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Abstract

We study Shatalov-Sternin’s proof of existence of resurgent solutions of a linear ODE and discuss
the construction of analytic continuation to a common “Riemann surface” of all terms of the von
Neumann series appearing in their proof. We give a detailed proof of a more modest statement in
a special situation.

1 Introduction.

Resurgent analysis is a method of studying hyperasymptotic expansions
∑

k,j

e−ck/hak,jh
j , h → 0+ (1)

and those of similar kind by treating such expansions as asymptotics obtained from a Laplace integral
∫

γ
Φ(s)e−s/hds, (2)

where Φ is a ramified analytic function in the complex domain with a discrete set of singularities and
γ is an infinite path on the Riemann surface of Φ. The crucial observation is that the terms of (1) can
be recovered from studying the singularities of Φ, see [V83], [E], [CNP], [DP99], as well as [G] for this
author’s preferred terminology.

The methods of resurgent analysis have been used, in particular, to study asymptotics of solutions
of linear ODE with a small parameter, especially the Schrödinger equation in the semiclassical approx-
imation, see, e.g. [DDP97]. These applications justify the need to give a fully rigorous and detailed
treatment of foundations of resurgent analysis, and the present work is a step in this direction.

Probably the most important of these foundational questions is the existence of resurgent solutions
of a Schrödinger equation. More specifically, consider an equation of the type

−h2∂2
xφ(h, x) + V (x)φ(h, x) = 0 (3)
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where x ranges over C, h is a small complex asymptotic parameter, and V (x) is an entire function
often assumed to be a polynomial. The transformation (2) brings this equation to the form

−∂−2
s ∂2

xΦ(s, x) + V (x)Φ(s, x) = 0 (4)

which needs to be satisfied modulo functions that are entire with respect to s for every values of x for
some ramified analytic function Φ. Since the beginnings of resurgent analysis in the early 1980s there
has been no real doubt that (4) possesses two linearly independent (in an appropriate sense) solutions
that are endlessly analytically continuable with respect to s and satisfy certain growth conditions at
infinity.

This article arises from the author’s attempt to understand the proof of this fact given in the
book [ShSt], which we will recall in the next section. In this book, the solution Φ is represented as a
sum of an infinite von Neumann series and it is claimed that 1) all term of the von Neumann series
are defined on the same endlessly continuable Riemann surface (actually, a complex two-dimensional
manifold), and 2) the series converges. We do not quite understand the convergence proof for reasons
mentioned in the next section and plan to treat it elsewhere. Here we will explicitly construct a part
of the Riemann surface in question.

Here is the main thing that the author has learned by working on this article. In the literature on
resurgent analysis the function Φ is defined on a Riemann surface with a priori infinitely many sheets
with no artificial boundaries, and this gives the theory much of its elegance and aesthetic appeal.
For example, [V83] derives asymptotic connection formulae by considering how singularities of Φ are
expected to behave on the first as well as on the second sheet of the Riemann surface. However, 1 if
we are only interested in asymptotics of solutions of (3) in the form (1), it is enough to construct Φ
on the whole of the first sheet and analytically continue it just a little bit beyond the cuts. It seems
that Shatalov-Sternin’s method allows us to do just that (see below for a precise statement); we need
to make no reference to the further sheets of the Riemann surface.

Trying to understand [ShSt]’s construction of the Riemann surface, we took a case of a potential
V (x) roughly corresponding to an anharmonic oscillator, with two turning points x1, x2. We used the
conclusions of the heuristic argument in [V83] to describe an open complex 2-dimensional manifold S,
on which one expects the solution Φ(s, x) to be defined. In [ShSt]’s proof Φ is expressed via a sum of
a von Neumann series (8) of iterations of integral operators R1, R2 applied to some initial function.
We covered S by open subsets and constructed an analytic continuation of the summands of the von
Neumann series to each one of those, which led to consideration of some two hundred separate cases.
Then we classified the arguments that we have been using and stated them as lemmas 5.2-5.21. Thus
the proof of the existence of the analytic continuation of Φ to all points in S has become a list of
references to these lemmas with a few additional comments.

The argument presented in this paper remains too combinatorial for the author’s taste. However,
we believe that a similar statement for more complicated potentials can be proven in essentially the
same way using lemmas 5.2-5.21. Thus, although we do not give a proof of the general case, we offer
a method that should in principle work for an arbitrary entire potential V (x).

1The author read this idea in one of the versions of [DP99] that is no longer available on the Web
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2 Shatalov-Sternin’s construction.

Specializing the exposition of [ShSt], let us consider the one-dimensional Schrödinger equation

[−h2∂2
x + V (x)]ϕ(h, x) = 0, (5)

where the variable x takes values in C and V (x) is an entire function. We will be solving the Laplace-
transformed equation

−∂−2
s ∂2

xΦ(s, x) + V (x)Φ(s, x) = 0 (6)

modulo functions that are entire with respect to s for every values of x, and we will be looking for
its solution Φ in the class of ramified analytic function, i.e. an analytic function on some complex
two-dimensional manifold projecting to C

2 with coordinates (x, s).

Fix a point x0 such that V (x0) 6= 0 and a determination p(x) of
√

V (x) in a neighborhood of x0.
Let p1(x) = −p2(x) =

√

V (x); let further S(x) =
∫ x
x0

pj(y)dy and Sj(x) =
∫ x
x0

pj(y)dy, j = 1, 2.

We will use the following two operations on the classes of ramified analytic functions modulo
functions entire with respect to s:

ĥΦ(s, x) = ∂−1
s Φ(s, x),

eĥ−1a(x)Φ(s, x) = Φ(s + a(x), x).

Define the operator Rj acting on (germ of) ramified analytic functions G(s, x) by the formula

(RjG)(s, x) =

∫ x

x0

(D1G)(s + Sj(x) − Sj(y), y)pj(y)dy, (7)

where D1 stands for the derivative of the function with respect to the first argument. In [ShSt] this
derivative is missing.

An equation

[
1

pj(x)
∂−1

s ∂x − 1]u(s, x) = b(s, x)

admits solutions of the form

u(s, x) = Rjb(s, x) + C(ĥ)eĥ−1Sjf(s)

where f(s) is any (germ of) a ramified analytic function and C(ĥ) is a polynomial in ĥ, or, more
generally, a convolution with a ramified analytic function Ĉ(s) in the sense usual in resurgent analysis.

Next [ShSt] proceed to formally find an operator Ỹ such that Ỹ f is a solution of (6) for any f(s).
In our situation, rewrite (6) as

(

p2(x)[−
1

p(x)
h∂x − 1] − hp′(x)

) (

1

p(x)
h∂x − 1

)

− hp′(x) = −h2∂2
x + p2(x)

and start looking for the operator Ỹ in the form

Ỹ = R1Ỹ1 − C1(h)eĥ−1S1 .
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Substitution yields an operator equation

{(

p2(x)[−
1

p(x)
h∂x − 1] − hp′(x)

)

− hp′(x)R1

}

Ỹ1 = −ĥp′(x)C1(h)eĥ−1S1 .

We now look for the operator Ỹ1 in the form

Ỹ1 = R2Ỹ2 − C2(ĥ)eĥ−1S2

which yields

Ỹ2 − ĥ
p′(x)

p2(x)
{R2 + R1R2}Ỹ2 = −h

p′(x)

p2(x)
C2(ĥ)eĥ

−1
S2 − ĥ

p′(x)

p2(x)
R1C2(h)eĥ

−1
S1 − ĥ

p′(x)

p2(x)
C1(h)eĥ

−1
S1 .

Denoting

R2 = −
p′(x)

p2(x)
(1 + R1),

and putting for definiteness C1 = 1 and C2 = 0, we formally obtain

Ỹ = R1R2Ỹ2 − eĥ−1S̃1(x),

Ỹ2 + ĥR2R2Ỹ2 = ĥ(−
p′(x)

p2(x)
)eĥ−1S̃1(x).

The last equation has a formal solution

Ỹ2 =

∞
∑

j=0

(−1)j ĥj+1[(−
p′(x)

p2(x)
)(1 + R1)R2]

jF1(S1(x), ĥ)eĥ−1S̃1(x). (8)

In order to obtain a solution for (6), one can take f(s) = sLn s and consider the infinite series defining
Ỹ f(s). The first task is to construct a “Riemann surface” – a two dimensional complex manifold on
which all terms of the infinite series in the expression of Ỹ f(s) are defined. It is easy to see that an
equivalent question is to construct a “Riemann surface” on which all functions

Rjk
...Rj2Rj1f(s + S(x)), ji = 1, 2, k ≥ 0

are defined. This is the question we are dealing with in this article. The second task would be to show
that the infinite series converges on the Riemann surface. Unfortunately, a derivative in the integrand
is missing in [ShSt]’s definition of operators Rj and we cannot suggest an easy way to repair their
convergence argument, but hope to give an alternative proof elsewhere.

3 The example under consideration. Notation.

We will consider a region of the complex plane surrounding the following Stokes pattern similar to
that of an anharmonic oscillator with two turning points and six unbounded Stokes curves. Let us
now say this more formally.
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Figure 1

Let V (x) be a function analytic on the closure of a domain D0 ⊂ C which is simply connected and
such that C\D0 has four connected components B1,..., B4 numbered in a conterclockwise order. Let
V (x) has two zeros in D0 at points x1 and x2, and both zeros are simple. Draw two smooth curves
c1 and c2 from the points x1 and x2 to the boundary components B4 and B3 respectively so that
D0\(c1 ∪ c2) is homeomorphic to a disc, fig.1, left. Fix a determination of

√

V (x) on D0\(c1 ∪ c2) and
denote it p(x).

Let L1, L′

1, L′′

1 be curves satisfying Im
∫ x
x1

p(y)dy = 0 for x on any of these curves. Suppose all
these curves go off to infinity inside D0\(c1 ∪ c2), L1 between B1 and B2, L′

1 between B1 and B4 and
L′′

1 between B4 and B3, the cut c1 stays between L′

1 and L′′

1, and x2 is in the region bounded by L′

1,
L′′

1, ∂B2, ∂B3, fig. 1, right.

Similarly, let L2, L′

2, L′′

2 be curves satisfying Im
∫ x
x2

p(y)dy = 0 for x on any of these curves.
Suppose all these curves go off to infinity inside D0\(c1 ∪ c2), L2 between B1 and B2, L′

2 between
B2 and B3 and L′′

2 between B2 and B3, the cut c2 stays between L′

2 and L′′

2, and x1 is in the region
bounded by L′

2, L′′

2, ∂B1, ∂B4.

The curves Lj , L′

j , L′′

j , j = 1, 2, as well as their preimages to the universal cover of D0\{x1, x2} are
called Stokes curves.

Moreover, assume that Re
∫ x

p(y)dy decreases along Lj and increases along L′

j , L′′

j in the direction
away from xj , j = 1, 2.

Fix two numbers δ > 0, ε > 0.

Let x0 be a point in the part of D0 bounded by L1, L′

1, and ∂B1. Let S(x) =
∫ x
x0

p(y)dy which is well-
defined on the closure of D0 minus c1∪c2. This function can be analytically continued to D0\{x1, x2}.
Assume there is a constant A′ > 0 such that: Im S(x) < −δ/2 on ∂B1, Im S(x) − S(x2) > A′/2 on
∂B2, also assume that Im S(x) < 0 for x ∈ ∂B4 where the determination of S(x) is obtained by going
clockwise around x1, and also that Im S(x1) + S(x2) − S(x) > 0 or is it < 0? on ∂B3 where the
determination of S(x) obtained by going counterclockwise around x2 is meant.

Now let us consider a subdomain D of D0 bounded by the curve Im S(x) = −δ/2 in the “quadrant”
defined by L1 and L′

1, bounded by Im S(x) = Im S(x2) + A′/2 in the “quadrant” defined by L2 and
L′

2, bounded by Im S(x) = Im S(x1) + S(x2) in the “quadrant” defined by L′

2 and L′′

2, bounded by
Im S(x) = 0 in the “quadrant” defined by L′

1 and L′′

1, where the same determinations of S are meant
as in the previous paragraph.

Denote by L0 the curve Im S(x) = 0 passing through x0.

In the universal cover of D\{x1, x2} (with base point x0) consider preimages L̃′

1, L̃′′

1, L̃′

2, L̃′′

2 of
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Figure 2: The arrow on the Stokes curves indincates the direction in which Re S grows
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Figure 3

Stokes curves L′

1, L
′′

1, L
′

2, L
′′

2 lying on further sheets, fig.2. Consider the subset D̃′ of the universal
cover of D\{x1, x2} bounded by L̃′

1, L̃′′

1, L̃′

2, L̃′′

2. The curves L̃′

1, L̃′′

1, L̃′

2, L̃′′

2 will be called external
Stokes curves.

In the subset of D̃′ bounded by L′

2 and L̃′′

2 put a generalized turning point x3 such that S(x3) =
S(x1), fig. 3, and draw two generalized Stokes curves L3 and L′

3.

Let D̃ = D̃′\x3. This set will be split into Stokes regions A,B,C,D,D′,E,F,G. It is for x in this set
D̃ that we will be discussing the construction of the solution for the equation (6).

4 Structure of the Riemann surface.

From now on we assume that

δ <
1

3
Im S(x1); δ <

1

3
Im [S(x2) − S(x1)] (9)

In this section we will introduce the two-dimensional complex manifold S with a projection to
C

2 with coordinates (s, x) on which our ramified analytic functions G(s, x) will be defined. We will
describe S as the union of S ′∪S ′′by covering both S ′ and S ′′ with charts; gluing maps will be obvious
and not stated explicitly.

For x ∈ D̃ define the fiber of S ′ over x, as on figures 4–11. As usually, the canonical distance
between points x1 and x2 of D̃ is min

∫

π |p(y)|ds where the minimum is taken over all paths π in D̃
connecting x1 and x2.

On these pictures d1 = 2Im [S(x) − S(x1)] and d2 = 2Im [S(x2) − S(x)], d12 = 2Im [S(x) +
S(x1)−S(x2)], d1+2 := 2Im [S(x1)+S(x2)−S(x)], d0 := 2Im S(x) for the determinations of S in the
corresponding Stokes regions.

On these pictures the corresponding fibers are given as complex planes with a few singularities,
locations of singularities are marked. There are two groups of singularities,
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Figure 4: Fiber of S ′ over x when x is in the region A below the curve L0.
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Figure 5: Fiber of S ′ over x when x is in the region B.
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Figure 6: Fiber of S ′ over x when x is in the region C.
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Figure 7: Fiber of S ′ over x when x is in the region D.
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Figure 8: Fiber of S ′ over x when x is in the region D′.
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Figure 9: Fiber of S ′ over x when x is in the region E.
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Figure 11: Fiber of S ′ over x when x is in the region G.

• “blue” singularities −S(x), −s1(x) = 2S(x1) − S(x), −s2(x) = 2S(x2) − S(x)

• “red” singularities S(x), −s2′(x) = −2S(x2) + S(x), and −s12′(x) = 2S(x1) − 2S(x2) + S(x),
−s2′′(x) = −2S(x2) + S(x), −s12′′(x) = 2S(x1) − 2S(x2) + S(x), −s1′(x) = −2S(x1) + S(x),

where every time we mean the determination of S relevant in the corresponding Stokes region. There
are cuts introduced in the positive direction, and we attach flaps on both sides of most of the cuts, of
sizes specified on the pictures.

The sizes of the flaps are chosen according to the following principle: they are δ except near the
Stokes curves where another singularity approaches the cut on the second sheet from the given side,
in which the flap is drawn right up to the singularity. Sometimes we construct only one flap which
would be totally sufficient for the purposes of deforming the contour of the Laplace integral (2) as
in [V83], page 218.

For x along (i.e. canonical distance < δ/2 from) the curve L0, internal Stokes curves Lj , L
′

j , L
′′

j ,
j = 1, 2, generalized Stokes curves L3 and L′

3 we will introduce more charts whose union will be S ′′.

All the above mentioned curves are characterized by pairs of singularities one of which crosses
the horizontal cut starting at the other singularity. For x along these curves, for every pair of such
singularities we will add to S ′′ four additional subsets. Depending on a situations, these subsets are
either similar to the ones depicted on fig.13 for ρ = 0 but unbounded in the positive real direction,
and the similar subsets but flipped over with respect to a horizontal line, or smaller subsets similar to
the four bottom ones on the figure 16 if the corresponding singularity is a beginning of a cut that has
only one flap in S ′.
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Figure 12: the strip between singularities a(x) and b(x) (left), the area above a(x) (middle), and the
area below b(x) (bottom).

Obviously, the function (s + S(x))Ln (s + S(x)) has an analytic continuation to S.

5 Construction of analytic continuations.

5.1 Statement of the main result and preliminary remarks

Theorem 5.1 If G(s, x) is defined on S, then RjG, j = 1, 2 have analytic continuations to S.

Proof. For every ρ ∈ (0, δ) and N ∈ R we will consider subsets in the fiber Sx of S over x as
shown on figure 12. Here a(x) and b(x) are two singularities of Sx. Each of these sets is unbounded in
the negative real direction, is bounded by Re s = N from the right, and are bounded in the vertical
direction by Im a(x) or Im b(x) plus or minus the relevant flap size. From these sets we have cut out
vertical slots that consist of a circle of radius ρ around the corresponding singularity and a rectangle
with the base 2ρ and height equal to the relevant flap size. We will call these sets the strip between
singularities a(x) and b(x), the area above a(x), and the area below b(x), respectively. Sometimes we
will use other similar subsets of Sx and hope that their description will not lead to any confusion. If
cutting out the slots splits a strip into several connected pieces, we consider further the one that is
unbounded in the −∞ direction.

For x along a Stokes curve or a generalized Stokes curve (i.e. canonical distance < δ/2 from it and
so that Re S(x) ≥ Re S(xi) or Re S(x) ≤ Re S(xi), whichever is appropriate, where xi is the turning
point at the origin of the Stokes curve), or L0, we will also consider four subsets of Sx surrounding
the two singularities one of which crosses the horizontal cut starting at the other when x lies on the
curve in question. Two of these subsets are depicted on fig.13, and the other two are obtained from
this figure by reflecting it with respect to a horizontal line.

We will prove existence of analytic continuation to every such strip and then send ρ → 0+ and
N → +∞. Thus the existence of analytic continuation to the whole S will follow.

Actually, the construction we are about to present proves a slightly weaker statement, namely, that
the function RjG(s, x) can be analytically continued to a manifold S(δ′) constructed analogously to
S but with δ replaced by any positive δ′ < δ. Since

⋃

δ′<δ S
(δ′) = S, the theorem will be proven as

10



stated. To simplify the exposition, we will keep this subtlety in mind for the rest of the proof but will
not explicitly mention it again.

5.2 Strategy of the proof. Deformation of the integration path. Proof for the

region A.

If G(s, x) was an entire function, we could define (RjG)(s, x) by the formula

(RjG)(s, x) =

∫ x

x0

(D1G)(s + Sj(x) − Sj(y), y)pj(y)dy (10)

where the integral is taken along any path from x0 to x in D̃. Since, however, G(s, x) has singularities,
we need to find for a given s a path y(t) in D̃ from x0 to x such that the point (s+Sj(x)−Sj(y(t)), y(t))
stays in S and does not hit any of its singularities. We will from now on refer to y(t) as the integration
path and draw it green on our figures.

A moment of reflection shows that if x is contained in a compact subset K ⊂ D̃ and x0 ∈ K, then
there is a constant NK ∈ R such that any integration path y(t) from x0 to x contained in K will
satisfy the desired property for any s with Re s < NK .

We will occupy ourselves now with construction for each given x of integration paths y(t) such
that these paths can be lifted to S by the formula (s + Sj(x) − Sj(y(t)), y(t)) (in the sense that
(s + Sj(x) − Sj(y(t)), y(t)) will stay in S and avoid its singularities) for any s in a subset of Sx of
the types shown on fig.12. If we use such a path y(t) in the formula (10), we will obtain an analytic
continuation of RjG to the corresponding strip in Sx.

For U ⊂ Sx let us try to construct an integration path y(t) satisfying the above property for all
s ∈ U . Suppose Sj(x) + c is one of the singularities of S, for some constant c. We want to make sure
that s + Sj(x) − Sj(y(t)) avoids the singularity Sj(y(t)) + c, i.e. we want the equality

2Sj(y(t)) = s + Sj(x) − c

to hold for no point y(t) along the integration path and for no point s ∈ U . That is to say, we want

the integration path y(t) to avoid the set S−1
j

(

U+Sj(x)−c
2

)

⊂ D̃. Care needs to be taken to keep track

of the appropriate branches of the functions involved in this expression.

On our figures we will draw the contour of U in red and the contours of the sets of type V =

S−1
j

(

U+Sj(x)−c
2

)

in purple.

When consructing integration paths y(t) for RjG, we found it convenient to construct the parallel
transport of the set U ∈ Sx by defining U(y(t)) = U + Sj(x) − Sj(y) (in terms of the projection to
the complex s-plane). Then the set U(y(t)) and the singularities of type −Sj(y) + const move along
the path y(t) parallel to each other, and the singularities of type Sj(y) + const moving in the s-plane
relative to U(y). For this reason, we will call singularities of type −Sj(y) + const stationary and
the singularities of type Sj(y) + const moving singularities. When the index j changes, the roles of
moving and stationary singularities reverse. Sometimes we will symbolically draw the trajectories of
the moving singularities in the s-plane relative to the set U(y) in green.

Stokes regions have a natural partial order: we say that a Stokes region I is closer to x0 than a
Stokes region II, or that I comes earlier than II, if any path in D̃ connecting II to x0 passes through

11
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I. In the proof we will construct the integration path step by step, starting from x and leading it to
an earlier Stokes region than region containing x; we will explicitly construct integration paths from
points of the region A to x0.

In the proof we will separate the cases of x inside a Stokes region and (s, x) ∈ S ′ and x along a
Stokes curve, i.e. canonical distance < δ/2 from the Stokes curve and (s, x) ∈ S ′′.

Along the internal Stokes curves and the generalized Stokes curves the first sheet will be thought of
as a union of strips E1, E2, ... containing singularities and the rest of the first sheet E0, fig.14. Given
a point x along the Stokes curve and an s belonging to E0, we can draw an integration path on the
x-plane perpendicular to the Stokes curve from x to some point in the earlier Stokes region and hence
analytically continue RjG from the earlier Stokes region to the point x.

We will adopt the following convention for the sizes of the strips cut out from E0, fig.15.

The strips E1, E2, ... around singularities will be split into charts symbolically denoted as on figure
16, with sizes given by fig.13.

The same conventions will apply along the generalized Stokes curves L3 and L′

3.
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Figure 15: When x is in an “earlier” Stokes region, the gap goes from the Im of moving singularity
to the distance δ on the opposite side of a stationary singularity. When we are in a “later” Stokes

region, the gap goes from the stationary singularity distance δ in the direction of the moving
singularity. If there is just a stationary singularity, then remove only the cut around this singularity.
If there is just a moving singularity s(x), cut out a strip of the same size as if 2s(xt) − s(x) was a

singularity, where xt is the turning point – origin of the Stokes curve.

�

�

�

��

�
�

�

����������	

����������	

����������	

����������	

�����	

�����	

�

�

�

�
����������	

�
� ����������	

�

�
����������	

�
����������	

�

Figure 16: Manifold charts describing the Riemann surface Sx near the place where two cuts cross.
The first four pictures correspond to the situation when there are two singularities on the

corresponding sheet, the two on the right – when there is only one singularity, the four on the
bottom – special smaller charts which we will use when construction of a larger chart would involve

crossing one of the lines L̃′

1,L̃
′′

1,L̃
′

2,L̃
′′

2.
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Now let us construct the integration paths for x along L0 or for x in the region A and (s, x) ∈ S ′.
We will work with R1G, the argument for R2G being completely analogous.

If x is canonical distance < δ/2 from the curve L0, the corresponding part of S can be covered
by open sets of four types (with specific sizes described earlier) shown on figures 17 and 18. These
figures also show how to draw the integration path from x0 to x avoiding the appropriate preimage in
D̃ of the given subsets of Sx. The figures show the case of Re S(x) ≤ 0, the case Re S(x) ≥ 0 can be
treated analogously.

For x in the region A and (s, x) ∈ S ′, cover S ′ by strips and draw the path of integration as shown
on figure 19.

5.3 Continuation to the further Stokes regions – model cases.

The problem we are facing now is how to construct the integration path from x lying around Stokes
curves or in one of the further Stokes regions to one of the earlier Stokes regions. We found that there
is a finite number of typical arguments that allow us to do this, and we are presenting them in this
subsection.

We want our constructions to be applicable to construction of both R1G and R2G, and so we will
introduce here notation that is independent from that in the rest of the paper.

Let xt be a turning point where the potential V (x) has a simple zero. Three Stokes curves ℓ, ℓ′,
and ℓ′′ defined by the condition Im

∫ x
xt

√

V (y)dy = 0 start from xt. We also introduce a cut starting

14
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from xt and making the function S(x) =
∫ x
xt

√

V (y)dy univalued as shown on fig. 20. Thus we obtain
four Stokes regions denoted I-IV (or sometimes slightly differently) in the vicinity of xt. We will
work with two groups of singularities – singularities located S(x) + const and singularities located as
−S(x) + const, respectively. We will not specify the index j in the definition of the operator Rj , but
instead we will designate one group of singularities as “moving” and draw them green, and the other
group as “stationary” and draw them yellow.

On the figure 20 the order of the Stokes regions I-II is clockwise with respect to the turning point;
when we want to apply any of the lemmas of this subsection for the situation when this order should be
counterclockwise, then the arguments that follow can be repeated with “top” and “bottom” reversed
in the s-plane. Compare, e.g., the right and left sides of the figure 21.

We will work upon understanding that Stokes regions I-IV are contained in a domain similar to
the domain D̃ constructed above, but we will skip a detailed formulation here.

Construction of the integration path is trivial (i.e., this path is not subject to any conditions) in
the following case:

Lemma 5.2 Suppose s0 is a stationary singularity, E ⊂ C. We assume that the function G is
constructed in a connected region D ⊂ Cs×Cx with the projection to Cx whose projection is contained
in the regions I and II and the fiber over a point x is s0(x) + E.
AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.
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Figure 22: Lemma 5.3. Draw an integration path from x around xt into the region Zero. The purple
sets P1, P2 correspond to the condition that the integration path y(t) lifted to S as

(s + Sj(x) − Sj(y(t)) hits the singularity s1(y(t)) or the singularity s1(y(t)) from the second sheet,
respectively, for some value s in the the fiber Dx of D over x.
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Figure 23: Lemma 5.4 – just move to the region I the most obvious way.

Lemma 5.3 Suppose s2 is a stationary and s1 is a moving singularity and s2(xt) = s1(xt), and Re s1

grows along ℓ in the direction away from xt. Let A > δ, B > 0, Im s2(xt) − s1(xt) > δ. We assume
that the function G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s2(x) − s1(x) < A.

• for x in the region I, canonical distance < ρ0 (for some ρ0 > 0) from xt;

• for x in the region Zero, canonical distance < δ/2 from ℓ′

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = N + Re s2 from the right;

• Upper boundary at Im s2 + B.

• Lower boundary: (possibly with slots cut out around singularities)

– at Im s2 − δ a) when x is inside II distance ≥ δ/2 from ℓ, ℓ′′; b) also in II distance < δ/2
from ℓ if s1 is not present in I.

– in II distance < δ/2 from ℓ when s1 stays on the first sheet in I – according to fig.13;

– in II distance < δ/2 from ℓ′′ and in the region Zero – at max{Im s2 − δ, Im s1};

– in I close to xt – at Im s2 − δ;

AND RjG is defined on all points of this chart that project to the region Zero,
THEN: RjG is also defined on the same set.

Proof follows from fig.22 2

Lemma 5.4 Suppose s2 is a stationary and s1 is a moving singularity and s2(xt) = s1(xt), and Re s1

grows along ℓ in the direction away from xt. Assume A > δ, B > 0, Im s2(xt) − s1(xt) > δ. We
assume that the function G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s2(x) − s1(x) < A.

17
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Figure 24: Lemma 5.5.

• for x in the region I, canonical distance < δ/2 from the Stokes curve ℓ;

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = N + Re s2 from the right;

• Upper boundary: (possibly with slots cut out around singularities)

– at Im s1 + δ inside II distance ≥ δ/2 from ℓ, ℓ′′;

– in accordance with fig.13 distance < δ/2 from ℓ, ℓ′′.

• Lower boundary: at Im s2 + B.

AND RjG is defined on all points of this chart that project to the region I can.distance > δ/2,
THEN: RjG is also defined on the same set.
The lemma also works when xt is a generalized turning point.

Proof cf. fig. 23. 2

Let s3 be a moving singularity, s2 are stationary; s2(xt) = s3(xt).

Lemma 5.5 Suppose s2 is a stationary and s1 is a moving singularity and s2(xt) = s1(xt), and Re s1

grows along ℓ in the direction away from xt. Let A > δ, C > δ. We assume that the function G is
constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s2(x) − s1(x) < C.

• for x in the region I, canonical distance < δ/2 from the Stokes curve ℓ;

• for x in the region I, canonical distance < δ from the Stokes curve ℓ (i.e. Im s1 − s2 > −δ) for
which Re s1 − s2 > N ;

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = N + Re s2 from the right;
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Figure 25: Lemma 5.6

• Upper boundary at Im s2 + A

• Lower boundary: (possibly with slots cut out around singularities)

– at Im s2 − δ a) when x is in II and Re s1 − s2 ≤ N , or b) when Re s1 − s2 ≤ N ;

– according to fig.13 when x is in I, distance ≤ δ/2 from ℓ and Re s1 − s2 ≤ N ;

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.
The Lemma equally well works if xt is a generalized turning point.

Proof: see fig. 24 2

Lemma 5.6 Suppose s2 is a stationary and s1 is a moving singularity and s2(xt) = s1(xt), and
Re s1 grows along ℓ in the direction away from xt. (Respectively, assume that there are also moving
singularities s3, ..., sk such that Im s1 − sj > δ for all 3 ≤ j ≤ k.) Let δ < A. We assume that the
function G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that δ < Im s2(x) − s1(x) < A.

• for x in the regions I and II close to the Stokes curve ℓ, i.e., |Im s2(x) − s1(x)| < δ, such that
Re s1(x) − s2(x) > N (Respectively, Re s1 − s2 > N and Re sj − s2 > N for all 3 ≤ j ≤ k)

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary: (with possibly a slot cut out around a singularity) at Im s2 + δ;

• Lower boundary: (with possibly a slot cut out around a singularity)

– for Im s2 − s1 ≥ δ and Re s1 − s2 ≤ N (respectively, Re s1 − s2 ≤ N or Re sj − s2 ≤ N
for some 3 ≤ j ≤ k) – at min{Im s1 − δ, Im s2 − A};

– for Re s1 − s2 > N (respectively, Re s1 − s2 > N and Re sj − s2 > N for all 3 ≤ j ≤ k) –
at Im s2 − A;
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– for Im s2 − s1 < δ – at Im s2 − A;

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.
This lemma also works if xt is a generalized turning point.

Proof: See Fig. 25. 2

Lemma 5.7 Suppose s2 is a stationary and s1 is a moving singularity and s2(xt) = s1(xt), and Re s1

grows along ℓ in the direction away from xt. We assume that the function G is constructed in region
D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that δ < Im s2(x) − s1(x) < 2δ;

• for x in the region I for Im s1(x) − s2(x) < δ;

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary: (with possibly a slot cut out around a singularity) at Im s2 + δ;

• Lower boundary: (with possibly a slot cut out around a singularity) at Im s1 − δ.

AND RjG is defined on all points of this chart that project to the region II can. distance ≥ δ/2 from
ℓ
THEN: RjG is also defined on the same set.
This lemma also works if xt is a generalized turning point.

Proof: See Fig. 26. 2

Lemma 5.8 Suppose s1, s2 are moving and s3 is a stationary singularity and s2(xt) = s3(xt), and
Re s1 grows along ℓ in the direction away from xt. Assume B > A > δ, B − A < Im s2 − s1. We
assume that the function G is constructed in region D ⊂ Cs × Cx with the projection to Cx:
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• all x in the region II, for all x such that Im s3 − s1 > B and Im s3 − s2 < A.

• also all x in the region II such that Im s3 − s1 < B + δ and Re s2 − s3 > N

• all x in the region I, canonical distance < δ/2 and such that Re s2 − s3 > N

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s3 + N from the right;

• Upper boundary at Im s3 − A + δ (possibly, with a slot cut out around a singularity)

• Lower boundary at Im s3 − B

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.
The lemma also applies when xt is a generalized turning point.

Proof: see fig. 27 2

Lemma 5.9 Suppose s1, s2 are moving and s3 is a stationary singularity and s2(xt) = s3(xt), and
Re s1 grows along ℓ in the direction away from xt. Assume C > B > A > 0, B −A < Im s2 − s1. We
assume that the function G is constructed in region D ⊂ Cs × Cx with the projection to Cx:
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• all x in the region II, for all x such that Im s3 − s1 < C and Im s3 − s2 > A.

• also all x in the region II such that Im s3 − s1 < C and Re s1 − s3 > N

• all x in the region I, canonical distance < δ/2 and such that Re s1 − s3 > N

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s3 + N from the right;

• Upper boundary at Im s3 − A

• Lower boundary at max{Im s3 −B − δ, Im s3 −C}(possibly, with a slot cut out around a singu-
larity)

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.
The lemma also applies when xt is a generalized turning point.

Proof: see fig. 28 2

As before, assume s1(xt) = s2(xt).

Lemma 5.10 Suppose s1 is a moving and s3 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. We assume that the function G is constructed
in region D ⊂ Cs ×Cx with the projection to Cx concentrated in II, in I near ℓ, in III near ℓ′′ so that
−δ < Im s1(x) − s2(x) < 2δ, and the fiber over x ∈ Cx defined similar to fig.13, i.e.:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary (with possibly a slot cut out around s1) at Im s1 + δ;

• Lower boundary: (with possibly a slot cut out around s2) at Im s2 − δ,

AND RjG is defined on all points of this chart that project to the subset of the region II with Im s1 −
s2 > δ,
THEN: RjG is also defined on the same set.

Proof Draw the integration path by moving x further from the Stokes curve as shown on the
figure fig.29. 2

Lemma 5.11 Suppose s1 is a moving and s2 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. Let A > 0, ε > 0. We assume that the function
G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s1(x) − s2(x) < A + δ.

• for x in the region I, canonical distance < δ/2 from the Stokes curve ℓ;

and the fiber over x ∈ Cx as follows:
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Figure 30: Lemma 5.11.

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary: (with possibly a slot cut out around s1)

– at Im s1 + δ + min{A − Im (s1 − s2), 0} when Re s1 − s2 < N and x is inside II distance
> δ from ℓ, ℓ′′;

– Im s2 + A + δ a) when Re s1 − s2 > N , or b) when Im s1 − s2 < δ (i.e. near ℓ′′ in II or
near ℓ in I or II);

• Lower boundary at Im s2 + ε.

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.

Proof cf. fig. 30 2

Supplement to Lemma 5.11. The same lemma also holds if we fix a ε′ > 0 take the lower
boundary to be Im s2 − ε′ for Re s < Re s2 and Im s2 + ε for Re s > Re s2.

Lemma 5.12 Suppose s1 is a moving and s2 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. Suppose δ < A. We assume that the function
G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s1(x) − s2(x) < A.
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Figure 31: Lemma 5.12

• for x in the region I, canonical distance < δ/2 from the Stokes curve ℓ;

• for x in the region III, canonical distance < δ/2 from the Stokes curve ℓ′′;

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary:

– at Im s1 − δ inside II when x is canonical distance > δ/2 from ℓ, ℓ′′ and Re s1 − s2 < N ;

– Im s2 + A − δ a) when Re s1 − s2 > N , or b) when Im s1 − s2 < δ;

• Lower boundary:

– Im s2 − δ when Im s1 − s2 > δ.

– according to fig.13 when x is in any of the regions I,II,III with canonical distance δ/2 from
ℓ, ℓ′′.

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.

Proof follows from fig.31. 2

Lemma 5.13 Suppose s1 is a moving and s2 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. Suppose A ≥ 0. We assume that the function
G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s1(x) − s2(x) < A + δ.

• for x in the region I, canonical distance < δ/2 from the Stokes curve ℓ;

• for x in the region III, canonical distance < δ/2 from the Stokes curve ℓ′′;

and the fiber over x ∈ Cx as follows:

24



�
�

�

�

p
�p

�

���
p
�

� q
� q q

Figure 32: Lemma 5.13.

�
�

�

� r
�

r
�

���r
�

r s
� t

� t tu
�

v w
x x x

Figure 33: Lemma 5.14

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary: (with a possible slot for s1)

– at Im s1 + min{δ, A − Im (s1 − s2)} in region and Re s1 − s2 < N ;

– Im s2 +A+δ a) when Re s1−s2 > N , or b) when Im s1−s2 < 0 (i.e. when x is in regions
I or III);

• Lower boundary:

– Im s2 − δ when Im s1 − s2 > 0.

– according to fig.13 when x is in any of the regions I or III.

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.

Proof follows from fig.32. 2

Lemma 5.14 Suppose s1, s3 are moving and s2 is a stationary singularity and s3(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. Fix two constants A ∈ R, C > 0. We assume
that the function G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s3 − s2 < A;
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• for x in the region I, canonical distance < ρ0 from xt (for any arbitrarily small ρ0 > 0);

• for x in the region Zero – canonical distance < δ/2 from the Stokes curve ℓ′.

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary consists of the following line segments, with slots cut out around singularities
as explained earlier:

– at Im s2 + δ for x a) inside II distance > δ/2 from ℓ, or inside II arbitrarily close to ℓ′′; b)
also in II canonical distance < δ/2 from ℓ if there is no singularity s3 in II confluent with
s2 at xt; c) also inside I close to xt;

2

– at min{Im s2 + δ, Im s3} for Re s → −∞, and Im s2 + δ for Re s > Re s2 along ℓ′′, when
there is singularity s3 in II confluent with s2 at xt;

– for x in region Zero, at Im s2 + δ for Re s < Re s2 and Im s3 for Re s > Re s2;

• Lower boundary: at Im s2 − C, 3

AND RjG is defined on all points of this chart that project to the region Zero,
THEN: RjG is also defined on the same set.

Proof. The integration path on figure 33 is the integration path from a point in region Zero to
other values of x under consideration. 2

Lemma 5.15 Suppose s1 is a moving and s2, s4 are stationary singularities and s1(xt) = s4(xt), and
Re s1 decreases along ℓ in the direction away from xt. Assume Im [s2(xt) − s1(xt)] − A > δ. We
assume that the function G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s2(x) − s1(x) > A;

2This means, intuitively, that there are no moving singularities between s2 and s3

3This means, in particular, that for any moving singularity s1 below s2 we have that Im s1 < Im s2 − C in the for
the values of x under consideration.
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• for x in the region I, canonical distance < δ/2 from the Stokes curve ℓ, and such that Re s1(x) <
Re s1(xt);

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary at Im s4 + C;

• Lower boundary: (with slots cut out around singularities)

– Inside II – at Im s1 − δ;

– Along ℓ (canonical distance < δ/2 on both sides) – according to fig.13 if s4 is present on
the first sheet in I, or Im s1 − δ if s4 is absent on the first sheet in I;

– In the region II canonical distance < δ/2 from ℓ′′ (where Re s4 < Re s1: the lower boundary
is at Im s4 for −∞ < Re s < Re s4 and at Im s1 − δ for s in Re s4 < Re s < N .

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.

Proof See the integration path on figure 34. 2

Lemma 5.16 Suppose s1 is a moving and s2 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. Assume C > δ. We assume that the function
G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the regions I and II canonical distance < δ/2 from ℓ, i.e. for all x such that Re s1 <
Re s2 and |Im s2(x) − s1(x)| < δ;

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary at Im s2 + C;

• Lower boundary according to fig. 13

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.

Proof see fig. 35. 2

Lemma 5.17 Suppose s1 is a moving and s2 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. We assume that the function G is constructed
in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the regions I and II canonical distance < δ/2 from ℓ, i.e. for all x such that Re s1 <
Re s4 and |Im s4(x) − s1(x)| < δ;
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Figure 35: Lemma 5.16.

�
�

l
�

�
�

� �
�
�

l'

l''

� � � ��
Figure 36: Lemma 5.17

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary at Im s4 + δ (with a slot cut out around the singularity);

• Lower boundary at Im s1 − δ (with a slot cut out around the singularity)

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.

Proof see fig. 36. 2

Lemma 5.18 Suppose s1, s2 are stationary and s3 is a moving singularity and s3(xt) = s2(xt), and
Re s3 decreases along ℓ in the direction away from xt. Let B > δ, 0 < A < Im [s2 − s1] − δ 4 We
assume that the function G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Im s3(x) − s2(x) < B.

• for x in the region I, canonical distance < ρ0 (for some fixed ρ0 > 0) from xt;

4I.e. if there is a moving singularity s4 that appears from under the cut [s1,∞) in the region IV, we leave a space for
it between this cut and the red strip.
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Figure 37: Lemma 5.18.

• for x in the region I, canonical distance < δ/2 from the Stokes curve ℓ and satisfying Re s3(x)−
s2(x) > N ;

• for x in the region IV, canonical distance < δ/2 from the Stokes curve ℓ′;

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s1 + N from the right;

• Upper boundary: (with slots cut out around singularities)

– at Im s2 + δ a) inside II distance > δ/2 from ℓ, ℓ′′; b) in all x of our chart belonging to I.

– for x in II along ℓ (i.e., canonical distance < δ/2), and Re s3 < Re s2 the upper boundary
is at min{Im s3, Im s2 + δ} for Re s < Re s2 and at Im s2 + δ for Re s > Re s2;

– according to fig. 13 a) in II along ℓ′′, b) in IV along ℓ′.

• Lower boundary at Im s2 − A.

AND RjG is defined on all points of this chart that project to the region I outside of the ρ0 neighborhood
of xt,
THEN: RjG is also defined on the same set.

Proof by fig.37 2

Lemma 5.19 Suppose s1 is a moving and s2 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. Let B > δ. We assume that the function G is
constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the regions I and II along ℓ so that −δ < Im s1(x) − s2(x)| < 2δ.

• for x in the region I, canonical distance < δ from the Stokes curve ℓ′ (i.e. Im s2 − s1 < 2δ) and
satisfying Re s1(x) − s2(x) > N ;

• for x in the regions I and IV, canonical distance < δ/2 from the Stokes curve ℓ′;

and the fiber over x ∈ Cx as follows:
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Figure 38: Lemma 5.19.

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary: (with slots cut out around singularities)

– at min{Im s1 + δ, Im s2 +2δ for Re s < Re s2 and at min{Im s1 + δ, Im s2 + δ} for Re s >
Re s2.

– according to fig. 13 in I and IV can. distance < δ/2 from ℓ′.

– at Im s2 + δ for Im s1 − s2 > N .

• Lower boundary at Im s2 − B.

AND RjG is defined on all points of this chart that project to the region I satisfying Im s1 − s2 > δ,
THEN: RjG is also defined on the same set.

Proof: Draw the integration integration path as on fig. 38. 2

Lemma 5.20 Suppose s1 is a moving and s2 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. Let B > δ. We assume that the function G is
constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the regions I and II along ℓ so that −δ < Im s1(x) − s2(x)| < 2δ.

• for x in the regions I and IV, canonical distance < δ/2 from the Stokes curve ℓ′;

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = Re s2 + N from the right;

• Upper boundary: (with slots cut out around singularities)

– at min{Im s1 + δ, Im s2 +2δ for Re s < Re s2 and at min{Im s1 + δ, Im s2 + δ} for Re s >
Re s2.

– according to fig. 13 in I and IV canonical distance < δ/2 from ℓ′.

• Lower boundary at Im s2 − B.
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AND RjG is defined on all points of this chart that project to the region IV ,
THEN: RjG is also defined on the same set.

Proof analogous to Lemma 5.19. 2

Lemma 5.21 Suppose s1 is a moving and s2 is a stationary singularity and s1(xt) = s2(xt), and
Re s1 decreases along ℓ in the direction away from xt. Let 0 < δ < C. We assume that the function
G is constructed in region D ⊂ Cs × Cx with the projection to Cx:

• for x in the region II, for all x such that Re s1 − s2 > −ρ, Im s1 − s2 < δ;

• for x in the region I canonical distance < δ/2 (i.e. Im s2 − s1 < δ) from the Stokes curve ℓ;

• for x in the region III canonical distance < δ (i.e. Im s2 − s1 < 2δ) from the Stokes curve ℓ′′;

and the fiber over x ∈ Cx as follows:

• unbounded in the −∞ direction, bounded by Re s = N from the right;

• Upper boundary at Im s2 + C;

• Lower boundary (with slots cut out around singularities):

– for |Im s2 − s1| < δ – according to fig.13;

– for δ ≤ Im s2 − s1 < 2δ – at Im s2 − δ

AND RjG is defined on all points of this chart that project to the region I,
THEN: RjG is also defined on the same set.

Proof is shown on fig. 39. 2

5.4 Applications of lemmas 5.2-5.21 ...

We will now consider case by case situations when x is in each of the Stokes regions (except for region
A which has already been considered) and along each of the internal Stokes curves or generalizes
Stokes curves, and s is in one of the subsets of S described above, and point out which lemma needs
to be applied in order to construct an integration path leading from x to an earlier Stokes regions.
We will discuss cases of R1G and R2G separately.
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5.4.1 ... towards constructing R1G.

For x along the curve L1:

• chart (S + i0) – Lemma 5.15.

• chart (S − i0,−s1 + i0) – Lemma 5.10; this uses the existence of R1G in region B, strip between
S(x) and −s1(x), which will be shown in a minute.

• chart (S − i0,−s1 − i0) – Lemma 5.19.

For x in the region B:

• above S(x) – Lemma 5.15.

• between S(x) and −s1(x) – Lemma 5.13, with A = 2Im [S(x2)−S(x1)]. This lemma applies for
all x in B except those for which Im S(x2)−S(x) < δ, and this case will be studied in the proof
for x along L2 and L′

2.

• between −s1 and −S: from the flap along (−s1,∞) to Im [−S]+δ – Lemma 5.18; from Im [−s1]−
δ to the flap along (−s1,∞) – Lemma 5.2. 5

• below −S – Lemma 5.2, with a remark analogous to footnote 5 .

For x around the curve L2:

• chart (S + i0) – Lemma 5.15

• chart (S − i0,−s2 + i0) – Lemma 5.10; application of this lemma uses the existence of R1G in
region B, in the strip between S and −s2, which will be shown below.

• chart (S − i0,−s2 − i0) – Lemma 5.19.

For x in the region C:

• above S(x) – Lemma 5.15.

• between S and −s2 – Lemma 5.13

• between −s2 and −s1: from the flap along (−s2,∞) to Im [−s1] + δ – Lemma 5.18. From
Im [−s2] − δ to the flap along (−s1,∞) – Lemma 5.2, with a remark analogous to footnote 5 .

• between −s1 and −S, below −S – Lemma 5.2, with a remark analogous to footnote 5 .

For x along the curve L′

2:

5To be more precise, Lemma 5.2 should be first applied to to the subset of region B where the flap along (−s1,∞)
is of size δ. Then, for every 0 < δ′ < δ consider the subset of point x in B distance ≥ δ′ from the Stokes curve L2 and
apply the same Lemma 5.2 with δ′ instead of δ to construct the analytic continuation to the flap of this size for such x.
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• chart (−s2 + i0, S − i0) – Lemma 5.10;

• chart (−s2 + i0, S + i0) – Lemma 5.21;

• charts (−s1 + i0), (−S + i0) – Lemma 5.2;

• charts (−s2 − i0, S + i0), (−s1 − i0,−s12′ + i0), (−S − i0,−s2′ + i0) – Lemma 5.7 (which uses a
construction in Zone D to be discussed below)

• charts (−s2 − i0, S − i0), (−s1 − i0,−s12′ − i0), (−S − i0,−s2′ − i0) – proof follows from Lemma
5.4 and can be done together with the case of region D, strips between S and −s1, between −s12′

and −s2′ , and under −s2, respectively.

For x in the region D:

• above −s2 – by Lemma 5.3.

• between −s2 and S, between −s1 and −s12′ , between −S and −s2′ – an obvious modification of
the Lemma 5.6.

• between S and −s1, between −s12′ and −S, under −s2′ – are done by an obvious modification
of Lemma 5.4, where the lower boundary can be made to contain a stationary singularity or go
all the way down to −i∞.

For x along the curve L3:

• chart (S + i0,−s1 − i0) – an obvious modification of Lemma 5.7

• chart (S + i0,−s1 + i0) – the situation of x in region D reduces to that of x in region D′ by
Lemma 5.16; for x in the region D′ apply Lemma 5.4;

• chart (S − i0,−s1 + i0) – use Lemma 5.17 to cross L3 into the region D;

• chart (S − i0,−s1 − i0) – use Lemma 5.16 to cross L3 into the region D.

For x along the curve L′

3:

• chart (−s1 − i0, S + i0) – an obvious modification of Lemma 5.7;

• chart (−s1 + i0, S + i0) – an obvious modification of Lemma 5.5

• chart (−s1 − i0, S − i0) – Lemma 5.4

• chart (−s1 + i0, S− i0) – draw a piece of the integration path starting at x with Re S(x) = const
and Im S(x) increasing, until reaching region D.

For x in the region D′:

• between −s1 and S – Lemma 5.6;
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• between S and −s12′ – covering the region D′ by sufficiently small sets, can apply Lemmas 5.8
and 5.9 on each of them.

The rest of the first sheet is constructed analogously to the case of region D.

For x along the curve L′′

2:

• charts (S− i0), (−s1 + i0,−s12′ − i0), (−S + i0,−s2 − i0) – obvious modifications of Lemma 5.7;

• charts (S + i0), (−s1 + i0,−s12′ + i0), (−S + i0,−s2 + i0) – Lemma 5.4;

• charts (−s12′ − i0), (−s2′ − i0) – Lemma 5.2

For x in the region E:

• above S – Lemma 5.4;

• between S and −s12′′ – The situaton of x canonical distance < δ/2 from L′′

2 has been treated
above; the rest of the region F can be covered by projections of sets G as in Lemmas 5.8 and
5.9.

• between −s12′′ and −s1 – Lemma 5.6.

• between −s1 and −s2′′ – an obvious modification of Lemma 5.4, with a stationary singularity
on the lower boundary of Gx.

• between −s2′′ and −S – Lemma 5.6;

• below −S – Lemma 5.2.

For x along the curve L′′

1:

• chart (−s1 + i0, S − i0) – Lemma 5.10;

• chart (−S + i0) – Lemma 5.2;

• chart (−s1 + i0, S + i0) – Lemma 5.21;

• charts (−s1 − i0, S + i0), (−S − i0,−s1′′ + i0) – obvious modification of Lemma 5.7 using
construction performed in the region F (see below);

• charts (−s1 − i0, S − i0), (−S − i0,−s1′′ − i0) – Lemma 5.4;

For x in the region F:

• above −s1 – Lemma 5.3

• between −s1 and S, between −S and −s1′′ – use an obvious modification of Lemma 5.6.

34



• between S and −S: without loss of generality, assume Im S(x) − [−S(x)] = 2Im S(x) > 2δ
(otherwise reduce the situation to this one by drawing a piece of the integration path such that
Im S increases and Re S stays constant along it). Now for the part of the strip from the flap
along (S,∞) to Im (−S(x)) + δ use Lemma 5.4, and for the part of the strip from Im S(x) to
Im − S(x) − δ use Lemma 5.5.

• below −s1′′ – Lemma 5.4.

For x along the curve L′

1

• chart (−S + i0,−s1′ − i0), resp., (S − i0) – Lemma 5.7, resp., its obvious modification (uses
construction in the region G that will be formulated later);

• chart (−S + i0,−s1′ + i0), resp., chart (S + i0) – Lemma 5.4, resp., its obvious modification

• chart (−S − i0) – Lemma 5.2;

For x in the region G:

• above S – use an obvious modification of Lemma 5.4 for a red strip extending to −i∞;

• between −S and −s1′ – covering the region G by appropriately small enough subsets, we can
apply on each of them Lemmas 5.8 and 5.9;

• between −s1′ and −S – obvious modification of Lemma 5.6 for a red strip without flap;

• under −S – Lemma 5.2, with a remark analogous to footnote 5 .

5.4.2 ... towards constructing R2G.

For x along the curve L1:

• chart (S + i0) – Lemma 5.2;

• chart (S − i0,−s1 + i0), resp., (−S + i0) – Lemma 5.7, resp., its obvious modification, using a
construction in the region B (see below);

• chart (S − i0,−s1 − i0), resp., (−S − i0) – Lemma 5.4, resp., its obvious modification where the
stationary singularity is not visible on the first sheet.

For x in the region B:

• above S – Lemma 5.2

• between S and −s1 – Lemma 5.6. (Note that for x canonical distance < δ/2 from L2 or L′′

2, the
analytic continuation to a flap of a correct size along the cut (−s1,∞) will be obtained below)
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• between −s1 and −S – covering the region B by appropriately small enough subsets, we can
apply on each of them Lemmas 5.8 and 5.9. (Note that for x canonical distance < δ/2 from L2

or L′′

2, the analytic continuation to a flap of a correct size along the cut (−S,∞) will be obtained
below)

• below −S – a modification of Lemma 5.4 where the red strip extends to −i∞.

For x along the curve L2:

• chart (S + i0) – Lemma 5.2;

• chart (S−i0,−s2+i0), resp. (−s1+i0) and (−S+i0) – Lemma 5.7, resp., its obvious modification
(using a construction in the region C mentioned below);

• chart (S−i0,−s2−i0), resp. (−s1−i0) and (−S−i0) – Lemma 5.4, resp., its obvious modification
where the stationary singularity is not visible on the first sheet.

For x in the region C:

• above S – Lemma 5.5;

• between S and −s2 – Lemma 5.6 with a remark similar to footnote 5 to account for the smaller
flap sizes when Im S(x) approaches A′;

• between −s2 and −s1 – covering the region C by appropriately small enough subsets, we can
apply on each of them Lemmas 5.8 and 5.9;

• between −s1 adn −S – a similar application of Lemmas 5.8 and 5.9, except that a singularity
with which −s1 should be confluent at x2 is not visible on the first sheet;

• below −S – an easy modification of Lemma 5.4 due to the fact that the singularity with which
−S would be confluent at x2 is not visible on the first sheet.

For x along the curve L′

2:

• chart (−s2 + i0, S − i0) – Lemma 5.17;

• chart (−s2 + i0, S + i0) – Lemma 5.16;

• charts (−s1 + i0), (−S + i0) – use an obvious modification of Lemma 5.17 where the stationary
singularity is not present on the same sheet as the region G.

• charts (−s2 − i0, S + i0), (−s1 − i0,−s12′ + i0), (−S − i0,−s2′ + i0) – Lemma 5.10, using the
construction in the region D to be performed below.

• charts (−s2 − i0, S + i0), (−s1 − i0,−s12′ + i0), (−S − i0,−s2′ + i0) – Lemma 5.20.

For x in the region D:
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• above −s2 – use an obvious modification of Lemma 5.15 where the red region extends all the
way up to +i∞.

• between −s2 and S, between −s1 and −s12, between −S and −s2′ (in both cases for x canonical
distance > δ/2 from L′

2) – Lemma 5.13.

• Strip between S(x) and −s1(x) – lemmas 5.14 and 5.15. (Note that for x canonical distance
< δ/2 from L3 or L′′

3, the analytic continuation to the flap of a correct sizewill be obtained
below)

• Strip between −s12′(x) and −S(x) – Lemmas 5.14 and 5.15 for the subset where Im −s12′+S ≥ δ;
when 0 < Im − s12′ + S < δ we can proceed as in the situation of two decoupled singularities,
one diving under the cut starting at the other.

• under −s2′ – Lemma 5.14.

For x along L3 and L′

3. – The argument almost repeats that for R1, once we interchange L3 and L′

3,
reverse the roles of −s1 and S, and reflect the charts in the s-plane with respect to a horizontal axis.
The only asymmetry of the situation to keep in mind comes from the fact that we do not construct
one of the flaps of the Riemann surface along the cut [S(x),+∞).

For x in the region D′:

• between −s2 and −s1 – cover D′ by small enough subsets and apply Lemmas 5.8 and 5.9 on
each of those subsets to cross the curve L3 into the region D

• between −s1 and S – an obvious modification of Lemma 5.6.

• between S and −s12′ – from Im S + δ to Im − s12′ – Lemma 5.5; from Im S − δ to Im − s12′ –
Lemma 5.2.

The construction of an analytic continuation to the rest of the first sheet can be done simultaneously
for the regions D and D′; the arguments given for the region D apply.

For x along the curve L′′

2:

• charts (−s1 + i0,−s12′ − i0), (−S + i0,−s2 − i0) – supplement to Lemma 5.11;

• charts (−s1 + i0,−s12′ + i0), (−S + i0,−s2 + i0) – Lemma 5.19;

• charts (−s1 − i0), (−S − i0) – an obvious modification of Lemma 5.16 or 5.17.

For x in the region E:

• above S(x) – Lemma 5.2;

• between S and −s12′′ : from the flap along (S,∞) down to Im [−s12′′ ] + δ – Lemma 5.2; from
Im S − δ down to flap along (−s12′′ ,∞) – Lemma 5.18.

• between −s12′′ and −s1 – Lemma 5.11.
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• between −s1 and −s2′′ : without loss of generality, assume Im −s1(x)−[−s2′′(x)] > 2δ (otherwise
reduce the situation to this one by drawing a piece of the integration path such that Im S
decreases and Re S stays constant along it). Now for the part of the strip from the flap along
(−s1,∞) to Im (−s2′′(x)) + δ use Lemma 5.15, and for the part of the strip from Im − s1(x) to
the flap along (−s2′′(x),∞) use Lemma 5.18.

• between −s2′′ and −S – Lemma 5.11 and its supplement with ε′ = min{δ, Im − s1(x) + s2(x)}

• under use an obvious modification of Lemma 5.15 where the red region extends all the way up
to +i∞.

For x along the curve L′′

1

• chart (−s1 + i0, S − i0) – Lemma 5.17;

• chart (−s1 + i0, S + i0) – Lemma 5.16;

• charts (−s1 − i0, S + i0), (−S − i0,−s1′ + i0) – Lemma 5.20

• chart (−s1 − i0, S − i0), (−S − i0,−s1′ − i0) – Lemma 5.17

• chart (−S + i0) – use an obvious modification of Lemma 5.17 where the stationary singularity
is not present on the same sheet as the region G.

For x in the region F:

• above −s1 – obvious modification of Lemma 5.15 where the red region extends all the way up
to +i∞;

• between −s1(x) and −S(x), between −S(x) and −s1′(x) – Lemma 5.11.

• between S and −S: without loss of generality, assume Im S(x) − [−S(x)] = 2Im S(x) > 2δ
(otherwise reduce the situation to this one by drawing a piece of the integration path such that
Im S increases and Re S stays constant along it). Now for the part of the strip from the flap
along (S,∞) to Im (−S(x)) + δ use Lemma 5.14, and for the part of the strip from Im S(x) to
Im − S(x) − δ use Lemma 5.15.

• below −s1′′ – Lemma 5.3.

For x along the curve L′

1:

• chart (−S − i0) – Lemma 5.15;

• chart (−S + i0,−s1′ − i0) – an obvious modification of the supplement to Lemma 5.11;

• chart (−S + i0,−s1′ + i0) – Lemma 5.19

For x in the region G:

38



• above S – Lemma 5.2, with a remark similar to footnote 5 ;

• between S and −s1′ : from the flap along (S,∞) to Im [−s1′ ] + δ use Lemma 5.2, with a remark
analogous to footnote 5 , from Im S − δ to the flap along (−s1′ ,∞) – Lemma 5.18.

• between −s1′ and −S – Lemma 5.11.

• below −S – an obvous modification of Lemma 5.15 where the red strip is infinite in the vertical
direction.

This finishes the proof of the theorem. 2

6 Concluding remarks

It is immediate to see from the decription of S that once x goes one loop around the turning points x1

or x2, the locations of the singularities of the fiber Sx remains the same up to a permutation, except
for one singularity in each case: namely, the singularity S(x) is present in the zones D and F, but the
corresponding singularity is absent in the zones E and G.

Assuming that the series (8) converges and Φ(s, x) := Ỹ f(s) indeed gives a solution to the equation
(6), we can use the observation of [V83], page 243 and on, that the Laplace integral of Φ(s, x) gives
a solution of (5) which is unramified at x1 and x2, and hence show that Φ(s, x) has only a removable
singularity at S(x) for x in the zones D and E, and also show the relations between other singularities
in the zones D and E, F and G that would amount to asymptotic connection formulas. Also notice
that we do not need to introduce a cut in D̃ starting at a generalized turning point x3, for the following
reason. When we construct an integration path that leads from the region D to the region D′, we can
circle around x3 in either direction. Since x3, unlike x1 and x2, is not a ramification point of S(x),
the result of the analytic continuation of RjF will not depend on the way we went around x3.
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[E] J.Écalle, Les fonctions résurgentes. Publications Math. d’Orsay, preprint, 1981

[G] A.Getmanenko, Resurgent analysis of the Witten Laplacian in one dimension.
arXiv:0809.0441v2.

[ShSt] V.E.Shatalov, B.Yu.Sternin, Borel-Laplace transform and asymptotic theory. Introduction to
resurgent analysis. CRC Press, Boca Raton, FL, 1996.

[V83] A.Voros, Return of the quatric oscillator. The complex WKB method. Ann. Inst. H.Poincaré
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