
Max-Plank-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Boundary layer energies for nonconvex discrete

systems

(revised version: August 2010)

by
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Abstract

In this work we consider a one-dimensional chain of atoms which interact through near-

est and next-to-nearest neighbour interactions of Lennard-Jones type. We impose Dirichlet

boundary conditions and in addition prescribe the deformation of the second and last but

one atoms of the chain. This corresponds to prescribing the slope at the boundary of the

discrete setting. We compute the Γ-limits of zero and first order, where the latter leads to

the occurrence of boundary layer contributions to the energy. These contributions depend

on whether the chain behaves elastically close to the boundary or whether there is a crack.

This in turn depends on the given boundary data. We also analyse the location of fracture in

dependence on the prescribed discrete slopes.

1 Introduction

Devices in engineering become smaller and smaller. The applicability of classical continuum the-
ories reaches its limit in the modelling of the physical properties of such devices. On the other
hand purely atomistic models are often still too complex to handle. To capture discreteness effects
and still to be able to model and analyse physical properties, we start from a discrete system and
derive its continuum limit. This approach is by now established in the literature and has been
successfully applied to different settings. Moreover, there are mathematically rigorous derivations
of discrete-to-continuum limits; see e.g. [BLBL02, BG06, BT08, Sch06] in the context of elasticity,
[BC07, BDMG99] for fracture mechanics and [Sch05, SS09] for magnetic materials.
In this work we focus on a model that describes fracture. The first important work on a discrete-
to-continuum derivation in this area is Truskinovsky’s article [Tru96]. Truskinovsky’s approach
consists of starting from a one-dimensional chain of atoms which interact by Lennard-Jones poten-
tials and to scale the strain in the region close to a crack differently than the strain in the region far
away from the crack. This yields a continuum theory which contains a small parameter with the
scale of length, which is thus able to reflect the fact that fracture is a size-dependent phenomenon.
Truskinovsky obtains a bulk energy as well as a contribution due to the crack. The latter energy
contribution depends on the crack opening and is formulated in the sense of Barenblatt [Bar62].
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Figure 1: A typical example of a Lennard-Jones potential.

In [BDMG99] Braides, Dal Maso and Garroni provide a first mathematical result related to frac-
ture mechanics by using Γ-convergence methods (see [Bra02] and [DM93] for a comprehensive
introduction to Γ-convergence). While Braides, Dal Maso and Garroni assume different scaling
behaviour of the Lennard-Jones potential in the convex and concave regions, respectively, we fol-
low Braides and Cicalese [BC07] and derive an asymptotic expansion for the limiting continuum
energy up to the first order via Γ-convergence. This is motivated by Braides and Truskinovsky’s
work [BT08], in which uniformly Γ-equivalent theories are developed in order to obtain a mathe-
matical justification of Truskinovsky’s earlier work [Tru96], among others. As we outline in more
detail below, one of our future goals is to derive a uniformly Γ-equivalent theory for the setting
which we treat in this paper.

As in [BC07] we consider next-to-nearest neighbour interactions in addition to the nearest neigh-
bour interactions between the atoms in the energy functional (see also [CT02]). This leads to
boundary layer contributions to the limit energy and thus allows to describe fracture, as will be
extensively shown in this article. Throughout we assume that the interaction potentials between
nearest and next-to-nearest neighbouring atoms are of Lennard-Jones type. See Figure 1 for an
example of a Lennard-Jones potential, and see below for details. Note that our class of Lennard-
Jones type potentials also contains typical other interaction potentials of physical relevance, such
as Morse potentials or double Yukawa potentials, see Remark 4.1.

Since we deal with nearest and next-to-nearest neighbour interactions, we impose Dirichlet bound-
ary conditions (corresponding to a hard device) not only at the endpoints of the chain, as in [BC07],
but also at the second and last but one atoms, in agreement with [CT02]. We notice that this fur-
ther constraint can be equivalently interpreted as prescribing the discrete slopes at the boundary
of the chain. Imposing these additional natural boundary conditions results in new definitions of
the occurring boundary layer energies, see (4.13), (4.27) and (4.29), where we relate these with
the corresponding ones in [BC07]. For earlier treatments of boundary layer energies see [BLBL02]
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in the case of pointwise limits using higher gradients and [CT08] using internal variables.

It turns out that the Γ-limit of our discrete energy yields a bulk energy, cf. Theorem 3.1. The
bulk energy density is the convexification of a potential, J0, obtained by combining the Lennard-
Jones type potentials between consecutive atoms and between next-to-nearest neighbour atoms
through an inf-convolution, cf. (3.3) for details. In order to capture boundary layer contributions,
we then compute the first-order Γ-limit in Section 4. We distinguish the cases of elasticity (ℓ ≤ γ,
Subsection 4.1) and the case of the occurrence of fracture (ℓ > γ, Subsection 4.2), which depend
on the parameter of the boundary value ℓ, and on the minimum point γ of the potential J0.

Therefore our results for the first-order Γ-limit depend on the Dirichlet boundary condition, i.e.,
on whether ℓ > γ or not, cf. Theorems 4.3 and 4.8. In other words, the limiting functional is
not uniform in ℓ. One of our future goals is to find an energy functional which is uniform in ℓ
in the sense of Braides and Truskinovsky [BT08]. Moreover, the limiting functional contains an
explicit dependence on the boundary slopes, and it is in general different to the one obtained
in [BC07] even if ℓ = γ, cf. Remark 4.5. We point out that the presence of these additional
parameters in the boundary layer energy allows us to describe a wider range of possible limiting
behaviours for the discrete chain. In particular it turns out that prescribing appropriate discrete
slopes at the boundary yields a continuum model which allows for internal cracks for minimal
energy configurations, cf. Theorem 5.3 and the end of Section 5 for a corresponding discussion
including a multiple scales aspect. On the contrary, fixing only the first and last boundary atoms
leads to a location of fracture at the boundary always, as shown in [BC07, Theorem 5.2].

This issue is of particular interest having in mind as application the derivation of a model of
cracks using the quasicontinuum method. This method was developed to combine advantages of
continuum as well as of discrete descriptions (see [KO01, MTPO98, SMT+98]). The idea is to use
the continuum description away from the crack tip and to model the neighbourhood of a crack tip
by an atomistic model.
A first step to verify earlier works mathematically was done by Blanc, Le Bris and Legoll [BLBL05].
They consider nearest neighbour interactions, introduce an artificial scaling in the continuum
energy in terms of the lattice parameter in order to avoid an unnatural behaviour of the system,
and they compute a pointwise limit of the energy functional. Instead of dealing with this modified
energy we intend to consider the expansion obtained in the present work by Γ-convergence methods
since this contains the lattice parameter naturally.

We finally observe that, as in most of the related mathematical literature we consider a one-
dimensional model. This is of course a drawback since we head for a model of fracture in three-
dimensional materials, but for now it is not clear how to overcome the related mathematical
difficulties. However we hope that this one-dimensional model case will contribute to a better
understanding of three-dimensional fracture mechanics. Moreover the one-dimensional model can
be regarded as a model for trusses or a model for cleavage. In the latter case, the material breaks
along crystalline planes so that a model describing cleavage can be reduced to a one-dimensional
one by symmetry, cf. [BLO06, NO02].

2 Setting of the problem

The discrete model which we take as the starting point for the derivation of a continuum energy
functional describing the occurrence of fracture is as follows, cf. also Figure 2. We start from a one-
dimensional chain of n+1 atoms in [0, 1] and consider the limit as n → ∞. For convenience we often
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Figure 2: A chain of n atoms.

set λn = 1
n
. The deformation from the reference configuration is a function u : λnZ ∩ [0, 1] → R,

and ui is shorthand for u(iλn). Note that for a function v : Z → R we write vi = v(i) as shorthand.
The Lennard-Jones type potentials J1 and J2 describe the interactions between nearest neighbours
and next-to-nearest neighbours, respectively. Exact assumptions for both potentials are given in
Theorem 3.1 and in [H1]–[H5] below. The discrete energy reads

Hn(u) =

n−1∑

i=0

λnJ1

(
ui+1 − ui

λn

)
+

n−2∑

i=0

λnJ2

(
ui+2 − ui

2λn

)
(2.1)

and is defined on An(0, 1), the set of all functions u : λnZ ∩ [0, 1] → R, which we identify with
their piecewise affine interpolations. Thus

An(0, 1) = {u : [0, 1] → R : u(t) is affine for t ∈ (i, i + 1)λn, i ∈ {0, . . . , n − 1}} .

As in [BC07] we impose Dirichlet boundary conditions on the first and last atoms. In addition we
also fix the second and last but one atoms of the one-dimensional chain of atoms under consider-
ation. That is, for given ℓ, u

(1)
0 , u

(1)
1 > 0 we set

u(0) = u0 = 0, u(1) = un = ℓ,

u(λn) = u1 = λnu
(1)
0 , u(1 − λn) = un−1 = ℓ − λnu

(1)
1 .

(2.2)

Note that it is natural to have four boundary conditions in the case of next-to-nearest neighbour
interactions, cf. e.g. [CT02, CT08]. Since in nature cracks also occur in the interior of materials,
we head for a model that allows for a location of cracks in the interior. By imposing conditions on
the first and second as well as on the last and last but one atoms we obtain a model which allows
to have fracture in the interior in special cases, see Theorem 5.3.

Remark 2.1. We notice that prescribing the discrete boundary slope does not translate in the
continuum picture into prescribing the slope at 0 and 1. On the other hand, its effect is a
penalisation in terms of the energy, described by new boundary layer energies with respect to
[BC07], cf. (4.13) and (4.27)–(4.29).

Since we require physical configurations u to satisfy the boundary conditions, we incorporate the

boundary conditions in the definition of the functional. For given ℓ, u
(1)
0 , u

(1)
1 > 0 we consider the

functional Hℓ
n : An(0, 1) → (−∞, +∞] defined by

Hℓ
n(u) =

{
Hn(u) if u0 = 0, u1 = λnu

(1)
0 , un−1 = ℓ − λnu

(1)
1 , un = ℓ,

+∞ else.
(2.3)

It turns out that the zero and first-order Γ-limits of this functional depend on ℓ (cf. Theorems 3.1,
4.3 and 4.8 below). For this reason we make the ℓ-dependence also visible in the notation of the
energy in the discrete setting.
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3 Zero-order Γ-limit of the discrete energy

The zero-order Γ-limit is the same as the Γ-limit of the discrete energy in (2.3) and yields the
bulk contribution of the energy. We derive the Γ-limit in Theorem 3.1, which is based on [BG04,
Theorem 3.2] and [BC07, Theorem 4.2]. The bulk energy density identifying the limiting functional
is a convexification of a potential that is obtained by combining the nearest neighbour and next-
to-nearest neighbour interaction potentials. The combination of the potentials is done by an
inf-convolution, see (3.3).

For given ℓ > 0 we denote by BV ℓ(0, 1) the space of functions u with bounded variation defined
on (0, 1) and satisfying the Dirichlet boundary conditions u(0) = 0 and u(1) = ℓ. We point
out that when 0 (resp. 1) is a jump point of u, the Dirichlet boundary condition is replaced
by u(0−) = 0 (resp. u(1+) = ℓ). In other words BV ℓ(0, 1) can be identified with the space of
functions u ∈ BVloc(R) such that u = 0 on (−∞, 0) and u = ℓ on (1, +∞). The space of special
functions with bounded variation SBV ℓ(0, 1) is defined correspondingly. Moreover, for a function
u ∈ BV ℓ(0, 1) (or in SBV ℓ(0, 1)) we denote by Su the jump set of u in [0, 1], and for t ∈ Su we
set [u(t)] = u(t+) − u(t−).

Theorem 3.1. Let Jj : R → (−∞, +∞] be Borel functions bounded from below, for j = 1, 2.
Suppose that there exists a convex function Ψ : R → [0, +∞] such that

lim
z→−∞

Ψ(z)

|z| = +∞ (3.1)

and there exist constants cj
1, c

j
2 > 0 for j = 1, 2 such that

cj
1(Ψ(z) − 1) ≤ Jj(z) ≤ cj

2 max{Ψ(z), |z|} for all z ∈ R, j = 1, 2. (3.2)

Let ℓ, u
(1)
0 , u

(1)
1 > 0. Then the Γ-limit of Hℓ

n with respect to the L1-topology is the functional Hℓ

defined by

Hℓ(u) =





∫ 1

0

J∗∗
0 (u′(t)) dt if u ∈ BV ℓ(0, 1), [u] > 0 on Su,

+∞ else

on L1(0, 1). Here J∗∗
0 denotes the convexification of the function

J0(z) = J2(z) +
1

2
inf {J1(z1) + J1(z2) : z1 + z2 = 2z} (3.3)

defined for all z ∈ R.

Proof. Compactness. For fixed u
(1)
0 , u

(1)
1 > 0, let (un) be a sequence with equibounded energy

Hℓ
n. By [BG04, Theorem 1.2, Theorem 3.2] we have that un ∈ BV ℓ(0, 1) and that there exists

u ∈ BV (0, 1) such that un converges weakly to u in BV (0, 1). It remains to verify that the limit
function u satisfies the boundary conditions in 0 and in 1. Since u0

n = 0 and un
n = ℓ for every n,

we can define the extension ũn ∈ BVloc(R) as

ũi
n =





0 if i ≤ 0,

ui
n if 0 ≤ i ≤ n,

ℓ if i ≥ n.
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Then we have that ũn converges weakly in BVloc(R) to the extension ũ of u and from this we
deduce that

u(0−) = lim
t→0−

ũ(t) = 0 and u(1+) = lim
t→1+

ũ(t) = ℓ.

Liminf inequality. It can be proved in the same way as in [BG04, Theorem 3.2].

Limsup inequality. Let u ∈ BV ℓ(0, 1), with [u] > 0. Then [BG04, Theorem 3.2] provides a
recovery sequence (un) which does not satisfy the Dirichlet boundary conditions (2.2). Therefore
we define the sequence ûn as the affine interpolation of the following discrete values

ûi
n =





0 if i = 0,

λnu
(1)
0 if i = 1,

ui
n if 2 ≤ i ≤ n − 2,

ℓ − λnu
(1)
1 if i = n − 1,

ℓ if i = n.

Clearly ûn converges to u, since we modify the recovery sequence only at a microscopic level.
Moreover the change in the energy is of order λn, therefore ûn is a recovery sequence for u.

4 First-order Γ-limit of the discrete energy

In order to obtain a continuum energy functional that contains boundary layer energies we are
interested in the first-order Γ-limit of Hℓ

n. That is, we compute the Γ-limit of the functional Hℓ
1,n

defined by

Hℓ
1,n(u) =

Hℓ
n(u) − min Hℓ

λn

. (4.1)

With respect to deriving an asymptotic expansion of the limiting functional of Hℓ
1,n in terms of

λn, we remark that the first-order Γ-limit yields the second term of such an (formal) expansion,
i.e., the term of order λn. More precisely, the minimisers of the first-order Γ-limit are the second
term of an asymptotic expansion of the minimisers of the original functional in terms of λn, see
[AB93].

First of all we state the assumptions on J1, J2 and J0 under which the convergence result is
obtained.

[H1] (strict convexity of J0 in its convexity points).

{z : J0(z) = J∗∗
0 (z)} ∩ {z : J0 is affine near z} = ∅.

[H2] (uniqueness of minimal energy configurations).

#Mz = 1 for every z ∈ R : J0(z) = J∗∗
0 (z),

where the set Mz describes the minimising pairs for J1, i.e.,

Mz =

{
(z1, z2) : z1 + z2 = 2z, J0(z) = J2(z) +

1

2

(
J1(z1) + J1(z2)

)}
. (4.2)
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Thus Mz = {(z, z)}, which implies that

J0(z) = J1(z) + J2(z) for every z ∈ R : J0(z) = J∗∗
0 (z). (4.3)

[H3] (regularity and behaviour at +∞). J1, J2 : R → (−∞, +∞] be in C1,α, 0 < α ≤ 1, on their
domains, i.e., on {z ∈ R : Jj(z) < +∞}, j = 1, 2, and such that J0 ∈ C1 on its domain. The
following limits exist in R

lim
z→+∞

Jj(z) = 0, j = 1, 2 and lim
z→+∞

J0(z) = J0(+∞).

[H4] (structure of J1, J2 and J0). J1, J2 are such that there exists a convex function Ψ : R →
[0, +∞] and constants cj

1, c
j
2 > 0 for j = 1, 2 such that (3.1) and (3.2) are satisfied. Jj has a unique

minimum point δj and it is strictly convex in (−∞, δj) on its domain for j = 1, 2. Moreover J0

has a unique minimum point γ, with J0(γ) < J0(+∞).

[H5] (additional condition on J0 in the case ℓ < γ). J0(z) = J∗∗
0 (z) for all z ≤ γ.

Assumption [H5] is used in Proposition 4.2 and Subsection 4.1, see Theorem 4.3, which is in fact
the only result where we apply the C1,α-regularity of [H3].

Note that, assumption [H2] rules out the possibility that the Lennard-Jones type potentials J1

and J2 have several wells. Our choice is due to the intention of focusing on the effect of pre-
scribed discrete slopes on the limiting functional, rather than presenting our results under more
general assumptions for the interaction potentials, cf. [BC07] for related work on the latter topic.
Analogous to [BC07] we could easily relax the assumption of J1(+∞) = J2(+∞) = 0.

Remark 4.1. The above conditions are satisfied by typical physical interaction potentials. The
main example that we have in mind is the Lennard-Jones potential, which is why we call potentials
satisfying [H1] − [H5] potentials of Lennard-Jones type. The classical Lennard-Jones potentials
are defined, for some k1, k2 being positive constants, by

J1(z) =
k1

z12
− k2

z6
, J2(z) = J1(2z) for z > 0 (4.4)

and extended to +∞ on (−∞, 0], see Figure 1 for a plot. [H1]− [H4] are clear from the definition.
To prove [H5], we first note that

1

2
inf {J1(z1) + J1(z2) : z1 + z2 = 2z} =

1

2
inf {J1(z1) + J1(2z − z1) : z1} .

Setting the first derivative of this equal to zero, yields the condition J ′
1(z1) = J ′

1(2z − z1). Now
observe that J ′

1(z) is injective and J ′
1(z) ≤ 0 for all 0 < z ≤ δ1 with δ1 being the minimum point

of J1, and J ′
1(z) > 0 for all z > δ1. Moreover note that z ≤ δ1 implies that at least one of z1 and

2z − z1 is less than or equal to δ1. Hence the properties of the first derivative yield z1 = 2z − z1,
i.e., z1 = z for all z ≤ δ1. Therefore, for Lennard-Jones potentials as defined in (4.4) we have

J0(z) = J1(z) + J2(z) for all 0 < z ≤ δ1. (4.5)

An elementary calculation reveals that J1(z) + J2(z) has non-negative second derivative for all

z ≤
(

13
7

) 1
6 γ with γ being the minimum point of the effective energy J0 and

γ =

(
1 + 2−12

1 + 2−6

) 1
6

δ1 =

(
1 + 2−12

1 + 2−6

) 1
6
(

2k1

k2

) 1
6

(4.6)
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as proven in [BC07, Example 4.1]. From γ <
(

13
7

) 1
6 γ and γ < δ1, we deduce [H5].

Since the double Yukawa potential, cf. [FA81], has a similar shape as the Lennard-Jones potential,
we expect that it also satisfies [H1] − [H5].
Another example is the so-called Morse-potential where for some δ1, k1, k2 > 0, the potential is

defined by J1(z) = k1

(
1 − e−k2(z−δ1)

)2 − k1 for z ≥ 0, and J2(z) = J1(2z). This is finite at 0,
but the structure is the same: the potential is strictly convex up to an inflection point, where it
becomes concave and approaches 0 as z → ∞, i.e., we have [H1] − [H4]. To prove [H5], one may
proceed as for the Lennard-Jones potential using properties of the first derivative of J1.

We notice that, by Jensen’s inequality, minHℓ = J∗∗
0 (ℓ) for every ℓ. More explicitly,

min Hℓ =

{
J0(ℓ) if ℓ ≤ γ,

J0(γ) if ℓ > γ.
(4.7)

Indeed, [H1]−[H4] imply J∗∗
0 (z) = J0(γ) for every z ≥ γ. Moreover, in the case ℓ ≤ γ, assumption

[H5] entails in particular J0(ℓ) = J∗∗
0 (ℓ).

For what follows it is useful to rearrange the terms in the expression of the energy Hℓ
1,n in (4.1).

For given ℓ, u
(1)
0 , u

(1)
1 > 0 let (un) be a sequence of functions satisfying the boundary conditions

(2.2) for each n. Then by (2.1)

Hℓ
1,n(un) =

n−1∑

i=0

J1

(
ui+1

n − ui
n

λn

)
+

n−2∑

i=0

J2

(
ui+2

n − ui
n

2λn

)
− min Hℓ

λn

=
1

2
J1

(
u1

n − u0
n

λn

)
+

n−2∑

i=0

{
J2

(
ui+2

n − ui
n

2λn

)
+

1

2
J1

(
ui+2

n − ui+1
n

λn

)

+
1

2
J1

(
ui+1

n − ui
n

λn

)}
+

1

2
J1

(
un

n − un−1
n

λn

)
− min Hℓ

λn

=
1

2
J1

(
u1

n − u0
n

λn

)
+

n−2∑

i=0

σi
n +

1

2
J1

(
un

n − un−1
n

λn

)
− min Hℓ, (4.8)

where we set for i = 0, . . . , n − 2

σi
n = J2

(
ui+2

n − ui
n

2λn

)
+

1

2

(
J1

(
ui+2

n − ui+1
n

λn

)
+ J1

(
ui+1

n − ui
n

λn

))
− min Hℓ. (4.9)

The following compactness result states that for ℓ ≤ γ functions un with equibounded energy
Hℓ

1,n converge necessarily to the function u(t) = ℓt, while if ℓ > γ, the limit function u has a finite
number of jumps and is such that u′ = γ a.e. We recall that Su is the jump set of u.

Proposition 4.2. 1. Let 0 < ℓ ≤ γ and suppose that hypotheses [H1] − [H5] hold. Let u
(1)
0 ,

u
(1)
1 > 0. If (un) is a sequence of functions such that

sup
n

Hℓ
1,n(un) < +∞, (4.10)

then there exists a finite set S ⊂ [0, 1] such that, up to subsequences, un → u in W 1,∞
loc ((0, 1)\

S) with u(t) = ℓt, t ∈ [0, 1].
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2. Let ℓ > γ and suppose that hypotheses [H1] − [H4] hold. Let u
(1)
0 , u

(1)
1 > 0. If (un) is

a sequence of functions such that (4.10) is satisfied, then, up to subsequences, un → u in
L1(0, 1), where u ∈ SBV ℓ(0, 1) is such that

(i) 0 < #Su < +∞;

(ii) [u] > 0 on Su;

(iii) u′ = γ a.e.;

(iv) there exists a finite set S ⊂ [0, 1] such that, up to subsequences, un → u in W 1,∞
loc ((0, 1)\

S).

Proof. The first result of the proposition follows from [BC07, Propositions 3.1 and 4.2], see also
below. The results (i) − (iii) for ℓ > γ follow directly from [BC07, Proposition 4.2], since our
approximating functionals are finite on a smaller set than the corresponding ones in [BC07].
Statement (iv) follows again from [BC07, Proposition 3.1], which we outline in the following; the
corresponding result for the case ℓ ≤ γ in 1. can be obtained in a similar way. In the case ℓ > γ
we have (4.8) with minHℓ = J0(γ). From (4.10) there exists C > 0 such that

sup
n

n−2∑

i=0

σi
n ≤ C < +∞,

where σi
n is defined as in (4.9). Hence, for every fixed η > 0, setting In :=

{
i ∈ {0, . . . , n − 2} :

σi
n > η

}
, there exists a constant C(η) such that

sup#In ≤ C(η) < +∞.

Let i ∈ {0, . . . , n − 2} be such that i /∈ In, i.e.,

σi
n = J2

(
ui+2

n − ui
n

2λn

)
+

1

2
J1

(
ui+2

n − ui+1
n

λn

)
+

1

2
J1

(
ui+1

n − ui
n

λn

)
− J0(γ) ≤ η. (4.11)

Since J0(z) ≥ J0(γ) for every z, from (3.3) and (4.11) we have

0 ≤ J2

(ui+2
n − ui

n

2λn

)
+

1

2
J1

(ui+2
n − ui+1

n

λn

)
+

1

2
J1

(ui+1
n − ui

n

λn

)
− J0

(ui+2
n − ui

n

2λn

)
≤ η,

and moreover, using the definition of J0, (4.11) implies that

0 ≤ J0

(ui+2
n − ui

n

2λn

)
− J0(γ) ≤ η.

Let ε = ε(η) > 0 be such that if

0 ≤ J2(z) +
1

2
J1(z1) +

1

2
J1(z2) − J0(z) ≤ η with z1 + z2 = 2z

0 ≤ J0(z) − J0(γ) ≤ η

then |z1 − γ| + |z2 − γ| < ε. Therefore if i /∈ In then

∣∣∣
ui+2

n − ui+1
n

λn

− γ
∣∣∣ < ε and

∣∣∣
ui+1

n − ui
n

λn

− γ
∣∣∣ < ε. (4.12)
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Let Mn be the maximal number of indices i in In and let In := {in1 , . . . , inMn
} with 0 ≤ ink ≤

ink+1 ≤ n− 2, k = 1, . . . , Mn − 1. Note that
∑n−2

i=0 σi
n ≥ C(η)Mn, and therefore (4.10) implies that

supn C(η)Mn < +∞. Therefore we may assume Mn = M and observe that, up to subsequences,
for every k = 1, . . . , M there exists xk ∈ [0, 1] with λnink → xk. Let S = {x1, . . . , xM} and,
for fixed ω > 0, Sω =

⋃
k(xk − ω, xk + ω). Hence, by identifying un with its piecewise affine

interpolation, we get from (4.12) for n large enough

sup
t∈(0,1)\Sω

|u′
n(t) − γ| < ε.

Since u′ = γ a.e.,we conclude by (iii), due to the arbitrariness of ω, that up to a further subsequence
un → u in W 1,∞

loc ((0, 1) \ S).

For simplicity of notation we define for ℓ > γ

SBV ℓ
c (0, 1) =

{
u ∈ SBV ℓ(0, 1) : conditions (i) − (iii) are satisfied

}
.

4.1 The case ℓ ≤ γ

First of all we consider the case ℓ ≤ γ, where we recall that ℓ denotes the Dirichlet condition
imposed on the last atom of the chain and γ denotes the minimum point of J0. For ℓ ≤ γ we have
elastic behaviour and therefore no fracture occurs. We compute the discrete-to-continuum limit
of the discrete energy of first order Hℓ

1,n in terms of Γ-convergence. This yields in particular that

our limiting functional depends on the prescribed slopes u
(1)
0 and u

(1)
1 , see Theorem 4.3.

For any 0 < ℓ ≤ γ and θ > 0 we define the boundary layer energy B (θ, ℓ) as

B (θ, ℓ) = inf
N∈N

min

{
1

2
J1

(
v1 − v0

)
+
∑

i≥0

{
J2

(
vi+2 − vi

2

)

+
1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(ℓ) − J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)}
:

v : N → R, v0 = 0, v1 − v0 = v1 = θ, vi+1 − vi = ℓ if i ≥ N

}
. (4.13)

In what follows θ = u
(1)
0 or θ = u

(1)
1 , so the constraint v1 − v0 = θ is due to the boundary

conditions imposed on the first and on the last two atoms of the chain, respectively. Hence,
B (θ, ℓ) represents the elastic boundary layer energy. The expression involving −J ′

0(ℓ) is crucial
here to ensure, together with (4.3), that the terms in the sums are non-negative and thus that
the boundary layer energy is bounded from below. Indeed, by the definition of J0 and since
J0(ℓ) = J∗∗

0 (ℓ) for ℓ ≤ γ by [H5],

J2

(
vi+2 − vi

2

)
+

1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(ℓ) − J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)

≥ J0

(
vi+2 − vi

2

)
− J0(ℓ) − J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)
≥ 0,

where the latter inequality follows from the fact that J0(x) − J0(ℓ) − J ′
0(ℓ)(x − ℓ) ≥ J∗∗

0 (x) −
J∗∗

0 (ℓ) − (J∗∗
0 )′(ℓ)(x − ℓ) ≥ 0 for all x ∈ R; thus in particular J0(γ) − J0(ℓ) − J ′

0(ℓ)(γ − ℓ) ≥ 0.

For the definition of the corresponding boundary layer energy in the case ℓ > γ see (4.29).
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Theorem 4.3. Suppose that hypotheses [H1] − [H5] hold and let 0 < ℓ ≤ γ and u
(1)
0 , u

(1)
1 > 0.

Then Hℓ
1,n Γ-converges with respect to the L∞-topology to the functional Hℓ

1 defined by

Hℓ
1(u) =





B
(
u

(1)
0 , ℓ

)
+ B

(
u

(1)
1 , ℓ

)
− J0(ℓ) − J ′

0(ℓ)

(
u
(1)
0 +u

(1)
1

2 − ℓ

)
if u(t) = ℓt,

+∞ else

on W 1,∞(0, 1).

In Figure 3 we give an intuitive picture of the location of the occurring boundary layers in the
elastic case, i.e., for ℓ ≤ γ.

u(t)

t
10

B
“

u
(1)
1 , ℓ

”

B
“

u
(1)
0 , ℓ

”

ℓ

Figure 3: An intuitive picture of the location of boundary layers for ℓ ≤ γ.

Proof. Liminf inequality. We show that for any sequence un → u in L∞(0, 1) with equibounded
energy Hℓ

1,n we have

lim inf
n→∞

Hℓ
1,n(un) ≥ B

(
u

(1)
0 , ℓ

)
+ B

(
u

(1)
1 , ℓ

)
− J0(ℓ) − J ′

0(ℓ)

(
u

(1)
0 + u

(1)
1

2
− ℓ

)
.

From Proposition 4.2 we have that u(t) = ℓt for all t ∈ [0, 1] and that there exists a finite set S
with, up to subsequences, un → u in W 1,∞

loc ((0, 1) \ S). This allows us to choose a sequence of
integer numbers hn ∈ N such that λnhn → 1

2 as n → ∞ (note that without loss of generality we
may assume that 1

2 /∈ S, since otherwise we may pick another point in (0, 1) which does not belong
to S) and moreover

lim
n→∞

uhn+2
n − uhn+1

n

λn

= ℓ. (4.14)

We write Hℓ
1,n(un) as in (4.8), where we make use of (4.7). Then we add and subtract the term

11



J ′
0(ℓ)

(
ui+2

n −ui
n

2λn

)
in the sum to obtain

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

n−2∑

i=0

{
J2

(
ui+2

n − ui
n

2λn

)
+

1

2

(
J1

(
ui+2

n − ui+1
n

λn

)

+ J1

(
ui+1

n − ui
n

λn

))
− J0(ℓ) − J ′

0(ℓ)

(
ui+2

n − ui
n

2λn

− ℓ

)}

+
n−2∑

i=0

J ′
0(ℓ)

(
ui+2

n − ui
n

2λn

− ℓ

)
+

1

2
J1

(
un

n − un−1
n

λn

)
− J0(ℓ).

(4.15)

Since
∑n−1

i=0 (ui+1
n − ui

n) = un
n − u0

n = ℓ by construction, we have

n−2∑

i=0

(
ui+2

n − ui
n

)
= 2

n−1∑

i=0

(
ui+1

n − ui
n

)
−
(
u1

n − u0
n

)
−
(
un

n − un−1
n

)
= 2ℓ − λn

(
u

(1)
0 + u

(1)
1

)
.

Thus

n−2∑

i=0

J ′
0(ℓ)

(
ui+2

n − ui
n

2λn

− ℓ

)
= J ′

0(ℓ)

(
ℓ

λn

− u
(1)
0 + u

(1)
1

2
− (n − 1)ℓ

)
= −J ′

0(ℓ)

(
u

(1)
0 + u

(1)
1

2
− ℓ

)

(4.16)

and we already have the last term in the finite limiting energy Hℓ
1(u). By (4.15) and (4.16) the

energy Hℓ
1,n(un) reads

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

n−2∑

i=0

si
n +

1

2
J1

(
un

n − un−1
n

λn

)
− J0(ℓ) − J ′

0(ℓ)

(
u

(1)
0 + u

(1)
1

2
− ℓ

)
,

(4.17)

where for i = 0, . . . , n − 2 we define

si
n =J2

(
ui+2

n − ui
n

2λn

)
+

1

2

(
J1

(
ui+2

n − ui+1
n

λn

)
+ J1

(
ui+1

n − ui
n

λn

))
− J0(ℓ)

− J ′
0(ℓ)

(
ui+2

n − ui
n

2λn

− ℓ

)
.

(4.18)

Note that, for ℓ = γ, si
n is the same as σi

n defined in (4.9) since J ′
0(γ) = 0 by [H4]. We define the

sequence vn : N → R as

vi
n =

{
ui

n

λn
if 0 ≤ i ≤ hn + 2,

ℓ(i − (hn + 2)) +
uhn+2

n

λn
if i ≥ hn + 2.

(4.19)
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Then, in terms of vn we have

hn∑

i=0

si
n =

hn∑

i=0

{
J2

(
vi+2

n − vi
n

2

)
+

1

2

(
J1

(
vi+2

n − vi+1
n

)
+ J1

(
vi+1

n − vi
n

))
− J0(ℓ)

− J ′
0(ℓ)

(
vi+2

n − vi
n

2
− ℓ

)}

=
∑

i≥0

{
J2

(
vi+2

n − vi
n

2

)
+

1

2

(
J1

(
vi+2

n − vi+1
n

)
+ J1

(
vi+1

n − vi
n

))
− J0(ℓ)

− J ′
0(ℓ)

(
vi+2

n − vi
n

2
− ℓ

)}
− ω(n),

where ω(n) denotes an infinitesimal function for n → ∞ specified below. The last equality follows
observing that, by (4.19) and (4.3), the terms of the sum are identically 0 for every i ≥ hn + 2,
while by (4.14) and (4.3) we have that the term corresponding to i = hn + 1 satisfies

shn+1
n = J2

(
uhn+2

n − uhn+1
n

2λn

+
ℓ

2

)
+

1

2

(
J1(ℓ) + J1

(
uhn+2

n − uhn+1
n

λn

))
− J0(ℓ)

− J ′
0(ℓ)

(
uhn+2

n − uhn+1
n

2λn

+
ℓ

2
− ℓ

)

= ω(n) → 0 as n → ∞.

Observe that v0
n =

u0
n

λn
= 0, v1

n − v0
n =

u1
n

λn
= u

(1)
0 and vi+1

n − vi
n = ℓ for i ≥ hn + 2. Hence vn is a

competitor for the minimum problem defining B
(
u

(1)
0 , ℓ

)
, cf. (4.13). Therefore

1

2
J1

(
u1

n − u0
n

λn

)
+

hn∑

i=0

si
n

=
1

2
J1(v

1
n − v0

n) +
∑

i≥0

{
J2

(
vi+2

n − vi
n

2

)
+

1

2

(
J1

(
vi+2

n − vi+1
n

)
+ J1

(
vi+1

n − vi
n

))

− J0(ℓ) − J ′
0(ℓ)

(
vi+2

n − vi
n

2
− ℓ

)}
− ω(n)

≥ B
(
u

(1)
0 , ℓ

)
− ω(n). (4.20)

In order to estimate the remaining part in the energy in (4.17), we observe that

B (θ, ℓ) = inf
N∈N

min

{
1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)

+
1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(ℓ) − J ′

0(ℓ)

(
wi − wi−2

2
− ℓ

)}
:

w : −N → R, w0 = 0, w0 − w−1 = −w−1 = θ, wi − wi−1 = ℓ if i ≤ −N

}
, (4.21)

as one can easily see setting vj =: −w−j in (4.13) and i := −j. We define wn : −N → R as

wj
n =

{
un+j

n

λn
− ℓ

λn
if hn − n + 1 ≤ j ≤ 0,

ℓ(j − (hn − n + 1)) − ℓ
λn

+
uhn+1

n

λn
if j ≤ hn − n + 1.

(4.22)
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Then, in terms of wn we have

n−2∑

i=hn+1

si
n =

0∑

j=hn−n+3

{
J2

(
wj

n − wj−2
n

2

)
+

1

2

(
J1

(
wj

n − wj−1
n

)
+ J1

(
wj−1

n − wj−2
n

))
− J0(ℓ)

− J ′
0(ℓ)

(
wj

n − wj−2
n

2
− ℓ

)}

=
∑

j≤0

{
J2

(
wj

n − wj−2
n

2

)
+

1

2

(
J1

(
wj

n − wj−1
n

)
+ J1

(
wj−1

n − wj−2
n

))
− J0(ℓ)

− J ′
0(ℓ)

(
wj

n − wj−2
n

2
− ℓ

)}
− ω(n),

where now ω(n) denotes the term corresponding to j = hn−n+2 in the sum, which is infinitesimal
by (4.14) and (4.3).

Since w0
n =

un
n−ℓ

λn
= 0, w0

n − w−1
n =

un
n−un−1

n

λn
= u

(1)
1 , wj

n − wj−1
n = ℓ for j ≤ hn − n + 1, we deduce

that wn is a competitor for the minimum problem defining B
(
u

(1)
1 , ℓ

)
, cf. (4.21). Therefore

1

2
J1

(
un

n − un−1
n

λn

)
+

n−2∑

i=hn+1

si
n

=
1

2
J1(w

0
n − w−1

n ) +
∑

i≤0

{
J2

(
wi

n − wi−2
n

2

)
+

1

2

(
J1

(
wi

n − wi−1
n

)
+ J1

(
wi−1

n − wi−2
n

))

− J0(ℓ) − J ′
0(ℓ)

(
wi

n − wi−2
n

2
− ℓ

)}
− ω(n)

≥ B
(
u

(1)
1 , ℓ

)
− ω(n). (4.23)

In summary, from (4.17), (4.20) and (4.23) we obtain the desired liminf inequality.

Limsup inequality. By the definition of Hℓ
1(u) it is sufficient to consider the case u(t) = ℓt. We

construct a sequence (un) converging to u in L∞(0, 1) satisfying (2.2) and such that

lim sup
n→∞

Hℓ
1,n(un) ≤ B

(
u

(1)
0 , ℓ

)
+ B

(
u

(1)
1 , ℓ

)
− J0(ℓ) − J ′

0(ℓ)

(
u

(1)
0 + u

(1)
1

2
− ℓ

)
.

Let η > 0. Then, by the definition of B
(
u

(1)
0 , ℓ

)
, we can find v : N → R and N1 ∈ N such that

v0 = 0, v1 − v0 = u
(1)
0 , vi+1 − vi = ℓ for i ≥ N1 and

1

2
J1

(
v1 − v0

)
+
∑

i≥0

{
J2

(
vi+2 − vi

2

)
+

1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(ℓ)

− J ′
0(ℓ)

(
vi+2 − vi

2
− ℓ

)}

≤ B
(
u

(1)
0 , ℓ

)
+ η. (4.24)
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In the same way, by (4.21), there exist w : −N → R and N2 ∈ N with w0 = 0, w0 − w−1 = u
(1)
1 ,

wi − wi−1 = ℓ if i ≤ −N2, such that

1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)
+

1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(ℓ)

− J ′
0(ℓ)

(
wi − wi−2

2
− ℓ

)}

≤ B
(
u

(1)
1 , ℓ

)
+ η. (4.25)

We construct a recovery sequence for u by means of the functions v and w. Indeed, we set

ui
n =





λnvi if 0 ≤ i ≤ N1 + 2,

λnvN1+2 + ℓ+λn(w−N2−2−vN1+2)
n−N1−N2−4 (i − N1 − 2) if N1 + 2 ≤ i ≤ n − N2 − 2,

ℓ + λnwi−n if n − N2 − 2 ≤ i ≤ n.

We note that, for each n, un satisfies the boundary conditions (2.2). We write Hℓ
1,n(un) as in

(4.17) and thus only need to show that the first three terms on the right-hand side of (4.17) yield

B
(
u

(1)
0 , ℓ

)
and B

(
u

(1)
1 , ℓ

)
in order to prove that Hℓ

1,n(un) converges to Hℓ
1(u). To this end we

split the sum as follows

n−2∑

i=0

si
n =

N1∑

i=0

si
n +

n−N2−3∑

i=N1+1

si
n +

n−2∑

i=n−N2−2

si
n.

We observe that

1

2
J1

(
u1

n − u0
n

λn

)
+

N1∑

i=0

si
n =

1

2
J1

(
v1 − v0

)
+

N1∑

i=0

{
J2

(
vi+2 − vi

2

)
+

1

2

(
J1

(
vi+2 − vi+1

)

+ J1

(
vi+1 − vi

) )
− J0(ℓ) − J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)}
,

where we can replace the sum of the right-hand side with the same sum up to +∞ since vi+1−vi = ℓ

for i ≥ N1. Hence, by (4.24) we obtain the upper bound B
(
u

(1)
0 , ℓ

)
+ η. Similarly,

1

2
J1

(
un

n − un−1
n

λn

)
+

n−2∑

i=n−N2−2

si
n

=
1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)
+

1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(ℓ)

− J ′
0(ℓ)

(
wi − wi−2

2
− ℓ

)}
,

which is less or equal than B
(
u

(1)
1 , ℓ

)
+ η by construction, see (4.25). Thus it remains to prove

that
∑n−N2−3

i=N1+1 si
n is infinitesimal as n → ∞. For N1 + 2 ≤ i ≤ n − N2 − 3 we have

ui+1
n − ui

n

λn

=
ℓ + λn

(
w−N2−2 − vN1+2

)

λn(n − N1 − N2 − 4)
=

ℓ

1 − λn(N1 + N2 + 4)
+

w−N2−2 − vN1+2

n − N1 − N2 − 4
,
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which is of the order of ℓ + c
n

for some constant c. Hence by continuity

si
n ≃ J2

(
ℓ +

c

n

)
+ J1

(
ℓ +

c

n

)
− J0(ℓ) − J ′

0(ℓ)
c

n

for N1 + 2 ≤ i ≤ n − N2 − 4. Now, since J ′
0(ℓ) = J ′

1(ℓ) + J ′
2(ℓ) by (4.3) and [H3]

si
n ≃ J2

(
ℓ +

c

n

)
+ J1

(
ℓ +

c

n

)
− J1(ℓ) − J2(ℓ) − J ′

1(ℓ)
c

n
− J ′

2(ℓ)
c

n

= (J ′
2 (ξ2,n) − J ′

2(ℓ))
c

n
+ (J ′

1 (ξ1,n) − J ′
1(ℓ))

c

n

for some ξ1,n and ξ2,n between ℓ and ℓ + c
n
. Hence, by [H3], for a possibly different constant c,

n−N2−4∑

i=N1+2

si
n ≤

n−N2−4∑

i=N1+2

|si
n| ≤

n∑

i=1

c

n1+α
=

c

nα
→ 0 as n → ∞.

It remains to estimate the terms for i = N1 + 1 and i = n − N2 − 3. Note that

uN1+3
n − uN1+1

n

2λn

=
1

2

(
vN1+2 +

ℓ + λn(w−N2−2 − vN1+2)

λn(n − N1 − N2 − 4)

)
− 1

2
vN1+1

=
vN1+2 − vN1+1

2
+

ℓ

2 − 2λn(N1 + N2 + 4)
+

w−N2−2 − vN1+2

2(n − N1 − N2 − 4)

≃ ℓ

2
+

ℓ

2
+

c

2n
−→ ℓ.

Hence sN1+1
n converges to 0 as n → ∞ by (4.3). Similarly,

un−N2−1
n − un−N2−3

n

2λn

=
1

2

(
ℓ

λn

+ w−N2−1 − vN1+2 − ℓ + λn(w−N2−2 − vN1+2)

λn(n − N1 − N2 − 4)
(n − N2 − 3 − N1 − 2)

)

−→ ℓ

since n−N2−3−N1−2
λn(n−N1−N2−4) is of order 1

λn
−1 and w−N2−1−w−N2−2 = ℓ. Hence, again by (4.3), sn−N2−3

n

converges to 0 as n tends to infinity, which proves the convergence of the energy. Moreover, since
the discrete derivative of un converges to ℓ, we have in particular that (un) converges to u(t) = ℓt
in L∞(0, 1).

Next we discuss a special case: let ℓ = γ and θ = γ. Then it is immediate to notice that (γi, 0) is
a minimiser, hence the boundary layer energy takes the simple explicit form

B (γ, γ) =
1

2
J1(γ). (4.26)

The following corollary is then a consequence of Theorem 4.3.

Corollary 4.4. Suppose that hypotheses [H1] − [H5] hold and let ℓ = γ and u
(1)
0 = u

(1)
1 = γ.

The sequence of functionals Hγ
1,n Γ-converges with respect to the L∞-topology to the functional

Hγ
1 given by

Hγ
1 (u) =

{
J1(γ) − J0(γ) = −J2(γ) if u(t) = γt,

+∞ else

on W 1,∞(0, 1).
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Remark 4.5. Notice that if the Dirichlet boundary conditions for the second and last but one
atoms are not prescribed, then the limit functional is 2B(γ) − J0(γ) [BC07, Theorem 4.4], see
also (4.28) for a definition of B(γ). By Proposition 5.4 below we know that B(γ) < 1

2J1(γ) in
some relevant examples, more precisely for the classical Lennard-Jones potentials as defined in
(4.4). Hence, at least for these examples, prescribing the second and last but one atoms leads to
a different limiting functional even for ℓ = γ.

Remark 4.6. Proving directly the assertion of Corollary 4.4 shows that assumption [H5] is not
needed.

4.2 The case ℓ > γ

According to the compactness result in Proposition 4.2, we have fracture in the case ℓ > γ. To
this end we define boundary layer energies due to the presence of a crack at the boundary or in the
interior of the chain. When a fracture occurs at a boundary point, the corresponding boundary
layer energy is given, for θ > 0, by

Bb (θ) = inf
k∈N

min

{
1

2
J1

(
v̂1 − v̂0

)
+

k−1∑

i=0

{
J2

(
v̂i+2 − v̂i

2

)

+
1

2

(
J1

(
v̂i+2 − v̂i+1

)
+ J1

(
v̂i+1 − v̂i

))
− J0(γ)

}
:

v̂ : N → R, v̂k+1 = 0, v̂k+1 − v̂k = −v̂k = θ

}
.

(4.27)

Remark 4.7. We point out that the boundary layer energy Bb

(
θ
)

yields the optimal position, at
a microscopic scale, of a fracture that occurs at the boundary at a macroscopic scale. See the end
of Section 5 for examples about the optimal position of microscopic cracks. In this case we use
again (3.3) and that J0 has a unique minimum point γ to deduce that the terms in the sums are
non-negative.

Next we recall the definition of B(γ), which is the boundary layer energy of a free boundary,
occurring in the case of an internal fracture, and was introduced in [BC07].

B(γ) = inf
N∈N

min

{
1

2
J1

(
ũ1 − ũ0

)
+
∑

i≥0

{
J2

(
ũi+2 − ũi

2

)

+
1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))
− J0(γ)

}
:

ũ : N → R, ũ0 = 0, ũi+1 − ũi = γ if i ≥ N

}
.

(4.28)

In the case of an internal fracture, the elastic boundary layer energy at the endpoints due to the
prescribed boundary conditions is similar to the one defined in the elastic case ℓ ≤ γ, see (4.13).
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More precisely, we define, for θ > 0,

B (θ, γ) = inf
N∈N

min

{
1

2
J1

(
v1 − v0

)
+
∑

i≥0

{
J2

(
vi+2 − vi

2

)

+
1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(γ)

}
:

v : N → R, v0 = 0, v1 − v0 = v1 = θ, vi+1 − vi = γ if i ≥ N

}
. (4.29)

Theorem 4.8. Suppose that hypotheses [H1] − [H4] hold and let ℓ > γ and u
(1)
0 , u

(1)
1 > 0. Then

Hℓ
1,n Γ-converges with respect to the L1-topology to the functional Hℓ

1 defined by

Hℓ
1(u) =






B
(
u

(1)
0 , γ

)
(1 − #(Su ∩ {0}))

+B
(
u

(1)
1 , γ

)
(1 − #(Su ∩ {1})) − J0(γ) + BIJ#(Su ∩ (0, 1))

+BBJ

(
u

(1)
0

)
#(Su ∩ {0}) + BBJ

(
u

(1)
1

)
#(Su ∩ {1}) if u ∈ SBV ℓ

c (0, 1),

+∞ else,

on L1(0, 1), where, for θ > 0,

BBJ (θ) =
1

2
J1 (θ) + Bb (θ) + B(γ) − 2J0(γ), (4.30)

is the boundary layer energy due to a jump at the boundary, while

BIJ = 2B(γ) − 2J0(γ) (4.31)

is the boundary layer energy due to a jump at an internal point of (0, 1).

In Figures 4 and 5 we give an intuitive picture of the location of occurring boundary layers in the
case of a crack in 0 and in the interior, respectively.

u(t)

t
10

B
“

u
(1)
1 , γ

”

B(γ) − J0(γ)

ℓ

1
2J1

“
u
(1)
0

”
+ Bb

“
u
(1)
0

”
− J0(γ)

Figure 4: An intuitive picture of the location of boundary layers for a crack in 0.
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u(t)

t
10

B
“

u
(1)
1 , γ

”

B
“

u
(1)
0 , γ

”

B(γ) − J0(γ)

B(γ) − J0(γ)

ℓ

Figure 5: An intuitive picture of the location of boundary layers for a crack in the interior.

Proof. Liminf inequality. Without loss of generality we can assume that there is only one jump
point, i.e., #Su = 1. In the following we consider the case of having a jump at the boundary or
in the interior separately. Since the jumps at 0 and 1, respectively, are similar due to symmetry,
we only treat the boundary jump at 0.

Jump at 0. Assume that Su = {0} and let (un) be a sequence such that supn Hℓ
1,n(un) < +∞. By

Proposition 4.2 we know that un → u in L1(0, 1) with

u(t) =

{
0 if t = 0,

γt + (ℓ − γ) if t ∈ (0, 1].
(4.32)

Moreover, there exists a finite set S such that un → u in W 1,∞
loc ((0, 1) \ S). We prove that

lim inf
n

Hℓ
1,n(un) ≥ 1

2
J1

(
u

(1)
0

)
+ Bb

(
u

(1)
0

)
+ B(γ) − 2J0(γ) + B

(
u

(1)
1 , γ

)
− J0(γ). (4.33)

Let k1
n ∈ N with λnk1

n → 3
4 be such that

lim
n→∞

u
k1

n+2
n − u

k1
n+1

n

λn

= γ, (4.34)

note that without loss of generality we may assume 3
4 /∈ S. We start from (4.8) and decompose

the sum into a sum from 0 to k1
n and a sum from k1

n + 1 to n− 2. In the following we adapt parts
of the proof of Theorem 4.3; note that σi

n defined in (4.9) is the same as si
n defined in (4.18) for

ℓ = γ. Instead of (4.22) we set

wj
n =






un+j
n

λn
− ℓ

λn
if k1

n − n + 1 ≤ j ≤ 0,

γ(j − (k1
n − n + 1)) − ℓ

λn
+ u

k1
n+1

n

λn
if j ≤ k1

n − n + 1.

and then can prove analogously to (4.23) that

1

2
J1

(
un

n − un−1
n

λn

)
+

n−2∑

i=k1
n+1

σi
n ≥ B

(
u

(1)
1 , γ

)
− ω(n) (4.35)

with an appropriate function ω converging to 0 as n → ∞. Therefore, in order to obtain (4.33)
we focus now on the sum of the terms σi

n for i ranging between 0 and k1
n.
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Since, by assumption, un → u and Su = {0}, we have that there exists hn ∈ N with λnhn → 0
such that

lim
n→∞

uhn+1
n − uhn

n

λn

= +∞. (4.36)

Indeed, since un converges to u almost everywhere, for every ε > 0 there exists some qn ∈ N such
that λnqn → 0 and uqn

n = un(λnqn) := an ≥ ℓ − γ + γλnqn − ε, for n large enough. We set
rn := γλnqn − ε. Therefore, we have for n large enough

uqn
n − u1

n

λn

=
an

λn

− u
(1)
0 ≥ ℓ − γ + rn

λn

− u
(1)
0 → +∞.

Observe that there are two cases: either the discrete slope of un is constant in [λn, λnqn] or not.
If such a slope is constant, then we have that for every j = 1, . . . , qn − 1

uj+1
n − uj

n

λn

=
an − λnu

(1)
0

λnqn

→ +∞.

Therefore, the claim (4.36) follows choosing hn = qn − 1 for example, or choosing hn = j for some
j ∈ {1, . . . , qn − 1}.
If the slope is not constant, then there exists ĥ ∈ {1, . . . , qn − 1} such that

u
bh+1
n − u

bh
n

λn

≥ an − λnu
(1)
0

λnqn

→ +∞,

and (4.36) follows choosing hn = ĥ.

We then split the sum, by isolating the terms i = hn − 1 and i = hn which contain terms as in
(4.36):

k1
n∑

i=0

σi
n =

hn−2∑

i=0

σi
n + σhn−1

n + σhn

n +

k1
n∑

i=hn+1

σi
n. (4.37)

According to (4.36), since J1(+∞) = J2(+∞) = 0, we have that some terms in σhn−1
n and in σhn

n

are infinitesimal. We collect them in the function r1(n) defined by

r1(n) = J2

(
uhn+1

n − uhn−1
n

2λn

)
+ J2

(
uhn+2

n − uhn
n

2λn

)
+ J1

(
uhn+1

n − uhn
n

λn

)

and converging to 0 as n → ∞. Hence, from (4.37) we have

k1
n∑

i=0

σi
n =

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=0

σi
n +

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n − 2J0(γ) + r1(n).

(4.38)
We show that

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=0

σi
n ≥ Bb

(
u

(1)
0

)
, (4.39)

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n ≥ B(γ) + r2(n), (4.40)
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with r2(n) → 0 as n → ∞, see below for details. Indeed, (4.39)–(4.40) together with (4.35) and
(4.38) then give (4.33).

Let us start by proving the inequality in (4.39). We observe that (4.27) can be phrased equivalently
for test functions defined on −N, in the same way as (4.21) was derived from (4.13). We define
for j = −hn + 2, . . . , 0

ŵj
n =

uj+hn
n

λn

.

Then

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=0

σi
n =

1

2
J1

(
ŵ0

n − ŵ−1
n

)
+

0∑

j=−hn+2

{
J2

(
ŵj

n − ŵj−2
n

2

)

+
1

2

(
J1(ŵ

j
n − ŵj−1

n ) + J1(ŵ
j−1
n − ŵj−2

n )
)
− J0(γ)

}

and, moreover, ŵ−hn
n = 0, ŵ1−hn

n − ŵ−hn
n = u

(1)
0 , which means that ŵn is an admissible test for

Bb

(
u

(1)
0

)
and thus (4.39) holds true.

It remains to prove (4.40). We define, for j ≥ 0

ũj
n =





uhn+1+j
n

λn

− uhn+1
n

λn

if j ≤ k1
n − hn + 1,

γ
(
j − k1

n + hn − 1
)

+
u

k1
n+2

n

λn

− uhn+1
n

λn

if j ≥ k1
n − hn + 1.

Therefore, we find

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n =

1

2
J1

(
ũ1

n − ũ0
n

)
+
∑

j≥0

{
J2

(
ũj+2

n − ũj
n

2

)

+
1

2

(
J1

(
ũj+2

n − ũj+1
n

)
+ J1

(
ũj+1

n − ũj
n

))
− J0(γ)

}
− r2(n),

where r2(n) corresponds to the term j = k1
n − hn, and we can consider an infinite sum since the

terms for j ≥ k1
n − hn + 1 are identically 0. We observe that

r2(n) = J2

(
1

2

(
γ +

u
k1

n+2
n − u

k1
n+1

n

λn

))
+

1

2

(
J1 (γ) + J1

(
u

k1
n+2

n − u
k1

n+1
n

λn

))
− J0(γ) → 0

as n → ∞, since, by (4.34), u
k1

n+2
n −u

k1
n+1

n

λn
→ γ, and J2(γ) + J1(γ) = J0(γ) by (4.3). Note that

ũ0
n = 0, ũj+1

n − ũj
n = γ for all j ≥ k1

n − hn + 1. According to the definition of B(γ) recalled in
(4.28), we thus obtain (4.40), which concludes the proof of (4.33).

Internal jump. Assume that Su = {t̄}, where t̄ ∈ (0, 1). Without loss of generality we consider t̄ =
1
2 . Let (un) be a sequence converging to u such that supn Hℓ

1,n(un) < +∞. Then Proposition 4.2
implies that un → u in L1(0, 1) with

u(t) =

{
γt if 0 ≤ t ≤ 1

2 ,

(ℓ − γ) + γt if 1
2 < t ≤ 1.

(4.41)
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Moreover, there exists a finite set S such that un → u in W 1,∞
loc ((0, 1) \ S). We prove

lim inf
n

Hℓ
1,n(un) ≥ B

(
u

(1)
0 , γ

)
+ B

(
u

(1)
1 , γ

)
− J0(γ) + 2B(γ) − 2J0(γ). (4.42)

Without loss of generality we may assume 1
4 , 3

4 /∈ S. Let k0
n, k1

n, hn be integers with λnk0
n → 1

4 ,
λnk1

n → 3
4 , λnhn ≤ 1

2 and λnhn → 1
2 such that

u
k0

n+2
n − u

k0
n+1

n

λn

→ γ,
u

k1
n+2

n − u
k1

n+1
n

λn

→ γ,
uhn+1

n − uhn
n

λn

→ +∞ as n → ∞. (4.43)

By using again the definition of σi
n, i = 0, . . . , n − 2, given in (4.9), we decompose the energy

Hℓ
1,n(un) as follows to extract the occurring boundary layer energies.

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

k0
n∑

i=0

σi
n +

hn−2∑

i=k0
n+1

σi
n + σhn−1

n + σhn

n +

k1
n∑

i=hn+1

σi
n +

n−2∑

i=k1
n+1

σi
n

+
1

2
J1

(
un

n − un−1
n

λn

)
− J0(γ).

(4.44)

As in (4.35) we have

1

2
J1

(
un

n − un−1
n

λn

)
+

n−2∑

i=k1
n+1

σi
n ≥ B

(
u

(1)
1 , γ

)
− ω(n). (4.45)

In a similar way (see also (4.20)) we get

1

2
J1

(
u1

n − u0
n

λn

)
+

k0
n∑

i=0

σi
n ≥ B

(
u

(1)
0 , γ

)
− ω(n) (4.46)

for some (in general different) functions ω(n), see above, converging to 0 as n → ∞. Therefore,
in order to obtain (4.42), we focus on

Σ =

hn−2∑

i=k0
n+1

σi
n + σhn−1

n + σhn

n +

k1
n∑

i=hn+1

σi
n.

According to the third limit in (4.43), since J1(+∞) = J2(+∞) = 0, we deduce (as in the case of
boundary jumps) that some terms defining σhn−1

n and σhn
n are infinitesimal. Therefore, rearranging

the terms, we can rewrite Σ as follows:

Σ =
1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=k0
n+1

σi
n +

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n − 2J0(γ) + ω(n),

(4.47)
where

ω(n) = J2

(
uhn+1

n − uhn−1
n

2λn

)
+

1

2
J1

(
uhn+1

n − uhn
n

λn

)
+ J2

(
uhn+2

n − uhn
n

2λn

)
+

1

2
J1

(
uhn+1

n − uhn
n

λn

)
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converges to 0 as n → ∞. It remains to prove that

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=k0
n+1

σi
n ≥ B(γ) + r1(n), (4.48)

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n ≥ B(γ) + r2(n), (4.49)

with ri(n) → 0, for i = 1, 2, as n → ∞. Indeed, (4.48)–(4.49) together with (4.44), (4.47) will
then give (4.42). We start by proving (4.48). We define ũn : N → R as

ũj
n =






uhn
n − uhn−j

n

λn

if 0 ≤ j ≤ hn − k0
n − 1,

γ(j − hn + k0
n + 1) +

uhn
n − u

k0
n+1

n

λn

if j ≥ hn − k0
n − 1.

We observe that ũ0
n = 0, ũj+1

n − ũj
n = γ for all j ≥ hn−k0

n−1. The idea is to rewrite the left-hand
side in (4.48) as an infinite sum involving ũj

n as follows

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=k0
n+1

σi
n =

1

2
J1

(
ũ1

n − ũ0
n

)
+
∑

j≥0

{
J2

(
ũj+2

n − ũj
n

2

)

+
1

2

(
J1

(
ũj+2

n − ũj+1
n

)
+ J1

(
ũj+1

n − ũj
n

))
− J0(γ)

}
− r1(n),

where r1(n) is an infinitesimal term corresponding to j = hn − k0
n − 2; we can consider the sum as

an infinite sum since the terms for j ≥ hn − k0
n − 1 are identically 0. According to the definition

of B(γ) given by (4.28), we thus obtain (4.48).

We pass now to (4.49). We define another test function ũn : N → R, again denoted by ũn, such
that

ũj
n =





uj+hn+1
n − uhn+1

n

λn

if 0 ≤ j ≤ k1
n − hn + 1,

γ(j + hn − k1
n − 1) +

u
k1

n+2
n − uhn+1

n

λn

if j ≥ k1
n − hn + 1.

Thus, ũ0
n = 0 and ũj+1

n − ũj
n = γ for j ≥ k1

n − hn + 1. We can rewrite the left-hand side of (4.49)
in terms of an infinite sum involving ũj

n:

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n =

1

2
J1

(
ũ1

n − ũ0
n

)
+
∑

j≥0

{
J2

(
ũj+2

n − ũj
n

2

)

+
1

2

(
J1

(
ũj+2

n − ũj+1
n

)
+ J1

(
ũj+1

n − ũj
n

))
− J0(γ)

}
− r2(n),

where r2(n) corresponds to the term j = k1
n − hn and converges to 0 as n → ∞ by (4.43) and by

(4.3). Thus (4.49) follows, and this concludes the proof of the liminf inequality.

Limsup inequality. As before, we distinguish between the different situations.
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Jump at 0. We assume that Su = {0} where u is given by (4.32). We need to prove that there
exists a sequence (un) converging to u in L1(0, 1), satisfying (2.2) and such that

lim sup
n

Hℓ
1,n(un) ≤ 1

2
J1

(
u

(1)
0

)
+ Bb

(
u

(1)
0

)
+ B(γ) − 2J0(γ) + B

(
u

(1)
1 , γ

)
− J0(γ). (4.50)

Let us fix η > 0. Then, by the definition of B(γ) (see (4.28)), we can find ũ : N → R and Ñ ∈ N

such that ũ0 = 0, ũi+1 − ũi = γ if i ≥ Ñ and

1

2
J1

(
ũ1 − ũ0

)
+
∑

i≥0

{
J2

(
ũi+2 − ũi

2

)
+

1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))
− J0(γ)

}

≤ B(γ) + η. (4.51)

In the same way, by the definition of B
(
u

(1)
1 , γ

)
given in (4.29) and the observation that this can

be phrased equivalently for test functions defined on −N, there exist w : −N → R and N2 ∈ N

with w0 = 0, w0 − w−1 = −w−1 = u
(1)
1 , wi − wi−1 = γ if i ≤ −N2, such that

1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)
+

1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(γ)

}

≤ B
(
u

(1)
1 , γ

)
+ η. (4.52)

Analogously, by the definition of Bb (θ) given in (4.27), there exist ŵ : −N → R and k̂0 ∈ N such

that ŵ−bk0−1 = 0, ŵ−bk0 − ŵ−bk0−1 = ŵ−bk0 = u
(1)
0 and

1

2
J1

(
ŵ0 − ŵ−1

)
+

0∑

i=−bk0+1

{
J2

(
ŵi − ŵi−2

2

)
+

1

2

(
J1

(
ŵi − ŵi−1

)
+ J1

(
ŵi−1 − ŵi−2

))
− J0(γ)

}

≤ Bb

(
u

(1)
0

)
+ η. (4.53)

Let {k1
n} be a sequence of integers with λnk1

n → 3
4 as n → ∞ such that

k1
n − (k̂0 + 2) ≥ Ñ and k1

n − n + 2 ≤ −N2 for all n ∈ N. (4.54)

We construct the sequence (un) by means of the functions ũ, w and ŵ. Indeed, we define

ui
n =





λnŵi−bk0−1 if 0 ≤ i ≤ k̂0 + 1,

ℓ + λn

(
wk1

n+1−n + ũi−(bk0+2) − ũk1
n+1−(bk0+2)

)
if k̂0 + 2 ≤ i ≤ k1

n + 1,

ℓ + λnwi−n if k1
n + 1 ≤ i ≤ n.

Note that the sequence (un) satisfies the boundary conditions

u0
n = λnŵ−bk0−1 = 0, un

n = ℓ + λnw0 = ℓ,

u1
n = λnŵ−bk0 = λnu

(1)
0 , un

n − un−1
n = λn(w0 − w−1) = λnu

(1)
1 ,

and satisfies ui+1
n − ui

n = γ for Ñ + k̂0 + 2 ≤ i ≤ k1
n and for k1

n + 1 ≤ i ≤ n− 1−N2 by definition.
Moreover we have that

u
bk0+2
n − u

bk0+1
n → ℓ − γ. (4.55)
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Indeed, by using the facts that ũi+1 − ũi = γ if i ≥ Ñ and wi − wi−1 = γ if i ≤ −N2, together
with (4.54) we obtain

u
bk0+2
n − u

bk0+1
n = ℓ + λn

(
wk1

n+1−n + (ũ0 − ũk1
n+1−(bk0+2)) − ŵ0

)

= ℓ + λn

(
(wk1

n+1−n − w−N2) + w−N2 + (ũ
eN − ũk1

n+1−(bk0+2)) − ũ
eN − ŵ0

)

= ℓ + λn

(
γ(k1

n + 1 − n + N2) + w−N2 − γ(k1
n + 1 − (k̂0 + 2) − Ñ) − ũ

eN − ŵ0
)

= ℓ − γnλn + λn

(
γ(N2 + (k̂0 + 2) + Ñ) + w−N2 − ũ

eN − ŵ0
)
−→ ℓ − γ.

Hence un → u in L1(0, 1), where u is defined by (4.32), as n → ∞.

To prove (4.50), we rewrite Hℓ
1,n(un) as

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

bk0−1∑

i=0

σi
n + σ

bk0
n + σ

bk0+1
n +

k1
n−1∑

i=bk0+2

σi
n + σ

k1
n

n +

n−2∑

i=k1
n+1

σi
n

+
1

2
J1

(
un

n − un−1
n

λn

)
− J0(γ),

(4.56)

where σi
n is defined in (4.9), and we use the definition of (un) above.

We start with the sum from i = 0 to k̂0 − 1, and involve ŵj by introducing the new index
j = i − k̂0 + 1 and summing then from j = −k̂0 + 1 up to 0, namely,

bk0−1∑

i=0

σi
n =

0∑

j=−bk0+1

{
J2

(
ŵj − ŵj−2

2

)
+

1

2

(
J1

(
ŵj − ŵj−1

)
+ J1

(
ŵj−1 − ŵj−2

))
−J0(γ)

}
. (4.57)

We continue with the term σ
bk0
n by observing that

σ
bk0
n =

1

2
J1

(
ŵ0 − ŵ−1

)
− J0(γ) + r̂(n), (4.58)

where r̂(n) is defined by

r̂(n) =J2

(
ℓ

2λn

+
1

2

(
wk1

n+1−n − ũk1
n+1−(bk0+2) − ŵ−1

))

+
1

2
J1

(
ℓ

λn

+ wk1
n+1−n − ũk1

n+1−(bk0+2) − ŵ0

)

and converges to 0 as n → ∞, since J2(+∞) = J1(+∞) = 0. Similarly,

σ
bk0+1
n =

1

2
J1

(
ũ1 − ũ0

)
− J0(γ) + r(n), (4.59)

where

r(n) =J2

(
ℓ

2λn

+
1

2

(
wk1

n+1−n + ũ1 − ũk1
n+1−(bk0+2) − ŵ0

))

+
1

2
J1

(
ℓ

λn

+ wk1
n+1−n − ũk1

n+1−(bk0+2) − ŵ0

)
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converges to 0 as n → ∞.

The sum from i = k̂0 + 2 to k1
n − 1 can be rewritten in terms of ũ by introducing the new index

j = i− (k̂0 +2) ranging between 0 and k1
n − 1− (k̂0 +2). Actually, we can pass to an infinite sum,

since the term for j ≥ Ñ gives zero contribution by (4.3) and, by (4.54), k1
n − (k̂0 + 2) ≥ Ñ . Thus

we have

k1
n−1∑

i=bk0+2

σi
n =

∑

j≥0

{
J2

(
ũj+2 − ũj

2

)
+

1

2

(
J1

(
ũj+2 − ũj+1

)
+ J1

(
ũj+1 − ũj

))
− J0(γ)

}
. (4.60)

Next, we observe that

σ
k1

n
n = 0. (4.61)

Indeed, by (4.54),

σ
k1

n
n =J2

(
(wk1

n+2−n − wk1
n+1−n) + (ũk1

n+1−(bk0+2) − ũk1
n−(bk0+2))

2

)
+ J1(γ) − J0(γ)

=J2(γ) + J1(γ) − J0(γ) = 0.

It remains to consider the sum from i = k1
n + 1 up to n − 2, which involves w by introducing the

new index j = i−n+2. Moreover, we can pass to the infinite sum for j ≤ 0, since k1
n−n+2 ≤ −N2

and the terms in the sum are 0 for j ≤ −N2. Therefore, we have

n−2∑

i=k1
n+1

σi
n =

∑

j≤0

{
J2

(
wj − wj−2

2

)
+

1

2

(
J1

(
wj − wj−1

)
+ J1

(
wj−1 − wj−2

))
− J0(γ)

}
. (4.62)

In conclusion, by (4.56), (4.57)–(4.62) together with (4.51)–(4.53), we obtain

Hℓ
1,n(un) =

1

2
J1

(
u

(1)
0

)
− 3J0(γ) + r̂(n) + r(n) +

1

2
J1

(
ŵ0 − ŵ−1

)

+

0∑

i=−bk0+1

{
J2

(
ŵi − ŵi−2

2

)
+

1

2

(
J1

(
ŵi − ŵi−1

)
+ J1

(
ŵi−1 − ŵi−2

))
− J0(γ)

}

+
1

2
J1

(
ũ1 − ũ0

)
+
∑

i≥0

{
J2

(
ũi+2 − ũi

2

)
+

1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))
− J0(γ)

}

+
1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)
+

1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(γ)

}

≤ 1

2
J1

(
u

(1)
0

)
− 3J0(γ) + Bb

(
u

(1)
0

)
+ B(γ) + B

(
u

(1)
1 , γ

)
+ 3η + r̂(n) + r(n).

Hence, (4.50) follows.

Internal jump. Without loss of generality we assume that Su =
{

1
2

}
where u is given by (4.41).

We have to prove that there exists a sequence (un) converging to u in L1(0, 1), satisfying (2.2)
and such that

lim sup
n

Hℓ
1,n(un) ≤ B

(
u

(1)
0 , γ

)
+ B

(
u

(1)
1 , γ

)
− J0(γ) + 2B(γ) − 2J0(γ). (4.63)
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Let us fix η > 0. By the definition of B
(
u

(1)
0 , γ

)
we can find v : N → R and N1 ∈ N with v0 = 0,

v1 − v0 = v1 = u
(1)
0 , vi+1 − vi = γ if i ≥ N1, such that

1

2
J1(v

1 − v0) +
∑

i≥0

{
J2

(
vi+2 − vi

2

)
+

1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(γ)

}

≤ B
(
u

(1)
0 , γ

)
+ η. (4.64)

Moreover, by the definition of B(γ) there exist ũ : N → R and Ñ ∈ N satisfying (4.51). Finally,

by the definition of B
(
u

(1)
1 , γ

)
there exist w : −N → R and N2 ∈ N as in (4.52).

Let k0
n, k1

n, hn be sequences of integers with λnk0
n → 1

4 , λnk1
n → 3

4 , λnhn → 1
2 as n → ∞, such

that

k0
n ≥ N1 + 1 and k1

n − n + 2 ≤ −N2 (4.65)

Ñ ≤ min{hn − k0
n − 1, k1

n − hn − 1} for all n ∈ N. (4.66)

We construct now the sequence (un) by means of the functions v, ũ and w:

ui
n =





λnvi if 0 ≤ i ≤ k0
n,

λn

(
vk0

n − ũhn−i + ũhn−k0
n

)
if k0

n ≤ i ≤ hn,

ℓ + λn

(
wk1

n+1−n + ũi−(hn+1) − ũk1
n−hn

)
if hn + 1 ≤ i ≤ k1

n + 1,

ℓ + λnwi−n if k1
n + 1 ≤ i ≤ n.

We observe that the sequence (un) satisfies the boundary conditions

u0
n = λnv0 = 0, u1

n = λnv1 = λnu
(1)
0 , un

n = ℓ + λnw0 = ℓ, un
n − un−1

n = λn(w0 − w−1) = λnu
(1)
1 ,

moreover, ui+1
n −ui

n = γ for N1 ≤ i ≤ hn − Ñ and for Ñ +hn +1 ≤ i ≤ n−N2. We also have that

uhn+1
n − uhn

n −→ ℓ − γ. (4.67)

Indeed, by using the facts that vi+1−vi = γ for i ≥ N1, ũi+1− ũi = γ for i ≥ Ñ and wi−wi−1 = γ
for i ≤ −N2, we have:

uhn+1
n − uhn

n = ℓ + λn

(
wk1

n+1−n + ũ0 − ũk1
n−hn − vk0

n + ũ0 − ũhn−k0
n

)

= ℓ + 2λnũ0 − λn

(
γ(k0

n − N1 + k1
n − hn − Ñ) + vN1 + ũ

eN
)

+ λn

(
γ(k1

n − n + 1 + N2 + k0
n − hn + Ñ) + w−N2 − ũ

eN
)

= ℓ + 2λnũ0 − γnλn + λn

(
γ(N1 + 2Ñ + N2 + 1) − vN1 − 2ũ

eN + w−N2

)
.

Therefore (4.67) holds. In conclusion, un → u in L1(0, 1) as n → ∞. We compute now Hℓ
1,n(un),

which turns out to be useful to write as follows.

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

k0
n−2∑

i=0

σi
n + σ

k0
n−1

n +

hn−2∑

i=k0
n

σi
n + σhn−1

n + σhn

n +

k1
n−1∑

i=hn+1

σi
n

+ σ
k1

n
n +

n−2∑

i=k1
n+1

σi
n +

1

2
J1

(
un

n − un−1
n

λn

)
− J0(γ),

(4.68)
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where σi
n is defined in (4.9). We observe that

σ
k0

n−1
n = 0 (4.69)

since, by (4.65),

J2

(
vk0

n − ũhn−k0
n−1 + ũhn−k0

n − vk0
n−1

2

)
+

1

2

(
J1(ũ

hn−k0
n − ũhn−k0

n−1) + J1(v
k0

n − vk0
n−1)

)

= J2(γ) + J1(γ)

which equals J0(γ) by (4.3). Similarly,

σ
k1

n
n = 0 (4.70)

because, by (4.66),

J2

(
wk1

n+2−n − wk1
n+1−n − ũk1

n−(hn+1) + ũk1
n−hn

2

)
+

1

2
J1(w

k1
n+2−n − wk1

n+1−n)

+
1

2
J1(ũ

k1
n−hn − ũk1

n−(hn+1))

= J2(γ) + J1(γ) = J0(γ).

By (4.68)–(4.70), (4.64), (4.51) and (4.52), and computations analogous as in the case of the
boundary jumps, we finally get

lim sup
n

Hℓ
1,n(un) ≤ B

(
u

(1)
0 , γ

)
+ B

(
u

(1)
1 , γ

)
− 3J0(γ) + 2B(γ) + 4η,

which yields (4.63).

5 Properties of boundary layer energies and location of

fracture

In the previous sections we derived the energy contributions due to the boundary layers which
occur in several different cases, see Theorems 4.3 and 4.8. Here we derive some properties of the
boundary layer energies and look for the location of fracture, at which we proceed in the spirit of
[BC07, Theorem 5.2].

First of all we establish some relations among the three different types of boundary layer energies
that we used, namely B(γ) as recalled in (4.28), B

(
θ, γ
)

as defined in (4.29) and Bb

(
θ
)

as defined
in (4.27).

Lemma 5.1. Let [H1] − [H4] be satisfied. Then the following estimates hold true:

(1) 1
2J1(δ1) ≤ B(γ) ≤ 1

2J1(γ);

(2) B(γ) = Bb(γ);

(3) B(γ, γ) = 1
2J1(γ);

28



(4) B (θ, γ) ≥ 1
2J1 (θ) for all θ > 0;

(5) B(γ) = infθ>0 B (θ, γ);

(6) Bb (θ) ≥ 1
2J1(δ1) for all θ > 0;

(7) Bb (δ1) = 1
2J1(δ1).

Proof. (1) The infinite sum in the definition (4.28) of B(γ) is non-negative since γ is the minimum
point of J0. Hence

B(γ) ≥ 1

2
min J1 =

1

2
J1(δ1).

On the other hand, since the function ui = γi is a competitor in the minimum problem defining
B(γ), we have that

B(γ) ≤ 1

2
J1(γ) +

∑

i≥0

{J2(γ) + J1(γ) − J0(γ)} =
1

2
J1(γ),

where we again apply (4.3).

(2) For θ = γ, the definition of Bb(θ) in (4.27) reduces to that of B(γ) in (4.28).

(3) See the derivation of (4.26).

(4) It is an immediate consequence of the definition of the boundary layer energy in (4.29), since
the infinite sum is non-negative because γ is the minimum point of J0.

(5) This follows directly comparing the definitions (4.28) and (4.29).

(6) Here we again apply that γ is the minimum point of J0, which makes the terms in the sum
defining the boundary layer energy (4.27) non-negative. Moreover recall that δ1 is the minimum
point of J1.

(7) From (4.27) we notice that (v̂i, k) = (δ1(i − 1), 0) is a competitor which gives the reverse
inequality in (6), therefore we have equality.

Remark 5.2. From the proof of Lemma 5.1 we deduce that, if θ = δ1, then Bb(δ1) = 1
2J1(δ1) is

attained for k = 0.

Next we present our result which asserts the location of fracture. More precisely we compare the
costs for fracture in the interior and at the boundary in the continuum setting. At the end of this
paper we discuss this issue by taking into account also an intermediate scale.

Theorem 5.3. Suppose that hypotheses [H1] − [H4] hold. Let ℓ > γ. For u
(1)
0 = u

(1)
1 = γ, the

fracture can appear indifferently inside or at the boundary of [0, 1]. If instead u
(1)
0 or u

(1)
1 is equal

to δ1 and δ1 6= γ, then a boundary jump is more convenient than an internal jump, in terms of
the energy.

Proof. Since ℓ > γ, we obtain by Theorem 4.8, in the case of bounded energy, that

Hℓ
1(u) =B

(
u

(1)
0 , γ

)
+ B

(
u

(1)
1 , γ

)
− J0(γ) + # (Su ∩ {0})

(
BBJ

(
u

(1)
0

)
− B

(
u

(1)
0 , γ

))

+ #(Su ∩ {1})
(
BBJ

(
u

(1)
1

)
− B

(
u

(1)
1 , γ

))
+ #(Su ∩ (0, 1))BIJ ,
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where BBJ(θ) and BIJ are defined in (4.30) and (4.31), respectively.

Notice that if u
(1)
0 or u

(1)
1 is equal to γ, then by Lemma 5.1 (2) and (3) we obtain

BBJ (γ) − B (γ, γ) =
1

2
J1 (γ) + Bb (γ) + B(γ) − 2J0(γ) − B (γ, γ)

= 2B(γ) − 2J0(γ) = BIJ .

Hence a jump in the interior of [0, 1] costs as much energy as a jump at the boundary.

Now assume that u
(1)
0 or u

(1)
1 is equal to δ1. We show that BBJ (δ1) − B (δ1, γ) < BIJ . This is

equivalent to proving

1

2
J1

(
δ1

)
+ Bb

(
δ1

)
− B (δ1, γ) < B(γ),

which follows by Lemma 5.1 (1), (4) and (7) and the observation that the first inequality in (1)
of Lemma 5.1 is strict if δ1 6= γ.

In the remaining part of this section we show properties of the boundary layer energies in the case
of a certain class of interaction potentials, namely the classical Lennard-Jones potentials J1 and
J2 defined in Remark 4.1.

First we show that the second inequality in (1) of Lemma 5.1 is strict. This observation is applied
in Remark 4.5, where we discuss that the first-order Γ-limit for ℓ = γ depends on whether the
second and last but one atoms of the chain are prescribed.

Proposition 5.4. Let J1 and J2 be Lennard-Jones potentials as defined in (4.4). Then

B(γ) <
1

2
J1(γ). (5.1)

Moreover, there exists an a > 1 such that B(aγ, γ) < B(γ, γ).

Proof. Due to property (5) in Lemma 5.1, it is sufficient to show that there exists θ > 0 such that
B (θ, γ) < 1

2J1(γ). We set θ = aγ, a > 0. Therefore our claim reduces to proving the existence of
a > 0 such that B(aγ, γ) < 1

2J1(γ).

Our strategy consists in exhibiting a competitor for the minimum problem defining B(aγ, γ) and
in proving that, for some a > 0, its energy is strictly smaller than 1

2J1(γ).

Since the function u : N → R defined as

ui =






0 if i = 0,

aγ if i = 1,

γi if i ≥ 2,

is an admissible competitor for B(aγ, γ), we have that

B(aγ, γ) ≤ J1(aγ) + J1

(
(2 − a)γ

)
+

1

2
J1(γ) + J1(2γ) + J1

(
(3 − a)γ

)
− 2J0(γ).

Therefore our claim reduces to showing that there exists an a > 0 such that

J1(aγ) + J1

(
(2 − a)γ

)
+

1

2
J1(γ) + J1(2γ) + J1

(
(3 − a)γ

)
− 2J0(γ) <

1

2
J1(γ), (5.2)

30



that is, equivalently, to showing that there exists an a > 0 such that the function f : R → R,
defined as

f(a) := J1(aγ) + J1

(
(2 − a)γ

)
+ J1

(
(3 − a)γ

)
− J1(2γ) − 2J1(γ), (5.3)

is strictly negative. Computing its derivative with respect to a we have, using the explicit expres-
sion of J1 given in (4.4),

f ′(a) = − 12k1γ

(aγ)13
+

12k1γ

((2 − a)γ)13
+

12k1γ

((3 − a)γ)13
+

6k2γ

(aγ)7
− 6k2γ

((2 − a)γ)7
− 6k2γ

((3 − a)γ)7
.

In particular, choosing a = 1 in the previous formula leads to

f ′(1) =
12k1γ

(2γ)13
− 6k2γ

(2γ)7
=

6γk2

(2γ)7

(
1

26

2k1

k2γ6
− 1

)
=

6γk2

(2γ)7

(
1 + 2−6

26 + 2−6
− 1

)
< 0.

Therefore, since f(1) = 0 and f ′(1) < 0, we have that the function f is strictly negative in a right
neighbourhood of 1, i.e., there exists an a > 1 such that f(a) < 0. This proves (5.1). In particular
we deduce that it is more convenient to have an initial slope strictly bigger than γ, which implies
the second part of the assertion.

Next we discuss the “depth” of boundary layers and the occurrence of cracks on the microscopic
scale.

Proposition 5.5. Let J1 and J2 be Lennard-Jones potentials as defined in (4.4). Then the
infimum in B(γ) is obtained for N → ∞.

Proof. For any N ∈ N we define AN such that B(γ) = infN∈N AN , that is, using also (4.4),

AN = min

{
1

2
J1

(
ũ1 − ũ0

)
+
∑

i≥0

{
J1

(
ũi+2 − ũi

)
+

1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))

− J0(γ)

}
: ũ : N → R, ũ0 = 0, ũi+1 − ũi = γ if i ≥ N

}
.

We note that if (ui
N ) is a minimiser for AN , then it is an admissible competitor for AN+1, since

ui+1
N − ui

N = γ for i ≥ N + 1. Therefore AN ≥ AN+1 for all N ≥ 0 and the sequence N 7→ AN is
non-increasing.

Let Ñ be the smallest integer such that B(γ) = A eN , and assume for contradiction that Ñ < +∞.
Hence we have that

A eN = AN for all N ≥ Ñ. (5.4)

Notice that Ñ ≥ 1, since the optimal deformation has the initial slope different from γ, by
Proposition 5.4. Let us denote by (ũi) a minimiser of A eN , then

ũi =

{
ũi if i ≤ Ñ,

ũ
eN + γ(i − Ñ) if i ≥ Ñ.

Again by γ not being the slope of the optimal deformation, there exists j ∈ {1, . . . , Ñ} with

ũj − ũj−1 6= γ. By our previous assumptions, we may take j = Ñ .
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We are going to prove that A eN > A eN+2, so that (5.4) will give the contradiction. More precisely,

starting with (ũi) we construct a sequence (ṽi) which is an admissible competitor for the minimum
problem A eN+2, and whose energy, denoted by A eN+2(ṽ), is strictly smaller than A eN . The idea

is that the forces due to next-to-nearest neighbour interactions acting on atom Ñ + 1 in the
sequence (ũi) are asymmetric, whereas the forces due to nearest neighbour interactions cancel

since the distance from atom Ñ + 1 to atom Ñ is the same as the distance to atom Ñ + 2, namely
γ. Because of the asymmetry of the forces on atom Ñ + 1 due to next-to-nearest neighbour
interactions we expect that this atom is moved to a different position in equilibrium. Therefore,
for some δ 6= 0, specified later, we set

ṽi =

{
ũi if i 6= Ñ + 1,

ũ
eN+1 + δ if i = Ñ + 1.

We show that shifting the position of atom Ñ + 1 by an amount δ reduces the energy, i.e.,
A eN+2(ṽ) < A eN . Indeed we have

A eN − A eN+2(ṽ) =

eN+1∑

i= eN−1

({
J1

(
ũi+2 − ũi

)
+

1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))
− J0(γ)

}

−
{

J1

(
ṽi+2 − ṽi

)
+

1

2

(
J1

(
ṽi+2 − ṽi+1

)
+ J1

(
ṽi+1 − ṽi

))
− J0(γ)

})

= J1

(
(ũ

eN − ũ
eN−1) + γ

)
− J1

(
(ũ

eN − ũ
eN−1) + γ + δ

)
− J1(2γ)

− J1(γ − δ) − J1(γ + δ) − J1 (2γ − δ) + 2J0(γ).

For the minimising sequence (ũi) we set ũ
eN − ũ

eN−1 = aγ. We know from the non-interpenetration

of atoms that a > 0, and from the choice of Ñ that a 6= 1 (we specify further properties of a
below). Then, we continue the computations above and we obtain by using also the equality
J0(γ) = J1(γ) + J1(2γ)

A eN − A eN+2(ṽ) = J1((a + 1)γ) − J1((a + 1)γ + δ) − J1(γ − δ) − J1(γ + δ)

− J1(2γ − δ) + 2J1(γ) + J1(2γ)

=: f(δ). (5.5)

We show below that there exists a δ 6= 0 such that f(δ) > 0, or equivalently A eN − A eN+2(ṽ) > 0,

in contradiction to our assumption B(γ) = A eN with finite Ñ .

Next we elaborate on further properties of the parameter a. We will deduce that we can exclude
a being close to zero by exhibiting a competitor having strictly smaller energy.

For the moment we assume Ñ ≥ 2. Let b > 0 be such that ũ
eN−1 − ũ

eN−2 = bγ and consider the
competitor w̃ : N → R defined as

w̃i =

{
ũi if i ≤ Ñ − 1,

ũ
eN−1 + γ(i − Ñ + 1) if i ≥ Ñ − 1.

Let us denote by A eN−1(w̃) the energy associated to w̃. Then

A eN − A eN−1(w̃) = J1 ((a + b)γ) + J1(aγ) + J1((a + 1)γ) − J1((1 + b)γ) − J1(γ) − J1(2γ).
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Note that J1(γ) = k1k2

γ6

1+2−6−2(1+2−12)
2k1(1+2−12) < 0. Furthermore, by the assumptions on the potential

J1, there holds J1(z) ≤ 0 for every z ≥ γ. Hence we have in particular that J1((1 + b)γ) < 0 and
J1(2γ) < 0. Moreover, J1(z) ≥ J1(δ1) = − k2

2δ6
1

for every z. Thus

A eN − A eN−1(w̃) ≥ J1(aγ) + 2J1(δ1) − J1(2γ) − J1(γ) > J1(aγ) − k2

δ6
1

. (5.6)

Since J1(z) → +∞ as z → 0+, we have that if a is close to zero, then A eN − A eN−1(w̃) > 0, in

contradiction to the minimality of ũi. We actually have more: since J1(aγ) > k2

δ6
1

for all a < a1

with

a1 :=

(√
3 − 1

2

1 + 2−6

1 + 2−12

) 1
6

,

we have that w̃i has an energy strictly smaller than A eN at least for all a < a1. Therefore we can

assume that a ≥ a1 in the case Ñ ≥ 2.

Now, if Ñ = 1, the minimising sequence (ũi) reads

ũi =

{
0 if i = 0,

aγ + γ(i − 1) if i ≥ 1,

whose energy is denoted by A1. We consider the competitor w̃ : N → R defined as w̃i = γi and
denote its energy by A0(w̃). Then

A1 − A0(w̃) = J1(aγ) + J1((a + 1)γ) − J1(γ) − J1(2γ)J1(aγ) − k2

2δ6
1

, (5.7)

where the inequality follows by a similar reasoning as above. Since estimate (5.7) implies estimate

(5.6), the properties deduced from the latter also hold for Ñ = 1. Thus a ≥ a1 for all Ñ ≥ 1.

Summarising, we can restrict to the case of slope aγ for a ≥ a1 and a 6= 1. We finally prove that
the function f(δ) defined in (5.5) is strictly positive for some δ 6= 0. In order to show this we
observe that f(0) = 0 and then show that f ′(0) 6= 0 for every admissible a. As in the proof of
Proposition 5.4 this allows to deduce that there exists a δ close to 0 but different from 0, such
that f(δ) > 0 and hence the assertion. Since

f ′(δ) = −J ′
1((a + 1)γ + δ) + J ′

1(γ − δ) − J ′
1(γ + δ) + J ′

1(2γ − δ),

we have f ′(0) = −J ′
1((a + 1)γ) + J ′

1(2γ) =: g(a). Therefore the claim reduces to describing the
zero-set of the function g and proving that it does not intersect the set of admissible a’s. Observe

that g′(a) = −γJ
′′

1 ((a+1)γ) is positive if and only if a >
(

13
7

1+2−6

1+2−12

) 1
6 −1 := a0. Therefore, since

a0 < a1, the function g is strictly increasing for a ≥ a1. Since a1 < 1 and g(1) = 0, we deduce
that a = 1 is the only zero of g in the interval a ≥ a1. Hence g does not have any zeros which are
admissible. Thus the assertion follows.

By Lemma 5.1 (2) we know Bb(γ) = B(γ). Hence if J1 and J2 are Lennard-Jones potentials as
defined in (4.4), then the infimum in Bb(γ) is obtained for k → ∞. On the contrary, as noted in
Remark 5.2, Bb(δ1) is attained for k = 0. Furthermore, recall that for the boundary layer energy
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related to the elastic behaviour at the boundary, cf. (4.29), we show in the derivation of (4.26)
that: If θ = γ, then B(γ, γ) = 1

2J1(γ) is attained for N = 0.

Finally we discuss the “depth” of boundary layers and the occurrence of cracks on a mesoscopic
scale. Here, this is a rather abstract scale between the atomistic and the continuum scale. To
illustrate this, we consider the following situation: imagine there are two bodies being in contact
on the continuum scale, but being a distance apart on the atomistic scale. Now, if we let the
microscopic distance between the bodies tend to infinity while keeping the bodies in contact on
the macroscopic scale, we speak about the mesoscopic scale. This setting is analysed extensively
in the context of magnetic bodies in [SS09] and led to a thorough understanding of some formulae
describing magnetic forces.
In the context of this paper a similar situation occurs in the following sense: in Proposition 5.5 we
prove that the infimum in B(γ) is obtained for N → ∞ in the case of Lennard-Jones potentials.
That is, the slope of the optimal test function is constantly γ only for N → ∞. On the other
hand we know by the compactness result, Proposition 4.2, that the slope of the deformation u is
γ almost everywhere in the continuum limit, i.e., on the macroscopic scale. Consider for instance
Figure 5 on the macroscopic scale: the slope of the deformation equals γ everywhere except at
the jump point, while it takes infinitely many atoms away from the crack until the deformation
reaches its equilibrium slope in the microscopic/mesoscopic scale.
As outlined above, a similar situation occurs for the boundary layer energies at the boundaries

of [0, 1]. Let us for instance consider the situation of Figure 4 with u
(1)
0 = γ. Then the infimum

in Bb(γ) is obtained for k → ∞, i.e., the crack in the atomistic setting is not close to zero but
infinitely far apart though the jump in the continuum setting is at 0. This allows for the following
interpretation: though macroscopically the crack is at the boundary, the crack occurs in the
interior on a mesoscopic scale. Further discussions of this will be the topic of future research.
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[FA81] S. M. Foiles and N. W. Ashcroft. Variational theroy of phase separation in binary
liquid mixtures. J. Chem. Phys., 75:3594–3598, 1981.

[KO01] J. Knap and M. Ortiz. An analysis of the quasicontinuum method. J. Mech. Phys.
Solids, 49:1899–1923, 2001.

[MTPO98] R. Miller, E. B. Tadmor, R. Phillips, and M. Ortiz. Quasicontinuum simulation of
fracture at the atomic scale. Model. Simul. Mater. Sci. Eng., 1998.

[NO02] O. Nguyen and M. Ortiz. Coarse-graining and renormalization of atomistic binding
relations and universal macroscopic cohesive behavior. J. Mech. Phys. Solids, 50:1727–
1741, 2002.
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