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PERIODIC AND HOMOCLINIC TRAVELLING WAVES IN

INFINITE LATTICES

PERCY D. MAKITA

Abstract. Consider an infinite lattice of particles in one dimension subjected
to a potential f and such that each site interacts (only) with its nearest neigh-
bours under an interaction potential V . The dynamics of the system is de-
scribed by the infinite system of second order differential equations

q̈j + f ′(qj) = V ′(qj+1 − qj) − V ′(qj − qj−1), j ∈ Z.

We investigate the existence of travelling wave solutions. Two kinds of such
solutions are studied: periodic and homoclinic ones. On the one hand, we

prove under some growth conditions on f and V , the existence of non-constant
periodic solutions of any given period τ > 0, and any given speed c > c0. On
the other hand, under very similar conditions, we establish the existence of

non-trivial homoclinic solutions, of any given speed c > c0, emanating from
the origin. Theses homoclinics are obtained as limits of periodic solutions by
letting the period go to infinity.

1. Introduction

We consider an infinite lattice of particles in one dimension subjected to a po-
tential f . In addition, each particle interacts with its nearest neighbours under a
(non-linear) interaction potential V . The dynamics of the system is described by
the infinite system of second order ordinary differential equations:

(1.1) q̈j(t) + f ′(qj) = V ′(qj+1(t) − qj(t)) − V ′(qj(t) − qj−1(t)), t ∈ R, j ∈ Z,

where f, V ∈ C1(R).
For f ≡ 0, (1.1) is the usual lattice equation, sometimes called the Fermi-Pasta-

Ulam (FPU) lattice. For f(x) = K(1 − cos x), with K > 0, (1.1) is sometimes
called the discrete sine-Gordon (DSG) equation, even if V is not harmonic, i.e.
V (x) 6= α

2 x2.
As it is well known, (1.1) is an infinite-dimensional Hamiltonian system whose

Hamiltonian is ‘formally’ given by

H =
∑

j∈Z

[
1

2
p2

j + f(qj) + V (qj+1 − qj)

]

.

Under the summation, the first term represent the kinetic energy of the j-th particle
and the remaining terms (containing qj) represent its ‘potential energy’.

The aim of this paper is to investigate the existence of periodic and homoclinic
travelling waves. A travelling wave, say with speed c > 0 and profile u, is a solution
of (1.1) of the form

(1.2) qj(t) = u(j − ct), j ∈ Z.
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Plugging the Ansatz (1.2) into (1.1) yields the second order backward-forward dif-
ferential equation for the wave profile:

(1.3) c2ü + f ′(u) = V ′(Au) − V ′(A∗u),

where the difference operators A and A∗ are defined by

Au(t) = u(t + 1) − u(t) = A∗u(t + 1), t ∈ R.1

The study of lattice dynamical systems goes back to Fermi, Pasta and Ulam [3]
who studied by numerical methods the dynamics of a finite lattice of partciles
with nearest-neighbour interaction. Since then, the study of infinite lattices has
become a mathematical subject on its own right. Many authors have studied the
FPU lattice. However, the most significant results we can think of are certainly
due to Friesecke and Wattis [4]. They proved for the first time a global existence
result for travelling waves in the FPU lattice. Their approach was to minimize
the ‘kinetic energy’ over the set of states with a given ‘potential energy’. They
solved the variational problem, under some superquadratic growth condition on
the interaction potential, using Lions’ concentration compactness principle. The
speed of travelling waves was then given as some unknown Lagrange multiplier.
Also, they showed the optimality of the growth condition satisfied by V by proving
the non-existence of travelling waves for quadratic potentials. Smets and Willem
[12] also proved the existence of travelling waves, with prescribed speed instead.
They used a completely different approach from the one in [4]. More precesily,
using a variant of the mountain pass theorem, a travelling wave was obtained as a
critical point of ‘the action functional’ defined on some Hilbert space on which the
Palais-Smale compactness condition 2 is not satisfied.

The DSG equation have also drawn the attention of many authors. For the sake
of brevity, we will just mention the recent paper by Kreiner and Zimmer [5] in which
they considered the DSG equation in a generalized set up. There, they proved the
existence of non-constant periodic travelling waves with period bigger than some
unknown constant. For this, they considered an interaction potential V of type
(A.0) with α > 0 and non-quadratic part W satisfying the global growth condition
(A.3). Furthermore, they also proved the existence of homoclinic travelling waves
with prescribed speed, but the non-quadratic part of the coupling has a special
form, namely W (x) = ǫ0|x|β with ǫ0 > 0 and β ≥ 3.

Roughly speaking, two main results (Theorem 1.1 and Theorem 1.2) are estab-
lished in the present note. In Theorem 1.1, we prove, under some superquadratic
growth condition on both V and f , the existence of a periodic travelling wave of any
given period and whose speed is bounded below by ‘max(0, α = V ′′(0))’ (same lower
bound as in [12]). The quadractic part of the coupling is not necessarily positive,
i.e. α ranges over R and its non-quadratic part, W , belongs to a larger class than
the one considered in [4, 12, 5]. The non-quadratic parts of both f and V satisfy
the growth condition (A.2), which is a growth condition at infinity. The assump-
tions on f are precisely those on the potential (or Hamiltonian) in [8]. Therefore,
periodic travelling waves with period 1 always exist since they are solutions of the
Hamiltonian equation

(HS) ü + c−2f ′(u) = 0,

which, by a result of Rabinowitz [8] possesses indeed a 1-periodic solution.
In Theorem 1.2 we prove the existence of a travelling wave which is homoclinic

to 0. Specifically, this is obtained as limit of periodic solutions by letting the period
go to infinity. This approach is borrowed from [11] where a homoclinic solution of

1The variable t here does not represent the time but the displacement
2In the future to be referred to as the (PS) condition.
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(HS) is constructed as limit of a sequence of subharmonics. It is, of course, not
difficult to show that Theorem 1.2 holds true for a linear (or weak) coupling, i.e.
V (x) = α

2 x2. Such a case was studied in [6], with techniques other than those we
are using and completely different assumptions on f .

Note that if V ′(0) = 0 and x0 is a critical point of f , then the constant function
t 7→ x0 is a solution of (1.3), in particular it is 1-periodic. Conversely, if u is a
1-periodic solution of (1.3), as aforementioned, u solves (HS). For this reason, we
shall only deal with periodic solutions with periods in (0, 1) ∪ (1,∞).

As it is well known in the Calculus of Variations, solutions of (1.3) can be
obtained as critical points of the the action functional

(1.4) Φ(u) =

∫

T

[
c2

2
u̇2 − f(u) − V (Au)

]

dt,

defined on some appropriate Hilbert space E, where T ⊆ R.
When the Palais-Smale compactness condition is satisfied, the critical points

of Φ can be detected with the aid of the mountain pass theorem, or some of its
variants. It will be shown that under some conditions on f and V , Φ satisfies
the (PS) condition when T is a segment. However, if T = R, this condition is
never fulfilled. This is due to the invariance of the functional under the action
R × E → E, (s, u) 7→ u(· + s).

Organization of the paper. The main results are stated in the end of the present
section. Preliminary results are collected in the next section. The third section
is devoted to the proof of the first result (Theorem 1.1), while the second result
(Theorem 1.2) is proven in the last section.

Main results. Throughout this paper, we shall consider potentials V and f of the
type

(A.0) V (x) =
α

2
x2 + W (x), f(x) = −ω0

2
x2 + g(x), where α and ω0 are real

constants.

The non-quadratic part h ∈ {g,W} shall satisfy either

(A.1) h(x) = o(x2) as x → 0,
(A.2) h ≥ 0 and there are constants β > 2, r0 > 0 such that

βh(x) ≤ xh′(x) for |x| ≥ r0,

or

(A.3) there is a constant β > 0 such that

= 0 < βh(x) ≤ xh′(x) for x 6= 0.

It is clear that if h satisfies (A.3), it also satisfies (A.1), and if it satisfies either
(A.3) or (A.2), then there exists some constants a0, a1 > 0 such that the following
holds true:

(A.4) h(x) ≥ a0|x|β − a1 for all x.

Let c0 ≥ 0 be given by

(1.5) c0 :=

{
0 if 4α+ < ω0 < ∞√
α+ if 0 ≤ ω0 ≤ 4α

,

where the notation α+ stands for max(0, α).
The main results are the following:

Theorem 1.1. Let V and f be C1 functions given by (A.0), with ω0 = 0. Suppose
W and f satisfy (A.1),(A.2). Then, for every τ > 0, and every c > c0, (1.3)
possesses a non-constant τ -periodic solution.
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Theorem 1.2. Let V and f be C1 functions given by (A.0), where ω0 > 0, and
the non-linearities W and g satisfy (A.3). Then, for every c > c0, (1.3) possesses
a non-trivial homoclinic solution emanating from the origin.

Remark 1.1. Theorem 1.2 remains true in the particular case of a linear coupling,
i.e. when V (x) = αx2/2, where α is a real constant. The case V ≡ 0 corresponds to
the one-dimenional Hamiltonian system (HS), and will not therefore be considered
in this note. For α > 0 ≡ W , one can think of (1.3) as describing the dynamics of
an inifinite chain of particles connected with springs of common constant α. In the
litterature such a coupling is often referred to as harmonic. In the case of quadratic
potential and coupling, it is easy to show with a direct method (Fourier transform)
that there are no travelling waves (see, e.g., [4]). Note that, under the assumptions
of Theorem 1.1 (resp. of Theorem 1.2), (1.1) admits 0 as a solution which will be
refer to as the trivial one.

2. Preliminary reults

In this section we give some preliminaries that are needed in the sequel. Let us
first fix some noatations. Given τ > 0, we denote by H1

τ the space of τ -periodic
functions whose resctriction to [0, τ ] belong to H1([0, τ ]). Similarly, we introduce
the notations Lp

τ and Ck
τ .

Lemma 2.1. The difference operator A : H1
τ → L∞

τ ∩ L2
τ is bounded and

(2.1) ‖Au‖L2
τ
≤ ‖u̇‖L2

τ
, ‖Au‖L∞τ ≤ l(τ)‖u̇‖L2

τ
,

with

(2.2) l(τ) =

{ √

[1/τ ] + 1 if 0 < τ < 1
1 if τ ≥ 1

,

where [s] denotes the integer part of s.

Proof. Let u ∈ H1
τ and t ∈ R. Using Jensen’s inequality successively, the change of

variable s ↔ s + t, and Fubini’s Theorem, we get
∫ τ

0

(∫ t+1

t

u̇(s)ds

)2

dt ≤
∫ τ

0

(∫ t+1

t

u̇2(s)ds

)

dt

=

∫ τ

0

(∫ 1

0

u̇2(s + t)ds

)

dt

=

∫ 1

0

(∫ τ

0

u̇2(s + t)dt

)

ds

=

∫ 1

0

‖u̇‖2
L2

τ
ds.

Therefore

‖Au‖2
L2

τ
=

∫ τ

0

(Au(t))2dt ≤ ‖u̇‖2
L2

τ
.

For the second estimate we use the Cauchy-Schwarz inequality:

|Au(t)| ≤
∫ t+1

t

|u̇(s)|ds ≤
[∫ t+1

t

u̇2(s)ds

]1/2

.

Therefore, if τ ≥ 1, we get

|Au(t)| ≤
[∫ t+τ

t

u̇2(s)ds

]1/2

= ‖u̇‖L2
τ
.

If 0 < τ < 1, we set

n := [1/τ ].
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Then nτ ≤ 1 < (n + 1)τ . Again, by Cauchy-Schwarz inequality, it follows that

|Au(t)| ≤
[
∫ t+(n+1)τ

t

u̇2(s)ds

]1/2

=

[

(n + 1)

∫ τ

0

u̇2(s)ds

]1/2

≤
√

n + 1‖u̇‖L2
τ
,

and the proof is complete. �

Similarly one can prove that

Lemma 2.2. The difference operator A : E → L∞ ∩ L2 is bounded and

(2.3) ‖Au‖L2 ≤ ‖u̇‖L2 , ‖Au‖L∞ ≤ ‖u̇‖L2 .

Proof. See [12, Proposition 1] �

Finally, let us recall the following

Proposition 2.1. Let I be a compact interval. Then, there is a positive constant
Cs such

‖u‖L∞(I) ≤ Cs‖u‖H1(I) (∀u ∈ H1(I)).

Moreover, the embeddings H1(I) →֒ C(I) and H1(I) →֒ L2(I) are compact.

One can choose Cs to be
√

2 if |I| ∈ [1,∞), and
√

|I| + 1/
√

|I| if |I| ∈ (0, 1),
where |I| stands for the length of I.

Proposition 2.2. Let h ∈ C1(R) and I a compact interval. Then, the functional
h̄I : H1(I) → R defined by

h̄I(u) =

∫

I

h(u)

is C1 and its derivative is given by

h̄′
I(u)ξ = 〈h′(u), ξ〉L2(I)

for every u, ξ ∈ H1(I).

Proof. We set
Luξ = 〈h′(u), ξ〉L2(I).

It is clear that for every u ∈ H1(I), the map Lu is linear. On the other hand, h′

and u ∈ H1(I) are continuous, therefore ‖h′(u)‖L∞(I) < ∞. Thus

|Luξ| = |〈h′(u), ξ〉L2(I)| ≤ ‖h′(u)‖L2(I)‖ξ‖L2(I) ≤
√

|I|‖h′(u)‖L∞(I)‖ξ‖H1(I),

i.e.
sup

‖ξ‖H1(I)=1

|Luξ| ≤
√

|I|‖h′(u)‖L∞(I) < ∞,

meaning that Lu is bounded.
We shall now prove that h̄′

I(u) = Lu for every u ∈ H1(I).
Set

P = I × [0, 1].

Given u, ξ ∈ H1(I), we set

uξ(t, s) = u(t) + sξ(t) (∀(t, s) ∈ P )

Then

|h̄I(u + ξ) − h̄I(u) − Luξ| = |
∫

I

[h(u + ξ) − h(u) − h′(u)ξ] |

= |
∫

P

[h′(uξ) − h′(u)] ξdsdt|
= |〈h′(uξ) − h′(u), ξ〉L2(P )|
≤ ‖ξ‖L2(I)‖h′(uξ) − h′(u)‖L2(P )
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≤
√

|I|‖ξ‖H1(I)‖h′(uξ) − h′(u)‖L∞(P ),

Since uξ is continuous and P compact, so is its image K = uξ(P ). On the other
hand, h′ being continuous on R is certainly uniformly continuous on compact sub-
sets, therefore, for any ǫ > 0, there is a δ > 0 such that for any y, z ∈ K, if
|y − z| ≤ δ, then

|h′(y) − h′(z)| ≤ ǫ/
√

|I|.
Hence, if

‖ξ‖L∞(I) = ‖uξ − u‖L∞(P ) ≤ δ,

then we have

|h′(uξ(t, s)) − h′(u(t))| ≤ ǫ (∀(t, s) ∈ P ),

i.e.

‖h′(uξ) − h′(u)‖L∞(P ) ≤ ǫ.

It follows that

|h̄I(u + ξ) − h̄I(u) − Luξ| ≤ ǫ‖ξ‖H1(I),

i.e. h̄′
I(u) = Lu.

It only remains to prove the continuity of h̄′
I . So, let u ∈ H1(I) and let (um) be

a sequence in H1(I) that converges to u. We want to prove that h̄′
I(um) converges

to h̄′
I(u).

The boundedness of (um) in L∞(I), resulting from its convergence in H1(I) and
the continuous embedding of H1(I) into L∞(I), the continuity of u and the uniform
continuity of h′ on compact subsets imply that h′(um) → h′(u) in L∞(I). Hence,
given ǫ > 0 there is a positive integer m0 (depending on ǫ) such that if m ≥ m0

then

‖h′(u) − h′(um)‖L∞(I) ≤ ǫ/
√

|I|.
For any ξ ∈ H1(I) we have

|h̄′
I(u)ξ − h̄′

I(um)ξ| = |〈h′(u) − h′(um), ξ〉L2(I)|
≤ ‖ξ‖L2(I)‖h′(u) − h′(um)‖L2(I)

≤
√

|I|‖ξ‖H1(I)‖h′(u) − h′(um)‖L∞(I),

so that

sup
‖ξ‖H1(I)=1

|h̄′
I(u)ξ − h̄′

I(um)ξ| ≤
√

|I|‖h′(u) − h′(um)‖L∞(I).

Thus, if m ≥ m0, then

sup
‖ξ‖H1(I)=1

|h̄′
I(u)ξ − h̄′

I(um)ξ| ≤ ǫ,

which proves the continuity of h̄′
I . �

To end this section, let us prove the following

Proposition 2.3. Let h ∈ C1(R) satisfies (A.1). Then, the functional h̄∞ : E =
H1(R) → R defined by

h̄∞(u) =

∫

R

h(u)

is C1 and its derivative is given by

h̄′
∞(u)ξ = 〈h′(u), ξ〉L2

for every u, ξ ∈ E.
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Proof. Step 1: Well-definedness. Let us first make sure that h̄∞ takes only finite
values. Thanks to (A.1), there is a δ > 0 such that if |x| ≤ δ, then

h(x) ≤ x2.

On the other hand, if u is a member of E, then u(t) → 0 as |t| → ∞, and therefore
there is an r > 0, depending on δ, such that if |t| ≥ r, then

|u(t)| ≤ δ

2
.

It follows that

0 ≤ |h̄∞(u)| =

∣
∣
∣
∣

∫

R

h(u)

∣
∣
∣
∣

≤
∫

|t|≤r

|h(u)| +
∫

|t|≥r

u2

≤
∫

|t|≤r

|h(u)| + ‖u‖2
L2 < ∞,

Step 2: Differentiability of h̄∞. We claim that for every u ∈ E, the linear map Lu

defined by
Luξ = 〈h′(u), ξ〉L2 (∀ξ ∈ E)

is bounded.
Let us fix a u ∈ E. Since h′(x) = o(x) as x → 0, given ǫ > 0, there is a ρ0 > 0

such that if |x| ≤ ρ0 then

(2.4) |h′(x)| ≤ ǫ|x|
3(1 + ‖u‖E)

.

On the other u(t) → 0 as |t| → ∞, therefore there is an r > 0 depending on ρ0 such
that if |t| ≥ r then

|u(t)| ≤ ρ0.

Thus
∫

|t|≥r

|h′(u)|2 ≤
(

ǫ

3(1 + ‖u‖E)

)2 ∫

|t|≥r

u2

≤
(

ǫ

3(1 + ‖u‖E)

)2

‖u‖2
L2

≤
( ǫ

3

)2

< ∞,(2.5)

and ∫

R

|h′(u)|2 ≤
∫ r

−r

|h′(u)|2 +
( ǫ

3

)2

< ∞,

i.e. h′(u) ∈ L2. It follows from Cauchy-Schwarz inequality that

|〈h′(u), ξ〉L2 | ≤ ‖h′(u)‖L2‖ξ‖L2 ≤ ‖h′(u)‖L2‖ξ‖E

so that
sup

‖ξ‖E=1

|〈h′(u), ξ〉L2 | ≤ ‖h′(u)‖L2 < ∞.

We can now prove that h̄′
∞(u) = Lu for every u ∈ E. We set I = [−r, r]. Then,

by Proposition 2.1 we have h̄I ∈ C1(E, R). Therefore, there is a positive number
δ = δ(ǫ, r, u) (which one can assume to be less than or equal to min(1, ρ0/2)) such
that if ‖ξ‖E ≤ δ then

(2.6) |h̄I(u + ξ) − h̄I(u) − h̄′
I(u)ξ| ≤ ǫ

3
‖ξ‖E .

For the rest of this step we assume that ‖ξ‖E ≤ δ. Thanks to the mean value
theorem, and (2.4), we get

|h(u + ξ) − h(u)| ≤ ǫ|ξ| |u| + |ξ|
3(1 + ‖u‖E)
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whenever |t| ≥ r. It follows that
∫

|t|≥r

|h(u + ξ) − h(u)| ≤ ǫ

3(1 + ‖u‖E)

∫

|t|≥r

|ξ|(|u| + |ξ|)

≤ ǫ

3(1 + ‖u‖E)
‖ξ‖L2(‖u‖L2 + ‖ξ‖L2)

≤ ǫ

3(1 + ‖u‖E)
‖ξ‖E(‖u‖E + ‖ξ‖E)

≤ ǫ

3(1 + ‖u‖E)
‖ξ‖E(1 + ‖u‖E)

≤ ǫ

3
‖ξ‖E .(2.7)

Combining (2.5), (2.6), and (2.7) we get

|h̄∞(u + ξ) − h̄∞(u) − Luξ| ≤ |h̄I(u + ξ) − h̄I(u) − h̄′
I(u)ξ|

+ |
∫

|t|≥r

(h(u + ξ) − h(u))| + |
∫

|t|≥r

h′(u)ξ|

≤ ǫ

3
‖ξ‖E +

ǫ

3
‖ξ‖E +

∫

|t|≥r

|h′(u)||ξ|

≤ 2ǫ

3
‖ξ‖E +

(
∫

|t|≥r

|h′(u)|2
)1/2

‖ξ‖L2

≤ 2ǫ

3
‖ξ‖E +

ǫ

3
‖ξ‖E

= ǫ‖ξ‖E ,

i.e. h̄∞ is differentiable, and the derivative is given precisely by

h̄′
∞(u)ξ = 〈h′(u), ξ〉L2 .

Continuity of h̄′
∞: Let u ∈ E and (um) ⊂ E a sequence which converges to u in E.

Then, (um) is bounded in E, i.e. there is a constant K ≥ 0 independent of m such
that ‖um‖E ≤ K for all m.

Given ǫ > 0, there is a r > 0 such that for |t| ≥ r and m sufficiently large we
have

|h′(u)| ≤ ǫ|u|
4(1 + ‖u‖E)

|h′(um)| ≤ ǫ|um|
4(1 + K)

,

Thus we have

sup
‖ξ‖E=1

|h̄′
∞(u)ξ − h̄′

∞(um)ξ|

≤
(∫

R

|h′(u) − h′(um)|2
)1/2

≤
(∫ r

−r

|h′(u) − h′(um)|2
)1/2

+

(
∫

|t|≥r

|h′(u) − h′(um)|2
)1/2

≤
(∫ r

−r

|h′(u) − h′(um)|2
)1/2

+
ǫ

4

[ ‖u‖L2

1 + ‖u‖E
+

‖um‖L2

1 + K

]

≤
√

2r‖h′(u) − h′(um)‖L∞([−r,r]) +
ǫ

2
.

Since um → u in E implies um → u on comapct subsets of R. Therefore the
boundedness of (um) in L∞([−r, r]) and the uniform continuity of h′ on compact
subsets implies that h′(um) → h′(u) uniformly on [−r, r]. Hence, for m sufficiently
large we have

‖h′(u) − h′(um)‖L∞([−r,r]) ≤ ǫ/2
√

2r.



PERIODIC AND HOMOCLINIC TRAVELLING WAVES IN INFINITE LATTICES 9

We conclude that, for m sufficiently large we have

sup
‖ξ‖E=1

|h̄′
∞(u)ξ − h̄′

∞(um)ξ| ≤ ǫ,

i.e. h̄′
∞ is continuous. �

3. Existence of periodic travelling waves

In this section we are going to give a detailed proof of Theorem 1.1. The main
tool to achieve this goal is a version of the mountain pass theorem, which we shall
state below.

Before doing so, we fix some terminology. Let X be a real Banach space and
J ∈ C1(X, R). We say that a sequence {um} ⊂ X is a Palais-Smale for J if the
sequence {J(um)} ⊂ R is bounded and J ′(um) → 0 as m → ∞. The functional
J is said to satisfy the Palais-Smale compactness condition (we will often say J is
(PS)), if every Palais-Smale sequence is precompact.

Theorem 3.1 (Rabinowitz [9]). Let X = X0⊕X̂ with dimX0 < ∞ and J ∈ C1(X)
be (PS). Suppose in addition the following conditions are satisfied

(J.3) J |X0
≤ 0,

(J.4) there are constants ω, ρ > 0 such that J > 0 in X̂ ∩ (Bρ \ {0}) and J ≥ ω

on X̂ ∩ Sρ,
(J.5) for each finite-dimensional subspace Y ⊂ X, there is an R = R(Y ) such

that J ≤ 0 on Y \ BR.

Then, Φ possesses a positive critical value b characterized by

b = inf
h∈Γ

max
u∈B̄R(X1)∩X1

J(h(u)),

where
Γ = {h ∈ C(B̄R(X1) ∩ X1, X)|h(u) = u if J(u) ≤ 0}

and X1 = X0 ⊕ span{v}, for any non-zero v ∈ X̂.

The notations Br, B̄r and Sr stand for the open ball, the closed ball and the
sphere centered at 0 with radius r, respectively.

Proposition 3.1. Let V, f ∈ C1(R) satisfy the assumptions of Theorem 1.1. Then
Φτ ∈ C1(H1

τ , R), with

Φ′
τ (u)ξ =

∫ τ

0

[

c2u̇ξ̇ − f ′(u)ξ − V ′(Au)Aξ
]

,

for all u, ξ ∈ H1
τ . Furthermore, any critical point of Φτ is a classical solution of

(1.3).

Proof. Write

Φτ (u) =
1

2
Bτ (u, u) − Gτ (u) − W̃τ (u),

with

Bτ (u, v) =

∫ τ

0

[
c2u̇v̇ + ω0uv − αAuAv

]
=

∫ τ

0

[
c2u̇v̇ − αAuAv

]
,

Gτ (u) =

∫ τ

0

g(u),

W̃τ (u) =

∫ τ

0

W (Au).

One can easily check that Bτ is a bounded (symmetric) bilinear form on H1
τ , there-

fore the functional
u 7→ Bτ (u, u)
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is C1 (it is actually C∞). Note that A : H1
τ → H1

τ is a bounded linear operator

and W̃τ = Wτ ◦ A where Wτ is defined similarly to Gτ . Hence, by Proposition 2.2
we have Gτ , W̃τ ∈ C1(H1

τ , R).
If u ∈ H1

τ is critical point of Φτ . Then, for every test function ξ we have

0 =

∫ τ

0

[c2u̇ξ̇ − f ′(u)ξ − V ′(Au)Aξ]

=

∫ τ

0

[c2u̇ξ̇ − f ′(u)ξ + (V ′(Au) − V ′(A∗u))ξ]

i.e. u is a weak solution of (1.3), and u is continuous because H1
τ continuously

embeds into C0
τ . Since V ′, f ′ ∈ C(R), thanks to (1.3), we have ü ∈ C0, and

therefore u ∈ C2, i.e. is a classical solution. �

Proposition 3.2. Under the assumptions of Theorem 1.1, Φτ is (PS).

Proof. We first prove that (PS) sequences are bounded and next, that they are
precompact.
Boundedness: Given s > 0 we set

Ns(u) =

{∫ τ

0

[
c2u̇2 − α(Au)2 + su2

]
}1/2

for u ∈ H1
τ .

Then Ns defines a norm on H1
τ which is equivalent to the standard one.

Let (um) ⊂ H1
τ be a (PS) sequence, i.e. for some constant M ≥ 0 we have

|Φτ (um)| ≤ M (∀m), and lim
m→∞

Φ′
τ (um) = 0.

Then, for some positive integer m0 we have ‖Φ′
τ (um)‖ ≤ 1 whenever m ≥ m0.

Fixing m ≥ m0, we have

|Φ′
τ (um)um| ≤ Ns(um),

which implies
∫ τ

0

[f ′(um)um + W ′(Aum)Aum] = −Φτ (um)um + N2
s (um) − s‖um‖2

L2
τ

≤ Ns(um) + N2
s (um).(3.1)

We set

I1 = {t ∈ [0, τ ] : |um(t)| ≤ r0}, I2 = {t ∈ [0, τ ] : |Aum(t)| ≤ r0},
and Īi = [0, τ ] \ Ii for j = 1, 2. Then,

∫

I1

g(um) +

∫

I2

W (Aum) ≤ τ

[

max
|x|≤r0

g(x) + max
|x|≤r0

W (x)

]

= : K0,

and thanks to (A.2) and (3.3), we get
∫ τ

0

[g(um) + W (Aum)] =

∫

I1

g(um) +

∫

I2

W (Aum)

+

∫

Ī1

g(um) +

∫

Ī2

W (Aum)

≤ K0 + β−1

[∫

Ī1

g′(um)um +

∫

Ī2

W ′(Aum)Aum

]

≤ K0 + β−1

∫ τ

0

[g′(um)um + W ′(Aum)Aum]

≤ K0 + β−1(Ns(um) + N2
s (um)),
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i.e.
∫ τ

0

[g(um) + W (Aum)] ≤ K0 + β−1(Ns(um) + N2
s (um)),(3.2)

Also, thanks to (A.2), there is a constant r ≥ r0 such that the condition |x| ≥ r
implies

(∗) x2 ≤ xg′(x).

Setting
I = {t ∈ [0, τ ] : |um(t)| ≤ r}, Ī = [0, τ ] \ I,

we then deduce from (*) and (3.1) that

‖um‖2
L2

τ
=

∫

I

u2
m +

∫

Ī

u2
m ≤ r2τ +

∫

Ī

g′(um)um

≤ r2τ +

∫ τ

0

g′(um)um,

that is,

‖um‖2
L2

τ
≤ r2τ + Ns(um) + N2

s (um).(3.3)

Combining (3.1), (3.2) and (3.3), it results

K0 + sr2τ/2 + M ≥ K0 + sr2τ/2 + Φτ (um)

=
1

2
N2

s (um) − s

2
‖um‖2

L2
τ
−
∫ τ

0

[g(um) + W (Aum)]

+ K0 + sr2τ/2

≥ K0 + sr2τ/2 +
1

2
N2

s (um) − s

2
(r2τ + Ns(um) + N2

s (um))

− K0 − β−1(Ns(um) + N2
s (um)),

i.e.

(1/2 − 1/β − s/2)N2
s (um) − (1/s + 1/β)Ns(um) ≤ K0 + sr2τ/2 + M.

Choosing s such that s < 1 − 2/β, we deduce from the above inequality that (um)
is bounded in (H1

τ , Ns) and therefore in (H1
τ , ‖ · ‖H1

τ
).

Precompactness: The boundedness of (um) in H1
τ allows us to extract a weakly

convergent subsequence, which for simplicity we still denote by (um). Let u ∈ H1
τ

be its (weak) limit. Then um converges to u strongly in C0
τ as well as in L2

τ .
Note that Φ′

τ (u)u = 0. Indeed,

Φ′
τ (u)u = Φ′

τ (um)u + [Φ′
τ (u)um − Φ′

τ (um)u]
︸ ︷︷ ︸

Σm

+ [Φ′
τ (u)u − Φ′

τ (u)um] .

The first term goes to zero because (um) is a (PS) sequence and the last one goes
to zero too because um ⇀ u weakly in H1

τ . The second term can be written as

Σm =

∫ τ

0

[g′(um)u − g′(u)um]

︸ ︷︷ ︸

Σ1
m

+

∫ τ

0

[W ′(Aum)Au − W ′(Au)Aum]

︸ ︷︷ ︸

Σ2
m

,

and

|Σ1
m| ≤

∫ τ

0

|g′(um)u − g′(u)u| +
∫ τ

0

|g′(u)u − g′(u)um|
≤

√
τ
(
‖u‖L2

τ
‖g′(u) − g′(um)‖L∞τ

+ ‖g′(u)‖L2
τ
‖u − um‖L∞τ

)
.

Since um → u and g′ is uniformly continuous on compact sets, it follows from
the above estimate that Σ1

m → 0. Replacing g, u, and um by W, Au and Aum,
respectively, one shows that Σ2

m → 0. Hence Σm → 0 and we conclude that
Φ′

τ (u)u = 0.
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Thanks to the continuity of V ′ and f ′ we get

lim
m

∫ τ

0

[f ′(um)um + V ′(Aum)Aum] =

∫ τ

0

[f ′(u)u + V ′(Au)Au]

= −Φ′
τ (u)u + c2‖u̇‖2

L2
τ

= c2‖u̇‖2
L2

τ
.

On one hand, the boundedness of (um) and its definition imply that Φ′
τ (um)um → 0

as m → ∞. Consequently,

lim
m

‖u̇m‖2
L2

τ
= c−2 lim

m

[

Φ′
τ (um)um +

∫ τ

0

(f ′(um)um + V ′(Aum)Aum)

]

= ‖u̇‖2
L2

τ
.(3.4)

On the other hand the boundedness of (um) implies the one of (u̇m) in L2
τ . It

follows from (3.4) that u̇m → u̇ in L2
τ . Hence um → u in H1

τ . �

Set
E0 = {u ∈ H1

τ |u(t) = u(0) for all t}.
Then E0 can be identified with R and

H1
τ = E0 ⊕ E⊥

0 ,

where E⊥
0 denotes the orthogonal complement of E0 in H1

τ . Obviously, u belongs
to E⊥

0 if and only if its mean value over a period equals zero. Furthermore, for
every u ∈ E⊥

0 we have

(3.5) ‖u‖L∞τ
≤ ‖u̇‖L2

τ
, ‖u‖L2

τ
≤

√
τ‖u̇‖L2

τ
.

We have

Lemma 3.1. Under the assumptions of Theorem 1.1, Φτ satisfies the conditions
(J.3)-(J.5) of Theorem 3.1, with X = H1

τ , X0 = E0, and X̂ = E1.

Proof. Condition (J.3) follows from the facts that f ≥ 0 and V (0) = 0.
Condition (J.4): Let ǫ be such that

0 < ǫ <
c2 − c2

0

1 + τ
.

By (A.1), there is a δ > 0 such that

max(f(x), W (x)) ≤ ǫ

2
x2 whenever |x| ≤ δ.

Set

ρ =
δ

max(l(τ), Cs)
.

where l(τ) is given by (2.2), and Cs by Proposition 2.1. Choose a u ∈ E⊥
0 such

that
0 < ‖u‖H1

τ
≤ ρ.

Then, by Proposition 2.1, and (2.1), we have

max(‖Au‖L∞τ
, ‖u‖L∞τ

) ≤ δ.

Also, (3.5) implies that

‖u‖2
H1

τ
≤ (1 + τ)‖u̇‖2

L2
τ

(∀u ∈ E⊥
0 ).

Therefore

Φτ (u) ≥
∫ τ

0

[
c2

2
u̇2 − ǫ

2
u2 − α

2
(Au)2 − ǫ

2
(Au)2

]

≥ c2

2
‖u̇‖2

L2
τ
− ǫ

2
‖u‖2

L2
τ
− c2

0

2
‖u̇‖2

L2
τ
− ǫ

2
‖u̇‖2

L2
τ
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=
c2 − c2

0

2
‖u̇‖2

L2
τ
− ǫ

2
‖u‖2

H1
τ

≥ c2 − c2
0

2(1 + τ)
‖u‖2

H1
τ
− ǫ

2
‖u‖2

H1
τ

=
1

2

(
c2 − c2

0

1 + τ
− ǫ

)

‖u‖2
H1

τ
> 0.

In particular we have

Φτ (u) ≥
(

c2 − c2
0

1 + τ
− ǫ

)

ρ2/2 > 0

for ‖u‖H1
τ

= ρ.

Condition (J.5): Let Y be a finite-dimensional subspace of H1
τ . Then, any two

norms on Y are equivalent, therefore there is a positive constant λ depending only
on Y such that

‖u‖Lβ
τ
≥ λ‖u‖H1

τ
(∀u ∈ Y ).

Let S(Y ) be the unit sphere of Y (with respect to the Sobolev norm). Then,

inf
u∈S(Y )

{

‖u‖β

Lβ
τ

+ ‖Au‖β

Lβ
τ

}

≥ λβ .

Given a non-zero u ∈ Y , we set

ũ =
u

r
, r = ‖u‖H1

τ
.

Then ũ ∈ S(Y ). Thanks to (A.2) and (A.4), we get

Φτ (u) =
r2

2
Bτ (ũ, ũ) −

∫ τ

0

[g(u) + W (u)]

≤ 1

2
(1 + α−)r2 − a0r

β

∫ τ

0

(|ũ|β + |Aũ|β) + 2a1τ

≤ 1

2
(1 + α−)r2 − a0 inf

v∈S(Y )
(‖v‖β

Lβ
τ

+ ‖Av‖β

Lβ
τ

)rβ + 2a1τ

≤ 1

2
(1 + α−)r2 − a0λ

βrβ + 2a1τ.

Since β > 2, there is an R > 0 depending on λ, and therefore on Y , such that if
u ∈ Y , with ‖u‖H1

τ
> R, then Φτ (u) ≤ 0. Hence Φτ satisfies (J.5). �

Thanks to Theorem 3.1, Φτ possesses a critical point u in H1
τ which is, of course,

a τ -periodic solution of (1.3). If u were constant, the corresponding critical value,
Φτ (u), would be non-positive, contrary to Theorem 3.1. Therefore u is necessarily
non-constant.

We shall end this section with a ‘particular case’ of Theeorem 1.1.

Theorem 3.2. Let f ≡ 0 and V ∈ C1(R) be as in Theorem 1.1. Then, for every
τ > 0 and every c > c0, (1.3) possesses a non-constant τ -periodic solution.

This theorem is more general than the one prove in [7], in the sense that we only
require a growth condition on W at infinity. However, to carry out the construction
of a travelling wave solution u for which u̇ ∈ L2, as it is done in [7], one definitely
needs a global growth condition on W . The proof shall follow from the standard
mountain pass theorem, whose statement is given below:

Theorem 3.3 (Ambrosetti-Rabinowitz [1]). Let J ∈ C1(X, R) be (PS) and J(0) =
0. Suppose the following conditions are satisfied

(J.1) there are constants ω, ρ > 0 such that J |Sρ
≥ ω,

(J.2) there is an e ∈ X \ B̄ρ such that J(e) ≤ 0.
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Then, J possesses a critical value b ≥ ω characterized by

(3.6) b = inf
γ∈Γ

max
0≤s≤1

J(γ(s)),

where

(3.7) Γ = {γ ∈ C([0, 1], E)|γ(0) = 0 and γ(1) = e}.

Note that under the assumptions of Theorem 3.2, if λ is a real constant, and u a
solution of (1.3), so is u + λ. Therefore, we can search τ -periodic solutions of (1.3)
in the space

Eτ = {u ∈ H1
τ : u(0) = 0}

which is a Hilbert space for the (equivalent) norm

‖u‖Eτ
= ‖u̇‖L2

τ
.

Proof of Theorem 3.2. We shall only check the (PS) condition and (J.1) since con-
dition (J.2) can be easily checked as (J.5) in the proof of Lemma 3.1.

(PS) condition. Let (um) ⊂ Eτ be a (PS) sequence for Φτ . Then, for some
non-negative constant M we have |Φτ (um) ≤ M for all n, and for m sufficiently
large we have ‖Φ′

τ (um)‖ ≤ 1. If we set I1 = {t ∈ [0, τ ] : |um(t)| ≤ r0}, I2 = {t ∈
[0, τ ] : |Aum(t)| ≤ r0}, and Īi = [0, τ ] \ Ii, i = 1, 2, then we have

∫

I1

g(um) +

∫

I2

W (Aum) ≤ K := τ

[

max
|x|≤r0

g(x) + max
|x|≤r0

W (x)

]

.

Hence

M ≥ Φτ (um)

=
1

2
Bτ (um, um) −

∫ τ

0

[g(um) + W (Aum)]

≥ 1

2
Bτ (um, um) −

∫

Ī1

g(um) −
∫

Ī2

W (Aum) − K

≥ 1

2
Bτ (um, um) − 1

β

[∫

Ī1

g′(um)um +

∫

Ī2

W ′(Aum)Aum

]

− K

≥ 1

2
Bτ (um, um) − 1

β

∫ τ

0

[g′(um)um + W ′(Aum)Aum] − K

=
1

2
Bτ (um, um) +

1

β
[Φ′

τ (um)um − Bτ (um, um)] − K

≥ (
1

2
− 1

β
)Bτ (um, um) − 1

β
‖um‖Eτ

− K.

Since

Bτ (u, u) =

∫ τ

0

[
c2u̇2 − α(Au)2

]
≥ (c2 − c2

0)‖u̇‖2
L2

τ
(∀u ∈ Eτ ),

we deduce that

(β − 2)(c2 − c2
0)‖um‖2

Eτ
− 2β‖um‖Eτ

≤ 2β(M + K),

which shows that (um) is bounded in Eτ ⊂ H1
τ . Hence a subsequence, still denoted

um, converges weakly in Eτ and strongly in L∞
τ , say to some u ∈ Eτ . Since V ′ is

continuous, and um → u strongly in L∞
τ , we have

lim
m→∞

∫ τ

0

V ′(Aum)Au =

∫ τ

0

V ′(Au)Au.

Note that

Φ′
τ (um)u = c2〈um, u〉Eτ

−
∫ τ

0

V ′(Aum)Au,
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therefore, using the fact that (um) is a (PS) sequence and um ⇀ u weakly in Eτ ,
we get

0 = lim
m→∞

Φ′
τ (um)u

= lim
m→∞

[

c2〈um, u〉Eτ
−
∫ τ

0

V ′(Aum)Au

]

= c2〈u, u〉Eτ
−
∫ τ

0

V ′(Au)Au = Φ′
τ (u)u.

On the other hand the boundedness of (um) and the fact that it is a (PS) sequence
imply that Φ′

τ (um)um → 0. Thus, using once more the fact that V ′ is continuous
and um → u strongly in L∞

τ , we have

lim
m→∞

c2‖um‖2
Eτ

= lim
m→∞

[

Φ′
τ (um)um +

∫ τ

0

V ′(Aum)Aum

]

=

∫ τ

0

V ′(Au)Au

= Φ′
τ (u)u +

∫ τ

0

V ′(Au)Au

= c2‖u‖2
Eτ

,

and the convergence um → u is strong in Eτ .

Condition (J.1). Let ǫ be a such that

0 < ǫ < c2 − c2
0.

Thanks to (A.1), there is a positive number δ (depending on ǫ) such that if |x| ≤ δ,
then

W (x) ≤ ǫ

2
x2.

Let u ∈ Eτ with ‖u‖Eτ
= δ. Then we have

‖Au‖L∞τ
≤ ‖u‖Eτ

= δ,

so that

Φτ (u) ≥ 1

2

∫ τ

0

[
c2u̇2 − α(Au)2 − ǫ(Au)2

]

≥ 1

2
(c2 − c2

0 − ǫ)‖u̇‖2
L2

τ

=
1

2
(c2 − c2

0 − ǫ)δ2

�

4. Existence of homoclinic travelling waves

In this section we are going to construct homoclinic travelling waves as limits of
periodic ones. We need the the standard version of the mountain pass theorem in
order to prove the existence of periodic solutions for (1.3) under the assumptions
of Theorem 1.2.

Note that

(4.1) Bτ (u, u) ≥ ǫ0‖u‖2
H1

τ
(∀u ∈ H1

τ ),

where

(4.2) ǫ0 =

{
min(c2 − α, ω0) if 0 < ω0 ≤ 4α

min(ω0 − 4α+, c2) if ω0 > 4α+ .

Indeed, if 0 < ω0 ≤ 4α, then for every u ∈ H1
τ , we have

Bτ (u, u) ≥ c2‖u̇‖2
L2

τ
− α+‖u̇‖2

L2
τ

+ ω0‖u‖2
L2

τ
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≥ min(c2 − α+, ω0)‖u‖2
H1

τ
,

and if ω0 > 4α+, then for every u ∈ H1
τ , we have

Bτ (u, u) ≥ c2‖u̇‖2
L2

τ
+ (ω0 − 4α+)‖u‖2

L2
τ

≥ min(c2, ω0 − 4α+)‖u‖2
H1

τ
.

We have the following

Lemma 4.1. Under the assumptions of Theorem 1.2, (1.3) possesses non-trivial
periodic solutions of any given period τ > 0 and any given speed c > c0.

Proof. We only have to check that Φτ is (PS), and satisfies the conditions (J.1) and
(J.2) of Theorem 3.3.

Φτ is (PS). We will only prove the boundedness of (PS) sequences. The precom-
pactness can be dealt with following the same line of arguments as in the proof of
Proposition 2.2.
Let (um) ⊂ H1

τ be a (PS) sequence, i.e. for some constant M ≥ 0 we have
|Φτ (um)| ≤ M for all m and Φ′(um) → 0 as m → ∞. Then, there is an inte-
ger m0 such that ‖Φ′

τ (um)‖ ≤ 1 for all m ≥ m0.
Fixing m ≥ m0, thanks to (A.3) and (4.1) we have

M +
1

β
‖um‖H1

τ
≥ Φ(um) − 1

β
Φ′(um)um

= (
1

2
− 1

β
)Bτ (um, um) +

∫ τ

0

[
1

β
g′(um)um − g(um)

]

+

∫ τ

0

[
1

β
W ′(Aum)Aum − W (Aum)

]

≥ ǫ0(
1

2
− 1

β
)‖um‖2

H1
τ
,

Thus
ǫ0(β − 2)‖um‖2

H1
τ
− 2‖um‖H1

τ
≤ 2βM,

showing that (um) is bounded in H1
τ for β > 2.

Condition (J.1). Thanks to (4.1), we have

Φτ (u) + Gτ (u) + W̃τ (u) =
1

2
Bτ (u, u)

≥ 1

2
ǫ0‖u‖2

H1
τ
.

Now we only have to show that

Gτ (u) + W̃τ (u) = o(‖u‖2
H1

τ
).

Given, ǫ > 0, thanks to (A.1), there is a δ > 0 such that, if |x| ≤ δ, then

max(g(x), W (x)) ≤ ǫx2/2.

Set

ρ =
δ

max(l(τ), Cs)
,

where the constant Cs is given by Proposition 2.1, and l(τ) by (2.2). Let u be a
member of H1

τ with
‖u‖H1

τ
= ρ.

Then for every t we have

|u(t)| ≤ ‖u‖L∞ ≤ Cs‖u‖H1
τ
≤ δ.

Also, thanks to (2.1), we have, for every t

|Au(t)| ≤ ‖Au‖L∞τ
≤ l(τ)‖u̇‖L2

τ
≤ δ.
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Thus,

Gτ (u) + W̃τ (u) ≤ ǫ

2

∫ τ

0

(u2 + (Au)2) ≤ ǫ

2
‖u‖2

H1
τ
.

Since ǫ > 0 is arbitrary, this shows that

Gτ (u) + W̃τ (u) = o(‖u‖2
H1

τ
).

In particular, if we choose ǫ such that

0 < ǫ < ǫ0,

then, thanks to (4.1), we have

Φτ (u) ≥ (ǫ0 − ǫ)ρ2/2 > 0.

Condition (J.2). Thanks to (A.4), there are constants a0, a1 > 0 such that

min(g(x), W (x)) ≥ a0|x|β − a1 for all x.

Let u be a non-zero element of H1
τ and r > 0. Then we have

Φτ (ru) ≤ 2a1τ +
r2

2

∫ τ

0

(
c2u̇2 + ω0u

2 − α(Au)2
)
− a0r

β

∫ τ

0

(|u|β + |Au|β).

But β > 2, therefore Φτ (ru) → −∞ as r → ∞ and there is an ru > 0 such that
Φτ (ru) ≤ 0 for r ≥ ru. �

Remark 4.1. In order to construct a homoclinic solution of (1.3) we need non-
constant periodic solutions. At this point we only have non-trivial periodic solutions.
However, we will see that for a suitable choice of e (see condition (J.2) of Theorem
3.3) the periodic solutions whose existence is guaranteed by Lemma 4.1 are actually
non-constant.

We denote by Φ∞ the functional Φ defined on E = H1(R) by (1.4), i.e. with
T = R. It is worth mentioning that members u of E satisfy u(t) → 0 as |t| → ∞
(see, e.g., [11]). We are going to construct a family U [0] such that each of its
members is a periodic solution of (1.3). Next, we shall prove the existence of a
convergent sequence (ūk)k∈N in U [0] whose limit ū belongs to E, and is a critical
point of Φ∞.

Proposition 4.1. Under the assumptions of Theorem 1.2, Φ∞ ∈ C1(E, R) and its
derivative is given by

Φ′
∞(u)ξ =

∫

R

[

c2u̇ξ̇ − f ′(u)ξ − V ′(Au)Aξ
]

.

Proof. Write

Φ∞(u) =
1

2
B∞(u, u) − G∞(u) − W̃∞(u).

with

B∞(u, v) =

∫

R

[
c2u̇v̇ + ω0uv − α(Au)(Av)

]

G∞(u) =

∫

R

g(u)

W̃∞(u) =

∫

R

W (Au).

B∞ is a bounded (symmetric) bilinear form therefore u 7→ B∞(u, u) is C∞. Since

A : E → E is bounded and W̃∞ = W∞ ◦ A, where W∞ is defined similarly to G∞,
thanks to Proposition 2.3 we have G∞, W̃∞ ∈ C1(E, R). �
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Lemma 4.2. Under the assumptions of Theorem 1.2 the critical points of Φ∞ are
classical solutions of (1.3). Moreover, any critical point u of Φ∞ satisfies u̇(t) → 0
as |t| → ∞, i.e. it is a homoclinic solution of (1.3) emanating from the origin.

Proof. The first part can be dealt with like in [12]. Therefore we will only focus on
the second statement.

We shall prove that if u ∈ E is a critical point of Φ∞, then ü ∈ L2, which,
obviously implies that u̇ ∈ E, and therefore u̇(t) → 0 as |t| → ∞.

Since g′(x) = o(x) and W ′(x) = o(x) as x → 0, there is a δ > 0 such that

max(|g′(x)|, |W ′(x)|) ≤ |x| for |x| ≤ δ.

Because u ∈ E, we have u(t) → 0 as t → ∞, and therefore, there is an r1 > 0 such
that

|u(t)| ≤ δ/2 for all |t| ≥ r1.

It then follows that

|Au(t)| ≤ δ for t ∈ (−∞,−r1 − 1] ∪ [r1,∞),

and

|A∗u(t)| ≤ δ for t ∈ (−∞,−r1] ∪ [r1 + 1,∞).

Thanks to (1.3), we have, for |t| ≥ r1 + 1

ü2 ≤ 6c−2
[
ω2

0u2 + α2(|Au|2 + |A∗u|2) + |g′(u)|2 + |W ′(Au)|2 + |W ′(A∗u)|2
]

≤ 6c−2
[
ω2

0u2 + α2(|Au|2 + |A∗u|2) + (u2 + |Au|2 + |A∗u|2)
]

≤ 6c−2(1 + max(α2, ω2
0))(u2 + |Au|2 + |A∗u|2).

Thus,
∫

R

ü2 ≤ c−2

∫ r1+1

−r1−1

ü2 + 6c−2(1 + max(α2, ω2
0))

∫

|t|≥r1+1

(u2 + |Au|2 + |A∗u|2)

≤ c−2

∫ r1+1

−r1−1

ü2 + 6c−2(1 + max(α2, ω2
0))

∫

R

(u2 + |Au|2 + |A∗u|2)

≤ c−2

∫ r1+1

−r1−1

ü2 + 6c−2(1 + max(α2, ω2
0))(‖u‖2

L2 + 2‖u̇‖2
L2)

≤ c−2

∫ r1+1

−r1−1

ü2 + 12c−2(1 + max(α2, ω2
0))‖u‖2

E .

This shows that ü ∈ L2, and the proof is complete. �

4.1. Construction of the family U [0]. For convenience, we shall now define Φτ

as an integral over [−τ/2, τ/2].
Let e0 be a non-zero member of C1([−1, 1]) whose support lies inside (−1, 0).

Denote by e2 the 2-periodic extension of e0 on R. Given τ > 4, we denote by e
the continuous extension of e0 on [−τ/2, τ/2], i.e. e agrees with e0 on [−1.1] and
vanishes elsewhere. Let us now extend e on the whole R in a τ -periodic fashion and
denote that extension by eτ , i.e. eτ is τ -periodic and agrees with e on [−τ/2, τ/2].

Obviously, for every τ ≥ 4 we have

‖eτ‖Eτ
= ‖e0‖H1(−1,0),

and for |t| ≤ τ/2

Aeτ (t) =

{
Ae2(t) if t ∈ [−2, 0]

0 otherwise
.

Therefore, for any r > 0, we have
∫ τ/2

−τ/2

V (rAeτ ) =

∫ 0

−2

V (rAe2)



PERIODIC AND HOMOCLINIC TRAVELLING WAVES IN INFINITE LATTICES 19

=

∫ −1

−2

V (rAe2) +

∫ 0

−1

V (rAe2)

=

∫ 1

0

V (rAe2) +

∫ 0

−1

V (rAe2)

=

∫ 1

−1

V (rAe2).

The third line follows from the fact that e2 is 2-periodic.
Since f(0) = 0, it follows that

Φτ (reτ ) = Φ2(re0).

e0 being a non-zero element of H1
2 , for r > 0 sufficiently large we have Φ2(re2) ≤ 0.

Now, set

ēτ = reτ ,

where r > 0 is large enough so that Φ2(re0) ≤ 0. Denote by bτ the critical value of
Φτ given by (3.6), with

Γ = Γτ := {γ ∈ C([0, 1], H1
τ )|γ(0) = 0 and γ(1) = ēτ}.

Let uτ be the corresponding critical point.

Lemma 4.3. Under the assumptions of Theorem 1.2, there are positive constants
b0, δ0 and M0 independent of τ such that bτ ≤ b0 and δ0 ≤ ‖uτ‖L∞τ ≤ M0 for all
τ ≥ 4. Furthermore, there is τ0 > 0 such that for any τ ≥ τ0, uτ is a non-constant
τ -periodic solution of (1.3).

Proof. Uniform upper bound for bτ : Let γτ ∈ Γτ be given by γτ (s) = sēτ . Then

Φτ (γτ (s)) = Φ2(γ2(s)),

and we deduce that

(4.3) bτ ≤ max
0≤s≤1

Φ2(γ2(s)) =: b0.

Uniform upper bound for ‖uτ‖Eτ
: Note that

bτ = Φτ (uτ ) − 1

β
Φ′

τ (uτ )uτ ≥ (
1

2
− 1

β
)ǫ0‖uτ‖2

Eτ
,

where the inequality follows from (A.3). Thus, by (2.7) we have

(4.4) ‖uτ‖Eτ
≤
(

2βb0

(β − 2)ǫ0

)1/2

.

Thanks to Proposition 2.1 and (4.4) we get

(4.5) ‖uτ‖L∞τ
≤

√
2‖uτ‖Eτ

≤ M0 := 2

(
βb0

(β − 2)ǫ0

)1/2

.

Let Y1, Y2 : [0,∞) → [0,∞) be defined by Y1(s) = 0 = Y2(s) if s = 0 and for s > 0

Y1(s) = max
0<|x|≤s

x−1g′(x), Y2(s) = max
0<|x|≤s

x−1W ′(x).

Clearly the maps s 7→ Y1(s) and s 7→ Y2(s) are continuous, non-decreasing, and
non-negative, and so is s 7→ Y (s) = Y1(s) + Y2(2s).

For every t we have

|uτ (t)| ≤ sτ := ‖uτ‖L∞τ
,

for every t, it readily follows from the definition of Y1 that

g′(uτ (t))

uτ (t)
≤ Y1(sτ ),
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for every t for which the left hand side is well defined. Similarly, we have

W ′(Auτ (t))

Auτ (t)
≤ Y2(2sτ ),

whenever the left hand side is well defined.
Using the fact that uτ is a critical point for Φτ , we get

ǫ0‖uτ‖2
H1

τ
≤ Bτ (uτ , uτ )

=

∫ τ/2

−τ/2

[g′(uτ )uτ + W ′(Auτ )Auτ ]

≤
∫ τ/2

−τ/2

[
Y1(sτ )u2

τ + Y2(2sτ )(Auτ )2
]

≤ Y1(sτ )‖uτ‖2
L2

τ
+ Y2(2sτ )‖u̇τ‖2

L2
τ

≤ Y (sτ )‖uτ‖2
H1

τ
.

Since uτ is non-trivial, we have

Y (sτ ) ≥ ǫ0.

Hence, thanks to the aforementioned properties of Y , it results that

(4.6) ‖uτ‖L∞τ
≥ δ0,

where δ0 is a positive constant which is independent of τ .

Existence of τ0. Suppose all the uτ ’s are constants. Then we have

δ0 ≤ ‖uτ‖L∞τ = |uτ (0)| =
‖uτ‖H1

τ√
τ

≤ M0√
2τ

,

for all τ ≥ 4, contradicting the fact that δ0 6= 0. �

We set

U [0] = {uτ}τ≥τ0
, U [1] = {u̇τ}τ≥τ0

, U [2] = {üτ}τ≥τ0
.

Lemma 4.4. For each i = 0, 1, 2, the family U [i] is uniformly bounded in the space
Cb(R) equipped with the sup-norm. Furthermore the families U [0] and U [1] are
equicontinuous.

Proof. The boundedness of U [0] readily follows from (4.5).
Boundedness of U [2]. Given w ∈ U [2], there is a τ ≥ τ0 such that w = üτ , and uτ

satisfies (1.3). Since V ′ and f ′ are continuous, and the image of uτ is contained in
[−M0, M0], it follows from (1.3) that, for all t,

|w(t)| ≤ c−2 max
t∈R

[|f ′(uτ (t))| + |V ′(Auτ (t))| + |V ′(A∗uτ (t))|]

≤ c−2

[

max
|x|≤M0

|f ′(x)| + 2 max
|x|≤2M0

|V ′(x)|
]

= M2.

Thus
‖w‖L∞ ≤ M2 (∀w ∈ U [2]).

Boundedness of U [1]. Given v ∈ U [1], there exists τ ≥ τ0 such that v = u̇τ . By the
mean value theorem, we have

v(tτ ) =

∫ t

t−1

v = uτ (t) − uτ (t − 1)

for some tτ ∈ [t − 1, t]. It follows that

|v(t)| =

∣
∣
∣
∣
v(tτ ) +

∫ t

tτ

v̇(s)ds

∣
∣
∣
∣

≤ |uτ (t) − uτ (t − 1)| +
∫ t

tτ

|v̇|ds
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≤ 2M0 +

∫ t

t−1

M2ds

= 2M0 + M2.

Thus

‖v‖L∞ ≤ M1 := 2M0 + M2.

Equicontinuity : Given u ∈ U [0], and t1, t2 ∈ R, we have

|u(t2) − u(t1)| =

∣
∣
∣
∣

∫ t2

t1

u̇

∣
∣
∣
∣
≤ M1|t2 − t1|

|u̇(t2) − u̇(t1)| =

∣
∣
∣
∣

∫ t2

t1

ü

∣
∣
∣
∣
≤ M2|t2 − t1|.

�

4.2. Existence of homoclinics.

Lemma 4.5. There is a sequence (ūk) ⊂ U [0] which converges to a non-trivial
critical point ū ∈ E of Φ∞.

Proof. In view of Lemma 4.4 and thanks to Arzelà-Ascoli’s Theorem, there exists
a sequence (ūk), with ūk = uτk

, such that ūk → ū in C1
loc(R). Since each member

of U [0] satisfies (1.3), the convergence is actually in C2
loc(R).

By (4.5), one infers hat
∫

R

( ˙̄u2 + ū2) ≤ M2
0 /2,

i.e. ū ∈ E.
Let ξ be a test function on R. Denote by I0 and I1 the supports of ξ(·) and ξ(·+1)

respectively. Let k ∈ N be sufficiently large, so that I := I0 ∪ I1 ⊂ (−τk/2, τk/2).
Then, we have

Φ′
∞(ū)ξ = Φ′

∞(ū)ξ − Φ′
τk

(ūk)ξ

= (BI(ū − ūk, ξ)) + (G′
I(ū)ξ − G′

I(ūk)ξ) + (W̃ ′
I(ū)ξ − W̃ ′

I(ūk)ξ),

with

BI(v, ξ) =

∫

I

[

c2v̇ξ̇ − ω0vξ + αAvAξ
]

,

G′
I(v)ξ =

∫

I

g′(v)ξ,

W̃ ′
I(v)ξ =

∫

I

W ′(Av)ξ.

Note that

|BI(ū − ūk, ξ)| =

∣
∣
∣
∣

∫

I

[

c2( ˙̄u − ˙̄uk)ξ̇ − ω0(ū − ūk)ξ + αA(ū − ūk)Aξ
]
∣
∣
∣
∣

≤ |I|1/2‖ξ‖E

(
c2‖ ˙̄u − ˙̄uk‖L∞(I) + (ω0 + 2|α|)‖ū − ūk‖L∞(I)

)
,

where |I| is the length of I. Since (ūk, ˙̄uk) → (ū, ˙̄u) uniformly on compact subsets
of R, it follows from the above estimate that BI(ū − ūk, ξ) → 0 as k → ∞.

Similarly, we have

|G′
I(ū)ξ − G′

I(ūk)ξ| ≤ |I|1/2‖ξ‖E‖g′(ū) − g′(ūk)‖L∞(I)

|W̃ ′
I(ū)ξ − W̃ ′

I(ūk)ξ| ≤ |I|1/2‖ξ‖E‖W ′(Aū) − W ′(ūk)‖L∞(I)

It then follows from the continuity of g′, and W ′, and the uniform convergence of
(ūk, ˙̄uk) on compact subsets of R that

lim
k→∞

|G′
I(ū)ξ − G′

I(ūk)ξ| = 0,
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lim
k→∞

|W̃ ′
I(ū)ξ − W̃ ′

I(ūk)ξ| = 0.

Thus
|Φ′

∞(ū)ξ| = lim
k→∞

|Φ′
∞(ū)ξ − Φ′

τk
(ūk)ξ| = 0.

Since ξ is arbitrary, we conclude that Φ′
∞(ū) = 0, i.e. ū is a critical point of Φ∞.

To prove that ū 6≡ 0, take the limit in (4.6), with uτ replaced by ūk. We get

sup
t∈R

|ū(t)| ≥ δ0 > 0,

which shows that ū 6≡ 0. �
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