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Abstract

We investigate some geometric aspects of lightlike hypersurfaces of indefinite Ken-

motsu manifolds, tangent to the structure vector field, by paying attention to the geometry

of leaves of integrable distributions. Theorems on parallel vector fields, Killing distribu-

tion, geodesibility of those leaves are obtained. The geometrical configuration of such

lightlike hypersurfaces and leaves of its screen integrable distributions are established. We

show that any totally contact umbilical leaf of screen integrable distribution of a lightlike

hypersurface cannot be an extrinsic sphere. We also prove the geometry any leaf of inte-

grable distribution is closely related with the geometry ofa normal bundle.

2000 Mathematics Subject Classification:53C15, 53C25, 53C50.
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1 Introduction

In 1971, K. Kenmotsu studied a class of contact Riemannian manifolds satisfying some special

conditions. We call them Kenmotsu manifolds [9]. Several authors have studied some properties

of Kenmotsu manifolds since then. In [8], for instance, the authors partially classified the

Kenmotsu manifolds and considered manifolds admitting thetransformation which keeps the

Riemannian curvature tensor and Ricci tensor invariant. The contact geometry has significant

use in differential equations, phase spaces of dynamical systems (see details in [12] and [21],

for instance), and the literature about its lightlike case is very limited. Some specific discussions

on this matter can be found in [18], [19] and references therein.

The present paper aims to investigate the geometry of lightlike hypersurfaces of indefinite Ken-

motsu manifolds, tangent to the structure vector field.

As it is well known, the geometry of lightlike submanifolds [3] are different because for the

fact that their normal vector bundle intersects with the tangent bundle. Thus, the study becomes

more difficult and strikingly different from the study of non-degenerate submanifolds. This

means that one cannot use, in the usual way, the classical submanifold theory to define any

induced object on a lightlike submanifold. To deal with thisanomaly, the lightlike submanifolds
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were introduced and presented in a book by Duggal and Bejancu[3]. They introduced a non-

degenerate screen distribution to construct a nonintersecting lightlike transversal vector bundle

of the tangent bundle. Several authors have studied a lightlike hypersurface of semi-Riemannian

manifold (see [6] and many more references therein).

Physically, lightlike hypersurfaces are interesting in general relativity since they produce mod-

els of different types of horizons. On the Latter, the relationship between Killing and geodesic

notions is well specified. Lightlike hypersurfaces are alsostudied in the theory of electromag-

netism (see, for instance [3], Chapter 8).

In a totally umbilical real lightlike hypersurface of an indefinite Kähler space form, Duggal and

Bejancu proved that the nonzero mean curvature vector satisfies partial differential equations

which imply that the nonzero mean curvature vector is not parallel. The usual terminology

says that such an umbilical lightlike submanifold is not anextrinsic sphere(see [4] for more

details). As the notion of totally umbilical submanifolds of Kählerian manifolds corresponds

to that of totally contact umbilical submanifolds of Sasakian manifolds [11], the author in [15]

showed that, in a totally contact umbilical lightlike hypersurface of an indefinite Sasakian space

form, the nonzero mean curvature vector also is not parallel. But in [17] it is proved that any

totally contact umbilical leaf of a screen integrable distribution of a lightlike hypersurface in an

indefinite Sasakian space form is an extrinsic sphere.

In this paper, we focus on the similar mentioned notions above and those given in [7], [13], [14]

and [16] on lightlike hypersurfaces of indefinite Sasakian manifolds. It is important to notice

that Kenmotsu manifolds are different from Sasakian manifolds.

The paper is organized as follows. In section 2, we recall some basic definitions for indefinite

Kenmotsu manifolds and lightlike hypersurfaces of semi-Riemannian manifolds. In section

3, we give the decomposition of almost contact metrics of lightlike hypersurfaces in indefinite

Kenmotsu manifolds which are tangential to the structure vector field, supported by an example,

as well as theorems on Lie derivatives and parallel second fundamental form. In section 4, we

investigate the geometry of integrable distributions. Theorems on parallel vector fields, Killing

distributions, geodesibility of lightlike hypersurfacesand of leaves of integrable distributions

D, D0 ⊥ 〈ξ〉 andD0 are stated. By Theorems 5.4, 5.8 and 5.9 in section 5, we establish the

geometrical configuration of such lightlike hypersurfaces, its screen distributions and leaves

of its integrable screen distributions in Kenmotsu space forms. A characterization of totally

contact umbilical lightlike hypersurfaces is given (Theorem 5.7). We show that any totally

contact umbilical leaf of an integrable screen distribution of a lightlike hypersurface cannot be

an extrinsic sphere (Theorem 5.10). By Theorem 5.12, we characterize the geometry of any leaf

of integrable screen distribution.
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2 Preliminaries

Let M be a(2n + 1)-dimensional manifold endowed with an almost contact structure(φ, ξ, η),

i.e. φ is a tensor field of type(1, 1), ξ is a vector field, andη is a 1-form satisfying

φ
2

= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 andφξ = 0. (2.1)

Then (φ, ξ, η, g) is called an almost contact metric structure onM if (φ, ξ, η) is an almost

contact structure onM andg is a semi-Riemannian metric onM such that, for any vector field

X , Y onM [2]

η(X) = g(ξ,X), g(φ X,φ Y ) = g(X,Y ) − η(X) η(Y ). (2.2)

If, moreover,(∇Xφ)Y = g(φ X, Y )ξ − η(Y )φX and∇Xξ = X − η(X)ξ, where∇ is the

Levi-Civita connection for the semi-Riemannian metricg, we callM an indefinite Kenmotsu

manifold [9].

A plane sectionσ in TpM is called aφ-section if it is spanned byX andφX , whereX is a

unit tangent vector field orthogonal toξ. The sectional curvature of aφ-sectionσ is called a

φ-sectional curvature. If a Kenmotsu manifoldM has constantφ-sectional curvaturec, then, by

virtue of the Proposition 12 in [9], the curvature tensorR of M is given by

R(X,Y )Z =
c − 3

4

{
g(Y ,Z)X − g(X,Z)Y

}
+

c + 1

4

{
η(X)η(Z)Y

−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y ,Z)η(X)ξ + g(φY ,Z)φ X

− g(φX,Z)φY − 2g(φX, Y )φ Z
}

, X, Y , Z ∈ Γ(TM). (2.3)

A Kenmotsu manifoldM of constantφ-sectional curvaturec will be calledKenmotsu space

form and denotedM(c).

Let (M,g) be a(2n+1)-dimensional semi-Riemannian manifold with indexs, 0 < s < 2n+1

and let(M,g) be a hypersurface ofM , with g = g|M . M is a lightlike hypersurface ofM if

g is of constant rank2n − 1 and the normal bundleTM⊥ is a distribution of rank 1 onM [3].

A complementary bundle ofTM⊥ in TM is a rank2n − 1 non-degenerate distribution over

M . It is called ascreen distributionand is often denoted byS(TM). A lightlike hypersurface

endowed with a specific screen distribution is denoted by thetriple (M,g, S(TM)). As TM⊥

lies in the tangent bundle, the following result has an important role in studying the geometry

of a lightlike hypersurface.

Theorem 2.1 [3]Let (M,g, S(TM)) be a lightlike hypersurface of(M,g). Then, there exists

a unique vector bundleN(TM) of rank 1 overM such that for any non-zero sectionE of

TM⊥ on a coordinate neighborhoodU ⊂ M , there exist a unique sectionN of N(TM) onU

satisfying

g(N,E) = 1 and g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM)|U ). (2.4)
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Throughout the paper, all manifolds are supposed to be paracompact and smooth. We denote

Γ(E) the smooth sections of the vector bundleE. Also by⊥ and⊕ we denote the orthogonal

and nonorthogonal direct sum of two vector bundles. By Theorem 2.1 we may write down the

following decomposition

TM = S(TM) ⊥ TM⊥,

TM = TM ⊕ N(TM) = S(TM) ⊥ (TM⊥ ⊕ N(TM)). (2.5)

Let∇ be the Levi-Civita connection on(M,g), then by using the second decomposition of (2.5)

and considering a normalizing pair{E,N} as in Theorem 2.1, we have Gauss and Weingarten

formulae in the form, for anyX, Y ∈ Γ(TM |U ),

∇XY = ∇XY + B(X,Y )N and ∇XN = −ANX + ∇⊥
XN, (2.6)

where∇XY , ANX ∈ Γ(TM). ∇ is an induced a symmetric linear connection onM , ∇⊥ is a

linear connection on the vector bundleN(TM), B is a symmetric bilinear form andAN is the

shape operator ofM concerningN .

Equivalently, consider a normalizing pair{E,N} as in Theorem 2.1. Then (2.6) takes the form,

for anyX, Y ∈ Γ(TM |U ),

∇XY = ∇XY + B(X,Y )N and ∇XN = −ANX + τ(X)N, (2.7)

It is important to mention that the second fundamental formB is independent of the choice of

screen distribution, in fact, from (2.7), we obtain

B(X,Y ) = g(∇XY,E), ∀X, Y ∈ Γ(TM |U ), (2.8)

τ(X) = g(∇⊥
XN,E), ∀X ∈ Γ(TM |U ). (2.9)

Let P be the projection morphism ofTM onS(TM) with respect to the orthogonal decompo-

sition ofTM . We have

∇XPY = ∇∗
XPY + C(X,PY )E, ∀X,Y ∈ Γ(TM |U ) (2.10)

and ∇XE = −A∗
EX − τ(X)E, ∀X ∈ Γ(TM |U ), (2.11)

where∇∗
XPY andA∗

EX belong toΓ(S(TM)). C, A∗
E and∇∗ are called the local second fun-

damental form, the local shape operator and the induced connection onS(TM). The induced

linear connection∇ is not a metric connection and we have

(∇Xg)(Y,Z) = B(X,Y )θ(Z) + B(X,Z)θ(Y ), ∀X, Y ∈ Γ(TM |U ), (2.12)

whereθ is a differential 1-form locally defined onM by θ(·) := g(N, ·).

Also, we have,g(A∗
EX,PY ) = B(X,PY ), g(A∗

EX,N) = 0, B(X,E) = 0.
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Finally, using (2.7),R andR are curvature tensor fields ofM andM are related as

R(X,Y )Z = R(X,Y )Z + B(X,Z)ANY − B(Y,Z)ANX

+ {(∇XB)(Y,Z) − (∇Y B)(X,Z) + τ(X)B(Y,Z)

− τ(Y )B(X,Z)}N, (2.13)

where (∇XB)(Y,Z) = X.B(Y,Z) − B(∇XY,Z) − B(Y,∇XZ).

3 Lightlike hypersurfaces of indefinite Kenmotsu manifolds

Let (M,φ, ξ, η, g) be an indefinite Kenmotsu manifold and(M,g) be its lightlike hypersur-

face, tangent to the structure vector fieldξ (ξ ∈ TM ). If E is a local section ofTM⊥, then

g(φE,E) = 0, andφE is tangent toM . Thusφ(TM⊥) is a distribution onM of rank 1 such

that φ(TM⊥) ∩ TM⊥ = {0} . This enables us to choose a screen distributionS(TM) such

that it containsφ(TM⊥) as vector subbundle. If we consider a local sectionN of N(TM),

sinceg(φ N,E) = −g(N,φ E) = 0, we deduce thatφE is also tangent toM and belongs to

S(TM). On the other hand, sinceg(φ N,N) = 0, we see that the component ofφ N with re-

spect toE vanishes. ThusφN ∈ Γ(S(TM)). From (2.1), we haveg(φN,φE) = 1. Therefore,

φ(TM⊥)⊕φ(N(TM)) (direct sum but not orthogonal) is a nondegenerate vector subbundle of

S(TM) of rank 2. IfM is tangent to the structure vector fieldξ, then, we may chooseS(TM)

so thatξ belongs toS(TM). Using this, and sinceg(φE, ξ) = g(φN, ξ) = 0, there exists a

nondegenerate distributionD0 of rank2n − 4 onM such that

S(TM) =
{

φ(TM⊥) ⊕ φ(N(TM))
}
⊥ D0 ⊥< ξ >, (3.1)

where〈ξ〉 is the distribution spanned byξ, that is,〈ξ〉 = Span{ξ}. It is easy to check that the

distributionD0 is invariant underφ, i.e. φ(D0) = D0.

Example 3.1 We consider the7-dimensional manifoldM =
{
(x1, x2, ..., x7) ∈ R

7
}

, where

x = (x1, x2, ..., x7) are the standard coordinates inR
7. The vector fields

e1 = x7
∂

∂x1
, e2 = x7

∂

∂x2
, e3 = x7

∂

∂x3
, e4 = x7

∂

∂x4
, e5 = −x7

∂

∂x5
,

e6 = −x7
∂

∂x6
, e7 = −x7

∂

∂x7
(3.2)

are linearly independent at each point ofM . Let g be the Riemannian metric defined by

g(ei, ej) = 0, ∀ i 6= j, i, j = 1, 2, ..., 7 andg(ek, ek) = 1, ∀ k = 1, 2, 3, 4, 7, g(em, em) =

−1, ∀m = 5, 6. Let η be the 1-form defined byη(X) = g(X, e7), for anyX ∈ Γ(TM).

Let φ be the(1, 1) tensor field defined by

φe1 = −e2, φe2 = e1, φe3 = −e4, φe4 = e3, φe5 = −e6, φe6 = e5, φe7 = 0.

Then using the linearity ofφ andg, we haveη(e7) = 1, φ
2
X = −X+η(X)e7, g(φ X,φ Y ) =

g(X,Y )−η(X)η(Y ), for anyX , Y ∈ Γ(TM). Thus, fore7 = ξ, (φ, ξ, η, g) defines an almost
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contact metric structure onM . Let∇ be the Levi-Civita connection with respect to the metric

g. Then, we have[ei, e7] = ei, ∀ i = 1, 2, ..., 6 and[ei, ej ] = 0, ∀ i 6= j, i, j = 1, 2, ..., 6. The

metric connection∇ of the metricg is given by

2g(∇XY ,Z) = X.g(Y ,Z) + Y .g(Z,X) − Z.g(X,Y ) − g(X, [Y ,Z])

−g(Y , [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul’s formula. Using this formula, the non-vanishing covariant deriva-

tives are given by∇e1
e1 = −e7, ∇e2

e2 = −e7, ∇e3
e3 = −e7, ∇e4

e4 = −e7, ∇e5
e5 =

e7,∇e6
e6 = e7, ∇e1

e7 = e1, ∇e2
e7 = e2, ∇e3

e7 = e3, ∇e4
e7 = e4, ∇e5

e7 = e5,∇e6
e7 =

e6. From these relations, it follows that the manifoldM satisfies∇Xξ = X − η(X)ξ. Hence,

M is indefinite Kenmotsu manifold.

We now define a hypersurfaceM of (R7, φ, ξ, η, g) asM =
{
x ∈ R

7 : x5 = x2

}
. Thus, the

tangent spaceTM is spanned by{Ui}1≤i≤6, whereU1 = e1, U2 = e2 − e5, U3 = e3, U4 =

e4, U5 = e6, U6 = ξ and the 1-dimensional distributionTM⊥ of rank 1 is spanned byE,

whereE = e2 − e5. It follows that TM⊥ ⊂ TM . ThenM is a 6-dimensional lightlike

hypersurface ofR7. Also, the transversal bundleN(TM) is spanned byN = 1
2 (e2 + e5) . On

the other hand, by using the almost contact structure ofR
7 and also by taking into account of the

decomposition (3.1), the distributionD0 is spanned by
{
F, φF

}
, whereF = U3, φF = −U4

and the distributions〈ξ〉, φ(TM⊥) andφ(N(TM)) are spanned, respectively, byξ, φE =

U1 + U5 andφN = 1
2(U1 − U5). Hence,M is a lightlike hypersurface ofR7.

Moreover, from (2.5) and (3.1) we obtain the decomposition

TM =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ TM⊥, (3.3)

TM =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ N(TM)). (3.4)

Now, we consider the distributions onM , D := TM⊥ ⊥ φ(TM⊥) ⊥ D0, D′ := φ(N(TM)).

ThenD is invariant underφ and

TM = D ⊕ D′ ⊥ 〈ξ〉. (3.5)

Let us consider the local lightlike vector fieldsU := −φN, V := −φE. Then, from (3.5),

any X ∈ Γ(TM) is written as X = RX + QX + η(X)ξ, QX = u(X)U, whereR and

Q are the projection morphisms ofTM into D andD′, respectively, andu is a differential

1-form locally defined onM by u(·) := g(V, ·). Applying φ to X and (2.1), one obtainsφX =

φX + u(X)N, whereφ is a tensor field of type(1, 1) defined onM by φX := φ RX. Also,

we obtain, for anyX ∈ Γ(TM),

B(X, ξ) = 0, (3.6)

φ2 X = −X + η(X)ξ + u(X)U, (3.7)

and ∇Xξ = X − η(X)ξ. (3.8)
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By using (2.1) we deriveg(φX,φY ) = g(X,Y )−η(X)η(Y )−u(Y )v(X)−u(X)v(Y ), where

v is 1-form locally defined onM by v(·) = g(U, ·). We note that

g(φX, Y ) + g(X,φY ) = −u(X)θ(Y ) − u(Y )θ(X). (3.9)

For the sake of future use, we have the following identities:for anyX, Y ∈ Γ(TM),

C(X, ξ) = θ(X), (3.10)

B(X,U) = C(X,V ) (3.11)

(∇Xu)Y = −B(X,φY ) − u(Y )τ(X) − η(Y )u(X), (3.12)

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX − B(X,Y )U + u(Y )ANX. (3.13)

Proposition 3.2 LetM be a lightlike hypersurface of an indefinite Kenmotsu manifold M with

ξ ∈ TM . The Lie derivative ofg with respect to the vector fieldV is given by,

(LV g)(X,Y ) = X.u(Y ) + Y.u(X) + u([X,Y ]) − 2u(∇XY ), ∀X, Y ∈ Γ(TM). (3.14)

Proof: The proof follows by direct calculation. �

The relation (3.14) can be written in terms ofB using the following relation,

u(∇XY ) = B(X,φY ) + u(X)η(Y ), ∀X, Y ∈ Γ(TM). (3.15)

As the geometry of a lightlike hypersurface depends on the chosen screen distribution, it is

important to investigate the relationship between geometrical objects induced by two screen

distributions. Suppose a screenS(TM) changes to another screenS(TM)′. Following are the

transformation equations due to this change (see details in[3], pages 164-165).

K ′
i =

2n−1∑

j=1

K
j
i (Kj − ǫjcjE),

N ′ = N −
1

2
{
2n−1∑

i=1

ǫi(ci)
2}E + K,

τ ′(X) = τ(X) + B(X,K),

∇′
XY = ∇XY + B(X,Y ){

1

2
(

2n−1∑

i=1

ǫi(ci)
2)E − K}, (3.16)

whereK =
∑2n−1

i=1 ciKi, {Ki} and {K ′
i} are the local orthonormal basis ofS(TM) and

S(TM)′ with respective transversal sectionsN andN ′ for the same null sectionE. Hereci and

K
j
i are smooth functions onU and{ǫ1, ..., ǫ2n−1} is the signature of the base{K1, ...,K2n−1}.

The Lie derivativesLV andL′
V of the screen distributionsS(TM) andS(TM)′, respectively,

are related through the relation (see [14]):

(L′
V g)(X,Y ) = (LV g)(X,Y ) − u(X)B(Y,W ) − u(Y )B(X,W ).
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It is easy to check that the Lie derivativeLV is unique, that is,LV is independent ofS(TM),

if and only if, the second fundamental formh (or equivalently B) ofM vanishes identically on

M .

If a (2n + 1)-dimensional Kenmotsu manifoldM has a constantφ-sectional curvaturec, then

the Ricci tensorRic and the scalar curvaturer are given by [9]

Ric =
1

2
(n(c − 3) + c + 1) g −

1

2
(n + 1)(c + 1)η ⊗ η, (3.17)

r =
1

2
(n(2n + 1)(c − 3) − n(c + 1)) . (3.18)

This means thatM is η-Einstein. SinceM is Kenmotsu andη-Einstein, by Corollary 9 in [9],

M is an Einstein one and consequently,c + 1 = 0, that is,c = −1. So, the Ricci tensor (3.17)

becomesRic = −2ng and the scalar curvature is given byr = −2n(2n + 1).

Thus,if a Kenmotsu manifoldM is a space form, then it isη-Einstein andc = −1.

Let M(c) be an indefinite Kenmotsu space form andM be a lightlike hypersurface ofM (c).

Let us consider the pair{E,N} onU ⊂ M (see Theorem 2.1) and by using (2.13), we obtain

(∇XB)(Y,Z) − (∇Y B)(X,Z) = τ(Y )B(X,Z) − τ(X)B(Y,Z). (3.19)

Theorem 3.3 LetM be a lightlike hypersurface of an indefinite Kenmotsu space formM(c) of

constant curvaturec, with ξ ∈ TM . Then, the Lie derivative of the second fundamental form

B with respect toξ is given by

(LξB)(X,Y ) = (1 − τ(ξ))B(X,Y ), ∀X, Y ∈ Γ(TM). (3.20)

Moreover, ifτ(ξ) 6= 1, thenξ is a Killing vector field with respect to the second fundamental

form B if and only ifM is totally geodesic.

Proof: Using (2.14), we obtain

(∇ξB)(X,Y ) = (LξB)(X,Y ) − 2B(X,Y ). (3.21)

Likewise, Using again (2.14), we have

(∇XB)(ξ, Y ) = −B(X,Y ). (3.22)

Subtracting (3.21) and (3.22), we obtain

(∇ξB)(X,Y ) − (∇XB)(ξ, Y ) = (LξB)(X,Y ) − B(X,Y ). (3.23)

From (5.9) and after calculations, the left hand side of (5.10) becomes

(∇ξB)(X,Y ) − (∇XB)(ξ, Y ) = −τ(ξ)B(X,Y ). (3.24)

The expressions (5.10) and (5.11) implies(LξB)(X,Y ) = (1− τ(ξ))B(X,Y ). The last asser-

tion is obvious by definitions of Killing distribution and totally geodesic submanifold. �
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As an example to the last part of the Theorem 3.3, we have a lightlike hypersurface of an

indefinite Kenmotsu space form, tangent to the structure vector fieldξ, with parallel vector field

U or V . In fact, when the vector fieldU or V is parallel, the differential 1-formτ vanishes on

M and consequently, the equivalence of the Theorem 3.3 holds.

Next, we give characterization on parallel lightlike hypersuface of an indefinite Kenmotsu man-

ifold. In fact, it shows that there do not exist non-totally geodesic totally umbilical lightlike

hypersurfaces of indefinite Kenmotsu manifolds, tangent tothe structure vector fieldξ.

The second fundamental formh of M is said to be parallel if(∇Xh)(Y,Z) = 0, ∀X, Y, Z ∈

Γ(TM). That is,

(∇XB)(Y,Z) = −τ(X)B(Y,Z). (3.25)

Theorem 3.4 LetM be a lightlike hypersurface of an indefinite Kenmotsu space formM(c) of

constant curvaturec with ξ ∈ TM . If the second fundamental formh of M is parallel, thenM

is totally geodesic.

Proof: Suppose that the second fundamental formh of M is parallel. Then (3.25) is satisfied.

Using (3.25), we obtain

(∇ξB)(X,Y ) = −τ(ξ)B(X,Y ). (3.26)

From (2.14) and using (3.20), the left hand side of (3.26) becomes

(∇ξB)(X,Y ) = (LξB)(X,Y ) − 2B(X,Y ) = −(1 + τ(ξ))B(X,Y ). (3.27)

From the expressions (3.26) and (3.27) we complete the proof. �

This means that any parallel lightlike hypersurfaceM of an indefinite Kenmotsu manifoldM

admits ametric connection.

The covariant derivative of the second fundamental formh depends on∇, N and τ which

depend on the choice of the screen vector bundle. The covariant derivatives∇ of h = B ⊗ N

and∇′ of h′ = B ⊗ N ′ in the screen distributionsS(TM) andS(TM)′, respectively, are

related as follows: for anyX, Y , Z ∈ Γ(TM),

g((∇′
Xh′)(Y,Z), E) = g((∇Xh)(Y,Z), E) + L(X,Y )Z,

with L(X,Y )Z = B(X,Y )B(Z,K)+B(X,Z)B(Y,K)+B(Y,Z)B(X,K). It is easy to check

that the parallelism ofh is independent of the screen distributionS(TM) (∇′h′ ≡ ∇h) if and

only the second fundamental formB of M vanishes identically onM .

From (2.3) and (2.13), a direct calculation shows that

(∇XC)(Y, PZ) − (∇Y C)(X,PZ) + τ(Y )C(X,PZ) − τ(X)C(Y, PZ)

= g(X,PZ)θ(Y ) − g(Y, PZ)θ(X). (3.28)
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Lemma 3.5 Let(M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM . Then, the covariant derivative ofv and the Lie derivative ofg with respect

to the vector fieldU are given, respectively, by, for anyX, Y ∈ Γ(TM),

(∇Xv)Y = −C(X,φY ) − v(X)η(Y ) + τ(X)v(Y ), (3.29)

(LUg)(X,Y ) = X.v(Y ) + Y.v(X) + v([X,Y ]) − 2v(∇XY ). (3.30)

Proof: The proof of (3.29) and (3.30) follows from direct calculations. �

The Lie derivative (3.30) can be written in terms of the second fundamental formC of S(TM)

using the relation

v(∇XY ) = C(X,φY ) + η(Y )v(X), ∀ X, Y ∈ Γ(TM). (3.31)

The Lie derivative (3.30) depends onC and v which are not unique and their change can

be seen as follows. Denote byκ the dual 1-form ofK =
∑2n−1

i=1 ciKi (characteristic vec-

tor field of the screen change defined in (3.16)) with respect to the induced metricg of M ,

that is κ(X) = g(X,K), ∀X ∈ Γ(TM). Let P and P ′ be projections ofTM on

S(TM) andS(TM)′, respectively with respect to the orthogonal decomposition of TM . So,

any vector fieldX on M can be written asX = PX + θ(X)E = P ′X + θ′(X)E, where

θ(X) = g(X,N) andθ′(X) = g(X,N ′). Then, using one of the relation in (3.16) we have

P ′X = PX − κ(X)E and C ′(X,P ′Y ) = C ′(X,PY ), ∀X,Y ∈ Γ(TM). The relation-

ship between the second fundamental formsC andC ′ of the screen distributionS(TM) and

S(TM)′, respectively, is given by

C ′(X,PY ) = C(X,PY ) −
1

2
κ(∇XPY + B(X,Y )K). (3.32)

So, (3.30) is independent of the screen distributionS(TM) if and only ifκ(∇XPY +B(X,Y )K) =

0, ∀X,Y ∈ Γ(TM).

Example 3.6 Let M be a hypersurface ofR7 defined in the example 3.1. The tangent space

TM is spanned by{Ui}1≤i≤6, whereU1 = e1, U2 = e2 − e5, U3 = e3, U4 = e4, U5 =

e6, U6 = ξ and the 1-dimensional distributionTM⊥ of rank 1 is spanned byE, whereE =

e2 − e5. Also, the transversal bundleN(TM) is spanned byN = 1
2 (e2 + e5) . It follows that

TM⊥ ⊂ TM . ThenM is a 6-dimensional lightlike hypersurface ofR
7 having a local quasi-

orthogonal field of frames{U1, U2 = E, U3, U4, U5, U6 = ξ, N} alongM . Denote by∇ the

Levi-Civita connection onR7. Then, by straightforward calculations, we obtain

∇XN = 0, ∀X ∈ Γ(TM).

Using these equations above, the differential 1-formτ vanishes i.e.τ(X) = 0, for anyX ∈

Γ(TM). So, from the Gauss and Weingarten formulae we haveANX = 0, A∗
EX = 0

and∇XE = 0, ∀X ∈ Γ(TM). Therefore, by Theorem?? and Proposition 2.7 in [3] page
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89, the lightlike hypersurfaceM of R
7 is totally geodesic and its distribution is parallel. The

non-vanishing components of the Lie derivatives (3.14) and(3.30) are given by

LV g(U1, ξ) = LV g(ξ, U1) = 1, LV g(U5, ξ) = LV g(ξ, U5) = −1,

LV g(U, ξ) = LV g(ξ, U) = −1, LUg(V, ξ) = LUg(ξ, V ) = −1,

LUg(U1, ξ) = LUg(ξ, U1) =
1

2
, LUg(U5, ξ) = LUg(ξ, U5) = −

1

2
.

4 Screen Integrable Lightlike Hypersurfaces of Indefinite Kenmotsu Manifolds

Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M (c) with ξ ∈ TM .

From the differential geometry of lightlike hypersurfaces, we recall the following desirable

property for lightlike geometry. It is known that lightlikesubmanifolds whose screen distribu-

tion is integrable have interesting properties. Now, we study the geometry of integrable distri-

butions with specific attention to the screen distributionS(TM), the distributionsD, D0 and

D0 ⊥ 〈ξ〉. By Theorem 2.3 in [3] page 89, the screen distributionS(TM) of M is integrable

if and only if the second fundamental form ofS(TM) is symmetric onΓ(S(TM)). However,

for anyX, Y ∈ Γ(D ⊥ 〈ξ〉), u([X,Y ]) = B(X,φY ) − B(φX, Y ). So, it is very easy to see

that the distributionD ⊥ 〈ξ〉 is integrable if and only ifB(X,φY ) = B(φX, Y ).

Theorem 4.1 Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu space

formM(c) with ξ ∈ TM such that the distributionD ⊥ 〈ξ〉 is integrable. Then,M is D ⊥ 〈ξ〉-

totally geodesic if and only ifφ(TM⊥) is aD ⊥ 〈ξ〉-Killing distribution.

Proof: SinceD ⊥ 〈ξ〉 is integrable, using (3.14) and (3.15), one obtains,

(LV g)(X,Y ) = −B(X,φY ) − B(φX, Y ) = −2B(X,φY ), X, Y ∈ Γ(D ⊥ 〈ξ〉).

Using (3.6) and the fact thatφ(D ⊥ 〈ξ〉) = D, we complete the proof. �

Note that the Theorem 4.1 also holds when the distributionD ⊥ 〈ξ〉 is replaced byD.

Example 4.2 Consider the lightlike hypersurfaceM of R
7 defined in the example 3.6. Since

M is totally geodesic, so it is obviouslyD ⊥ 〈ξ〉-totally geodesic. Since the only nonvan-

ishing brackets on the distributionD ⊥ 〈ξ〉 are [V, ξ] = V , [E, ξ] = E, [F, ξ] = F and

[φF, ξ] = φF , it is easy to check that the distributionD ⊥ 〈ξ〉 is integrable and(LV g)(X,Y ) =

−2B(X,φY ) = 0, X, Y ∈ Γ(D ⊥ 〈ξ〉), that is,φ(TM⊥) is aD ⊥ 〈ξ〉-Killing distribution.

Proposition 4.3 Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu

space formM (c) with ξ ∈ TM . If the screen distributionS(TM) is integrable, then,

(LξC)(X,PY ) = τ(ξ)C(X,PY ), X, Y ∈ Γ(TM). (4.1)
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Proof: If the screen distributionS(TM) of a lightlike hypersurfaceM is integrable, then, from

(3.28) and using (3.10), we have, for anyX, Y ∈ Γ(TM),

(∇ξC)(X,PY ) − (∇XC)(ξ, PY ) = η(PY )θ(X) + τ(ξ)C(X,PY ). (4.2)

On the other hand, using (3.10), we have

(∇ξC)(X,PY ) = ξ.C(X,PY ) − C(∇ξX,PY ) − C(X,∇ξ(PY ))

= (LξC)(X,PY ) − 2C(X,PY ) + η(PY )θ(X), (4.3)

and (∇XC)(ξ, PY ) = X.C(ξ, PY ) − C(∇Xξ, PY ) − C(ξ,∇XPY )

= −2C(X,PY ). (4.4)

Putting (4.3) and (4.4) together in (4.2), we obtain (4.1). �

Let us assume that the screen distributionS(TM) of M is integrable and letM ′ be a leaf of

S(TM). Then, using (2.7) and (2.10), we obtain, for anyX, Y ∈ Γ(TM ′),

∇XY = ∇∗
XY + C(X,Y )E + B(X,Y )N = ∇′

XY + h′(X,Y ), (4.5)

where∇′ andh′ are the Levi-Civita connection and second fundamental formof M ′ in M .

Thus

h′(X,Y ) = C(X,Y )E + B(X,Y )N, ∀X, Y ∈ Γ(TM ′). (4.6)

In the sequel, we need the following lemma.

Lemma 4.4 Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite

Kenmotsu manifold(M,g) with ξ ∈ TM and M ′ be a leaf ofS(TM). Then, for anyX ∈

Γ(TM ′),

∇′
Xξ = X − η(X)ξ, (4.7)

∇′
XU = −v(X)ξ − v(ANX)E − v(A∗

EX)N + φ(ANX) + τ(X)U, (4.8)

∇′
XV = −u(X)ξ − u(ANX)E − u(A∗

EX)N + φ(A∗
EX) − τ(X)V. (4.9)

Proof: From a straightforward calculation we complete the proof. �

It is well known that the second fundamental form and the shape operators of a non-degenerate

hypersurface (in general, submanifold) are related by means of the metric tensor field. Contrary

to this, we see from (2.10) and (2.11), in the case of lightlike hypersurfaces, the second funda-

mental forms onM and their screen distributionS(TM) are related to their respective shape

operatorsAN andA∗
E . As the shape operator is an information tool in studying thegeometry

of submanifolds, their studying turns out very important. For instance, in [6] a class of lightlike

hypersurfaces whose shape operators are the same as the one of their screen distribution up to a

conformal non zero smooth factor inF(M) was considered. That work gave a way to generate,

under some geometric conditions, an integrable canonical screen (see [6] for more details).

Next, we study these operators and give their implications in lightlike hypersurface of indefinite

Kenmotsu manifolds withξ ∈ TM.
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Proposition 4.5 Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefi-

nite Kenmotsu manifold(M,g) with ξ ∈ TM andM ′ be a leaf ofS(TM). Then we have

(i) The vector fieldU is parallel with respect to the Levi-Civita connection∇′ onM ′ if and

only if

ANX = u(ANX)U, ∀X ∈ Γ(TM ′),

v andτ vanish onM ′.

(ii) The vector fieldV is parallel with respect to the Levi-Civita connection∇′ on M ′ if and

only if

A∗
EX = v(A∗

EX)V, ∀X ∈ Γ(TM ′),

u andτ vanishes onM ′.

Proof: (i) SupposeU is parallel with respect to the Levi-Civita connection∇′ onM ′. Then, by

using (4.8), we have, for anyX ∈ Γ(TM ′),

φ(ANX) = v(X)ξ + v(ANX)E + v(A∗
EX)N − τ(X)U. (4.10)

Sinceφ(ANX) = φ(ANX) + u(ANX)N , by using (3.11), we obtain

φ(ANX) = v(X)ξ + v(ANX)E − τ(X)U. (4.11)

Apply φ to (4.11) and by using (3.7) and the fact thatφU = 0, we obtain

ANX = η(ANX)ξ + u(ANX)U + v(ANX)V (4.12)

= θ(X)ξ + u(ANX)U + v(ANX)V (4.13)

= u(ANX)U + v(ANX)V, (4.14)

sinceθ(X) = 0, for anyX ∈ Γ(TM ′). Putting (4.12) in (4.8) and using (3.11), one obtains

v(X)ξ−τ(X)U = 0 which is equivalent tov(X) = 0 andτ(X) = 0. SinceANX ∈ Γ(TM ′),

then (4.12) is reduced toANX = u(ANX)U . The converse is obvious. In the similar way, by

using (4.9) the assertion (ii) follows. �

Corollary 4.6 (to Proposition 4.5)Let (M,g, S(TM)) be a screen integrable lightlike hyper-

surface of an indefinite Kenmotsu manifold(M,g) with ξ ∈ TM andM ′ be a leaf ofS(TM)

suchU andV are parallel with respect to the Levi-Civita connection∇′ onM ′. Then, the type

numbert′(x) of M ′ (with x ∈ M ′) satisfiest′(x) ≤ 1.

Proof: The proof follows from Proposition 4.5. �

Let W be an element ofφ(TM⊥) ⊕ φ(N(TM)) which is a non-degenerate vector subbundle

of S(TM) of rank 2. Then there exist non-zero functionsa andb such that

W = aV + bU. (4.15)

It is easy to check thata = v(W ) and b = u(W ). Let ω be a 1-form locally defined by

ω(·) = g(W, ·).
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Lemma 4.7 Let(M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM . Then, the covariant derivative ofω and the Lie derivative ofg with

respect to the vector fieldW are given, respectively, by

(∇Xω)Y = −v(W )B(X,φY ) − u(W )C(X,φY ) − ω(X)η(Y ), (4.16)

(LW g)(X,Y ) = X.ω(Y ) + Y.ω(X) + ω([X,Y ]) − 2ω(∇XY ), (4.17)

for anyX, Y ∈ Γ(TM).

Proof: Using (3.12) and (3.29), we obtain, for anyX, Y ∈ Γ(TM),

(∇Xω)Y = −v(W )B(X,φY ) − u(W )C(X,φY ) − ω(X)η(Y ) (4.18)

which proves (4.16) and (4.17) follows from a direct calculation. �

From (3.15) and (3.31), one obtains, for anyX, Y ∈ Γ(TM),

ω(∇XY ) = v(W )B(X,φY ) + u(W )C(X,φY ) + ω(X)η(Y ). (4.19)

Lemma 4.8 Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite

Kenmotsu manifold(M,g) with ξ ∈ TM and M ′ be a leaf ofS(TM). Then, for any,X,

Y ∈ Γ(TM ′),

ω(∇′
XY ) = −ω(φh′(X,φY )), (4.20)

ω([X,Y ]) = ω(φh′(φX, Y ) − φh′(X,φY )). (4.21)

Proof: Using (4.5) and (4.6), we obtain, for anyX, Y ∈ Γ(TM ′),

ω(∇′
XY ) = g(W,∇′

XY ) = v(W )u(∇XY ) + u(W )v(∇XY )

= v(W )B(X,φY ) + u(W )C(X,φY ) = −ω(φh′(X,φY ))

and ω([X,Y ]) = ω(∇′
XY ) − ω(∇′

Y X) = −ω(φh′(X,φY ) − φh′(Y, φX))

which completes the proof. �

Theorem 4.9 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu man-

ifold (M,g) with ξ ∈ TM . Then, the distributionD0 ⊥ 〈ξ〉 is integrable if and only if

C(φX, Y ) = C(X,φY ), B(φX, Y ) = B(X,φY ), (4.22)

and C(X,Y ) = C(Y,X), ∀ X, Y ∈ Γ(D0 ⊥ 〈ξ〉). (4.23)

Proof: The proof follows from a direct calculation. �

Note that when the distributionD0 is integrable, the relations (4.22) and (4.23) are satisfiedand

vice versa.
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Theorem 4.10 Let(M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu man-

ifold (M,g) with ξ ∈ TM . Suppose the distributionD0 ⊥ 〈ξ〉 is integrable. LetM ′ be a leaf

of D0 ⊥ 〈ξ〉. Then

(i) If M ′ is totally geodesic inM , thenM ′ is auto-parallel with respect to the Levi-Civita

connection∇′ in M andφ(TM⊥) ⊕ φ(N(TM)) is a Killing distribution onM ′.

(ii) If M ′ is parallel with respect to the Levi-Civita connection∇′ in M , thenM ′ is totally

geodesic.

Proof (i) Writing Y ∈ Γ(D0 ⊥ 〈ξ〉) asY =
∑2n−4

i=1
g(Y,Fi)
g(Fi,Fi)

Fi + η(Y )ξ, whereg(Fi, Fi) 6= 0

and{Fi}1≤i≤2n−4 an orthogonal basis ofD0. So, it is easy to check that, for anyX, Y ∈

Γ(TM ′), h′(X,φY ) =
∑2n−4

i=1
g(Y,Fi)
g(Fi,Fi)

h′(X,φFi). If M ′ is totally geodesic, then, for anyX,

Y ∈ Γ(D0 ⊥ 〈ξ〉), h′(X,Y ) = 0. In particularh′(X,φY ) =
∑

i
g(Y,Fi)
g(Fi,Fi)

h′(X,φFi) = 0.

The auto-parallelism ofM ′ follows from (4.20). Using (4.17), (4.20), (4.21) and the fact that

ω(X) = 0, ∀X ∈ Γ(D0 ⊥ 〈ξ〉), we obtain(LW g)(X,Y ) = 0. Soφ(TM⊥) ⊕ φ(N(TM))

is a Killing distribution onM ′. (ii) If M ′ is parallel with respect to the connection inM , then,

for anyX, Y , Z ∈ Γ(TM ′), (∇′
Xh′)(Y,Z) = 0. So,(∇′

XC)(Y,Z) − C(Y,Z)τ(X) = 0 and

(∇′
XB)(Y,Z) + B(Y,Z)τ(X) = 0. Using (3.6) and (3.20), sinceD0 ⊥ 〈ξ〉 integrable, for

Z = ξ, we have,

0 = (∇′
ξB)(X,Y ) + τ(ξ)B(X,Y ) = −B(X,Y ). (4.24)

Also, using (4.1), we obtain, for anyX, Y ∈ Γ(TM ′),

0 = (∇′
ξC)(X,Y ) − τ(ξ)C(X,Y ) = −2C(X,Y ). (4.25)

From (4.24) and (4.25), we geth′(X,Y ) = 0 which completes the proof. �

Note that, the Lie derivative (4.17) can be expressed in functions of Lie derivatives (3.14) and

(3.30) as, for anyX, Y ∈ Γ(TM),

(LW g)(X,Y ) = X.v(W )u(Y ) + Y.v(W )u(X) + X.u(W )v(Y ) + Y.u(W )v(X)

+ v(W )(LV g)(X,Y ) + u(W )(LUg)(X,Y ). (4.26)

Theorem 4.11 Let(M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu man-

ifold (M,g) with ξ ∈ TM . Suppose the distributionD0 is integrable. LetM ′ be a leaf ofD0.

Then, the following assertions are equivalent:

(i) M ′ is totally geodesic inM ,

(ii) A∗
EX andANX ∈ Γ(φ(TM⊥) ⊕ φ(N(TM))), ∀ X ∈ Γ(TM ′),

(iii) φ(TM⊥) ⊕ φ(N(TM)) is a Killing distribution onM ′,

(iv) φ(TM⊥) andφ(N(TM)) are Killing distribution onM ′.
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Proof: The equivalence of (i) and (ii) follows from direct calculations. Using the relation

(4.26), we obtain the equivalence of (iii) and (iv). Next we prove the equivalence of (i) and (iii).

Using the fact thatω vanishes onM ′ and the relation (4.19), and sinceD0 is integrable, (4.17)

becomes, for anyX, Y ∈ Γ(TM ′),

(LW g)(X,Y ) = −v(W ) {B(X,φY ) + B(φX, Y )} − u(W ) {C(X,φY ) + C(φX, Y )}

= −2ω(φh′(X,φY )) (4.27)

SupposeM ′ is totally geodesic inM . Then,h′(X,Y ) = 0, ∀ X, Y ∈ Γ(D0). In particular

h′(X,φY ) = 0, sinceD0 = φ(D0). Therefore(LW g)(X,Y ) = 0 andφ(TM⊥)⊕φ(N(TM))

is a Killing distribution onM ′. The converse is obvious by using (4.27). �

A submanifoldM is said to be(D ⊥ 〈ξ〉, D′)-mixed totally geodesic if for anyX ∈ Γ(D ⊥

〈ξ〉) andY ∈ Γ(D′), B(X,Y ) = 0.

Let M be a(D ⊥ 〈ξ〉, D′)-mixed totally geodesic of an indefinte Kenmotsu manifoldM

with ξ ∈ TM . Then, for anyX ∈ Γ(D ⊥ 〈ξ〉), B(X,U) = 0. Using (3.11), we have

u(ANX) = g(ANX,V ) = C(X,V ) = B(U,U) = 0 i.e ANX ∈ Γ(D ⊥ 〈ξ〉). Since

g(ANX,N) = 0, that is,ANX has no component inΓ(TM⊥), so we have

ANX ∈ Γ(φ(TM⊥) ⊥ D0 ⊥ 〈ξ〉) (4.28)

The converse is obvious i.e if the relation (4.28) is satisfied, M is (D ⊥ 〈ξ〉, D′)-mixed totally

geodesic. We have:

Proposition 4.12 Let(M, g, S(TM)) be a(D ⊥ 〈ξ〉, D′)-mixed totally geodesic lightlike hy-

persurface of an indefinite Kenmotsu manifold(M,g) with ξ ∈ TM . Suppose the distribution

D0 is integrable, and vector fieldsU andV are parallel with respect to the Levi-Civita connec-

tion ∇′ on M ′. Let M ′ be a leaf ofD0. Then,M ′ is totally geodesic inM if and only if the

shape operatorsA∗
E andAN vanish identically onM ′.

Proof: Suppose thatM ′ is totally geodesic inM . Since(M, g, S(TM)) be a(D ⊥ 〈ξ〉, D′)-

mixed totally geodesic and using the relation (4.28) and theTheorem 4.11, then, for anyX ∈

Γ(TM ′), A∗
EX = u(A∗

EX)U andANX = v(ANX)V . By Proposition 4.5, it is easy to check

that the shape operatorsAE andAN vanish identically onM ′. The converse is obvious. �

5 Totally Contact Umbilical Leaf of Integrable Screen Distributions

In this section, we deal with the geometry of the mean curvature vector of a leaf of an integrable

screen distribution of a lightlike hypersurfaceM of an indefinite Kenmotsu space formM(c) by

introducing a new concept. First of all, a submanifoldM is said to be totally umbilical lightlike

hypersurface of the a semi-Riemannian manifoldM if the local second fundemental formB of

M satisfies

B(X,Y ) = ρg(X,Y ), ∀X, Y ∈ Γ(TM) (5.1)
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whereρ is a smooth function onU ⊂ M . If we assume thatM is totally umbilical lightlike

hypersurface of the a semi-Riemannian manifoldM , then we haveB(X,Y ) = ρg(X,Y ), for

anyX, Y ∈ Γ(TM), which implies, by using (3.6), that0 = B(ξ, ξ) = ρ. HenceM is totally

geodesic. Therefore we have

Proposition 5.1 Let (M,g) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM . If M is totally umbilical, thenM is totally geodesic.

It follows from the Proposition 5.1 that a KenmotsuM(c) does not admit any non-totally

geodesic, totally umbilical lightlike hypersurface. Fromthis point of view, Bejancu [1] con-

sidered the concept of totally contact umbilical semi-invariant submanifolds. The notion of

totally contact umbilical submanifolds was first defined by Kon [11].

It is now important to investigate the parallelism of the nonzero mean curvature vector by re-

garding the effect of the totally contact umbilical condition on the geometry of lightlike sub-

manifolds in Kenmotsu manifolds case. As it was done in case of lightlike hypersurfaces of

indefinite Sasakian manifolds [17], the terminology ofextrinsic sphere[4] is also going to be

used in case of totally contact geodesic submanifolds. We say that a totally contact umbilical

submanifold is anextrinsic spherewhen it has parallel non zero mean curvature vector [4].

A submanifoldM is said to be totally contact umbilical if its second fundemental formh of M

satisfies [1]

h(X,Y ) = {g(X,Y ) − η(X)η(Y )}H + η(X)h(Y, ξ) + η(Y )h(X, ξ), (5.2)

for any X, Y ∈ Γ(TM), whereH is a normal vector field onM (that isH = λN , λ is a

smooth function onU ⊂ M ). Using (3.6), it is easy to check that a totally contact umbilical

lightlike hypersurface of an indefinite Kenmotsu manifold isη-totally umbilical.

Proposition 5.2 Let(M,g) be a totally contact umbilical lightlike hypersurface of anindefinite

Kenmotsu manifold(M,g) with ξ ∈ TM . Then,φ(TM⊥) is aD ⊥ 〈ξ〉-Killing distribution.

Proof: Using (3.9) and (3.14), one obtains, for anyX, Y ∈ Γ(D ⊥ 〈ξ〉),

(LV g)(X,Y ) = −B(X,φY ) − B(φX, Y ) = −g(X,φY ) − g(φX, Y )

= u(X)θ(Y ) + u(Y )θ(X) = 0,

which completes the proof. �

In the sequel, we need the following identities and lemma. For anyX, Y ∈ Γ(TM)

(∇Xη)Y = g(X,Y ) − η(X)η(Y ), (∇Xθ)Y = −C(X,Y ) + τ(X)θ(Y ). (5.3)

Lemma 5.3 Let (M,g) be a totally contact umbilical lightlike hypersurface of anindefinite

Kenmotsu manifold(M,g) with ξ ∈ TM . Then,∀X, Y , Z ∈ Γ(TM),

(∇XB)(Y,Z) = λ {B(X,Y )θ(Z) + B(X,Z)θ(Y )} − λ
{
η(Z)g(φX,φY )

+ η(Y )g(φX,φZ)
}

+ {g(Y,Z) − η(Y )η(Z)} (X.λ). (5.4)
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Proof: The proof follows from direct computing using the identities (2.12), (3.6) and (5.3).�

Theorem 5.4 Let M (c) be an indefinite Kenmotsu space form andM be a totally contact

umbilical lightlike hypersurface ofM(c) with ξ ∈ TM . Thenλ satisfies the partial differential

equations

E · λ + λτ(E) − λ2 = 0, (5.5)

ξ.λ + λ(τ(ξ) + 1) = 0, (5.6)

and PX · λ + λτ(PX) = 0, PX 6= ξ, ∀ X ∈ Γ(TM). (5.7)

Proof: Let M be a totally contact umbilical lightlike hypersurface. Since c = −1, the direct

calculation of the right hand side in (2.13) shows that, for any X, Y ∈ Γ(TM),

(∇XB)(Y,Z) − (∇Y B)(X,Z) = τ(Y )B(X,Z) − τ(X)B(Y,Z). (5.8)

Using (5.4), the equation (5.8) becomes

λ {B(X,Y )θ(Z) + B(X,Z)θ(Y )} − λη(Z) {g(X,Y ) − η(X)η(Y )}

− λη(Y ) {g(X,Z) − η(X)η(Z)} + {g(Y,Z) − η(Y )η(Z)} (X.λ)

− λ {B(X,Y )θ(Z) + B(Y,Z)θ(X)} + λη(Z) {g(X,Y ) − η(X)η(Y )}

+ λη(X) {g(Y,Z) − η(Y )η(Z)} − {g(X,Z) − η(X)η(Z)} (Y.λ)

= τ(Y )B(X,Z) − τ(X)B(Y,Z). (5.9)

Regrouping like terms in (5.9) and using (3.9), we deduce

λ {B(X,Z)θ(Y ) − B(Y,Z)θ(X)} + λ {η(X)g(Y,Z) − η(Y )g(X,Z)}

+ {g(Y,Z) − η(Y )η(Z)} (X.λ) − {g(X,Z) − η(X)η(Z)} (Y.λ)

= τ(Y )B(X,Z) − τ(X)B(Y,Z). (5.10)

PuttingX = E in (5.10), we find

−λB(Y,Z) + {g(Y,Z) − η(Y )η(Z)} (E.λ) = −τ(E)B(Y,Z). (5.11)

TakeY = V andZ = U in (5.11), we have (B(V,U) = λ), E.λ + λτ(E) − λ2 = 0.

Finally, substitutingX = PX, Y = PY andZ = PZ into (5.10) and taking into account that

S(TM) is nondegenerate, we obtain

{PX · λ + λτ(PX)} (PY − η(PY )ξ) + λη(PX)PY

= {PY · λ + λτ(PY )} (PX − η(PX)ξ) + λη(PY )PX. (5.12)

PuttingPX = ξ in (5.12), we have{ξ · λ + λ(τ(ξ) + 1)} (PY − η(PY )ξ) = 0 which leads,

by takingY = V , to ξ.λ + λ(τ(ξ) + 1) = 0.

If PX, PY , PZ ∈ Γ(S(TM) − 〈ξ〉), then (5.12) becomes

{PX · λ + λτ(PX)}PY = {PY · λ + λτ(PY )}PX. (5.13)
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Now suppose that there exists a vector fieldX0 on some neighborhood ofM such thatPX0 ·

λ + λτ(PX0) 6= 0 at some pointp in the neighborhood. Then, from (5.13) it follows that all

vectors of the fibre(S(TM) − 〈ξ〉)p :=
(
φ(TM⊥) ⊕ φ(N(TM)) ⊥ D0

)
p
⊂ S(TM)p are

collinear with(PX0)p. This contradictsdim(S(TM) − 〈ξ〉)p > 1. This implies (5.7). �

A part of the Theorem 5.4 is similar to that of the generic submanifold of indefinite Sasakian

manifolds case given in [15]. From the equations (5.5) and (5.7), the geometry of the mean

curvature vectorH of M is discussed. some equations are similar to those of the indefinite

Kählerian case (see [3] for details). From (5.5) and (5.7),we have ∇⊥
EH = g(H,E)2N ,

∇⊥
ξ H = −g(H,E)N and∇⊥

PXH = 0, PX 6= ξ, ∀X ∈ Γ(TM). This means thatH is not

parallel onM .

Lemma 5.5 Let M be a totally contact umbilical lightlike hypersurface of anindefinite Ken-

motsu space formM(c) with ξ ∈ TM . Then, the mean curvature vectorH of M is (S(TM)−

〈ξ〉)-parallel, that is,∇⊥
PXH = 0, PX 6= ξ, ∀X ∈ Γ(TM).

Lemma 5.6 Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold M with

ξ ∈ TM . Then,M is D ⊥ 〈ξ〉-totally geodesic if and only if, for anyX ∈ Γ(D ⊥ 〈ξ〉),

A∗
EX = u(ANX)V.

Proof: The proof follows from straightforward calculation. �

It is well known that if the lightlike hypersurface(M,g) is totally geodesic, the induced connec-

tion ∇ on M is torsion-free andg-metric. Also, the shape operatorA∗
E vanishes identically on

M (see Theorem 2.2 in [3] page 88). This vanishing property failed when the lightlike hyper-

surfaceM , with ξ ∈ TM , isD ⊥ 〈ξ〉-totally geodesic. That is, only some privileged conditions

onM and its the screen distribution may enable to get theD ⊥ 〈ξ〉-version of the Theorem??.

Now, say that the screen distributionS(TM) is totally umbilical if on any coordinates neigh-

borhoodU ⊂ M , there exists a smooth functionϕ such that

C(X,PY ) = ϕg(X,PY ), ∀X, Y ∈ Γ(TM|U ). (5.14)

If we assume that the screen distributionS(TM) of the lightlike hypersurfaceM with ξ ∈ TM

is totally umbilical, then it follows thatC is symmetric onΓ(S(TM)|U ) and hence accord-

ing to Theorem 2.3 in [3], the distributionS(TM) is integrable. Also, we haveANX =

ϕPX and C(E,PX) = 0. Sinceφξ = 0 and by usingη(ANX) = −θ(X), we have

η(AN ξ) = ϕg(ξ, ξ) = −θ(ξ) = 0 which implies thatϕ = 0, so the screen distributionS(TM)

is totally geodesic. Therefore, we have the following result.

Theorem 5.7 Let (M,g, S(TM)) be a totally contact umbilical lightlike hypersurface of an

indefinite Kenmotsu manifold(M,g), with ξ ∈ TM , such thatS(TM) is totally umbilical.

Then, the following assertions are equivalent:

(i) M is D ⊥ 〈ξ〉-totally geodesic,
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(ii) A∗
EX = 0, ∀ X ∈ Γ(D ⊥ 〈ξ〉),

(iii) φ(TM⊥) is D ⊥ 〈ξ〉-parallel.

Proof: Since the screen distributionS(TM) is totally umbilical,S(TM) is totally geodesic,

that is, for anyX,Y ∈ Γ(S(TM)), C(X,Y ) = 0. In particular, for anyX ∈ Γ(φ(TM⊥) ⊥

D0 ⊥ 〈ξ〉), C(X,V ) = u(ANX) = 0. SinceC(E,V ) = 0, for any X0 ∈ Γ(D ⊥ 〈ξ〉),

u(ANX0) = 0 and using the Lemma 5.6, the equivalence of (i) and (ii) follows.

Now, we want to show the equivalence of (ii) and (iii). First of all, we have

∇X0
V = −(∇X0

φ)E − φ(∇X0
E) = −u(X0)ξ + φ(A∗

EX0) − τ(X0)V. (5.15)

Writing the left hand side of (5.15) as∇X0
V = ∇X0

V + u(A∗
EX0)N , we deduce

∇X0
V = φ(A∗

EX0) − u(X0)ξ − u(A∗
EX0)N − τ(X0)V. (5.16)

SupposeA∗
EX0 = 0, ∀ X0 ∈ Γ(D ⊥ 〈ξ〉|U ). Then, the relation (5.16) becomes,∇X0

V =

−τ(X0)V. Since the normal bundleφ(TM⊥) is a distribution onM of rank 1 and spanned by

V , then, for anyY0 ∈ Γ(φ(TM⊥)), ∇X0
Y0 = (X0.v(Y0) − v(Y0)τ(X0))V ∈ Γ(φ(TM⊥)),

sinceY0 = v(Y0)V . So, the distributionφ(TM⊥) is D ⊥ 〈ξ〉-parallel. Conversely, suppose

the distributionφ(TM⊥) is D ⊥ 〈ξ〉-parallel. Then, for anyX0 ∈ Γ(D ⊥ 〈ξ〉) andY0 =

v(Y0)V ∈ Γ(φ(TM⊥)|U ), ∇X0
Y0 ∈ Γ(φ(TM⊥)|U ). In particular, by takingY0 = V , we

have∇X0
V ∈ Γ(φ(TM⊥)|U ). Sinceφ(TM⊥) is spanned byV , there exist a smooth function

ε 6= 0 on M such that∇X0
V = ε V . Using (5.16), we haveε = g(φ(A∗

EX0), U) − τ(X0) =

−g(A∗
EX0, N) − τ(X0) = −τ(X0). Since∇X0

V = −τ(X0)V andu vanishes onD ⊥ 〈ξ〉,

from (5.16), we obtainφ(A∗
EX0) = −u(A∗

EX0)N. Applying φ to this equation, using (3.6)

and the fact thatM is totally contact umbilical lightlike hypersurface, one obtains, for any

X0 ∈ Γ(D ⊥ 〈ξ〉), A∗
EX0 = −λu(X0)U = 0. This completes the proof. �

The Theorem 5.7 can be extended by using Theorem 2.2 in [3] (page 88) in order to get more

information about the geometry of lightlike hypersurfaceM .

We say that the screen distributionS(TM) is totally contact umbilical if the local second fun-

dament formC of S(TM) satisfies

C(X,Y ) = α (g(X,Y ) − η(X)η(Y )) + η(X)C(Y, ξ) + η(Y )C(X, ξ), (5.17)

whereα is a smooth function onU ⊂ M . If we assume that the screen distribution of the

lightlike hypersurfaceM of an indefinite Kenmotsu manifold, withξ ∈ TM , is totally contact

umbilical, then it follows thatC is symmetric onΓ(S(TM)) and hence, by Theorem 2.3 page

89, the distributionS(TM) is integrable.

Theorem 5.8 Let(M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu space

formM(c) with ξ ∈ TM such thatS(TM) is totally contact umbilical. ThenS(TM) is totally

contact geodesic.
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Proof: By a direct calculation of the right hand side in (3.28) and using (5.17), we get

(∇XC)(Y, PZ) − (∇Y C)(X,PZ) + τ(Y )C(X,PZ) − τ(X)C(Y, PZ)

= {g(Y, PZ) − η(Y )η(PZ)} (X.α) − {g(X,Z) − η(X)η(PZ)} (Y.α)

+α {B(X,PZ)θ(Y ) − B(Y, PZ)θ(X)} + 2α {η(X)g(Y, PZ) − η(Y )g(X,PZ)}

+η(PZ) {τ(X)θ(Y ) − τ(Y )θ(X)} + θ(Y )g(X,PZ) − θ(X)g(Y, PZ)

+τ(Y )C(X,PZ) − τ(X)C(Y, PZ). (5.18)

PuttingX = E in (5.18) and in the right hand side of (3.28), we obtain

{g(Y, PZ) − η(Y )η(PZ)} (E.α) − αB(Y, PZ) + η(PZ) {τ(E)θ(Y ) − τ(Y )}

−g(Y, PZ) + τ(Y )C(E,PZ) − τ(E)C(Y, PZ)

= −g(Y, PZ). (5.19)

ReplacingY = PZ = U in (5.19), we have−αB(U,U) = −αC(U, V ) = −α2 = 0. �

It is easy to check that, when the screen distributionS(TM) of a lightlike hypersurfaceM with

ξ ∈ TM is η-totally umbilical, its second fundamental formh∗ = C ⊗ E vanishes identically,

that is,S(TM) is totally geodesic. This allows us to say that the Theorem 5.7 also holds when

totally umbilical condition is replaced byη-totally umbilical condition onS(TM) .

Theorem 5.9 Let(M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite

Kenmotsu manifold(M,g) with ξ ∈ TM . Suppose any leafM ′ of S(TM) is totally contact

umbilical immersed inM as non-degenerate submanifold. Then, the mean curvature vector H ′

of M ′ satisfies the partial differential equations

g(∇′⊥
ξ H ′, E) + g(H ′, E) = 0, (5.20)

g(∇′⊥
ξ H ′, N) + g(H ′, N) = 0, (5.21)

g(∇′⊥
X H ′, E) = 0, g(∇′⊥

X H ′, N) = 0, ∀ X ∈ Γ(TM ′ − 〈ξ〉), (5.22)

where∇′⊥ is a linear connection onN(TM)⊕ TM⊥ defined by∇′⊥
X E = ∇∗⊥

X E = −τ(X)E

and∇′⊥
X N = ∇⊥

XN = τ(X)N .

Proof: By combining the first equations of (2.7) and (2.10), we obtain

∇XY = ∇∗
XY + C(X,Y )E + B(X,Y )N

= ∇′
XY + h′(X,Y ), ∀X, Y ∈ Γ(TM ′). (5.23)

Denote byH ′ the mean curvature vector ofM ′. As N(TM) ⊕ TM⊥ is the normal bundle of

M ′, there exist smooth functionsλ andρ such thatH ′ = λE + ρN . SinceM ′ is totally contact

umbilical immersed inM we have

h′(X,Y ) = (g(X,Y ) − η(X)η(Y )) H ′ + η(X)h′(Y, ξ) + η(Y )h′(X, ξ). (5.24)
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Sinceh′(X, ξ) = 0, for anyX ∈ Γ(TM ′), from (5.23) we obtain

∇XY = ∇′
XY + (g(X,Y ) − η(X)η(Y )) H ′ (5.25)

which implies

∇X∇Y Z = ∇′
X∇′

Y Z +
{
g(X,∇′

Y Z) − η(X)η(∇′
Y Z)

}
H ′

+
{
g(∇′

XY,Z) + g(Y,∇′
XZ) − η(Z)g(X,Y ) + 2η(X)η(Y )η(Z)

− η(Z)η(∇′
XY ) − η(Y )g(X,Z) − η(Y )η(∇′

XZ)
}

H ′

+ {g(Y,Z) − η(Y )η(Z)}∇XH ′. (5.26)

SinceS(TM ′) is integrable,θ([X,Y ]) = 0, for anyX, Y ∈ Γ(TM ′) and we have

∇[X,Y ]Z = ∇′
[X,Y ]Z + {g([X,Y ], Z) − η([X,Y ])η(Z)}H ′. (5.27)

From (5.26), (5.27) and (4.7)-(4.9), after calculations, we obtain

R(X,Y )Z = R′(X,Y )Z + {g(Y,Z)η(X) − g(X,Z)η(Y )}H ′

+ {g(Y,Z) − η(Y )η(Z)}∇XH ′ − {g(X,Z) − η(X)η(Z)}∇Y H ′. (5.28)

Consequently,

g(R(X,Y )Z,E) = {g(Y,Z)η(X) − g(X,Z)η(Y )} g(H ′, E) + {g(Y,Z)

− η(Y )η(Z)} g(∇XH ′, E) − {g(X,Z) − η(X)η(Z)} g(∇Y H ′, E), (5.29)

g(R(X,Y )Z,N) = {g(Y,Z)η(X) − g(X,Z)η(Y )} g(H ′, N) + {g(Y,Z)

− η(Y )η(Z)} g(∇XH ′, N) − {g(X,Z) − η(X)η(Z)} g(∇Y H ′, N). (5.30)

From (5.29) and using (2.3), we obtain

0 = {g(Y,Z)η(X) − g(X,Z)η(Y )} g(H ′, E) + {g(Y,Z)

− η(Y )η(Z)} g(∇XH ′, E) − {g(X,Z) − η(X)η(Z)} g(∇Y H ′, E). (5.31)

TakingX = ξ in this equation, we have, forY = U andZ = V , g(∇ξH
′, E) + g(H ′, E) = 0.

Now, if X, Y , Z ∈ Γ(TM ′ − ξ), from (5.31), we have

g(∇XH ′, E)Y = g(∇Y H ′, E)X. (5.32)

Likewise, from (5.30) and (2.3), we have

g(∇ξH
′, N) + g(H ′, N) = 0 and g(∇XH ′, N)Y = g(∇Y H ′, N)X. (5.33)

Now suppose that there exists a vector fieldX0 on some neighborhood ofM ′ such that

g(∇X0
H ′, E) 6= 0 andg(∇X0

H ′, N) 6= 0 at some pointp in the neighborhood. From (5.32)

and (5.33) it follows that all vectors of the fibreTM ′ − 〈ξ〉 are collinear withX0|p. This

contradictsdim(TM ′ − 〈ξ〉) > 1. This impliesg(∇XH ′, E) = 0 andg(∇XH ′, N) = 0,
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∀X ∈ Γ(TM ′ − 〈ξ〉). These lead, respectively, tog(∇′⊥
X H ′, E) = 0 andg(∇′⊥

X H ′, N) = 0

which completes the proof. �

From (5.20) and (5.22), we have∇′⊥
ξ H ′ = H ′ and∇′⊥

X H ′ = 0, ∀X ∈ Γ(TM ′ − 〈ξ〉). So,

∇′⊥
X H ′ = H ′, for anyX ∈ Γ(TM ′). This means that the mean curvature vectorH ′ is not

parallel onM ′and consequently, we have

Theorem 5.10 Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indef-

inite Kenmostu manifold(M,g) with ξ ∈ TM . Suppose any leafM ′ of S(TM) is totally

contact umbilical immersed inM as non-degenerate submanifold. ThenM ′ cannot be an ex-

trinsic sphere.

Next we deal with the geometry of the normal bundleTM⊥ ⊕ N(TM) and we show there

exists a close relationship between its geometry with the geometry of a leaf of an integrable

screen distribution of a lightlike hypersurfaceM of an indefinite Kenmotsu space formM(c).

Let Ŵ be an element ofTM⊥⊕N(TM) which is a non-degenerate of rank 2. Then there exist

non zero functionsα andβ such that

Ŵ = α E + β N, (5.34)

whereα andβ are defined asα = g(Ŵ ,N) andβ = g(Ŵ ,E). Let AcW
be a tensor field of

type(1, 1) locally defined by the combination of the shape operatorsA∗
E andAN , that is,

AcW
X = α A∗

EX + β ANX, ∀X ∈ Γ(TM). (5.35)

Lemma 5.11 Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmostu man-

ifold (M,g) with ξ ∈ TM . ThenAcW
X = 0, ∀X ∈ Γ(TM) if and only ifA∗

EX = 0 and

ANX = 0, ∀X ∈ Γ(TM).

Proof: Suppose thatAcW
X = 0, ∀X ∈ Γ(TM). Then,αA∗

EX + β ANX = 0. So, for any

Y ∈ Γ(TM), αg(A∗
EX,Y ) + βg(ANX,Y ) = 0, i.e. g(Ŵ ,C(X,Y )E + B(X,Y )N) = 0

which implies thatB(X,Y ) = 0 andC(X,Y ) = 0, sinceTM⊥⊕N(TM) is a nondegenerate

distribution of rank2. By Theorem 2.2 and Proposition 2.7 in [3] (pp. 88 and 89, respectively),

A∗
E andAN vanish identically onM . The converse is obvious. �

Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite Kenmostu

manifold(M,g) with ξ ∈ TM . The Lie derivativeLcW
of g with respect to the vector field̂W

is given by

(LcW
g)(X,Y ) = −2αB(X,Y ) − 2β C(X,Y ) + β {τ(X)θ(Y ) + τ(Y )θ(X)}

+ (X.β)θ(Y ) + (Y.β)θ(X), ∀X, Y ∈ Γ(TM). (5.36)

Let M ′ be a leaf ofS(TM). Then, onM ′, the relation (5.36) becomes

(LcW
g)(X,Y ) = −2αB(X,Y ) − 2β C(X,Y ), ∀X, Y ∈ Γ(TM ′). (5.37)
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The action of the Levi-Civita connection∇′ (defined in (4.5)) on the normal bundleTM⊥ ⊕

N(TM) is given by

∇′
XŴ = −AcW

X + ∇′⊥
X Ŵ , ∀X, Y ∈ Γ(TM ′), (5.38)

where ∇′⊥
X Ŵ = {X.α − ατ(X)}E + {X.β + βτ(X)}N.

Theorem 5.12 Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefi-

nite Kenmostu manifold(M,g) with ξ ∈ TM . LetM ′ be a leaf ofS(TM). Then, the following

assertions are equivalent:

(i) M ′ is totally geodesic inM ,

(ii) AcW
X = 0, ∀ X ∈ Γ(TM ′),

(iii) TM⊥ ⊕ N(TM) is parallel distribution onM ′,

(iv) TM⊥ ⊕ N(TM) is Killing distribution onM ′.

Proof: The equivalence of (i) and (ii) follows from Lemma 5.11. Now we prove the equivalence

of (i) and (iv). Suppose thatM ′ is totally geodesic inM . Thenh′(X,Y ) = 0, ∀X, Y ∈

Γ(TM ′). So, with the aid of (4.6), we haveC(X,Y ) = 0 andB(X,Y ) = 0. Using (5.37),

we obtain(LcW
g)(X,Y ) = 0, ∀X, Y ∈ Γ(TM ′). Suppose thatTM⊥ ⊕ N(TM) is a Killing

distribution onM ′. Then, using (5.37), we haveαB(X,Y ) + β C(X,Y ) = 0, that is, for any

X, Y ∈ Γ(TM ′), g(Ŵ ,C(X,Y )E + B(X,Y )N) = 0 which implies thatC(X,Y ) = 0 and

B(X,Y ) = 0, sinceTM⊥ ⊕N(TM) is a nondegenerate distribution of rank2. Consequently,

h′(X,Y ) = 0, ∀X, Y ∈ Γ(TM ′). Next we prove the equivalence of (ii) and (iii). Suppose

thatTM⊥ ⊕ N(TM) is a parallel distribution onM ′. Then exist functionsϕ andε such that

∇′
XŴ = ϕE + εN . Using (5.38), it is easy to check thatϕ = g(∇′

XŴ ,N) = X.α− ατ(X)

andε = g(∇′
XŴ ,E) = X.β + βτ(X). This implies that∇′

XŴ = ∇′⊥
X Ŵ , that isAcW

X = 0.

The converse is obvious. �
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