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SUBHARMONICS AND HOMOCLINICS FOR A CLASS OF

HAMILTONIAN-LIKE EQUATIONS

PERCY D. MAKITA

Abstract. We study the existence of periodic and homoclinic solutions for a
class of non-autonomous second order advanced-delayed differential equations
of the type

ü(t) + f0(t, u(t)) =
N

X

i=1

[fi(t, u(t + τi)− u(t))− fi(t− τi, u(t)− u(t− τi))] .

We prove, under some growth conditions on the non-linearities, the existence of
non-constant periodic solutions with period any given positive integer. Using
very simple arguments, the existence of a non-trivial homoclinic solution is
also established. This homoclinic is obtained as the limit of subharmonics as
the period goes to infinity. An application to the existence of periodic and
homoclinic travelling waves in an infinite lattice of partciles with N -nearest-
neighbour interaction and on-site potential is given.

1. Statement of the results

This note is concerned with the study of second order advanced-delayed ordinary
differential equations of the form:

ü + f0(t, u) =

N∑

i=1

[
fi(t, Aτi

u) − fi(t − τi, A
∗
τi

u)
]
, t ∈ R,(1.1)

where f0, f1, . . . , fN ∈ C(R2) and τ1, . . . , τN > 0, with N ≥ 1. For τ > 0, the
forward and backward-difference operators Aτ and A∗

τ are defined by

(1.2) Aτu(t) = u(t + τ) − u(t) = A∗
τu(t + τ).

The study of this class of ordinary differential equations is motivated both by [8] and
[3]. In the former paper, D. Smets proved the existence of multibump type solutions
for travelling waves in non-autonomous infinite lattices with nearest-neighbour in-
teraction, without on-site potential. In [3], the author studied travelling waves in
autonomous infinite lattices with nearest- neighbour interaction and on-site poten-
tial. Those travelling waves are solutions of an equation of the type (1.1), with
N = 1 = τ1 and autonomous non-linearities. Roughly speaking the results of
[3] say that there exist periodic solutions of any given period with relatively high
speed provided the non-linearities satisfy some growth condition at infinity, and
that, when the non-linearities satisfy some global growth condition, there exist
non-trivial homoclinic solutions emanating from the origin of any given speed.

The aim of this note is to give some generalizations of the results obtained in [3].
A solution u of (1.1) is said to be periodic, say with period k > 0, if u(·+k) = u(·).
Suppose (1.1) possesses a stationary solution u0. A solution u 6≡ u0 is said to be
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2 P. MAKITA

homoclinic to u0 if u(±∞) = u0 and u̇(±∞) = 0, where the notation u(∞) stands
for the limit of u at infinity, etc.

Statements of the results. Given an f ∈ {f0, f1, . . . , fN}, we set

Pf(t, x) =

∫ x

0

f(t, z)dz.

We shall consider non-linearities f0, . . . , fN of the type

(A.0) fi(x) = αi(t)x + gi(t, x) for i = 0, 1, . . . , N ,

where the gi’s satisfy either

(A.1) gi(t, x) = o(x) as x → 0, uniformly in t, and
(A.2) Pgi ≥ 0 and there are constants β > 2, r0 > 0 such that

0 < βPgi(·, x) ≤ xgi(·, x) for |x| ≥ r0,

or

(A.3) there is a constant β > 2 such that

0 < βPgi(·, x) ≤ xgi(·, x) for x 6= 0.

Clearly, (A.3) and the periodicity imply (A.1), and (A.2) implies that

(A.4) there are constants a0, a1 > 0 such that

gi(·, x) ≥ a0|x|β − a1 for all x.

We shall denote by T, C(T) and C(T × R) the unit circle, the space of 1-periodic
continuous functions and the space of continuous functions in two variables which
are 1-periodic in the first variable, respectively. Given a real-valued function α,
we denote by α+ and α− its positive and negative part, respectively, i.e. α+ =
max(0, α) and α− = −min(0, α).

Let c0 ≥ 0 be given by

(1.3) c2
0 =

{

0 if 4
∑N

i=1 ‖α+
i ‖L∞ < minω < ∞

∑N
i=1 τi‖α+

i ‖L∞ if 0 ≤ minω ≤ 4
∑N

i=1 ‖α+
i ‖L∞

.

The main results of this note are the following

Theorem 1.1. Let f0, f1, . . . , fN ∈ C(T × R) be given by (A.0), with α0 ≡ 0, and
such that the gi’s satisfy (A.1),(A.2). Suppose in addition that c0 < 1. Then, for
any positive interger k, and every τ1, . . . , τN > 0, (1.1) possesses a non-constant
k-periodic solution.

Theorem 1.2. Let f0, f1, . . . , fN ∈ C(T × R) be given by (A.0). Suppose ω ≡
−α0 > 0, and the gi’s satisfy (A.1),(A.3). If c0 < 1, then, for every τ1, . . . , τN > 0,
(1.1) possesses a non-trivial homoclinic solution emanating from the origin.

Remark. Theorem 1.1 and 1.2 hold also true when some of the αi’s or gi’s are
time-independent, or when some of the gi’s are identically equal to zero. When all
the fi’s are time independent, the period k in Theorem 1.1 is allowed to take any
positive real value. �

Equation (1.1) can be interpreted as the Euler-Lagrange equation of the func-
tional

(1.4) Φ(u) =

∫

T

[

1

2
u̇2 − Pf0(t, u) −

N∑

i=1

Pfi(t, Aτi
u)

]

,

on some appropriate Hilbert space, where T ⊆ R. When dealing with periodic
solutions, say with period k ∈ N, we shall take as T a segment of length k, and
shall denote the functional (1.4) by Φk. In that case the natural space to work on is
the space H1

k of k-periodic functions u : R → R whose restriction to [0, k] belong to
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H1([0, k]). When dealing with homoclinic solutions, T = R, and the natural space
to work on is E = H1(R). The functional (1.4) shall then be denoted by Φ∞.

Organization of the paper. In the next section we collect some prelimaries results
that are needed in the sequel. The second and third sections are devoted to the
proofs of Theorem 1.1 and Theorem 1.2, respectively. In the last we give some
application to the problem of travelling waves in infinite lattices with N -nearest
neighbour interaction and on-site potential.

2. Preliminary results

In this section we collect some of the results we need to prove the theorems
stated above. We shall denote by Lp

k the space of k-periodic functions u : R → R

whose restriction to [0, k] belong Lp([0, k]). A similar meaning is attached to Cm
k .

Lemma 2.1. Let k ∈ N. Then, the finite difference-operator defined by (1.3) maps
continuously H1

k into L∞
k ∩ L2

k, with

(2.1) ‖Aτu‖L2
k
≤ √

τ‖u̇‖L2
k
, ‖Aτu‖L∞

k
≤ l(k, τ)‖u̇‖L2

k
,

with

(2.2) l(k, τ) =

{ √

τ([τ/k] + 1) if k < τ√
τ if k ≥ τ

,

where [s] denotes the integer part of s. Furthermore, Aτ maps continuously E into
L∞ ∩ L2, with

(2.3) max(‖Aτu‖L2 , ‖Aτu‖L∞) ≤ √
τ‖u̇‖L2 .

Proof. Let u ∈ H1
k . Applying Jensen’s inequality, the change of variable s ↔ s + t,

and Fubini’s Theorem, we have
∫ k

0

|Aτu(t)|2dt =

∫ k

0

(∫ t+τ

t

u̇(s)ds

)2

dt ≤
∫ k

0

(∫ τ

0

u̇2(s + t)ds

)

dt

=

∫ τ

0

(
∫ k

0

u̇2(s + t)dt

)

ds

= τ‖u̇‖2
L2

k
.

For the second estimate we use the Cauchy-Schwarz inequality:

|Aτu(t)| ≤ √
τ

(∫ t+τ

t

u̇2(s)ds

)1/2

.

If k ≥ τ , then

|Aτu(t)| ≤ √
τ

(
∫ k

0

u̇2(s)ds

)1/2

=
√

τ‖u̇‖L2
k
.

It k < τ , we set n = [τ/k]. Then nk ≤ τ < (n + 1)k, and

|Aτu(t)| ≤ √
τ

(
∫ t+(n+1)k

t

u̇2(s)ds

)1/2

=
√

τ(n + 1)‖u̇‖L2
k
.

Suppose now u ∈ E. Using the same arguments as above, we have
∫

R

|Aτu(t)|2dt =

∫

R

(∫ t+τ

t

u̇(s)ds

)2

dt ≤
∫

R

(∫ τ

0

u̇2(s + t)ds

)

dt

=

∫ τ

0

(∫

R

u̇2(s + t)dt

)

ds

= τ‖u̇‖2
L2 ,
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and

|Aτu(t)| ≤ √
τ

(∫ t+τ

t

u̇2(s)ds

)1/2

≤ √
τ‖u̇‖L2 (∀t).

�

Recall that if I is a compact interval, then the embeddings H1(I) →֒ C(I) and
H1(I) →֒ L2(I) are compact. In particular, there is a positive constant Cs > 0
such that

(2.4) ‖u‖H1(I) ≤ Cs‖u‖L∞(I) (∀u ∈ H1(I)).

The constant Cs may actually be taken to be
√

2 when the length |I| of I is greater
than or equal to 1. Let us also recall that any member u of E satisfies u(±∞) = 0.

Proposition 2.1. Let I be a compact interval and g ∈ C(I × R). Then the func-
tional GI : H1(I) → R defined by

GI(u) =

∫

I

Pg(t, u)

is C1, and its derivative is given by

G′
I(u)ξ = 〈g(·, u), ξ〉L2(I).

Proof. Since g ∈ C(I × R) and I is compact, we have

sup
‖ξ‖H1(I)=1

|〈g(·, u), ξ〉L2(I)| ≤ ‖g(·, u)‖L2(I) ≤ |I|1/2‖g(·, u)‖L∞(I) < ∞,

i.e. the linear map ξ 7→ Luξ = 〈g(·, u), ξ〉L2(I) is bounded.

On the other hand, if we set P = I × [0, 1], and for every u, ξ ∈ H1(I) denote by
uξ the function defined on P by uξ(t, s) = u(t) + sξ(t), we have

|GI(u + ξ) − GI(u) − Luξ| =

∣
∣
∣
∣

∫

P

[Pg(t, u + ξ) − Pg(t, u) − g(t, u)ξ] dt

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

P

[g(t, uξ) − g(t, u)] ξdsdt

∣
∣
∣
∣

≤ ‖ξ‖L2(I)‖g(·, uξ) − g(·, u)‖L2(P )

≤ |I|1/2‖ξ‖H1(I)‖g(·, uξ) − g(·, u)‖L∞(P ).

Since K = uξ(P ) is a compact subset of R, and g is continuous (therefore uniformly
on compact subsets), for any ǫ > 0, there is a δ > 0 such that for any x, y ∈ K, with
|x−y| ≤ δ we have |g(t, x)−g(t, y)| ≤ ǫ|I|−1/2 for all t. On the other hand, we have
‖ξ‖L∞(I) = ‖uξ − u‖L∞(P ), therefore, if we choose ξ such that ‖ξ‖H1(I) ≤ δ/Cs,
where Cs is given by (2.4), then we have

|GI(u + ξ) − GI(u) − Luξ| ≤ ǫ‖ξ‖H1(I),

i.e. GI is (Fréchet) differentiable, with G′
I(u) = Lu for all u ∈ H1(I).

Continuity of G′
I . Let u be a member of H1(I) and (um) a sequence in H1(I) that

converges to u. We have

|G′
I(u)ξ − G′

I(um)ξ| = |〈g(·, u) − g(·, um), ξ〉L2(I)|
≤ ‖g(·, u) − g(·, um)‖L2(I)‖ξ‖L2(I)

≤ |I|1/2‖ξ‖H1(I)‖g(·, u) − g(·, um)‖L∞(I).

Since H1(I) is continuously embedded into L∞(I) (the embedding is actually com-
pact, but it is not needed), and g is uniformly continuous on compact subsets of
R

2, it follows that that g(·, um) → g(·, u) uniformly on I. Thus, for any positive
number ǫ we have

‖g(·, u) − g(·, um)‖L∞(I) ≤ ǫ|I|−1/2
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for m sufficiently large. Hence, for m large enough we have

sup
‖ξ‖H1(I)=1

|G′
I(u)ξ − G′

I(um)ξ| ≤ ǫ

i.e. G′
I(um) → G′

I(u) as m → ∞. �

Proposition 2.2. Let g ∈ C(T × R) satisfies (A.1). Then the functional G∞ :
E → R defined by

G∞(u) =

∫

R

Pg(t, u)

is C1, and its derivative is given by

G′
∞(u)ξ = 〈g(·, u), ξ〉L2 .

Proof. Let us first make sure that G∞ is well-defined, i.e. it takes only finite values.
Thanks to (A.1), there is a δ > 0 such that

|Pg(·, x)| ≤ x2 for |x| ≤ δ.

If u ∈ E, then u(±∞) = 0, and therefore there is a positive number r depending
on δ such that if |t| ≥ r, then

|u(t)| ≤ δ

2
.

It follows that

|G∞(u)| ≤ |
∫

|t|≤r

Pg(t, u)| +
∫

|t|≥r

u2

≤ |
∫

|t|≤r

Pg(t, u)| + ‖u‖2
L2 < ∞,

i.e. −∞ < G∞(u) < ∞.

Differentiability of G∞: Let u ∈ E be fixed and let ǫ > 0. Thanks to (A.1), there
is a positive number ρ0 such that if |x| ≤ ρ0, then

(2.5) |g(·, x)| ≤ ǫ|x|
3τ(1 + ‖u‖E)

.

Since u(±∞) = 0, there is an r such that |u(t)| ≤ ρ0/2 whenever |t| ≥ r. We
set Ir = [−r, r], and Īc

r = R \ (−r, r). Thanks to Propsoition 2.1, we have GIr
∈

C1(H1(Ir), R). Therefore, there is a positive number δ = δ(ǫ, r, u) (there is of course
no loss of generality in assuming that δ ≤ min(1, ρ0/2)) such that if ‖ξ‖E ≤ δ, then

(2.6) |GIr
(u + ξ) − GIr

(u) − G′
Ir

(u)ξ| ≤ ǫ

3
‖ξ‖E .

Thanks to the mean value theorem, (2.5), and (2.3), we get

|Pg(t, u + ξ) − Pg(t, u)| ≤ ǫ|ξ| |u| + |ξ|
3τ(1 + ‖u‖E)

(∀t ∈ Īc
r).

It follows that
∫

Īc
r

|Pg(t, u + ξ) − Pg(t, u)| ≤ ǫ

3τ(1 + ‖u‖E)

∫

Īc
r

|ξ|(|u| + |ξ|)

≤ ǫ

3τ(1 + ‖u‖E)
‖ξ‖L2‖|u| + |ξ|‖L2

≤ ǫ

3(1 + ‖u‖E)
‖ξ‖E(‖u‖E + ‖ξ‖E)

≤ ǫ

3
‖ξ‖E .(2.7)
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Again, by (2.5) we have
∫

Īc
r

|g(t, u)ξ| ≤ ǫ

3τ(1 + ‖u‖E)

∫

Īc
r

|ξ||u|

≤ ǫ

3τ(1 + ‖u‖E)
‖ξ‖L2‖u‖L2

≤ ǫ

3(1 + ‖u‖E)
‖ξ‖E‖u‖E

≤ ǫ

3
‖ξ‖E .(2.8)

Combining (2.6),(2.7), and (2.8) we get

|G∞(u + ξ) − G∞(u) − 〈g(·, u), ξ〉L2 | ≤ |GIr
(u + ξ) − GIr

(u) − G′
Ir

(u)ξ|
+

∫

Īc
r

|Pg(t, u + ξ) − Pg(t, u)|

+

∫

Īc
r

|g(t, u)ξ|

≤ ǫ

3
‖ξ‖E +

ǫ

3
‖ξ‖E +

ǫ

3
‖ξ‖E

= ǫ‖ξ‖E ,

i.e. G∞ is differentiable, and the derivative is given precisely by

G′
∞(u)ξ = 〈g(·, u), ξ〉L2 .

Continuity of G′
∞. Let u ∈ E and (um) ⊂ E a sequence that converges to u. Then,

for some constant K0 ≥ 0 we have ‖um‖E ≤ K0 for all m. By (A.1), given ǫ > 0,
there is a positive number r such that if |t| ≥ r, then

|g(t, u)| ≤ ǫ|u|
4(1 + ‖u‖E)

and |g(t, um)| ≤ ǫ|um|
4(1 + K0)

,

for m suffisciently large. Setting Ir = [−r, r] and Ic
r = R \ Ir, we have

|G′
∞(u)ξ − G′

∞(um)ξ| ≤ |〈g(·, u) − g(·, um), ξ〉L2 |
≤ ‖g(t, u) − g(t, um)‖L2(Ir)‖ξ‖L2(Ir)

+ ‖g(·, u) − g(·, um)‖L2(Īc
r)‖ξ‖L2(Īc

r )

≤
√

2r‖g(·, u) − g(·, um)‖L∞(Ir)

+
(

‖g(·, u)‖L2(Īc
r) + ‖g(·, um)‖L2(Īc

r)

)

‖ξ‖L2

≤
√

2r‖g(·, u) − g(·, um)‖L∞(Ir)‖ξ‖L2

+
ǫ

4

( ‖u‖L2

1 + ‖u‖E
+

‖um‖L2

1 + C

)

‖ξ‖L2

≤
(√

2r‖g(·, u) − g(·, um)‖L∞(Ir) +
ǫ

2

)

‖ξ‖E .

Thus we have

sup
‖ξ‖E=1

|G′
∞(u)ξ − G′

∞(um)ξ| ≤
√

2r‖g(·, u) − g(·, um)‖L∞(Ir) +
ǫ

2
.

Since um → u in E implies um → u on compact subsets of R, therefore the bound-
edness of (um) in L∞(Ir) and the uniform continuity of g on compact subsets of
R

2 implies that g(·, um) → g(·, u) uniformly on Ir, so that
√

2r‖g(·, u) − g(·, um)‖L∞(Ir) ≤
ǫ

2

for m sufficiently large. It results that

sup
‖ξ‖E=1

|G′
∞(u)ξ − G′

∞(um)ξ| ≤ ǫ

for m large enough, i.e. G′
∞ is continuous. �
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3. Existence of subharmonics

In this section we are going to give a proof of Theorem 1.1. We shall use a linking
theorem of Rabinowitz, which we state below

Theorem 3.1 (Rabinowitz [4]). Let X = X0⊕X̂ with dimX0 < ∞ and J ∈ C1(X)
be (PS). Suppose in addition the following conditions are satisfied

(J.3) J |X0
≤ 0,

(J.4) there are constants ω∗, ρ > 0 such that J |X̂∩(Bρ\{0})
> 0 and J |X̂∩Sρ

≥ ω∗,

(J.5) for each finite-dimensional subspace Y ⊂ X, there is an R = R(Y ) such
that J ≤ 0 on Y \BR.

Then, J possesses a positive critical value b characterized by

b = inf
h∈Γ

max
u∈B̄R(X1)∩X1

J(h(u))

where

Γ = {h ∈ C(B̄R(X1) ∩ X1, X)|h(u) = u if J(u) ≤ 0}
and X1 = X0 ⊕ span{v}, for any non-zero v ∈ X̂.

The notations Br, B̄r and Sr stand for the open ball, the closed ball and the
sphere centered at 0 with radius r, respectively.

Recall that a sequence (um) is called a Palais-Smale sequence – (PS) sequence
in short – for J if J(um) is bounded and J ′(um) → 0. The functional J ∈ C1(X)
is said to satisfy the Palais-Smale condition – in short we shall say J is (PS) – if
every (PS) sequence is precompact.

Lemma 3.1. Let k ∈ N. Under the assumptions of Theorem 1.1, Φk ∈ C1(H1
k , R),

and any critical point of Φk is a classical solution of (1.1).

Proof. Write

Φk(u) =
1

2
Bk(u, u) − G0,k(u) −

N∑

i=1

Gi,k(Aτi
u),

with

Bk(u, v) = 〈u̇, v̇〉L2
k

+ 〈ωu, v〉L2
k
−

N∑

i=1

αiAτi
u, Aτi

v〉L2
k
,

Gi,k(u) =

∫ k

0

Pgi(t, u), i = 0, 1, 2, . . . , N.

Bk is a bounded (symmetric) bilinear form on H1
k . Indeed, we have

|Bk(u, v)| ≤ ‖u̇‖L2
k
‖v̇‖L2

k
+ ‖ωu‖L2

k
‖v‖L2

k
+

N∑

i=1

‖αiAτi
u‖L2

k
‖Aτi

v‖L2
k

≤ ‖u̇‖L2
k
‖v̇‖L2

k
+ ‖ω‖L∞‖u‖L2

k
‖v‖L2

k
+

N∑

i=1

‖αi‖L∞‖Aτi
u‖L2

k
‖Aτi

v‖L2
k

≤ ‖u̇‖L2
k
‖v̇‖L2

k
+ ‖ω‖L∞‖u‖L2

k
‖v‖L2

k
+

N∑

i=1

τi‖αi‖L∞‖u̇‖L2
k
‖v̇‖L2

k

= (1 +

N∑

i=1

τi‖αi‖L∞)‖u̇‖L2
k
‖v̇‖L2

k
+ ‖ω‖L∞‖u‖L2

k
‖v‖L2

k

≤ max(1 +

N∑

i=1

τi‖αi‖L∞ , ‖ω‖L∞)‖u‖H1
k
‖v‖H1

k
.
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It follows that u 7→ Bk(u, u) is C∞. Since each of the operators Aτi
: H1

k → H1
k is

bounded, we deduce from Proposition 2.1 that G0,k, G1,k ◦ Aτ1
, . . . , GN,k ◦ AτN

∈
C1(H1

k , R). The remaining part is standard and shall therefore be omitted. �

Proposition 3.1. Let k ∈ N. Under the assumptions of Theorem 1.1, Φk is (PS).

Proof. We first prove the boundedness of (PS) sequences, and next we prove their
precompactness.

Boundedness: Given s > 0 we define the quadratic form N 2
s by

N 2
s (u) = ‖u̇‖2

L2
k

+ s‖u‖2
L2

k
−

N∑

i=1

〈αiAτi
u, Aτi

u〉L2
k

(∀u ∈ H1
k).

Then Ns = (N 2
s )1/2 is a norm on H1

k which is equivalent to the standard one.
Let (um) ⊂ H1

k be a (PS) sequence for Φk, i.e. for some constant M ≥ 0 we have

|Φk(um)| ≤ M (∀m), and lim
m→∞

Φ′
k(um) = 0.

Then, for some positive integer m0 we have ‖Φ′
k(um)‖ ≤ 1 whenever m ≥ m0.

Fixing m ≥ m0, we have

|Φ′
k(um)um| ≤ Ns(um),

which implies

G′
0,k(um)um +

N∑

i=1

G′
i,k(, Aτi

um)Aτi
um = −Φk(um)um + N 2

s (um) − s‖um‖2
L2

τ

≤ Ns(um) + N 2
s (um).(3.1)

We set

I0 = {t ∈ [0, k] : |um(t)| ≤ r0}, Ii = {t ∈ [0, k] : |Aτi
um(t)| ≤ r0}, 1 ≤ i ≤ N

and Īi = [0, k] \ Ii for i = 0, 1, . . . , N . Then

∫

I0

Pg0(um) +

N∑

i=1

∫

Ii

Pgi(t, Aτi
um) ≤ M0 :=: k

N∑

i=0

max
Ω0

gi,

with Ω0 = T × [−r0, r0], and thanks to (A.2) and (3.1), we get

G0,k(um) +

N∑

i=1

Gi,k(Aτi
um)

=

∫

I0

Pg0(um) +

N∑

i=1

∫

Ii

Pgi(t, Aτi
um)

+

∫

Ī0

Pg0(t, um) +

N∑

i=1

∫

Īi

Pgi(t, Aτi
um)

≤ M0 + β−1

[
∫

Ī0

g0(t, um)um +

N∑

i=1

∫

Īi

gi(t, Aτi
um)Aτi

um

]

≤ M0 + β−1

[

G′
0,k(um)um +

N∑

i=1

G′
i,k(Aτi

um)Aτi
um

]

,

i.e.

G0,k(um) +

N∑

i=1

Gi,k(Aτi
um) ≤ M0 + β−1(Ns(um) + N 2

s (um)),(3.2)
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Also, thanks to (A.2), there is a constant r ≥ r0 such that the condition |x| ≥ r
implies

(∗) x2 ≤ xg0(t, x) (∀t ∈ [0, 1]).

Setting
I = {t ∈ [0, k] : |um(t)| ≤ r}, Ī = [0, k] \ I,

we then deduce from (∗) and (3.1) that

‖um‖2
L2

τ
=

∫

I

u2
m +

∫

Ī

u2
m ≤ kr2 +

∫

Ī

g0(t, um)um

that is,

‖um‖2
L2

τ
≤ kr2 + Ns(um) + N 2

s (um).(3.3)

Combining (3.1), (3.2) and (3.3), it comes

M ′ = M0 + skr2/2 + M
≥ M0 + skr2/2 + Φk(um)

= M0 + skr2/2 +
1

2
N 2

s (um) − s

2
‖um‖2

L2
k
− G0,k(um) +

N∑

i=1

Gi,k(Aτi
um)

≥ M0 + skr2/2 +
1

2
N 2

s (um) − s

2
(kr2 + Ns(um) + N 2

s (um))

− M0 − β−1(Ns(um) + N 2
s (um)),

i.e.
1

2
(1 − 2

β
− s)N 2

s (um) − (
1

s
+

1

β
)Ns(um) ≤ M ′.

Since β > 2, if we choose s such that s < 1− 2/β, then the above inequality yields
an upper bound for Ns(um) which is independent of m, i.e. (um) is bounded in
(H1

k ,Ns) and therefore in (H1
k , ‖ · ‖H1

k
).

Precompactness: The boundedness of (um) in H1
k allows us to extract a weakly

convergent subsequence, which for simplicity we still denote by (um). Let u ∈ H1
k

be its (weak) limit. Then um converges to u strongly in C0
k as well as in L2

k.
Thanks to the continuity of the fi’s we get

lim
m

∫ k

0

[f0(t, um)um − f0(t, u)u] = 0,

lim
m

∫ k

0

[fi(t, Aτi
um)Aτi

um − fi(t, Aτi
u)Aτi

u] = 0

for all i = 1, 2, . . . , N . On the one hand, (um) being a bounded and (PS) sequence
for Φk, we deduce that Φ′

k(um)um → 0 as m → ∞. Note also that Φ′
k(u)u = 0.

Indeed, we can write Φ′
k(u)u in the following form

Φ′
k(u)u = Φ′

k(um)u + [Φ′
k(u)um − Φ′

k(um)u
︸ ︷︷ ︸

Rm

] + [Φ′
k(u)u − Φ′

k(u)um],

where the first term goes to zero because (um) is a (PS) sequence, while the last
one goes to zero because um ⇀ u weakly in H1

k . Therefore we only have to show
that the second term, Rm, goes to zero as well. For this, we write Rm as

Rm = G′
0,k(um)u − G′

0,k(u)um
︸ ︷︷ ︸

R0
m

+

N∑

i=1

[
G′

i,k(Aτi
um)Aτi

u − G′
i,k(Aτi

u)Aτi
um

]

︸ ︷︷ ︸

Ri
m

.

Then we have

|R0
m| =

∣
∣
∣
∣
∣

∫ k

0

(g0(t, um)u − g0(t, u)um)

∣
∣
∣
∣
∣
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≤
∫ k

0

|g0(t, um)u − g0(t, u)u| +
∫ k

0

|g0(t, u)u − g0(t, u)um|

≤ k1/2
(

‖u‖L2
k
‖g0(·, u) − g0(·, um)‖L∞

k
+ ‖g0(·, u)‖L2

k
‖u − um‖L∞

k

)

,

which, since um → u strongly in C0
k , and g0 is continuous, shows that R0

m → 0.
Replacing g0, u, and um by gi, Aτi

u and Aτi
um, respectively, we get, for each i =

1, 2, . . . , N

|Ri
m| ≤ k1/2‖Aτi

u‖L2
k
‖g0(·, Aτi

u) − g0(·, Aτi
um)‖L∞

k

+ 2k1/2‖g0(·, Aτi
u)‖L2

k
‖u − um‖L∞

k

which shows that Ri
m → 0 for each i = 1, 2, . . . , N . Consequently,

lim
m

‖u̇m‖2
L2

k
= lim

m

[

Φ′
k(um)um +

∫ k

0

f0(t, um)um +

N∑

i=1

∫ k

0

fi(t, Aτi
um)Aτi

um

]

=

∫ k

0

f0(t, u)u +
N∑

i=1

∫ k

0

fi(t, Aτi
u)Aτi

u

= −Φ′
k(u)u + ‖u̇‖2

L2
k

= ‖u̇‖2
L2

k
.(3.4)

On the other hand the boundedness of (um) implies the one of (u̇m) in L2
k. It

follows from (3.4) that u̇m → u̇ strongly in L2
k. Hence um → u strongly in H1

k . �

Set

E0 = {u ∈ H1
k |u(t) = u(0) for all t} ∼= R.

Then,

H1
k = E0 ⊕ E⊥

0 ,

where the orthogonal complement E⊥
0 of E0 in H1

k is formed by functions with zero
mean value.

We can now prove the following

Lemma 3.2. Let k ∈ N. Under the assumptions of Theorem 1.1, Φk satisfies the
conditions (J.3)-(J.5) of Theorem 3.1, with X = H1

k , X0 = E0, and X̂ = E⊥
0 .

Proof. Condition (J.3) follows from the facts that Pg0 ≥ 0 and Pgi(·, 0) = 0 for all
i = 1, 2, . . . , N .
Condition (J.4): Let

0 < ǫ <
1 − c2

0

k + 2
.

There is a δ > 0 such that if |x| ≤ δ, then

Pg0(t, x) ≤ ǫ

2
x2, Pgi(t, x) ≤ ǫ

2Nτi
x2

for all t and every i = 1, 2, . . . , N . Let

ρ =
δ

max(Cs, l̄(k))
,

where

l̄(k) = max
1≤i≤N

l(k, τi),

and l(·, ·) is defined by (2.2). Choose a u ∈ E⊥
0 with

0 < ‖u‖H1
k
≤ ρ.

Then by (2.1) and (2.4) we have,

max(‖u‖L∞
k

, ‖Aτ1
u‖L∞

k
, . . . , ‖AτN

u‖L∞
k

) ≤ δ.
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On the other hand, for every u in E⊥
0 we have u(t0) = 0 for some t0 ∈ [0, k].

Therefore,

|u(t)|2 =

∣
∣
∣
∣

∫ t

t0

u̇

∣
∣
∣
∣

2

≤
∫ k

0

u̇2 = ‖u̇‖2
L2

k
,

i.e.

‖u‖L∞ ≤ ‖u̇‖L2
k
;

and we deduce that

‖u‖H1
k
≤

√
1 + k‖u̇‖L2

k
(∀u ∈ E⊥

0 ).

Therefore

Φk(u) ≥
∫ k

0

[

1

2
u̇2 − ǫ

2
u2 − 1

2

N∑

i=1

(
ǫ

Nτi
+ α+

i )(Aτi
u)2

]

≥ 1

2
(1 − c2

0 − ǫ)‖u̇‖2
L2

k
− ǫ

2
‖u‖2

L2
k

≥ 1 − c2
0 − ǫ

2(k + 1)
‖u‖2

H1
k
− ǫ

2
‖u‖2

H1
k

=
k + 2

2(k + 1)

(
1 − c2

0

k + 2
− ǫ

)

‖u‖2
H1

k
> 0.

In particular

Φk(u) ≥ k + 2

2(k + 1)

(
1 − c2

0

k + 2
− ǫ

)

ρ2 (∀u; ‖u‖H1
k

= ρ).

Condition (J.5): Let Y be a finite-dimensional subspace of H1
k . Then any two

norms on Y are equivalent, in particular there is a positive constant λ depending
only on Y such that

‖u‖Lβ

k

≥ λ‖u‖H1
k

(∀u ∈ Y ).

If we denote by S(Y ) the unit sphere of Y in the Sobolev norm, then we have

inf
v∈S(Y )

{

‖v‖β

Lβ

k

+

N∑

i=1

‖Aτi
v‖β

Lβ

k

}

≥ λβ .

Given a non-zero u ∈ Y , we set

u = rũ, r = ‖u‖H1
k
.

Then ũ ∈ S(Y ). Thanks to (A.2) and (A.4), we get

Φk(u) =
r2

2
Bk(ũ, ũ) −

∫ k

0

[

Pg0(t, ũ) −
N∑

i=1

Pgi(t, ũ)

]

≤ 1

2
(1 +

N∑

i=1

‖α−
i ‖L∞)r2 − a0r

β

∫ k

0

(|ũ|β +
N∑

i=1

|Aτi
ũ|β) + a1(N + 1)k

≤ 1

2
(1 +

N∑

i=1

‖α−
i ‖L∞)r2 − a0 inf

v∈S(Y )
(‖v‖β

Lβ

k

+

N∑

i=1

‖Aτi
v‖β

Lβ

k

)rβ

+ a1(N + 1)k

≤ 1

2
(1 +

N∑

i=1

‖α−
i ‖L∞)r2 − a0λ

βrβ + a1(N + 1)k.

Since β > 2, there is an R > 0 depending on λ(Y ), and therefore on Y , such that
if u ∈ Y , with ‖u‖H1

k
> R, then Φk(u) ≤ 0, and (J.5) is satisfied. �
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Thanks to Theorem 3.1, Φk possesses a critical point u in H1
k which corresponds

to a k-periodic solution of (1.3). The characterization of the critical value Φk(u)
shows that u is non-constant.

4. Existence of a homoclinic solution

The idea is to construct a sequence (uk) such that for k large enough, each uk

is a non-constant k-periodic solution of (1.1). We shall then show the existence of
a convergent subsequence whose limit is a non-trivial critical point of Φ∞.

Lemma 4.1. Under the assumptions of Theorem 1.2, Φ∞ is a well defined, and
C1 functional on E. Furthermore, any critical point of Φ∞ is a classical solution
of (1.1).

Proof. Write

Φ∞(u) =
1

2
B∞(u, u) − G0,∞(u) −

N∑

i=1

Gi,∞(Aτi
u),

where

B∞(u, v) =

∫

R

[

u̇v̇ + ωuv −
N∑

i=1

αi(Aτi
u)(Aτi

v

]

,

Gi,∞(u) =

∫

R

Pgi(t, u), i = 0, 1, . . . , N.

One easily shows that B∞ is bounded, and since each the operators Aτi
: E → E is

bounded, it follows from Proposition 2.2, that G0,∞, G1,∞ ◦Aτ1
, . . . , GN,∞ ◦AτN

∈
C1(E, R).
It is an easy exercise to compute Φ′

∞(u)ξ for any u, ξ ∈ E. By standard bootstrap
arguments one shows that if u ∈ E is a critical point of Φ∞, then it is a weak
solution of (1.1). The continuity of u and the fi’s then imply u ∈ C2, i.e. u is a
classical solution. �

Proposition 4.1. Under the assumptions of Theorem 1.2, any critical point u ∈ E
of Φ∞ satisfies u̇(±∞) = 0, i.e. it is a homoclinic solution of (1.1) emanating from
the origin.

Proof. We shall prove that if u ∈ E is a critical point of Φ∞, then ü ∈ L2, which,
obviously implies that u̇ ∈ E and therefore u̇(±∞) = 0.
Thanks to (A.1), there is a δ > 0 such that

max
0≤i≤N

|gi(t, x)| ≤ |x| for |x| ≤ δ and t ∈ [0, 1].

Because u ∈ E, we have u(t) → 0 as t → ∞, and therefore, there is an r1 > 0 such
that

|u(t)| ≤ δ/2 for all |t| ≥ r1.

Setting

r2 = r1 + max
1≤i≤N

τi,

it then follows that

max
1≤i≤N

|Aτi
u(t)| ≤ δ for t ∈ (−∞,−r2] ∪ [r1,∞),

and

max
1≤i≤N

|A∗
τi

u(t)| ≤ δ for t ∈ (−∞,−r1] ∪ [r2,∞).
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Thanks to (1.1), for |t| ≥ r2, we have

ü2 ≤ (4N + 2)

{

ω2(t)u2 + g2
0(t, u) +

N∑

i=1

[
α2

i (t)|Aτi
u|2 + α2

i (t − τi)|A∗
τi

u|2
]

+

N∑

i=1

[
|gi(t, Aτi

u)|2 + |gi(t − τi, A
∗
τi

u)|2
]

}

≤ (4N + 2)

{

(1 + ‖ω‖2
L∞)u2 +

N∑

i=1

(1 + ‖αi‖2
L∞)

[
|Aτi

u|2 + |A∗
τi

u|2
]

}

.

Thus,

∫

|t|≥r2

ü2 ≤ (4N + 2)

{

(1 + ‖ω‖2
L∞)‖u‖2

L2 + 2

N∑

i=1

τi(1 + ‖αi‖2
L∞)‖u̇‖2

L2

}

≤ (4N + 2) max

{

1 + ‖ω‖2
L∞ , 2

N∑

i=1

τi(1 + ‖αi‖2
L2)

}

‖u‖2
E < ∞,

Hence ∫

R

ü2 =

∫

|t|≤r2

ü2 +

∫

|t|≥r2

ü2 < ∞.

This shows that ü ∈ L2(R), and the proof is complete. �

For convenience Φk shall, from now on, be defined as an integral over [−k/2, k/2]
instead of [0, k].

Lemma 4.2. Under the hypotheses of Theorem 1.2, for every k ∈ N (1.1) possesses
a non-trivial k-periodic solution.

The proof of the above lemma shall follow from the standard version of the
mountain pass theorem:

Theorem 4.1 (Ambrosetti-Rabinowitz [1]). Let J ∈ C1(X, R) be (PS) and J(0) =
0. Suppose the following conditions are satisfied

(J.1) there are constants ω∗, ρ > 0 such that J |Sρ
≥ ω∗,

(J.2) there is an e ∈ X\B̄ρ such that J(e) ≤ 0.

Then, J possesses a critical value b ≥ ω∗ characterized by

(4.1) b = inf
γ∈Γ

max
0≤s≤1

J(γ(s)),

where

(4.2) Γ = {γ ∈ C([0, 1], X)|γ(0) = 0 and γ(1) = e}.
Observe that

(4.3) Bk(v, v) ≥ ǫ0‖v‖2
H1

k
(∀v ∈ H1

k),

where
(4.4)

ǫ0 =

{

min{minω, 1 −∑N
i=1 τi‖α+

i ‖L∞} if 0 < minω < 4
∑N

i=1 ‖α+
i ‖L∞

min{1,minω − 4
∑N

i=1 ‖α+
i ‖L∞} if minω > 4

∑N
i=1 ‖α+

i ‖L∞
.

Indeed, if

0 < minω < 4

N∑

i=1

‖α+
i ‖L∞ ,
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then for any v ∈ H1
k we have

Bk(v, v) ≥ ‖v̇‖2
L2

k
+

∫ k

0

ωv2 −
N∑

i=1

∫ k

0

α+
i (Aτi

v)2

≥ ‖v̇‖2
L2

k
+ minω‖v‖2

L2
k
−

N∑

i=1

‖α+
i ‖L∞‖Aτi

v‖2
L2

k

≥ ‖v̇‖2
L2

k
−

N∑

i=1

τi‖α+
i ‖L∞‖v̇‖2

L2
k

+ minω‖v‖2
L2

k

= (1 −
N∑

i=1

τi‖α+
i ‖L∞)‖v̇‖2

L2
k

+ minω‖v‖2
L2

k

≥ min{minω, 1 −
N∑

i=1

τi‖α+
i ‖L∞}‖v‖2

H1
k
,

and if

minω > 4

N∑

i=1

‖α+
i ‖L∞ ,

then we have

Bk(v, v) ≥ ‖v̇‖2
L2

k
+

∫ k

0

ωv2 −
N∑

i=1

∫ k

0

α+
i (Aτi

v)2

≥ ‖v̇‖2
L2

k
+ minω‖v‖2

L2
k
−

N∑

i=1

‖α+
i ‖L∞‖Aτi

v‖2
L2

k

≥ ‖v̇‖2
L2

k
+ minω‖v‖2

L2
k
− 4

N∑

i=1

‖α+
i ‖L∞‖v‖2

L2
k

= ‖v̇‖2
L2

k
+ (minω − 4

N∑

i=1

‖α+
i ‖L∞)‖v‖2

L2
k

≥ min{1,minω − 4

N∑

i=1

‖α+
i ‖L∞}‖v‖2

H1
k
.

Proof of Lemma 4.2. We only have to check that Theorem 4.1 is applicable, i.e. Φk

is (PS), and satisfies the conditions (J.1) and (J.2).

Φk is (PS). We shall only prove the boundedness of (PS) sequences. The precom-
pactness can be dealt with following the same line of arguments as in the proof of
Proposition 3.1.

Let (um) ⊂ H1
k be a (PS) sequence, i.e. for some constant M ≥ 0 we have

|Φk(um)| ≤ M (∀m) and lim
m→∞

Φ′
k(um) = 0.

Then, there is an integer m0 such that

‖Φ′
k(um)‖ ≤ 1 (∀m ≥ m0).

Fixing m ≥ m0, thanks to (A.3) and (4.3), we have

M +
1

β
‖um‖H1

k
≥ Φk(um) − 1

β
Φ′

k(um)um

= (
1

2
− 1

β
)Bk(um, um) +

∫ k

0

[
1

β
g0(t, um)um − Pg0(t, um)

]

+

N∑

i=1

∫ k

0

[
1

β
gi(t, Aτi

um)Aτi
um − Pgi(t, Aτi

um)

]
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≥ (
1

2
− 1

β
)ǫ0‖um‖2

H1
k
,

and thus
(β − 2)ǫ0‖um‖2

H1
k
− 2‖um‖H1

k
≤ 2βM.

Since β > 2, the previous inequality shows that (um) is bounded in H1
k .

Condition (J.1). We only have to show that

Φk(u) =
1

2
Bk(u, u) + o(‖u‖2

H1
k
).

Note that

(4.5) ǫ0‖u‖2
H1

k
≤ Bk(u, u) ≤ max(‖ω‖L∞ , 1 +

N∑

i=1

τi‖α−
i ‖L∞)‖u‖2

H1
k
.

By (A.1), given ǫ > 0, there is a δ > 0 such that if |x| ≤ δ, then

Pg0(·, x) ≤ ǫ

2
x2,

and
Pgi(·, x) ≤ ǫ

2Nτi
x2 (∀i = 1, 2, . . . , N).

Set

ρ =
δ

max(Cs, l̄(k))
,

where Cs is given by (2.4) and

l̄(k) = max
1≤i≤N

l(k, τi).

Let u ∈ H1
k with

‖u‖H1
k

= ρ.

Then, thanks to (2.4) we have
‖u‖L∞

k
≤ δ.

Also, thanks to (2.1), we have

‖Aτi
u‖L∞

k
≤ δ (∀i = 1, 2, . . . , N).

It follows that,

0 ≤ Φk(u) − 1

2
Bk(u, u) ≤ ǫ

2

∫ k

0

(u2 +

N∑

i=1

1

Nτi
(Aτi

u)2)

≤ ǫ

2
‖u‖2

H1
k
.

Since ǫ > 0 is arbitrary, we have

Φk(u) − 1

2
Bk(u, u) = o(‖u‖2

H1
k
).

In particular, if we choose ǫ such that

0 < ǫ < ǫ0,

where ǫ0 is given by (4.4), then thanks to (4.5), we have

Φk(u) ≥ 1

2
(ǫ0 − ǫ)ρ2 > 0.

Condition (J.2). Let u be a non-zero element of H1
k and r > 0. Thanks to (A.3),

we have

Φk(ru) ≤ a2k +
r2

2
Bk(u, u) − a0r

β

∫ k/2

−k/2

(|u|β +

N∑

i=1

|Aτi
u|β).
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But β > 2, therefore Φk(ru) → −∞ as r → ∞ and there is an ru > 0 such that
Φk(ru) ≤ 0 for r ≥ ru. �

From now, Φk is defined as an integral over [−k/2, k/2]. Let

k0 = max
1≤i≤N

[τi] + 1,

where [∗] denotes the integer part of ∗, and e0 a non-zero member of C1([−k0, k0])
whose support lies inside (−k0, 0). Denote by e2k0

the 2k0-periodic extension of
e0 on the whole R. Given k > 2k0, we extend continuously e0 on [−k/2, k/2] and
denote that extension by ẽ, i.e. ẽ agrees with e0 on [−k0, k0], and equals 0 elsewhere.
We now extend ẽ on the whole R in a k-periodic fashion, and denote that extension
by ẽk, i.e. ẽk is k-periodic and agrees with ẽ on [−k/2, k/2].
Obviously, we have

‖ẽk‖H1
k

= ‖e0‖H1(−k0,0) (∀k ≥ 2k0),

and for k ≥ 2k0 and |t| ≤ k/2 we have

Aτi
ẽk(t) =

{
Aτi

ẽk0(t) if t ∈ [−2k0, 0]
0 otherwise

.

Using the fact that ẽ2k0 is 2k0-periodic, we have, for any r > 0, and any i =
1, 2, . . . , N :

∫ k/2

−k/2

Pgi(t, rAτi
ẽk) =

∫ 0

−2k0

Pgi(t, rAτi
ẽ2k0)

=

∫ −k0

−2k0

Pgi(t, rAτi
ẽ2k0

) +

∫ 0

−k0

Pgi(t, rAτi
ẽ2k0

)

=

∫ k0

0

Pgi(t, rAτi
ẽ2k0

) +

∫ 0

−k0

Pgi(t, rAτi
ẽ2k0

)

=

∫ k0

−k0

Pgi(t, rAτi
ẽ2k0

).

Since Pg0(·, 0) = 0, and ẽk0 is a non-zero element of H1
2k0

, we can always choose r
in such a way that

Φk(rẽk) = Φ2k0
(rẽ2k0

) ≤ 0.

From now on, we assume that k ≥ 2k0, and set

ek = rẽk,

where r is such that the above property holds. Denote by bk the critical value of
Φk given by (4.1), with

Γ = Γk := {γ ∈ C([0, 1], H1
k)|γ(0) = 0 and γ(1) = ek}.

Let uk be the corresponding critical point.
We have the following

Lemma 4.3. The sequences (uk), (u̇k) and (ük) are uniformly bounded in (Cb(R), ‖·
‖L∞). Furthermore, there is a positive integer k∗ such that for k ≥ k∗ the solution
(uk) is non-constant.

Proof. Uniform upper bound for ‖uk‖L∞ : Let γk ∈ Γk be given by γk(s) = sek.
Then

Φk(γk(s)) = Φ2k0
(γ2k0

(s)),

and we deduce that

(4.6) bk ≤ max
0≤s≤1

Φ2k0
(γ2k0

(s)) =: b0.
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Note that

bk = Φk(uk) − 1

β
Φ′

k(uk)uk ≥ (
1

2
− 1

β
)ǫ0‖uk‖2

H1
k
.

Thus, by (4.6) we have

(4.7) ‖uk‖H1
k
≤
(

2βb0

(β − 2)ǫ0

)1/2

.

It then follows from (4.7) and (2.4) that

(4.8) ‖uk‖L∞ ≤
√

2‖uk‖H1
k
≤ M0 = 2

(
βb0

(β − 2)ǫ0

)1/2

.

Uniform bound for ‖ük‖L∞
k

: It follows from the periodicity of uk, the continuity of
the fi’s, and from (1.1) that, for all t:

|ük(t)| ≤ max
0≤t≤k

|f0(t, uk)|

+
N∑

i=1

[

max
0≤t≤k

|fi(t, Aτi
uk(t))| + max

0≤t≤k
|fi(t − τi, A

∗
τi

uk(t))|
]

≤ max
z∈Ω0

|f0(z)| + 2

N∑

i=1

max
z∈Ω1

|fi(z)| =: M2,

where
Ω0 = [0, 1] × [−M0, M0], Ω1 = [0, 1] × [−2M0, 2M0].

Thus
‖ük‖L∞ = ‖ük‖L∞

k
≤ M2 (∀k ≥ 2k0).

Uniform upper bound for ‖u̇k‖L∞ : Let |t| ≤ k/2. By the mean value theorem,
we have

u̇k(tk) =

∫ t

t−1

u̇k(s)ds = uk(t) − uk(t − 1)

for some tk ∈ [t − 1, t]. It follows that

|u̇k(t)| =

∣
∣
∣
∣
u̇k(tk) +

∫ t

tk

ük(s)ds

∣
∣
∣
∣

≤ |uk(t) + |uk(t − 1)| +
∫ t

tk

|ük(s)|ds

≤ 2M0 +

∫ t

t−1

M2ds

= 2M0 + M2.

Thus
‖u̇k‖L∞ = ‖u̇k‖L∞

k
≤ M2 := 2M0 + M2 (∀k ≥ 2k0).

Uniform lower bound for ‖uk‖L∞ . For each i = 0, 1, . . . , N we defined Yi : [0,∞) →
R by Yi(s) = 0 if s = 0, and for s > 0

Yi(s) = max{x−1gi(t, x) : t ∈ [0, 1] and 0 < |x| ≤ s}, 0 ≤ i ≤ N.

For each i, the map s 7→ Yi(s) is continuous, non-decreasing, and non-negative.
Since

|uk(t)| ≤ sk := ‖uk‖L∞
k

,

for every t, it readily follows from the definition of Y0 that

g0(t, uk(t))

uk(t)
≤ Y0(sk),

for every t for which the left hand side is well defined. Similarly, for each i =
1, 2 . . . , N , we have

gi(t, Auk(t))

Auk(t)
≤ Yi(2sk),
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whenever the left hand side is well defined.
Using the definition of uk, we infer that

ǫ0‖uk‖2
H1

k
≤ Bk(uk, uk)

=

∫ k/2

−k/2

[

u̇2
k + ωu2

k −
N∑

i=1

αi(Aτi
uk)2

]

=

∫ k/2

−k/2

[

g0(t, uk)uk +

N∑

i=1

gi(t, Aτi
uk)Aτi

uk

]

≤
∫ k/2

−k/2

[

Y0(sk)u2
k +

N∑

i=1

Yi(2sk)(Aτi
uk)2

]

≤ Y0(sk)‖uk‖2
L2

k
+ ‖u̇k‖2

L2
k

N∑

i=1

τiYi(2sk)

≤ (Y0(sk) +

N∑

i=1

τiYi(2sk))‖uk‖2
H1

k

= Y (sk)‖uk‖2
H1

k
,

where

Y (s) = Y0(s) +
N∑

i=1

τiYi(2s)

It is clear that Y enjoys the same properties as the Yi’s, therefore, since sk 6= 0,
there is a positive number δ0 which is independent of k such that

(4.9) ‖uk‖L∞ ≥ δ0.

Existence of k∗. We argue by contradiction. Suppose all the uk are constants. Then
we have

δ0 ≤ ‖uk‖L∞ = |uk(0)| =
‖uk‖H1

k√
k

≤ M0√
2k

for k large enough. This contradicts the fact that δ0 is non-zero. Therefore, there
must be such a k∗. �

Lemma 4.4. The sequence (uk) possesses a convergent subsequence (ũk) whose
limit, ũ, belongs to E and is a non-zero critical point of Φ∞.

Proof. First, note that the sequences (uk) and (u̇k) are equicontinuous. Indeed,
given k ≥ k∗, and t1, t2 ∈ R, we have

|uk(t2) − uk(t1)| =

∣
∣
∣
∣

∫ t2

t1

u̇k(s)ds

∣
∣
∣
∣
≤ M1|t2 − t1|

|u̇k(t2) − u̇k(t1)| =

∣
∣
∣
∣

∫ t2

t1

ük(s)ds

∣
∣
∣
∣
≤ M2|t2 − t1|.

Hence, in view of Lemma 4.2 and thanks to Arzelà-Ascoli’s Theorem, a subsequence
(ũk) converges in C1

loc(R), say to some ũ. Actually ũk → ũ in C2
loc(R) since each

ũk satisfies (1.1).
By (4.7), one infers hat

∫

R

( ˙̃u2 + ũ2) ≤ M2
0 /2,

i.e. ũ ∈ E. It only remains to show that

Φ′
∞(ũ) = 0.
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Let ξ be a test function on R. Denote by I0, I1, . . . , IN the supports of ξ(·),
ξ(· + τ1), . . . , ξ(· + τN ), respectively. Let k ∈ N be sufficiently large, so that

I :=

N⋃

i=1

Ii ⊂ (−k/2, k/2).

Then, we have

Φ′
∞(ũ)ξ = Φ′

∞(ũ)ξ − Φ′
k(ũk)ξ

= BI(ũ − ũk, ξ) + (G′
0,I(ũ) − G′

0,I(ũk))ξ + (G′
I(ũ) − G′

I(ũk))ξ,

with

BI(w, ξ) =

∫

I

[

ẇξ̇ + ωwξ −
N∑

i=1

αiAτi
wAτi

ξ

]

,

G′
0,I(w)ξ =

∫

I

g0(t, w)ξ,

G′
I(w)ξ =

N∑

i=1

∫

I

gi(t, Aτi
w)Aτi

ξ.

Note that

|BI(ũ − ũk, ξ)| ≤ ‖ ˙̃u − ˙̃uk‖L∞(I)

∫

I

|ξ̇| + ‖ũ − ũk‖L∞(I)

∫

I

ω|ξ|

+ 2‖ũ − ũk‖L∞(I)

N∑

i=1

∫

Ii

|αi||Aτi
ξ|

≤ |I|1/2‖ξ̇‖L2(I)‖ ˙̃u − ˙̃uk‖L∞(I)

+ |I|1/2‖ω‖L∞‖ξ‖L2(I)‖ũ − ũk‖L∞(I)

+ 2‖ũ − ũk‖L∞(I)

N∑

i=1

√
τi‖αi‖L∞‖ξ̇‖L2(I)

≤ b∗‖ξ‖E(‖ũ − ũk‖L∞(I) + ‖ ˙̃u − ˙̃uk‖L∞(I))
= b∗‖ξ‖E‖ũ − ũk‖C1(I),

where

b∗ = max

(

|I|1/2, ‖ω‖L∞ + 2
N∑

i=1

√
τi‖αi‖L∞

)

,

Since ũk → ũ in C1
loc, it follows from the above estimate that BI(ũ− ũk, ξ) → 0 as

k → ∞.
Similarly, we have

|G′
0,I(ũ)ξ − G′

0,I(ũk)ξ| ≤ |I|1/2‖ξ‖E‖g0(·, ũ) − g0(·, ũk)‖L∞(I)

|G′
I(ũ)ξ − G′

I(ũk)ξ| ≤
N∑

i=1

∫

I

|gi(t, Aτi
ũ) − gi(t, Aτi

ũk)||Aτi
ξ|

≤ |I|1/2‖ξ‖E

N∑

i=1

√
τi‖gi(·, Aτi

ũ) − gi(·, Aτi
ũk)‖L∞(I)

It then follows from the continuity of the gi’s, and the convergence ũk → ũ in C1
loc

that

lim
k

|G′
0,I(ũ)ξ − G′

0,I(ũk)ξ| = 0 and lim
k

|G′
I(ũ)ξ − G′

I(ũk)ξ| = 0.

Thus

|Φ′
∞(ũ)ξ| = lim

k
|Φ′

∞(ũ)ξ − Φ′
k(ũk)ξ| = 0.

Since ξ is arbitrary, we have Φ′
∞(ũ) = 0.
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From (4.9), one infers that

‖ũ‖L∞ ≥ δ0 > 0,

that is, ũ 6≡ 0. �

5. Applications: travelling waves in lattices with

N-nearest-neighbour interaction

In this section we study periodic and homoclinic travelling waves in infinite
lattices with N -nearest-neighbour interaction.

Consider an infinite lattice of particles subejcted to a potential V0 and such that
each particle interacts with its N (first) nearest neighbours1, under the potentials
V1, . . . , VN . The equation of the motion of a single particle is described by Newton’s
law, i.e.

(5.1) q̈j + V ′
0(qj) =

N∑

i=1

[V ′
i (qj+i − qi) − V ′

i (qi − qj−i)] , j ∈ Z.

A travelling wave is a solution of (5.1) of the form

(5.2) qj(t) = u(j − ct), j ∈ Z,

where c > 0 is the wave speed and u the wave profile.
Inserting (5.2) into (5.1) yields the advanced-delayed ODE

(5.3) c2ü + V ′
0(u) =

N∑

i=1

[V ′
i (Aiu) − V ′

i (A∗
i u)] .

We shall consider potentials of the type

(V ) Vi(x) =
λi

2
x2 + Wi(x), i = 0, 1, . . . , N.

Let c∗ ≥ 0 be given by

c2
∗ =

{

0 if −∞ < λ0 < −4
∑N

i=1 max(0, λi)
∑N

i=1 imax(0, λi) if −4
∑N

i=1 max(0, λi) ≤ λ0 ≤ 0.
.

Then we have the following

Corollary 5.1. Let the Vi ∈ C1(R) be given by (V). Suppose λ0 = 0, and each
W ∈ {Wi : 0 ≤ i ≤ N} satisfies the following conditions:

(W.1) W (x) = o(x2) as x → 0, and
(W.2) W ≥ 0 and there are constants β > 2, r0 > 0 such that βW (x) ≤ xW ′(x)

for |x| ≥ r0.

Then for any τ > 0, and any c > c∗, (5.3) possesses a non-constant τ -periodic
solution.

Corollary 5.2. Let the Vi ∈ C1(R) be given by (V). Suppose λ0 < 0 and each
W ∈ {Wi : 0 ≤ i ≤ N} satisfies the growth condition

(W.3) there exists a constant β > 2 such that

0 < βW (x) ≤ xW ′(x) ∀x 6= 0.

Then for any c > c∗, (5.3) possesses a non-trivial homoclinic solution emanating
from 0.

1This means that each particle interacts with 2N other particles.
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The proofs shall be omitted. However, one can observe that (5.3) is of the type
(1.1), with αi(t) = c−2λi, gi(t, x) = c−2W ′

i (x), for t, x ∈ R and i = 0, 1, 2, . . . , N ,
and τi = i for i = 1, 2, . . . , N . The only difference is that (5.3) is non-autonomous
while (1.1) is not. The proof of Corollary 5.1 (resp. Corollary 5.2) follows exactly
the same line of arguments as the one of Theorem 1.1 (resp. Theorem 1.2). The
only exception when dealing with periodic solutions for (5.3) is that the period is
allowed to take any positive real value. The condition c0 < 1 reads precisely c > c∗.
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