1(K) · C0 +

m2,1 + m2,2

p
),

see [4], p. 19. Here we used the fact that the representation of G on the complex
tangent space of x has determinant 1, so that m1,1 + m1,2 = p. By choosing a generic
G-equivariant J (cf. [4], Lemma 1.10), d ≥ 0 if C0 exists. But this is impossible
because c1(K) · C0 ≥ 0.

�

With the preceding lemma, Lemma 1.6 applies to any fixed point contained in ∪iCi

(cf. Remark 1.7).

Lemma 3.4. If there exists a Ci which is not embedded, then

p ≤ max(16C2
ω, (5 + 2c1(K)2)2, 4C2

ω(3 + 2c1(K)2)2).

Proof. We first note that all Ci are embedded away from the fixed points of G. Fix
any curve C0 in the set {Ci}. Let x ∈ C0 be a fixed point of G. We parametrize C0

by a J-holomorphic map f0 : S2 → X, and suppose 0 ∈ S2 is mapped to x under f0.
In a local complex coordinate system (z1, z2) centered at x, suppose f0 is represented
by a holomorphic map with z as a local coordinate centered at 0 ∈ S2:

z1 = zl0 , z2 = c0z
l′
0 + · · · (higher order terms),

where l0 < l′0 unless c0 = 0 and l0 = 1.
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We first show that if l0 ≥ 2, then

p ≤ max(16C2
ω, (5 + 2c1(K)2)2, 4C2

ω(3 + 2c1(K)2)2).

Let fj : z 7→ (zlj , cjz
l′j + · · · ), j = 1, 2, · · · , N , be the holomorphic maps which

parametrize all the branches of ∪iCi near x other than the one parametrized by f0

in a neighborhood of 0 ∈ S2. Here for each j, lj < l′j unless cj = 0 and lj = 1. If

we fix a generator g ∈ G and suppose the action of g near x is given by g · (z1, z2) =

(µm
p z1, µ

m′

p z2), where µp = exp(2πi/p) and 0 < m, m′ < p, then it follows easily that
lj = kjm, l′j = kjm

′ (mod p) for some kj for all 0 ≤ j ≤ N .

We assume p ≥ 16C2
ω. There are two possibilities:

Case (i): lj ≤ (2Cω)−1 · √p for all j = 0, 1, 2, · · · , N . Denote by n′
j the multiplicity

of the branch parametrized by the map fj , j = 0, 1, 2, · · · , N . Then by Lemma 3.1 we

have
∑N

j=0 n′
j ≤ 2Cω. (Note that at most 2 branches lie in the same Ci.) We obtain

√
p = 2Cω · ((2Cω)−1 · √p) ≥ (

N
∑

j=0

n′
j) · ((2Cω)−1 · √p) ≥

N
∑

j=0

n′
jlj .

Now if we pick a J-holomorphic disk D whose tangent plane at x is different from
that of any of the branches parametrized by fj , 0 ≤ j ≤ N , then by Theorem 7.1 in

Micallef and White [22], intD(x) =
∑N

j=0 n′
jlj . By Lemma 1.6, we obtain

√
p ≥ intD(x) ≥ a1 + a2,

where a1, a2 satisfy (a1 + 1)lj + (a2 + 1)l′j ≡ 0 (mod p), 0 ≤ j ≤ N , because of the

congruence relations lj = kjm, l′j = kjm
′ (mod p) for some kj for all 0 ≤ j ≤ N .

Particularly, we have

(
√

p + 2)l′0 ≥ (a1 + a2 + 2)l′0 ≥ (a1 + 1)l0 + (a2 + 1)l′0 ≥ p,

which implies l′0 ≥ (
√

p + 2)−1p ≥ √
p − 2. On the other hand, by Theorem 7.3

in Micallef and White [22], the point x ∈ C0 makes a local contribution of δx ≥
(l0 − 1)(l′0 − 1) to the adjunction inequality for C0, which gives

2c1(K)2 ≥ C2
0 + c1(K) · C0 ≥ −2 + (l0 − 1)(l′0 − 1) ≥ −2 + (

√
p − 3).

Note that here we used l0 ≥ 2. This implies that p ≤ (5 + 2c1(K)2)2.
Case (ii): there exists a j = 0, 1, 2, · · · , N such that lj ≥ (2Cω)−1 · √p. Then lj ≥ 2

since p ≥ 16C2
ω, and l′j > lj ≥ (2Cω)−1 · √p for that j. Let Ci be the J-holomorphic

curve which contains the branch parametrized by fj near x. Then x ∈ Ci makes a
local contribution of δx ≥ (lj − 1)(l′j − 1) to the adjunction inequality for Ci, which
gives

2c1(K)2 ≥ C2
i + c1(K) · Ci ≥ −2 + (lj − 1)(l′j − 1) ≥ −2 + ((2Cω)−1√p − 1).

This implies that p ≤ 4C2
ω(3 + 2c1(K)2)2. Hence if l0 ≥ 2, one has

p ≤ max(16C2
ω, (5 + 2c1(K)2)2, 4C2

ω(3 + 2c1(K)2)2).

To finish the proof of the lemma, it remains to rule out the possibility that there
is a w ∈ S2, w 6= 0 ∈ S2, such that f0(w) = f0(0) = x. Note that by the arguments
in the previous paragraphs, we may assume that f0 is embedded near both 0 and w.
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Consider first the case where the tangent planes (f0)∗(T0S
2) and (f0)∗(TwS2) intersect

transversely at x. Suppose g ∈ G is the element which acts near 0 ∈ S2 as rotation
by an angle of 2π/p. Then g−1 acts near w ∈ S2 as rotation by an angle of 2π/p.
It follows that the action of g near x is given in local coordinates by g · (z1, z2) =
(µpz1, µ

−1
p z2), where µp = exp(2πi/p). But this has been ruled out by Lemma 3.3.

Now if (f0)∗(T0S
2) = (f0)∗(TwS2), then g = g−1 on (f0)∗(T0S

2) = (f0)∗(TwS2), which
implies that p = 2. But we have assumed that p ≥ 5.

This shows that if C0 is not embedded near x, one has to have

p ≤ max(16C2
ω, (5 + 2c1(K)2)2, 4C2

ω(3 + 2c1(K)2)2).

�

With the preceding lemma, we may assume in what follows that all Ci are embedded.

Lemma 3.5. For any fixed point x of G, if there exist two distinct J-holomorphic
curves Ci, Cj from the set {Ci} such that Ci, Cj intersect at x non-transversely, then

p ≤ (3 + Cω)2(c1(K)2 + 2).

Proof. First of all, we shall prove that for any 1 6= g ∈ G, if the action of g near x is
given in local coordinates by g · (z1, z2) = (µm1

p z1, µ
m2
p z2), where µp = exp(2πi/p) and

0 < m1,m2 < p, then

max(m1,m2) ≥ (3 + Cω)−1p.

To see this, if both m1,m2 are less than (3+Cω)−1p, then by Lemma 3.1, Lemma 1.6,

(Cω + 2) · (3 + Cω)−1p ≥ (
∑

i

ni + 2) · (3 + Cω)−1p

≥ (intD(x) + 2) · (3 + Cω)−1p

≥ (a1 + 1)m1 + (a2 + 1)m2

≥ p,

which is a contradiction. Here D is chosen such that it is not tangent to any of the
curves in {Ci} which contains x, and consequently, intD(x) ≤ ∑

i ni by Theorem 7.1
in Micallef and White [22] (notice that we have assumed that each Ci is embedded).

With the preceding understood, since Ci, Cj intersect at x non-transversely, there
exist local coordinates z1, z2 centered at x, such that locally Ci is given by z2 = 0,
and Cj is given by the graph of z2 = zm

1 + · · · (higher order terms). Let g ∈ G be the
element which acts on Ci by a rotation of angle 2π/p near x. Then the action of g
near x is given by g · (z1, z2) = (µpz1, µ

m
p z2). We have just shown that

m = max(1,m) ≥ (3 + Cω)−1p,

which implies that Ci · Cj ≥ m ≥ (3 + Cω)−1p.
Now we write c1(K)·Ci =

∑

k 6=i nkCk ·Ci+niC
2
i , and with the adjunction inequality,

we have
∑

k 6=i

nkCk · Ci + (ni + 1)C2
i + 2 ≥ 0.
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This gives rise to

C2
i ≥ − 1

ni + 1
(2 +

∑

k 6=i

nkCk · Ci).

Then we have

c1(K) · Ci =
∑

k 6=i

nkCk · Ci + niC
2
i

≥
∑

k 6=i

nkCk · Ci −
ni

ni + 1
(2 +

∑

k 6=i

nkCk · Ci)

=
1

ni + 1
(
∑

k 6=i

nkCk · Ci) −
2ni

ni + 1

≥ 1

ni + 1
· Cj · Ci −

2ni

ni + 1

≥ 1

Cω + 1
· p

3 + Cω
− 2.

This implies that p ≤ (3 + Cω)2(c1(K) · Ci + 2) ≤ (3 + Cω)2(c1(K)2 + 2).
�

Corollary 3.6. Suppose p > max(3 + Cω, (3 + Cω)2(c1(K)2 + 2)). Then for any fixed
point x, there exist at most two distinct Ci, Cj containing x. Moreover, Ci, Cj intersect
transversely at x.

Proof. Since p > 3 + Cω, we have max(m1,m2) ≥ (3 + Cω)−1p > 1 for any 1 6= g ∈ G
whose action is given in local coordinates by g · (z1, z2) = (µm1

p z1, µ
m2
p z2). It follows

that the action of G at x has two distinct eigenvalues. If x is contained in more than
two distinct J-holomorphic curves from the set {Ci}, there must be two distinct Ci, Cj

intersecting non-transversely at x, which contradicts p > (3 + Cω)2(c1(K)2 + 2).
�

With the preceding understood, we assume p > max(3+Cω, (3+Cω)2(c1(K)2 +2)).
Then for any Ci, there are 4 possibilities:

(1) Ci does not intersect with any other curves in {Ci};
(2) Ci intersects with exactly one Cj at exactly one fixed point;
(3) Ci intersects with exactly one Cj at two fixed points;
(4) Ci intersects with two distinct Cj , Ck at two fixed points.

Note that since Ci is embedded, one has c1(K) · Ci + C2
i + 2 = 0.

Case (1): niC
2
i + C2

i + 2 = c1(K) · Ci + C2
i + 2 = 0, which implies ni = 1 and

C2
i = −1. This contradicts the minimality of (X, ω).
Case (2): niC

2
i + nj + C2

i + 2 = c1(K) · Ci + C2
i + 2 = 0, which implies C2

i = −1 if
nj < ni. Hence in this case, one must have nj ≥ ni by the minimality of (X, ω).

Case (3): niC
2
i + 2nj + C2

i + 2 = c1(K) ·Ci + C2
i + 2 = 0, which implies C2

i = −1 if
nj < ni. By the symmetry between i and j, we see that ni = nj , and C2

i = C2
j = −2.

Moreover, c1(K) · Ci = c1(K) · Cj = 0.
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Case (4): We assume that ni ≥ nj , nk. Then in this case,

niC
2
i + nj + nk + C2

i + 2 = c1(K) · Ci + C2
i + 2 = 0,

which implies that ni = nj = nk and C2
i = −2. Moreover, c1(K) · Ci = 0.

From the preceding analysis, it is easily seen that Case (2) can not occur, and that
for any Ci, c1(K) · Ci = 0. It follows that c1(K)2 =

∑

i nic1(K) · Ci = 0, which is a
contradiction.

This completes the proof of the Main Theorem.

4. Proof of Theorem 1.8

Lemma 4.1. Let (X, ω) be a symplectic homology CP2 with c1(K) · [ω] > 0. Then any
symplectic Zp-action of prime order on X must be pseudofree and p must be odd.

Proof. First of all, we show that a smooth involution on a homology CP2 must have
a 2-dimensional component in the fixed point set (cf. [11]). Suppose g is a smooth
involution which has only isolated fixed points. Let Σ be a smoothly embedded surface
in X which represents a generater of H2(X). By slightly perturbing Σ we may assume
that Σ does not contain any fixed points of g, and furthermore, g · Σ and Σ intersect
transversely. It is clear that the intersection points of g ·Σ and Σ come in pairs, so that
the intersection number (g·Σ)·Σ = 0 (mod 2). However, since Σ represents a generater
of H2(X) for a homology CP2, (g · Σ) · Σ = 1 (mod 2), which is a contradiction.

Secondly, we show that any symplectic Zp-action on X must be pseudofree. Suppose
C is a 2-dimensional component in the fixed point set. Then since the action is
naturally homologically trivial, C must be an embedded 2-sphere (cf. [12]), which is
also naturally symplectic. From C · [ω] > 0 and the assumption that c1(K) · [ω] > 0,
we see that c1(K) ·C > 0 also. But this violates the adjunction inequality for C since
we also have C2 > 0. Hence the lemma.

�

With the preceding lemma, the following theorem of Edmonds and Ewing will play
a crucial role in the proof of Theorem 1.8.

Theorem 4.2. (Edmonds and Ewing, [12]) The fixed point set structure of a locally
linear, pseudofree, topological Zp-action of odd order on a homology CP2 is the same
as that of a linear action on CP2.

More concretely, a locally linear, pseudofree, topological Zp-action of odd order has
three fixed points x1, x2, x3 ∈ X. Fix a generater g of the group. Then at each xi,
there is a pair of integers (ai, bi) (unordered) satisfying 0 < ai, bi < p, such that the
induced representation of g on the tangent space at xi is given by

(z1, z2) 7→ (µai
p z1, µ

bi
p z2), where µp = exp(2πi/p),

for some complex structure on the tangent space which is compatible with the orienta-
tion. Note that (ai, bi) is unique up to a change of sign, i.e., a change to (p−ai, p−bi).
(However, if requiring that the complex structure on the tangent space is ω-compatible,
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then (ai, bi) is uniquely determined.) With this understood, Theorem 4.2 says that
{(ai, bi)} is given by

(a, b), (p − a, b − a), (p − b, p + a − b)

for some 0 < a < b < p.
With the preceding understood, Theorem 1.8 follows from the following proposition

as we explained at the end of Section 1.

Proposition 4.3. For sufficiently large r > 0, the r-version of Taubes’ perturbed
Seiberg-Witten equations associated to the square of the equivariant canonical bundle
has a solution ((α, β), a) which is fixed under the group action.

Assume the proposition momentarily. Letting r → ∞, the zero set α−1(0) converges
to a finite set of J-holomorphic curves {Ci}, such that 2c1(K) =

∑

i niCi for some
integers ni > 0. Moreover, ∪iCi is invariant under the group action and contains all
the fixed points except those xi such that 2(ai + bi) = 0 (mod p). (Since p is odd, this
is equivalent to ai + bi = 0 (mod p).) With this understood, and with the congruence
relation in Lemma 1.6 replaced by the following one

(a1 + 2)m1 + (a2 + 2)m2 = 0 (mod m),

the same arguments for the proof of the Main Theorem, when applied to the set
{Ci} above, will yield a proof for Theorem 1.8. (Regarding Remark 1.7, the new
“applicability” condition which ensures the hypothesis ‘x ∈ α−1(0)’ in Lemma 1.6 is
2(m1 + m2) 6= 0 (mod m), but again, since p = m is odd, this is equivalent to the
original condition m1 + m2 6= 0 (mod m).)

The proof of Proposition 4.3 goes as follows. Since b2,+
G = 1 in this case, the

equivariant Seiberg-Witten invariant (which is simply the Seiberg-Witten invariant of
the orbifold X/G) is well-defined only after specifying a choice of chambers. Let E be
an equivariant complex line bundle over X. We denote by SWG(E) the equivariant
Seiberg-Witten invariant defined using the associated r-version of Taubes’ perturbed
Seiberg-Witten equations with r > 0 sufficiently large. Then the wall-crossing formula
gives

|SWG(E) ± SWG(K − E)| = 1

provided that the formal dimension d(E) of the equivariant Seiberg-Witten moduli
space is non-negative. (Thanks to Tian-Jun Li for explaining this to me.)

We consider the case where E = 2K. Notice that SWG(K − E) must be zero,
because otherwise by Taubes’ SW ⇒ Gr theorem in [25], c1(K − E) = c1(−K) is
represented by J-holomorphic curves which contradicts the assumption c1(K)·[ω] > 0.
It follows that SWG(2K) = ±1 if d(2K) ≥ 0.

A formula for d(E) may be found in Appendix A of [5] (see also Lemma 3.3 in [4]).
In the present case, we have

d(2K) =
1

p
(c1(2K)2 − c1(2K) · c1(K) +

3
∑

i=1

p−1
∑

x=1

2(µ
−2(ai+bi)x
p − 1)

(1 − µ−aix
p )(1 − µ−bix

p )
),

where µp = exp(2πi/p).
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Proposition 4.3 follows by showing that d(2K) ≥ 0. In the calculation of d(2K),
the fact that {(ai, bi)} is given by

(a, b), (p − a, b − a), (p − b, p + a − b)

for some 0 < a < b < p plays a crucial role.

Lemma 4.4. Let c, d be satisfying 0 ≤ c ≤ p, 0 < d < p, and let δ(c, d) be the unique
solution to c − dδ = 0 (mod p) for 0 ≤ δ < p. Then

p−1
∑

x=1

2µcx
p

1 − µ−dx
p

= p − 1 − 2δ(c, d).

Proof. Set φc,d(t) ≡
∑p−1

x=1 µcx
p (1 − µ−dx

p t)−1. Then

φc,d(t) =

p−1
∑

x=1

µcx
p

∞
∑

l=0

(µ−dx
p t)l

=

∞
∑

l=0

tl(

p−1
∑

x=1

µ(c−dl)x
p )

=

∞
∑

l=0

tl(−1) +

∞
∑

l=0

tδ(c,d)+pl · p

=
1

t − 1
+

ptδ(c,d)

1 − tp

=
tp−1 + · · · + 1 − ptδ(c,d)

tp − 1
.

It follows that

p−1
∑

x=1

2µcx
p

1 − µ−dx
p

= 2φc,d(1)

= 2 · (tp−1 + · · · + 1 − ptδ(c,d))′|t=1

(tp − 1)′|t=1

= 2 · (p − 1) + · · · + 1 − pδ(c, d)

p

= p − 1 − 2δ(c, d).

�
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With the preceding lemma, we compute

p−1
∑

x=1

2(µ
−2(ai+bi)x
p − 1)

(1 − µ−aix
p )(1 − µ−bix

p )
=

p−1
∑

x=1

2(µ
(ai+bi)x
p − 1)

(1 − µ−aix
p )(1 − µ−bix

p )

=

p−1
∑

x=1

2µ
(ai+bi)x
p

1 − µ−bix
p

+

p−1
∑

x=1

2µbix
p

1 − µ−aix
p

= p − 1 − 2δ(ai + bi, bi) + p − 1 − 2δ(bi, ai).

Now without loss of generality, we assume

(a1, b1) = (a, b), (a2, b2) = (p − a, b − a), (a3, b3) = (p − b, p + a − b).

Then one can check directly that

(δ(a1 + b1, b1) + δ(b3, a3))b = 2b (mod p),

which implies that

δ(a1 + b1, b1) + δ(b3, a3) =

{

2 if a + b = p
p + 2 if a + b 6= p.

Similarly,

(δ(a2 + b2, b2) + δ(a3 + b3, b3))(b − a) = 3(b − a) (mod p),

which implies that

δ(a2 + b2, b2) + δ(a3 + b3, b3) =







0 if b = 2a and p + a = 2b
3 if b = 2a or p + a = 2b
p + 3 if b 6= 2a and p + a 6= 2b,

and
(δ(b1, a1) + δ(b2, a2))a = a (mod p),

which implies that δ(b1, a1) + δ(b2, a2) = p + 1.
Finally, we note that c1(K)2 = 9, hence

d(2K) =
1

p
(18 + 6(p − 1) − 2

3
∑

i=1

(δ(ai + bi, bi) + δ(bi, ai))

≥ 1

p
(18 + 6(p − 1) − 2(3p + 6)) = 0.
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