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José Cariñena, Partha Guha, and Manuel Rañada
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1 Introduction

The first-order Riccati equation

y′ = P (x)y2 + Q(x)y + R(x)

is important mainly because it is a nonlinear one but directly related to the general linear
differential equation of second-order via a Cole-Hopf transformation. It is usually considered as
the first instance in the study of nonlinear equations [1] and is endowed with many interesting
properties. For example, it is a Lie system admitting a nonlinear superposition principle and it
is the only nonlinear equation of the form y′ = f(x, y), where f(x, y) is a rational function of
the variable y with coefficients analytic in x, that possesses the Painlevé property (nevertheless
the Lie-Scheffers theory or the Painlevé approach will not be considered in this paper).

The (first-order) Riccati equation is therefore a nonlinear equation that has been intensively
studied by many authors. The important point is that it has been proved that it admits higher-
order generalisations which are also studied by making use of several different approaches [2, 3, 4]
(according to Davis these higher-order equations were first considered by Vessiot in 1895). All
the higher-order Riccati equations can be linearised via a Cole-Hopf transformation to linear
differential equations. It is known, that the higher-order Riccati equations play the role of
Bäcklund transformations for integrable partial differential equations of higher-order than the
KdV equation. The Riccati chain without potential is naturally associated to Faá di Bruno
polynomials. The Faá di Bruno polynomials appear in several branches of mathematics and
physics and can be introduced in several ways.

In fact higher-order Riccati equations are related to the existence of symmetries [5, 6], Darboux
polynomials [7, 8, 9] and Jacobi multipliers [10, 11, 12]. We also mention that the second-order
Riccati equation has been studied in [13] from a geometric perspective and it has been proved
to admit two alternative Lagrangian formulations, both Lagrangians being of a non-natural
class (neither potential nor kinetic term). An analysis of the higher-order Riccati equations and
all these properties (Lagrangians, symmetries, Darboux polynomials and Jacobi multipliers) is
presented in [14].

The Abel differential equation can be considered as the simplest nonlinear extension of the
Riccati equation [15, 16, 17]. The Abel equation of the first kind [18, 19, 20, 21, 22] is given by

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3 .

There is also another related equation, called Abel equation of second kind, given by

[g0(x) + g1(x)y]y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3 ,

which is reducible to the previous one [23, 24] and it is not going to be considered in this paper.
On one hand it has striking similarities with the Riccati equation but on the other side, as the
non-linearity is of higher degree, the properties are different (and in fact more difficult to be
studied). The objective of this paper is to study a chain of higher-order Abel equations using
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as an approach the analysis of the differential geometric properties, the Lagrangian formalism
and the theory of Darboux polynomials and Jacobi multipliers.

The plan of the article is as follows: In Section 2 we review the hierarchy of higher-order Riccati
equations and then introduce in a similar way the hierarchy of higher-order Abel equations.
Section 3 is devoted to a particular case of second-order Abel equation. We study the existence
of a Lagrangian formulation, obtain some constants of the motion and establish the relationship
of this equation with the theory of Darboux polynomials and Jacobi multipliers. Section 4
is devoted to the third and fourth-order equations and in Section 5 we consider the general
n-dimensional case. Finally in Section 6 we make some brief comments.

2 Riccati and Abel equations

Let us start with the definition of higher-order Riccati equations. It is known that these equations
can be obtained by reduction from the Matrix Riccati equation. The matrix Riccati equation
plays an important part in the theory of linear Hamiltonian systems, the calculus of variations,
and other related topics.

2.1 Hierarchy of higher-order Riccati equations

Let us denote by lDR the following differential operator, depending on a real parameter k ∈ R,
that will be called ‘differential operator of Riccati’

lDR =
d

dt
+ k x(t) ,

in such a way that the action of lDR leads to the following family of differential expressions

lDRx =
( d

dt
+ kx

)
x = ẋ + kx2

lD2
Rx =

( d

dt
+ kx

)2
x = ẍ + 3kxẋ + k2x3

lD3
Rx =

( d

dt
+ kx

)3
x =

...
x +4kxẍ + 6k2x2ẋ + 3kẋ2 + k3x4

lD4
Rx =

( d

dt
+ kx

)4
x = xiv) + 5kx

...
x +10kẋẍ + 15k2xẋ2 + 10k2x2ẍ + 10k3x3ẋ + k4x5 .

The Riccati equation of order m of the higher-order Riccati hierarchy (o chain), is given by

lDm
Rx = 0 , m = 1, 2, . . .

In fact, the most general form of a Riccati equation of order m is just a superposition of all the
previous equations (linear combination the different members of the hierarchy)

(p0lD
n
R + p1lD

n−1
R + . . . + pn−1lDR + pn)x + pn+1 = 0 ,
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where each pi is a function of t.

These equations have certain properties that make them interesting from both physical and
mathematical points of view. Next we point out some of them.

(1) The higher-order Riccati equation of order m, member of the Riccati hierarchy, admits
the maximal number of Lie point symmetries that can admit an equation of order m.

(2) The higher-order Riccati equation of order m can be linearised and presented as a linear
equation of order m + 1.

(3) The dimensional reduction of a linear equation of order m+1 leads to the Riccati equation
of order m.

2.2 Hierarchy of higher-order Abel equations

The most natural generalisation of the Riccati equation is

ẋ = f(t, x),

where f(t, x) is a polynomial in the variable x (with coefficients depending on t). The particular
case of f(t, x) being a cubic polynomial

f(t, x) = A0(t) + A1(t)x + A2(t)x
2 + A3(t)x

3 ,

is called Abel equation. Such an equation can be considered as the simplest nonlinear extension
of the Riccati equation.

Let us denote by lDA the following differential operator, depending on a real parameter k ∈ R,
to be called ‘Abel differential operator’,

lDA =
d

dt
+ k x2(t) ,

in such a way that the action of lDA leads to a family of k-dependent differential equations whose
first members are given by

lD0
Ax = x

lDAx =
( d

dt
+ kx2

)
x = ẋ + kx3

lD2
Ax =

( d

dt
+ kx2

)2
x = ẍ + 4kx2ẋ + k2x5

lD3
Ax =

( d

dt
+ kx2

)3
x =

...
x +5kx2ẍ + 8kxẋ2 + 9k2x4ẋ + k3x7

lD4
Ax =

( d

dt
+ kx2

)4
x = xiv) + 2k(4ẋ3 + 13xẋẍ + 3x2 ...

x) + 2k2x3(22ẋ2 + 7xẋ) + 16k3x6ẋ + k4x9

We call to this family the hierarchy of higher-order Abel equations. The Abel equation of order
m, written in the so-called simplified form, is given by

lDm
A x = 0 , m = 1, 2, . . .
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Actually, the most general form of the Abel equation of order m is just a superposition of all the
previous equations (linear combination of the different members of the hierarchy with functions
pi(t) as coefficients)

(p0lD
n
A + p1lD

n−1
A + . . . + pn−1lDA + pn)x + pn+1 = 0 .

3 Abel equation of second-order

In this section we will analyse the particular case of the second-order Abel equation. In partic-
ular, we describe the Lagrangian formulation of the second-order Abel equation.

3.1 Lagrangian formalism

The action of lD2
A on the function x(t) leads to the nonlinear equation

d2x

dt2
+ 4kx2

(dx

dt

)
+ k2x5 = 0 , (1)

that represents the Abel equation of second-order. It can be presented as a system of two
first-order equations

d

dt
x = v

d

dt
v = −4kx2v − k2x5

that determines a dynamical system that, in differential geometric terms, is represented by the
following vector field

Γ(2) = v
∂

∂x
+ FA2

∂

∂v
, FA2 = −4kx2v − k2x5 . (2)

defined on the phase space R
2 with coordinates (x, v).

It has been proved in [13] that the second-order Riccati equation

d2x

dt2
+ 3kx

(dx

dt

)
+ k2x3 = 0

can be considered as the Lagrange equation determined by the following Lagrangian

LR =
1

v + k x2
.

Proposition 1 The nonlinear Abel equation of second-order (1) admits a Lagrangian formula-
tion with a non-polynomial Lagrangian.
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Proof: There are two different ways of obtaining a Lagrangian function for the nonlinear Abel
equation; the Helmholtz approach and the generalisation of the method used for the correspond-
ing Riccati case.

The Helmholtz conditions are a set of conditions that a multiplier matrix gij(x, ẋ, t) must
satisfy in order for a given system of second-order equations

ẍj = fj(x, ẋ, t) , j = 1, 2, . . . , n,

when written of the form

gij ẍj = gijfj(x, ẋ, t) , i, j = 1, 2, . . . , n,

to be the set of Euler-Lagrange equations for a certain Lagrangian L [25, 26, 27, 28] (the
summation convention on repeated indices is assumed). If a matrix solution gij is obtained then
it can be identified with the Hessian matrix of L, that is gij = ∂L/∂vi∂vj , and a Lagrangian L
can be obtained by direct integration of the gij functions. The two first conditions just impose
regularity and symmetry of the matrix gij ; the two other are equations introducing relations
between the derivatives of gij and the derivatives of the functions fi. Here we only write the
fourth set of conditions that determine the time-evolution of the gij

Γ(gij) = gikAkj + gjkAki , Aab = −
1

2

∂fa

∂vb
.

When the system is one-dimensional we have i = j = k = 1 and then the three first set of
conditions become trivial and the fourth one reduces to one single first-order P.D.E.

Γ(g) +
(∂f

∂v

)
g ≡ v

(∂g

∂x

)
+ f

(∂g

∂v

)
+

(∂f

∂v

)
g = 0 (3)

that in the case of the Abel equation becomes

v
(∂g

∂x

)
− (4kx2v + k2x5)

(∂g

∂v

)
− 4kx2g = 0 . (4)

So, the problem reduces to find the function g as a solution of this equation. Once a solution
g is known a Lagrangian L is obtained by integrating two times the function g. The funtion L
obtained from g is unique up to addition of a gauge term

Next we consider the second method that is specific for this particular nonlinear problem.
The starting point is the idea that, since the Abel equation is very close related with the
Riccati equation, it seems natural to assume that the Abel Lagrangian must be a non-polynomial
function similar to that of the second-order Riccati equation.

Let us begin by considering the following one degree of freedom Lagrangian

L =
1

(v + k U(x, t))m
. (5)

From such a Lagrangian we arrive to the following second-order nonlinear equation

ẍ + (
2 + m

1 + m
) k U ′

x ẋ + (
1

1 + m
) k2UU ′

x + kU ′

t = 0 . (6)
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Hence, in the particular case of U and m being given by

U(x, t) = x3 , m = 2 ,

then the Lagrangian (5) leads to (1). Thus the second-order Abel equation (1) turns out to be
the Euler-Lagrange equation of the Lagrangian function

LA =
1

(v + k x3)2
. (7)

Finally, as a byproduct of this approach, we have also obtained the Lagrangians for the whole
family of nonlinear equations (6) depending of a function U . �

As a corollary of this proposition we can state that when the function U is time-independent
the nonlinear equation (6) has a first-integral that can be interpreted as a preserved energy. That
is, if we restrict the study to nonlinear equations arising from a time-independent Lagrangian
of the form

L =
1

(v + k U(x))m

then we can define an associated Lagrangian energy EL by the usual procedure

EL = ∆(L) − L , ∆ = v
∂

∂v
,

and we arrive to

EL =
− ((1 + m) v + k U(x))

(v + k U(x))m+1
,

d

dt
EL = 0.

In the particular case of the Abel Lagrangian LA we have

ELA
= −

(3v + k x3)

(v + k x3)3
,

d

dt
ELA

= 0 . (8)

Note that LA is non-natural and, as there is neither kinetic term T nor potential function V ,
the energy cannot be of the standard form EL = T + V . But, in spite of its rather peculiar
form, ELA

is a conserved function for the Abel equation.

An important property of the Lagrangian formalism is that for one degree of freedom systems
if an equation admits a Lagrangian formulation then the Lagrangian is not unique [36, 37]. This
property can be proved in two different ways. First, the Helmholtz equation (4) is a linear
equation in partial derivatives and thus it admits many different particular solutions. Moreover
it is clear from the form of the equation (3) that if g1 is a particular solution then g2 = fg1 with
Γ(f) = 0 is also a solution. A second method is related with the properties of the symplectic
formalism. In a two-dimensional manifold all the symplectic forms must be proportional. Hence
if ωL is known then any other symplectic form ω2 must be proportional to ωL, that is ω2 = fωL.
Then

i(ΓL)ω2 = f i(ΓL)ωL = f dEL .

The right-hand side is an exact one-form if, and only if, df∧dEL = 0, which shows that f must
be a function of EL. In this case it can be proved that the new symplectic form ω2 is derivable
from an alternative Lagrangian L2 6=L for ΓL.
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In the particular case of the Abel system Γ(2), several alternatives Lagrangians can be obtained
that, in most of cases, are of non-algebraic character (with logarithm terms). Nevertheless, in
the particular case of f given by f = (−1/ELA

)4/3, we have obtained the following algebraic
function

L̃A = (3v + k x3)2/3 (9)

as a new alternative Lagrangian for the Abel equation (1). This new Lagrangian is equivalent
to LA in the sense that both determine the same dynamics. It determines a new energy ẼLA

that is a constant of the motion for the Abel equation; nevertheless it must not be considered
as a new fundamental constant since it is a function of the original energy ELA

.

3.2 Constants of the motion and geometric formalism

A function T that satisfies the following property

d

dt
T 6= 0 , . . . ,

dm

dtm
T 6= 0 ,

dm+1

dtm+1
T = 0 ,

is called a generator of integrals of motion of degree m. Notice that this means that the function
T is a non-constant function generating a constant of motion by successive time derivations.

Let us denote by T
(2)
1 the following function

T
(2)
1 =

x

v + k x3
.

Then we have that under the evolution given by Abel’s equation 1)

d

dt
T

(2)
1 = T

(2)
2 = 1 ,

d

dt
T

(2)
2 = 0 .

Thus, the function Jt1 defined by

Jt1 = T
(2)
1 − t ,

is a time-dependent constant of the motion for the Abel equation.

This means that we have obtained two constants of the motion (of quite different nature) for
the Abel equation of second-order: the energy ELA

and the time-dependent function Jt1.

In differential geometric terms a time-independent Lagrangian function L determines an exact
two-form ωL defined as

θL =
( ∂L

∂vx

)
dx , ωL = − dθL ,

and L is said to be regular when the 2-form ωL is symplectic. In the particular case of L given
by (7) ωLA

is given by

ωLA
=

( 6

(v + k x3)4

)
dx∧ dv ,
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and the dynamical vector field Γ(2) is the solution of the equation

i(Γ(2))ωLA
= dELA

.

Next we consider two interesting class of symmetries: ‘master symmetries’ and ‘non-Cartan
symmetries’. The idea is that, in differential geometric terms, constants of motion that depend
of the time but in a polynomial way are related with the existence of master symmetries [29,
30, 31, 32] and in some very particular cases with non-Cartan symmetries.

Given a dynamics represented by a certain vector field Γ, then a vector field Z satisfying

[Z,Γ] = Z̃ 6= 0 , [ Z̃ ,Γ] = 0 ,

is called a ‘master symmetry’ of degree m = 1 for Γ. When Z is such that

[Z,Γ] = Z̃ 6= 0 , [ Z̃ ,Γ] 6= 0 and [ [ Z̃ ,Γ] ,Γ] = 0 ,

then Z is called a ‘master symmetry’ of degree m = 2. The generalisation to higher values of m
is straightforward:

(ad(Γ))m+1(Z) = 0, but (ad(Γ))m(Z) 6= 0 .

It is well-known that symmetries are important because they give rise to constants of the
motion and reduction procedures. Master symmetries, which are a rather peculiar class of
symmetries, determine time-dependent constants of motion (the system is time-independent
but the constant is however time-dependent). This can be seen as follows: if Z is a master
symmetry of degree one, the time-dependent vector field YZ determined by Z as follows [32]

YZ = Z + t [Z,Γ] + (
1

2
) t2 [ [Z,Γ] ,Γ]

is a time-dependent symmetry of Γt = ∂/∂t + Γ, which is the suspension of the vector field
Γ [33]. This symmetry determines a time-dependent constant of motion Jt = T − t Γ(T ) that
depends linearly of t (for m = 2 the corresponding constant Jt will be quadratic in t and for
m = 3 will be cubic).

Let Z1 be the Hamiltonian vector field of the function T
(2)
1 , that is, the unique solution of the

equation

i(Z1)ωL = dT
(2)
1 ,

which is given by

Z1 = − (
1

6
)P 2

A1

(
x

∂

∂x
+ (v − 2kx3)

∂

∂v

)
, PA1 = v + k x3 .

Then Z1 is a symplectic symmetry (that is, LZ1 ωL = 0) because it is the Hamiltonian vector

field of T
(2)
1 , and moreover it is a dynamical symmetry because

i([Z1 , Γ(2)]ωL = i(Z1)(LΓ(2)ωL) − LΓ(2)(i(Z1)ωL) = −LΓ(2)(dT
(2)
1 ) = 0 ,
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and therefore, as ωL is non-degenerate, [Z1 , Γ(2)] = 0.

Note however that Z1 is not a symmetry of the energy since Z1(ELA
) 6= 0.

Thus, Z1 is a dynamical but non-Cartan symmetry of the Lagrangian system [34, 35]. These
symmetries are rather peculiar and only appear in some very particular cases. In particular it
was proved in [35] that if the Hamiltonian vector field XF with the function F as Hamiltonian
in a symplectic manifold (M,ω) is a dynamical but non-Cartan symmetry, then XF (H) must

be a numerical constant XF (H) = α 6= 0. In this case we are considering, F = T
(2)
1 and we have

Z1(ELA
) = α = −1.

We close this section by recalling that the Riccati equation was endowed with similar properties

but the function T
(2)
1 was the Lagrangian LR itself [14].

3.3 Darboux polynomial and Jacobi multiplier approach

The existence of constants of the motion and the Lagrangian inverse problem for polynomial
vector fields are two questions related with two important ideas: Jacobi multipliers and Darboux
polynomials.

Let U be an open subset of R
n. We say that a polynomial function D : U → R is a Darboux

polynomial for a polynomial vector field X if there is a polynomial function f defined in U such
that XD = fD [7, 8, 9, 14]. The function f is said to be the cofactor corresponding to such
Darboux polynomial and the pair (f,D) a Darboux pair.

When f = 0, then the Darboux polynomial is a first integral. We say that D is a proper
Darboux polynomial if f 6= 0. If D1 and D2 are Darboux polynomials with the same cofactor,
the quotient D1/D2 is a first integral.

On the other side given a vector field X in an oriented manifold (M,Ω), a function R such
that R i(X)Ω is closed is said to be a Jacobi multiplier (JM) for X. Recall that the divergence
of the vector field X (with respect to the volume form Ω) is defined by the relation

LXΩ = (div X)Ω .

This means that R is a multiplier if and only if R X is a divergence-less vector field and then

LRXΩ = (div RX)Ω = [X(R) + R divX] Ω = 0 ,

and therefore we see that R is a last multiplier for X if and only if

X(R) + R divX = 0 . (10)

Note that if R is a never vanishing Jacobi multiplier, then fR is a Jacobi multiplier too if and
only if f is a constant of motion.

The remarkable point is that if D1, . . . ,Dk, are Darboux polynomials with corresponding
cofactors fi, i = 1, . . . , k, one can look for multiplier factors of the form

R =
k∏

i=1

Dνi

i (11)
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and then

X(R)

R
=

k∑

i=1

νi
X(Di)

Di
=

k∑

i=1

νi fi ,

and therefore, if the coefficients νi can be chosen such that

k∑

i=1

νi fi = −div X (12)

holds, then we arrive to

X(R)

R
=

k∑

i=1

νi fi = −div X ,

and consequently R is a Jacobi last multiplier for X.

Finally, if R is a Jacobi multiplier for a vector field which corresponds to a second-order
differential equation, there is an essentially unique Lagrangian L (up to addition of a gauge
term) such that R = ∂2L/∂v2 [10, 11, 12].

From these general concepts we can return to the Abel equation. In this case the polynomial
D1 defined by

D1(x, v) = v + kx3

is a Darboux polynomial for Γ(2) with cofactor −kx2 since

(
v

∂

∂x
+ FA2

∂

∂v

)
(v + kx3) = −kx2(v + kx3) .

The divergence of the vector field Γ(2) is −4kx2, and then, according to (12), we see that there
is a multiplier of the form

R = Dν1
1 ,

with ν1 = −4. Consequently, the Abel equation admits a Lagrangian description by means of a
function L1 such that

∂2L1

∂v2
= (v + kx3)−4 ,

from where we obtain the Lagrangian L1 = LA given by (7).

But the polynomial D2 defined by

D2(x, v) = 3v + kx3

is a Darboux polynomial for Γ(2) with cofactor −3kx2, because

(
v

∂

∂x
+ FA2

∂

∂v

)
(3v + kx3) = 3kx2v − 3(4kx2v + k2x5) = −3kx2(3v + kx3) ,
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and then, using the equation (12) we can find another Jacobi multiplier of the form Dν2
2 with

ν2 = −4/3. The Abel equation admits a Lagrangian description by means of a function L2 such
that

∂2L2

∂v2
= (3v + kx3)−4/3 ,

from where we obtain the Lagrangian L2 = L̃A given by (9).

Remark that, as indicated above, if P and Q are two Darboux polynomials with the same
cofactor then P/Q is a constant of the motion. This is just what happens with the energy ELA

obtained in (8) which is given by D2/D
3
1 (up to the sign).

4 Abel equations of third and fourth-order

4.1 Abel equation of third-order

The action of the operator lDA three times on the function x(t) leads to the following nonlinear
equation

d3x

dt3
+ 5kx2

(d2x

dt2

)
+ 8kx

(dx

dt

)2
+ 9k2x4

(dx

dt

)
+ k3x7 = 0 , (13)

that represents the third-order element of the Abel equation chain. It can be presented as a
system of three first-order equations





dx

dt
= v

dv

dt
= a

da

dt
= −5kx2a − 8kxv2 − 9k2x4v − k3x7

(14)

that represents a dynamical system that, in differential geometric terms, is represented by the
following vector field in the phase space R

3, with coordinates (x, v, a)

Γ(3) = v
∂

∂x
+ a

∂

∂v
+ FA3

∂

∂a
, FA3 = −5kx2a − 8kxv2 − 9k2x4v − k3x7 . (15)

In what follows we make use of the following polynomials

PA0 = x , PA1 = v − FA1 = v + k x3 , PA2 = a − FA2 = a + 4kx2v + k2x5 ,

defined on the phase space and obtained by making use of the substitution ẋ 7→ v and ẍ 7→ a.
Then we have

Γ(3)(PA0) + kx2PA0 = v + k x3,
Γ(3)(PA1) + kx2PA1 = a + 4kx2v + k2x5,
Γ(3)(PA2) + kx2PA2 = FA3 + 5kx2a + 8kxv2 + 9k2x4v + k3x7.
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that can be rewritten as follows

Γ(3)(PA0) + kx2PA0 = PA1,
Γ(3)(PA1) + kx2PA1 = PA2,
Γ(3)(PA2) + kx2PA2 = 0.

Note that according to these properties PA2 is a Darboux polynomial with f = −kx2 as cofactor.
The divergence of the vector field Γ(3) is −5kx2, and using relation (12) we see that R = (PA2)

µ2

with µ2 = −5 is a Jacobi multiplier.

Next let T
(3)
1 be the following function

T
(3)
1 =

x

PA2
,

and then we have

Γ(3)(T
(3)
1 ) = T

(3)
2 =

v + kx3

PA2
, Γ(3)(T

(3)
2 ) = T

(3)
3 = 1 , Γ(3)(T

(3)
3 ) = T

(3)
4 = 0 .

This means that T
(3)
1 and T

(3)
2 are generators of of constants of motion for the third-order

element of the Abel equation chain represented by the dynamical vector field Γ(3). Thus we can
state the following proposition.

Proposition 2 The two functions Jt1 and Jt2 defined as

Jt1 = T
(3)
2 − t , Jt2 = T

(3)
1 − t T

(3)
2 + (

1

2
)t2 ,

are time-dependent constants of the motion for the Abel equation of third-order.

Note that Jt1 is linear in the time t and Jt2 is quadratic. So these expressions are similar to
the constants of the motion determined by master symmetries; nevertheless in this third-order
case we have not made use of any symplectic structure and we have obtained these functions
without relating them with symmetries of a symplectic structure. This is a interesting situation
deserving an additional analysis in the next sections.

Note also that both, Jt1 and Jt2, can be written as quotients of polynomials; so if we consider
the system as a time-dependent system then the dynamics is geometrically represented by the

vector field Γ
(3)
t = Γ(3) + ∂/∂t and the following polynomials

D2 = PA1 − tPA2 , D3 = PA0 − tPA1 + (
1

2
)t2PA2 ,

are two Darboux polynomials with the same cofactor as PA2

Γ
(3)
t (Di) =

(
Γ(3) +

∂

∂t

)
(Di) = − kx2 Di , i = 2, 3.
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4.2 Abel equation of fourth-order

The action of lDA four times on the function x(t) leads to the following nonlinear equation

xiv) + 2k(4ẋ3 + 13xẋẍ + 3x2 ...
x) + 2k2x3(22ẋ2 + 7xẋ) + 16k3x6ẋ + k4x9 = 0 , (16)

that represents the fourth-order element of the Abel equation chain. This equation determines
a dynamical system that, in geometric terms, can be represented by the following vector field
on R

4 as phase space, with coordinates (x, v, a, w):

Γ(4) = v
∂

∂x
+ a

∂

∂v
+ w

∂

∂a
+ FA4

∂

∂w
(17)

where
FA4 = −2k(4v3 + 13xva + 3x2w) − 2k2x3(22v2 + 7xa) − 16k3x6v − k4x9.

Now we introduce the polynomial PA3

PA3 = w − FA3 = w + 5kx2a + 8kxv2 + 9k2x4v + k3x7

obtained from the expression of lD3
A x with the substitution ẋ 7→ v, ẍ 7→ a y

...
x 7→ w. Then we

have

Γ(4)(PA0) + kx2PA0 = v + k x3

Γ(4)(PA1) + kx2PA1 = a + 4kx2v + k2x5

Γ(4)(PA2) + kx2PA2 = w + 5kx2a + 8kxv2 + 9k2x4v + k3x7

Γ(4)(PA3) + kx2PA3 = FA4 + k(8v3 + 26xva + 6x2w) + k2(44x3v2 + 14x4a)
+ 16k3x6v + k4x9

that can be rewritten as follows

Γ(4)(PA0) + kx2PA0 = PA1

Γ(4)(PA1) + kx2PA1 = PA2

Γ(4)(PA2) + kx2PA2 = PA3

Γ(4)(PA3) + kx2PA3 = 0

Let now T
(4)
1 be the following function

T
(4)
1 =

x

PA3
,

and then we have

Γ(4)(T
(4)
1 ) = T

(4)
2 , Γ(4)(T

(4)
2 ) = T

(4)
3 , Γ(4)(T

(4)
3 ) = T

(4)
4 , Γ(4)(T

(4)
4 ) = 0 ,

with T
(4)
2 , T

(4)
3 , and T

(4)
4 given by

T
(4)
2 =

v + k x3

PA3
, T

(4)
3 =

a + 4kx2v + k2x5

PA3
, T

(4)
4 =

w + . . . + k3x7

PA3
= 1

14



Proposition 3 The three functions Jt1, Jt2, and Jt3 defined as

Jt1 = T3 − t

Jt2 = T2 − t T3 + (
1

2
)t2

Jt3 = T1 − t T2 + (
1

2
)t2T3 − (

1

6
)t3

are time-dependent constants of the motion for the fourth-order element of the Abel equation
chain.

The situation is similar to the n = 3 case and the functions Jtr, r = 1, 2, 3, are polynomials of
order r in the variable t.

5 Equation of Abel of order n

We have seen that the second-order element of the Abel equation chain is endowed with some
specific properties (e.g., it admits a Lagrangian description) but the of third and fourth-order
elements of the chain also enjoy very similar properties. Now in this section we study the
equation of order n and prove that these properties characterise to all the equations of the
family in an independent of the order way.

The equation of Abel of order n can be obtained as the equation arising from the action of
the operator lDA on the equation of order n − 1

lDA(lDn−1
A x) = lDn

Ax = 0 .

This equation determines a dynamical system that, in geometric terms, can be represented by the
following vector field defined on the phase space R

n, with coordinates (x = x1, x2, x3, . . . , xn):

Γ(n) = x2
∂

∂x
+ x3

∂

∂x2
+ x4

∂

∂x3
+ . . . + FAn

∂

∂xn
, (18)

where FAn is obtained a from the expression for lDn
A x with the substitution x 7→ x1, ẋ → x2,

ẍ → x3,
...
x→ x4, . . .

In the previous sections we have made use of the polynomials PA0, PA1, PA2, and PA3 defined in
the phase space and whose explicit expressions, when written in the notation of the coordinates
x1, x2, x3, . . . , xn, were given by

PA0 = x1 ,
PA1 = x2 − FA1 = x2 + k x3

1 ,
PA2 = x3 − FA2 = x3 + 4kx2

1x2 + k2x5
1 ,

PA3 = x4 − FA3 = x4 + 5kx2
1x3 + 8kx1x

2
2 + 9k2x4

1x2 + k3x7
1 .

In the general case we have PAn−1 = xn − FAn−1 that leads to an expression of the form

PAn−1 = xn − FAn−1 = xn + (n + 1)kx2xn−1 + . . . + kn−1x2n−1 .
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Proposition 4 The action of the dynamical vector field Γ(n) on the n polynomials PAr, r =
0, 1, 2, . . . , n − 1, is given by

(i) Γ(n)(PAr) + kx2PAr = PAr+1 , r = 0, 1, 2, . . . , n − 2,
(ii) Γ(n)(PAn−1) + kx2PAn−1 = 0.

The property (i) can be proved by induction. The property (ii) follows by direct calculus. �

Proposition 5 The time evolution of the functions PAr/PAn−1 is given by

Γ(n)
( PAr

PAn−1

)
=

PAr+1

PAn−1
, r = 0, 1, 2, . . . , n − 2.

By direct calculus we have

Γ(n)
( PAr

PAn−1

)
=

Γ(n)(PAr)PAn−1 − PArΓ
(n)(PAn−1)

(PAn−1)2
.

Then, making use of the properties (i) and (ii), we arrive at

Γ(n)
( PAr

PAn−1

)
=

[PAr+1 − kx2PAr]PAn−1 − PAr[−kx2PAn−1]

(PAn−1)2
=

PAr+1

PAn−1
. �

Notice that the first and the last derivatives in this series, corresponding to r = 0 and r = n−2,
become

d

dt

( x

PAn−1

)
=

PA1

PAn−1
,

d

dt

(PAn−2

PAn−1

)
= 1 .

Now let T
(n)
1 be the following function defined by

T
(n)
1 =

x

PAn−1
,

and then, making use of the two preceding Propositions we can obtain the values of the sequence

of time derivatives of the functions T
(n)
k , which are given by

Γ(n)(T
(n)
1 ) = T

(n)
2 =

x2 + kx3

PAn−1
=

PA1

PAn−1

Γ(n)(T
(n)
2 ) = T

(n)
3 =

x3 + 4kx2x2 + k2x5

PAn−1
=

PA2

PAn−1

Γ(n)(T
(n)
3 ) = T

(n)
4 =

x4 + 5kx2x3 + 8kxx2
2 + 9k2x4x2 + k3x7

PAn−1
=

PA3

PRn−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ(n)(T
(n)
n−1) = T (n)

n = 1

Γ(n)(T (n)
n ) = 0 .

From here we can state the existence of a family of n−1 time-dependent constants of the motion.
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Proposition 6 The (n − 1) functions Jtr, r = 1, 2, 3, . . . , n − 1, defined as the following poly-
nomials of order r in the variable t

Jt1 = T
(n)
n−1 − t

Jt2 = T
(n)
n−2 − t T

(n)
n−1 + (

1

2
) t2

Jt3 = T
(n)
n−3 − t T

(n)
n−2 + (

1

2
) t2 T

(n)
n−1 − (

1

6
) t3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jtn−1 = T
(n)
1 − t T

(n)
2 + (

1

2
) t2 T

(n)
3 − . . . . . . + (−1)n(

1

n!
) tn

are n− 1 functionally independent time-dependent constants of the motion for the Abel equation
of order n.

An alternative form of proving the existence of all these constant of the motion is as follows.
The n polynomials Da, a = 1, 2, . . . , n, defined in the extended phase space R

n × R as

D1 = PAn−1 ,
D2 = PAn−2 − tPAn−1 ,

D3 = PAn−3 − tPAn−2 + (
1

2
)t2PAn−1 ,

D4 = PAn−4 − tPAn−3 + (
1

2
)t2PAn−2 − (

1

6
) t3PAn−1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dn = PA0 − tPA1 + . . . + (−1)n(
1

n!
) tnPAn−1 ,

are n Darboux polynomials with the same cofactor

Γ
(n)
t (Da) =

(
Γ(n) +

∂

∂t

)
(Da) = − kx2 Da , a = 1, 2, . . . , n.

Hence the functions

Jtab =
Da

Db
, a, b = 1, 2, . . . , n,

are constants of the motion. In fact, we can arrange all these functions as the entries of an n-
dimensional matrix [Jtab] that becomes a matrix formed by constants of the motion (the diagonal
elements are just ones) with the fundamental set of functions Jtk placed in the first row.

Finally, the divergence of the vector field Γ(n) is given by div Γ(n) = −(n+2)kx2. Thus, using
relation (12), we obtain the following Jacobi multipliers for the Abel equation of order n (or for
the dynamical vector field Γ(n))

Ra = (Da)
µn , µn = −(n + 2) , a = 1, 2, . . . , n.

We note that these n Jacobi multipliers, although different Rb 6= Ra, b 6= a, they are however
essentially the same since they are proportional by a constant of the motion.
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6 Final comments

We have studied a chain of higher-order nonlinear Abel equations using, as starting point, the
idea that they have many similarities with the higher-order nonlinear Riccati equations. We
have made use of the Lagrangian formalism (inverse problem, non-polynomial Lagrangians,
nonstandard symmetries) in the case of the second-order equation and of other mathematical
tools (Darboux polynomials and Jacobi multipliers) in the case of higher-order nonlinearities.
All these questions seems to be really interesting and we think they deserve a deeper study.

Finally, we mention that all these equations possess (for any order of the equation) a family of
constants of the motion Jtk that depend of the time as a polynomial in t. In the symplectic case
functions of such a class are associated to master symmetries of the (Lagrangian or Hamiltonian)
system, but in the general Abel case we have proved the existence of such constants without
any symplectic structure. This is in fact a very interesting fact that must be studied.
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