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1 Introduction

A (classical) dynamical system is said to be isochronous if it displays an open region in its
phase space in which all its solutions are completely periodic, i.e., periodic in all degrees of
freedom, with the same fixed period ( see for example [1, 2, 3] for standard review). The
linear harmonic oscillator is the prototype of an isochronous system and all other isochronous
systems are isoperiodic with the harmonic oscillator. Research on isochronous system has
taken a new turn in recent times. A large number of articles have appeared in the last
few years inspired by the novel ideas developed by Francesco Calogero in this regard [1, 2].
Indeed, in a series of papers [4, 5, 6], Calogero and Leyvraz have shown that isochronous
dynamical systems are not as rare as they were previously thought to be. Prior to Calogero’s
work a large part of the mathematical literature on isochronous systems was devoted solely
to planar systems.

Recently Chalykh and Veselov [7] have shown that among rational potentials only the
harmonic oscillator and the isotonic oscillator produce isochronous motions. In fact there
exits other classes of isochronous systems described by non-rational potentials, for instance
potentials for which the second derivative has a discontinuity.

However, the recent methods introduced by Calogero and Leyvraz allow us to extend
any dynamical system, in a manner such that the derived system is either isochronous or
asymptotically isochronous or even multi-periodic. The generic solutions of the extended
dynamical systems are correspondingly either completely periodic with a fixed period or
are asymptotically periodic or become multi-periodic in the asymptotic limit [8, 9]. The
procedure devised by Calogero et al may be applied to a wide class of systems and is marked
by a remarkable degree of simplicity in which novel use is made of the linear harmonic
oscillator [4, 1, 5].

Consider a planar dynamical system described by the systems of equations:

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P and Q are polynomials with real coefficients. A point (x0, y0) is said to be a critical

point of the system if P (x0, y0) = Q(x0, y0) = 0. We say that a critical point is a center if,
within some neighborhood, all the orbits surrounding it are closed. The linearized version
of the above system is obtained by expanding the functions P and Q about a critical point
in a Taylor series:

ẋ = Px(x0, y0)(x− x0) + Py(x0, y0)(y − y0)

ẏ = Qx(x0, y0)(x− x0) +Qy(x0, y0)(y − y0) (1.2)

where the subscripts denote the usual partial derivatives of the functions. If the linearized
vector field has two non-zero eigenvalues then a center is said to be non-degenerate. An
isochronous center is a center for which all the surrounding orbits have the same period, and
it may be proved that such centers are always non-degenerate.
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A formal definition of a isochronous vector is as follows:

Definition 1.1 A vector z(t;α) is isochronous with a period T if all its components are

periodic with the same period T independent of the set of parameters α = {αk}, i.e.,

zj(t+ T ;α) = zj(t;α). (1.3)

Note that in this definition the number of parameters need not be equal to the number of
components of z. In case of asymptotically isochronous systems the formal definition is

Definition 1.2 A vector z(t;α) is asymptotically isochronous if there exists an isochronous

vector z0(t;α) such that

lim
t→+∞

||z(t;α) − z0(t;α)|| = 0, (1.4)

where ||.|| denotes some suitable norm and α = {αk} .

We recall that a finite dimensional dynamical system is said to have a Poisson struc-
ture if it can be written as the following system of ODEs:

ẋi =
n

∑

j=1

J ij∂jH, i = 1, · · · , n

where H(x) is the Hamiltonian and J ij are the entries of an n× n matrix J - known as the
Poisson structure matrix. The latter is a skew-symmetric matrix J ij = −J ji (for all i, j) and
is a solution of the Jacobi identity:

n
∑

l=1

(

J li∂lJ
jk + J lj∂lJ

ki + J lk∂lJ
ij
)

= 0.

Given such a Poisson matrix J we can define a generalization of the classical Hamiltonian
systems on which a non canonical Poisson bracket is defined, namely,

{f(x), g(x)} =

n
∑

i,j

∂f(x)

∂xi
Jij
∂g(x)

∂xj
,

for every pair of smooth functions f(x) and g(x).

The ability to express a finite-dimensional dynamical systems in terms of Hamiltonian
and Poisson structure is an open question in general. The main hurdle comes from the com-
putation of the solution of the Jacobi identities. This can be computed relatively simply for
three dimensional flows, being a scalar equation. But for higher dimensions due to increas-
ing nonlinearity this is not always manageable. The second problem arises in determining
the first integrals. In order to recast the dynamical systems into a Hamiltonian system a
first integral or some function of the first integrals often plays the role of the Hamiltonian.
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Owing to these two issues one is not always able to express a given dynamical system as a
Poisson and/or Hamiltonian system. In this paper we confine ourselves to three dimensional
systems. The Jacobi-Poisson formulation for such three dimensional systems has been ex-
tensively studied in the last two decades (cf. [10, 11, 12]). Hernandez-Bermejo [13, 14] gave
a very large class of the solutions of the Jacobi equation for the Poisson matrix J and the
general solution has been derived by Gürses and his coworkers [15]. We also briefly discuss
its connection with the Nambu-Poisson structures [16, 17, 18] and Jacobi’s last multiplier
(JLM). In our earlier paper [19] we investigate the nature of the connection between the JLM
and isochronous non-planar dynamical systems of the Calogero-Leyvraz type. We show that
the JLM plays a pivotal role in the construction of isochronous dynamical systems.

The paper is organized as follows. In Section 2 we present the main features of the results
obtained by Calogero and Leyvraz in [9]. Then in section 3 we construct several new coupled
autonomous dynamical systems which exhibit the property of isochronicity. In Section 4 we
investigate the solutions of the Jacobi identities to obtain the Poisson matrix J associated
with the isochronous systems obtained in the preceding manner. Finally, we point out the
connection between the Jacobi-Poisson structures and the Nambu structure for such systems.

2 Recapitulation of Calogero-Leyvraz’ Method

Consider a system of first-order autonomous ODEs

dxn

dτ
= hn(x), n = 1, ..., N. (2.1)

This system will be extended by the inclusion of two additional variables yi(i = 1, 2) such
that

ẋn = Wn(x, y1, y2), n = 1, ..., N (2.2)

ẏ1 = Y1(x, y1, y2) (2.3)

ẏ2 = Y2(x, y1, y2). (2.4)

Here the over dot denotes a derivative with respect to the time t. The connection
between (2.1) and the above system is via the following identification of the function τ ,
namely

dτ

dt
=
Wn(x, y1, y2)

hn(x)
≡ φ(x, y1, y2) (2.5)

for some function φ(x, y1, y2), to be specified later. The explicit forms of Yi(i = 1, 2) will be
derived in what follows so as to ensure that the system is isochronous. Equations (2.2)-(2.4)
constitute a set of (N + 2) autonomous first-order ODEs. The two additional (or auxiliary)
variables yi (i = 1, 2) are specifically related to the linear harmonic oscillator via the following
identification

y1 =
f1

F (x)
y2 =

f2

G(x)
, (2.6)
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where F (x) and G(x) are non-zero real valued functions and f1 and f2 satisfy the equation
of a linear harmonic oscillator:

ḟ1 = −Ωf2, ḟ2 = Ωf2 Ω > 0. (2.7)

From (2.7) it is obvious that
f̈i + Ω2fi = 0, i = 1, 2 (2.8)

and the fi’s admit periodic solutions given by,

f1 = A sin(Ωt+ θ) and f2 = −A(cos(Ωt+ θ), (2.9)

where A is the amplitude and θ represents the phase difference. From (2.6) and (2.8) it
follows that

ẏ1 = −Ω
G

F
y2 − φ(x, y1, y2)y1

N
∑

n=1

∂F (x)

∂xn

hn(x), (2.10)

ẏ2 = Ω
F

G
y1 − φ(x, y1, y2)y2

N
∑

n=1

∂G(x)

∂xn
hn(x). (2.11)

These two equations serve to define the functions Yi(i = 1, 2) in (2.3) and (2.4) respectively.
Therefore (2.1) together with (2.10) and (2.11) constitute a set of (N + 2) autonomous
coupled nonlinear ODEs. On the other hand (2.5) implies

τ(t) =

∫

φ(x, y1, y2)dt+ C, (2.12)

while it follows from (2.6) that the auxiliary variables are given by

y1 =
A sin(Ωt+ θ)

F (x(t)
and y2 = −

A cos(Ωt+ θ)

G(x(t)
, with τ(t) =

∫ xn dx′n
h(x′)

. (2.13)

Note that we have not yet specified the explicit form of the function φ(x, y1, y2). If
φ(x, y1, y2) = J(f1, f2), i.e., it depends on x and y1, y2 implicitly through f1 and f2 only, then
because the latter are periodic functions with period 2π/Ω, it follows from (2.12) that τ(t)

must necessarily be periodic and hence xn as obtained from τ(t) =
∫ xn dx′

n

h(x′)
will implicitly

be a periodic function with the same period. However x(t) being periodic implies in turn
that F (x(t)) and G(x(t)) are themselves periodic and consequently y1(t) and y2(t) are also
periodic. Therefore we conclude that the entire extended system of (N + 2) equations is
periodic with the same period for all the degrees of freedom, and constitutes an isochronous
system.

In [9] the specific choice of J(f1, f2) = f1 was dealt with in some detail and it was
observed that other combinations of f1 and f2 may also be chosen to define the function
φ(x, y1, y2). In the following section we will be concerned with more general forms of J(f1, f2).
For the sake of simplicity however, we shall assume N = 1 and thereby restrict ourselves to
three dimensional dynamical systems.
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3 New Isochronous Systems

In this section we consider certain specific combinations of f1 and f2 to define φ(x, y1, y2)
and obtain for each such choice a distinct set of equations in R3 which are isochronous by
construction. We will also indicate how these coupled equations may be partially decoupled.

Example 3.1 Let φ(x, y1, y2) = f1f2

In this case the explicit solution for τ as obtained from

τ̇ = φ(x, y1, y2) = f1f2 = −
A2

2
sin(2Ωt+ 2θ)

is

τ(t) =
A2

4Ω
[cos(2Ωt+ 2θ) − cos 2θ] (3.1)

where we have assumed the initial condition τ(0) = 0. From (2.5) we find that

φ(x, y1, y2) = f1f2 = y1y2F (x)G(x). (3.2)

Using this in (2.10) and (2.11) we have

ẏ1 = −Ω
G

F
y2 − FGy2

1y2
d lnF

dx
h(x),

ẏ2 = Ω
F

G
y1 − FGy1y

2
2

d lnG

dx
h(x), (3.3)

along with
ẋ = y1y2FGh(x).

Suppose we now make the simplifying assumption F (x) = G(x) = R(x). This causes the
system (3.3) to reduce to

ẏ1 = −Ωy2 − y2
1y2R(x)

dR(x)

dx
h(x)

ẏ2 = Ωy1 − y1y
2
2R(x)

dR(x)

dx
h(x), (3.4)

while
ẋ = y1y2R(x)2h(x).

We can decouple the system (3.4) from the last equation by demanding

R(x)R′(x)h(x) = λ (3.5)
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where λ is any arbitrary constant. This implies in view of the fact that τ(t) =
∫ x ds

h(s)

|R(x)| = [2λτ(t)]1/2 =

[

λA2

2Ω
(cos(2Ωt+ 2θ) − cos 2θ)

]1/2

(3.6)

while (3.4) reduces to

ẏ1 = −Ωy2 − λy2
1y2 (3.7)

ẏ2 = Ωy1 − λy1y
2
2 (3.8)

ẋ = λy1y2
R(x)

R′(x)
. (3.9)

Thus by varying the functional form of R(x) one can obtain a large class of isochronous
systems. The solution of the system is easily obtained from the fact that

y1(t) =
A sin(Ωt+ θ)

R(x)
, y2(t) = −

A cos(Ωt+ θ)

R(x)

where R2(x) = 2λτ(t).

Example 3.2 Let φ(x, y1, y2) = f1

f2

In this case the explicit solution for τ is obtained from

τ̇ = − tan(Ωt+ θ) (3.10)

and is given by

τ(t) =
1

Ω
log

∣

∣

∣

∣

cos(Ωt+ θ)

cos θ

∣

∣

∣

∣

, (3.11)

where it is assumed that τ(0) = 0. This form of φ causes (2.10) and (2.11) to reduce to the
following equations, under the simplifying assumption that F = G = R(x), namely

ẏ1 = −Ωy2 −
y2

1

y2

d logR(x)

dx
h(x)

ẏ2 = Ωy1 − y1
d logR(x)

dx
h(x) (3.12)

along with dx/dτ = h(x). We may decouple the equations for the yi’s from x by assuming
that d logR(x)/dx = 1/h(x). This implies

R(x) = C exp

(
∫ x ds

h(s)

)

= C exp(τ) (3.13)

because τ(t) =
∫ x

ds/h(s). Under these conditions the final form of the resulting isochronous
system is

ẏ1 = −Ωy2 −
y2

1

y2
, ẏ2 = Ωy1 − y1, ẋ =

y1

y2

R(x)

R′(x)
, (3.14)
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with R(x) = C exp(τ). The solution of (3.14) may be obtained by specifying the form of
R(x), which determines in turn h(x). The time evolution of y1 and y2 are given as usual by

y1(t) =
f1(t)

|R(x)|
and y2(t) =

f2(t)

|R(x)|

respectively. For the sake of concreteness let R(x) = x so that x(t) = C exp(τ(t)) where τ(t)
is given by (3.11). Then

y1(t) = −
A sin(Ωt+ θ)

|R(x)|
= −

A

C
e−τ(t) sin(Ωt+ θ),

y2(t) =
A cos(Ωt+ θ)

|R(x)|
=
A

C
e−τ(t) cos(Ωt+ θ).

Example 3.3 Let φ(x, y1, y2) = f 2
2 − f 2

1

In this case we have τ̇ = A2 cos(2Ωt+2θ) whence, assuming τ(0) = 0 we obtain the following
solution

τ(t) =
A2

2Ω
[sin(Ωt+ θ) − sin 2θ] .

In the general case when F 6= G we are led to the following equations:

ẏ1 = −Ω
G

F
y2 − (G2y2

2 − F 2y2
1)y1

d logF

dx
h(x)

ẏ2 = Ω
F

G
y1 − (G2y2

2 − F 2y2
1)y2

d logG

dx
h(x),

together with dx/dτ = h(x). Furthermore assuming F = G = R(x) and R2(x)d log R
dx

= 1
h(x)

we may decouple two of the three equations to obtain

ẏ1 = −Ωy2 − (y2
2 − y2

1)y1, ẏ2 = Ωy1 − (y2
2 − y2

1)y2, ẋ = (y2
2 − y2

1)
R(x)

R′(x)
. (3.15)

3.1 Further generalization

In this section we attempt to further generalize the class of equations exhibiting isochronicity
by assuming that the relation between the auxiliary variables y1 and y2 and the functions f1

and f2 describing the linear harmonic oscillator are of the following general form, viz

f1 = F (x)y1 +G(x)y2, f2 = H(x)y1 +K(x)y2.

Taking into consideration ẋ = φ(f1, f2)h(x) and the conditions ḟ1 = −f2 and ḟ2 = f1

(setting Ω = 1) they imply

F (x)ẏ1 +G(x)ẏ2 = − (F ′(x)φ(x, y)h(x) +H(x)) y1 − (G′(x)φ(x, y)h(x) +K(x)) y2
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H(x)ẏ1 +K(x)ẏ2 = (F (x) −H ′(x)φ(x, y)h(x)) y1 + (G(x) −K ′(x)φ(x, y)h(x)+) y2.

Setting H(x) = −G(x) and K(x) = F (x) these simplify to become:

ẏ1 = −y2 − ẋy1
FF ′ +GG′

F 2 +G2
+ ẋy2

GF ′ − FG′

F 2 +G2

ẏ2 = y1 − ẋy2
FF ′ +GG′

F 2 +G2
− ẋy1

GF ′ − FG′

F 2 +G2
, (3.16)

while the equation for x is still given by ẋ = φ(x, y1, y2)h(x). Note that in terms of fk (k =
1, 2) and the functions F and G we can express y1 and y2 as follows:

y1 =
f1F − f2G

F 2 +G2
y2 =

f1G+ f2F

F 2 +G2
. (3.17)

Let us assume the simplest form of the function φ, namely φ(x, y1, y2) = f1 = y1F (x)+y2G(x)
so that

ẋ = (y1F + y2G)h(x).

Consider the simple case when F (x) = cosx and G(x) = sin x. Since F 2 + G2 = cos2 x +
sin2 x = 1 it follows that FF ′ +GG′ = 0. This causes the equations to assume the simplified
form

ẋ = (y1 cos x+ y2 sin x)h(x) (3.18)

ẏ1 = −y2 − y2(y1 cos x+ y2 sin x)h(x), ẏ2 = y1 + y2(y1 cosx+ y2 sin x)h(x). (3.19)

Assuming that φ = dτ/dt = f1 = (y1 cosx+y2 sin x), (where as before ḟ1 = −f2 and ḟ2 = f1)
we can write

τ(t) = A[sin(t+ θ) − sin θ]. (3.20)

In arriving at this solution, we assumed that f1 = A cos(t + θ) and f2 = A sin(t + θ) and
that τ(0) = 0. Notice that τ(t + 2π) = τ(t). Consequently, (3.18) can be expressed as
dx/dτ = h(x) and we obtain τ =

∫ x dx′

h(x′)
. For a given function h(x) the latter allows us to

express τ in terms of x, which, assuming it is invertible, gives x as a function of τ and hence
of t. For instance, the choice h(x) = γx yields x(τ) = exp(γτ(t)) with τ given by (3.20).
One can easily read off the values of y1 and y2 from (3.17)

y1(t) = A cos(t+ x(t) + θ), and y2(t) = A sin(t+ x(t) + θ),

and they are the solutions of the isochronous system (3.18)-(3.19) with h(x) = γx.

3.2 Embedding planar isochronous systems within higher dimen-

sional ones

Let us recall the equations (2.10) and (2.11) together with ẋ = φ(x, y1, y2)h(x) and restrict
ourselves to the N = 1 case only. Our attempt now will be to employ the Calogero-Leyvraz

9



technique to find a higher-dimensional set of first-order differential equations which are not
only themselves isochronous, but include as a subset a planar isochronous system. We
illustrate the method with the following well-known planar isochronous system

ẏ1 = −y2 + 2y1y2 − ay2
1y2, ẏ2 = y1 + 2y2

2 − ay1y
2
2. (3.21)

First of all, without loss of generality we may set Ω = 1 and F = G = R in (2.10) and (2.11)
to obtain

ẏ1 = −y2 − y1φ(x, y1, y2)
R′(x)

R(x)
h(x)

ẏ2 = y1 − y2φ(x, y1, y2)
R′(x)

R(x)
h(x). (3.22)

Comparison with (3.21) clearly indicates a matching of the linear terms. Let us therefore
demand that

−y1φ(x, y1, y2)
R′(x)

R(x)
h(x) = y1(2y2 − ay1y2).

Using the fact that fk = R(x)yk (k = 1, 2) then allows us to express the last line as

φ(x, y1, y2) = φ(x; f1, f2) =
af1f2 − 2f2R(x)

R(x)R′(x)h(x)
.

Let us further assume that the denominator is unity, so that

φ(x; f1, f2) = af1f2 − 2f2R(x). (3.23)

Note that unlike the forms assumed by Calogero et al in [9] and also in the previous section,
φ here is seen to depend on both f1, f2 as well as on R(x). Consequently it is convenient to
assume that φ may be factorized as

φ(x; f1, f2) = ψ(f1, f2)χ(x; f1, f2). (3.24)

Comparing this with (3.23), we see that here ψ(f1, f2) = f2 and χ(x; f1, f2) = (af1 −2R(x)).
As a result the equation for ẋ appears as

ẋ = ψ(f1, f2)χ(x; f1, f2)h(x). (3.25)

In view of the above we shall define a function τ via the following relation: dτ/dt = ψ(f1, f2)
which implies τ(t) =

∫

ψ(f1, f2)dt+ τ0, so that

dx

dτ
= χ(x; f1, f2)h(x).

Here τ0 is a constant of integration. If we can express χ in terms of x and τ so that
dx/dτ = σ(x, τ)h(x) then in principle one can integrate this to obtain x = x(τ) and hence a
function of t. In our case since ψ(f1, f2) = f2 we find that

τ =

∫

f2dt+ τ0 = −A sin(t+ θ) + τ0
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or
τ = −f1 + τ0, which implies f1 = (τ − τ0).

Under these circumstances χ(x; f1, f2) = −a(τ − τ0) − 2R(x) so that

dx

dτ
= −(a(τ − τ0) + 2R(x))h(x).

We may eliminate h(x) by using the condition R(x)R′(x)h(x) = 1 to get

dx

dτ
= −a(τ − τ0)

1

R(x)R′(x)
−

2

R′(x)

which leads to the equation

dR(x)

dτ
= −a(τ − τ0)

1

R(x)
− 2. (3.26)

We look for a particular solution and assume accordingly R(x) = k(τ − τ0), where k is a
constant. Substitution into (3.26) yields the following condition on k, namely

k2 + 2k + a = 0

which determines k in terms of the parameter a of the system. It is interesting to note that the
explicit form of the function R(x) is largely arbitrary here. In view of these considerations,
the equations for y2 now appears as

ẏ2 = y1 − y2
2(ay1 − 2) = y1 + 2y2

2 − ay1y
2
2

which is what we sought to obtain. As for the solutions of the system of equations, it is
obvious that formally

x(t) = R−1 (k(τ − τ0)) where τ(t) = τ0 − A sin(t+ θ)

while

y1(t) =
f1

R(x)
=
A sin(t+ θ)

k(τ − τ0)
= −

1

k

y2(t) =
f2

R(x)
= −

A cos(t+ θ)

k(τ − τ0)
=

1

k
cot(t+ θ),

with k being the solution of k2 + 2k + a = 0. Clearly the solutions exhibit finite time
singularities and one must restrict the range of values of t to avoid them.
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4 Poisson structures and nonstandard Hamiltonian for-

mulation of Calogero-Leyvraz type systems

We begin this section with a few important general remarks about Poisson structures on Rn.
Let η = ηij

∂
∂xi

∧ ∂
∂xj

be the Poisson tensor on a manifold M . It is clear in R2 the most general

Poisson structure is ηij = f(x)ǫij , where f(x) ∈ C1(R2). In R3 a Poisson tensor must have
rank 2 and takes the form

ηij = f(x)ǫijk∂kξ,

where f(x) ∈ C1(R3) and g ∈ C2(R3). Due to antisymmetric property a Poisson tensor in
R4 must be rank 2 or 4. The rank 2 Poisson tensor is given by

ηij = f(x)ǫijkl∂kξ1∂lξ2,

where gi ∈ C2(R4).
The Poisson tensors of rank 2 on Rn are of the following general form

ηij = f(x)ǫijk1···kn−2
∂k1

ξ1 · · ·∂kn−2
ξn−2,

where ξi ∈ C2(Rn), i = 1, · · · , n− 2 and ǫijk1···kn−2
is a fully antisymmetric tensor.

4.1 Poisson structures in R3 and Hamiltonians

In this subsection we wish to investigate if the isochronous dynamical systems of the Calogero-
Leyvraz type can be endowed with a Poisson structure. Let us start with an explicit repre-
sentation of the Poisson matrix J in R3. Any exact Poisson bivector in J3 corresponds to a
certain function ζ(x, y, z) is given by

Λ3
ζ =

∂ζ

∂x

∂

∂y
∧
∂

∂z
+
∂ζ

∂y

∂

∂z
∧
∂

∂x
+
∂ζ

∂z

∂

∂x
∧
∂

∂y

This we can express in terms of a Poisson matrix

Jζ =







0 ∂ζ
∂z

−∂ζ
∂y

−∂ζ
∂z

0 ∂ζ
∂x

∂ζ
∂y

− ∂ζ
∂x

0






(4.1)

If we focus on the Jacobi identity, it is well known that in R3 the Jacobi equation for
the Poisson structure, is a single scalar equation for the three components of the Poisson
structure J [15]. Note that we stick to usual notation of Poisson matrix. The relevant
properties of the matrix J = (J)ij for the Poisson structure are

(i) Jij = −Jji i, j = 1, 2, 3 skew-symmetry
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(ii) J li∂lJ
jk + J lj∂lJ

ki + J lk∂lJ
ij = 0 i, j, k = 1, 2, 3, (4.2)

which is a consequence of the Jacobi identity. If we define J12 = u, J31 = v and J23 = w then
the Jacobi equation (4.2) yields

u∂1v − v∂1u+ w∂2u− u∂2w + v∂3w − w∂3v = 0

which can also be written as

u2∂1

(v

u

)

+ w2∂2

( u

w

)

+ v2∂3

(w

v

)

= 0. (4.3)

We have already discussed the nature of Poisson structures in R3. In fact recently Ay
et al. have analysed the nature of the general solution of the Jacobi equation. The following
theorem gives the form of the general solution of (4.3).

Theorem 4.1 All Poisson structures in R3, except at some irregular points, take the form

Jij = µǫijk∂kζ where µ and ζ are some differentiable functions in R3.

Its proof is given in [15]. Therefore from this theorem we have

u = µζz, v = µζy and w = µζx (4.4)

where µ is a function of x, y, z in general and the subscripts denote partial derivatives. In
terms of these, the Hamiltonian form of the equations of motion is:





ẋ
ẏ
ż



 =





0 µζz −µζy
−µζz 0 µζx
µζy −µζx 0









Hx

Hy

Hz



 . (4.5)

This equation has nice geometric interpretation. Let ξ = k1 and H = k2 define two
surfaces in R3. The intersection of these surfaces define a curve C, whose velocity vector ~̇x
is parallel to the cross product of the normal vectors ∇ξ and ∇H of the surfaces, given by

d~x

dt
= −µ∇ξ ×∇H,

where µ ∈ C∞(R2).

The general structure of the Calogero-Leyvraz isochronous dynamical system in three
dimensions, with φ(x, y, z) = f1 = yF (x), is

ẋ = yF (x)h(x)

ẏ = z − y2F ′(x)h(x)

ż = −y − yzF ′(x)h(x) (4.6)

13



where we have assumed F (x) = G(x) and have set the frequency Ω = 1 for simplicity.
Assuming the system admits a Poisson structure we require

ẋ = µ(ζzHy − ζyHz) = yF (x)h(x), (4.7)

ẏ = µ(ζxHz − ζzHx) = z − y2F ′(x)h(x), (4.8)

ż = µ(ζyHx − ζxHy) = −y − yzF ′(x)h(x). (4.9)

The linear terms in (4.8) and (4.9) being similar to those of the linear harmonic oscillator
suggests that we set ζx = 1 and assume

µHz = z µHy = y. (4.10)

The remaining parts of (4.8) and (4.9) then imply

µζzHx = y2F ′(x)h(x), (4.11)

µζyHx = −yzF ′(x)h(x). (4.12)

Their ratio yields
ζz
ζy

= −
y

z
. (4.13)

Next using (4.10) in (4.7) and by eliminating ζz using (4.13) we find that

ζy = −F (x)h(x)
yz

y2 + z2
, ζz = F (x)h(x)

y2

y2 + z2
, along with ζx = 1. (4.14)

Consistency of (4.14) requires that d(Fh)/dx = 0, so that we may assume without loss of
generality h(x) = 1/F (x). Therefore we have finally

ζx = 1, ζy = −
yz

y2 + z2
, ζz =

y2

y2 + z2
. (4.15)

Using these values we find from (4.11)/(4.12) that

Hx =
F ′(x)

µF (x)
(y2 + z2). (4.16)

The partial derivatives of the Hamiltonian H as given by (4.10) and (4.16) are consistent
provided the following condition is satisfied, namely

µ′

µ
= −2

F ′(x)

µF (x)
. (4.17)

This implies that µ can be taken to be a function of x only. In explicit terms it is given by

µ(x) =
c

F 2(x)
, (4.18)
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where c is an arbitrary constant and the Hamiltonian turns out to be

H(x, y, z) =
(y2 + z2)

2µ(x)
. (4.19)

Since the Poisson equations of motion are given by

ẋi = {xi, H} = {xi, xj}
∂H

∂xj
, i, j = 1, 2, 3.

In our case we have
ẋ = {x, y}Hy + {x, z}Hz = uHy − vHz

ẏ = {y, x}Hx + {y, z}Hz = −uHx + wHz

ż = {z, y}Hy + {z, x}Hx = vHx − wHy

with u, v and w given by (4.4). Using (4.15) and (4.17) we find that they lead to the following
system of equations:

ẋ = y, ẏ = z − y2F
′(x)

F (x)
, ż = −y − yz

F ′(x)

F (x)
, (4.20)

where F (x) is any arbitrary non-vanishing function.

4.2 Connection to Nambu structure

The Poisson structure that we have described in the previous section can also be manifested
in terms of a Nambu structure. The construction is completely parallel to the Poisson case.
Consider a three dimensional system. We fix a volume form Ω = dx1∧dx1∧dx2. The volume
three form is connected to the existence of the Hamiltonian bivector fields X2 ∈ λ2, defined
as

X2
H =

∂H

∂x1

∂

∂x2

∧
∂

∂x3

+
∂H

∂x2

∂

∂x3

∧
∂

∂x1

+
∂H

∂x3

∂

∂x1

∧
∂

∂x2

. (4.21)

The volume preserving condition yields

LX2Ω = iX2dΩ + d(iX2Ω) = 0.

Since dΩ = 0, so we conclude d(iX2Ω) = 0. From Poincaré’s lemma it follows that

iX2Ω = dH, H ∈ C∞(R3)

is exact. Thus the Nambu bracket is given by

iX2

H
(dζ ∧ df) = {H, h, f},

where

{H, ζ, f} =
∂H

∂x1
{ζ, f}x1x2

+
∂H

∂x2
{ζ, f}x3x1

+
∂H

∂x3
{ζ, f}x1x2

.
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The Hamiltonian equation of motion of the form (5.4) can be easily recast into Nambu
Hamiltonian system

ẋi = {xi, ζ, H}. (4.22)

This shows N = 3 Calogero-Leyvraz has a natural description in terms of Nambu mechanics.

It is known that the Nambu-Poisson includes all the subordinate Poisson structures.
Therefore we can construct this Poisson structure via Nambu geometry, i.e., the Poisson
structure on R3 may be written as

{xi, xj}
F := {xi, xj , F} xi = x, y, z. (4.23)

It can be easily shown that when the Nambu bracket satisfies the fundamental identity then
the corresponding (reduced) Poisson bracket {xi, xj}

F satisfies the Jacobi identity.

4.2.1 Interpretation of µ

In this section we illucidate the connection between µ and the last multiplier in the Nambu
setting. At first we recapitulate the planar case. Consider planar Hamiltonian system

ẋ = J(x, y)Hy, ẏ = −J(x, y)Hx,

where J is associated with the symplectic structure. Using last multiplier equation we obtain

d

dt
logM +

J̇

J
= 0,

which yield M = 1
J
. Thus Poisson matrix is given by

J =

(

0 M−1

−M−1 0

)

.

We can generalize the Hamiltonization of a non-planar system using Nambu mechan-
ics, as follows. Consider following volume preserving system

ẋ = µ
∂H1

∂y

∂H2

∂z
, ẏ = −µ

∂H1

∂x

∂H2

∂z
, ż = µ

∂H1

∂x

∂H2

∂y
.

Using
d

dt
logM +

∑ ∂Wi

∂xi
= 0

we obtain

M =
1

µ
.

Therefore the Nambu Hamiltonian equation can be expressed as

ẋi = M−1ǫijk
∂H1

∂xj

∂H2

∂xk
. (4.24)

Thus the Nambu Hamiltonian system replaces the ordinary Hamiltonian formulation
for higher order differential equations and Jacobi’s last multiplier is the inverse of the Nambu
structure.
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