
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Geometric Topology and Field Theory on

3-Manifolds

by

Kishore Marathe

Preprint no.: 45 2009





Geometric Topology and Field Theoryon 3-ManifoldsKishore Marathe
Abstract In recent years the interaction between geometric topology andclassical and quantum �eld theories has attracted a great deal of attentionfrom both the mathematicians and physicists. This interaction has been es-pecially fruitful in low dimensional topology. In this article We discuss sometopics from the geometric topology of 3-manifolds with or without links wherethis has led to new viewpoints as well as new results. They include in ad-dition to the early work of Witten, Casson, Bott, Taubes and others, thecategori�cation of knot polynomials by Khovanov. Rozansky, Bar-Natan andGarofouladis and a special case of the gauge theory to string theory corre-spondence in the Euclidean version of the theories, where exact results areavailable. We show how the Witten-Reshetikhin-Turaev invariant in SU(n)Chern-Simons theory on S3 is related via conifold transition to the all-genusgenerating function of the topological string amplitudes on a Calabi-Yaumanifold. This result can be thought of as an interpretation of TQFT asTQG (Topological Quantum Gravity). A brief discussion of Perelman's workon the geometrization conjecture and its relation to gravity is also included.1 IntroductionThis paper is based in part on my seminars given at the Max Planck Institutefor Mathematics in the Sciences, and at other institutes, notably at the IIT(Mumbai), Universit�a di Firenze, University of Florida at Gainsville, InterUniversity Center for Astronomy and Astrophysics, University of Pune, In-dia and conferences given at the XXIV workshop on Geometric Methods inPhysics ,Poland [50] and the Blaubeuren workshop \Mathematical and Phys-Kishore Marathe, Max Planck Inst. for Mathematics in the Sciences, Leipzig andDepartment of Mathematics, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn,NY 11210, USA, e-mail: kmarathe@brooklyn.cuny.edu 1



2 Kishore Maratheical Aspects of Quantum Gravity" [51]. In my lectures on the mathematicaland physical aspects of gauge theories in New York and Florence in the early1980s, I began using the phrase gauge theoretic topology and geometry todescribe a rapidaly developing area of mathematics, where unexpected ad-vances were made with essential use of gauge theory. By the late 1990s itwas evident that in addition to gauge theory, many other parts of theoreticalphysics were contributing new ideas and methods to the study of topology,geometry, algebra and other �elds of mathematics. I then began using thephrase \Physical Mathematics" to collectively denote the areas of mathe-matics bene�tting from an infusion of ideas from physics. It appears in printfor the �rst time in [48] and more recently, in [49] and is the theme of myforthcoming book with Springer-Verlag on \Topics in Physical Mathematics".During the past two decades a surprising number of new structures haveappeared in the geometric topology of low-dimensional manifolds. Chiral,Vertex, A�ne and other in�nite dimensional algebras are related to 2d CFTand string theory as well as to sporadic �nite groups such as the monster. Inthree dimensions there are the polynomial link invariants of Jones, Kaufman.HOMFLY and others, Witten-Reshetikhin-Turaev invariants of 3-manifolds,Casson invariants of homology spheres and Fukaya-Floer instanton homolo-gies. In 4 dimensions we have the instanton invariants of Donaldson and themonopole invariants of Seiberg-Witten and the list continues to grow. Theseinvariants may be roughly split into two groups. Those in the �rst grouparise from combinatorial (algebraic or topological) considerations and can becomputed algorithmically. Those in the second group arise from the study ofmoduli spaces of solutions of partial di�erential equations which have theirorigin in physical �eld theories. Here the computations generally depend onspecial conditions or extra structures. The main aim of these lectures is tostudy some of the relations that have been found between the invariantsfrom the two groups and more generally, to understand the in
uence of ideasfrom �eld theories in geometric topology and vice versa. For example, manyphysicists consider supersymmetric string theory to be the most promisingcandidate to lead to the so called grand uni�cation of all four fundamentalforces. Unifying di�erent string theories into a single theory (such as M-theory) would seem to be the natural �rst step. This goal seems distant atthis time, since even the physical foundations for such uni�cation are notyet clear. However, in mathematics it has led to new areas such as mirrorsymmetry, Calabi-Yau spaces, Gromov-Witten theory, and Gopakumar-Vafainvariants. The earliest and the best understood example of the relationshipbetween invariants from the two groups is illustrated by the Casson invari-ant which was de�ned by using combinatorial topological methods. Taubesfound a gauge theoretic interpretation of the Casson invariant as the Eulercharacteristic by using the generalized Poincar�e-Hopf index which can alsobe obtained by using Floer's instanton homology. Yet there is no algorithmfor computing the homology groups themselves.



Geometric Topology and Field Theory on 3-Manifolds 3Topological quantum �eld theory was ushered in by Witten in his 1989paper [80] \QFT and the Jones' polynomial". WRT invariants arose as abyproduct of the quantization of Chern-Simons theory used to characterizethe Jones' polynomial. At this time, it is the only known geometric char-acterization of the Jones' polynomial, although the Feynman integrals usedby Witten do not yet have a mathematically acceptable de�nition. Space-time manifolds in such theories are compact Riemannian manifolds. Theyare referred to as Euclidean theories in the physics literature. Their role inphysically interesting theories is not clear at this time and they should beregarded as toy models.In the last few years we have celebrated a number of special events. TheGauss' year and the 100th anniversary of Einstein's \Annus Mirabilis" (themiraculous year) are the most important among these. Indeed, Gauss' \Dis-quisitiones generale circa super�cies curvas" was the basis and inspiration forRiemann's work which ushered in a new era in geometry. It is an extensionof this geometry that is the cornerstone of relativity theory. More recently,we have witnessed the marriage between Gauge Theory and the Geometry ofFiber Bundles from the sometime warring tribes of Physics and Mathematics.Marriage brokers were none other than Chern and Simons. The 1975 paper byWu and Yang [83] can be regarded as the announcement of this union. It hasled to many wonderful o�spring. The theories of Donaldson, Chern-Simons,Floer-Fukaya, Seiberg-Witten, and TQFT are just some of the more famousmembers of their extended family. Quantum Groups, CFT, Supersymmetry(SUSY), String Theory, Gromov-Witten theory and Gravity also have closeties with this family. Later in this paper we will discuss one particular re-lationship between gauge theory and string theory, that has recently cometo light. The qualitative aspects of Chern-Simons theory as string theorywere investigated by Witten [82] almost ten years ago. Before recounting themain idea of this work we review the Feynman path integral method of quan-tization which is particularly suited for studying topological quantum �eldtheories. For general background on gauge theory and geometric topologysee, for example, [47, 48].We now give a brief description of the contents of the paper. In section 2we discuss Gauss' Formula for Linking Number of knots, the earliest exampleof TFT (Topological Field Theory) and its recent extension to self linking in-variants. Witten's fundamental work on supersymmetry and Morse theory iscovered in section 3. Chern-Simons theory is introduced in section 4. Its rela-tion to Casson invariant via the moduli space of 
at connections is explainedin section 5. Ideas from sections 3 and 4 are used in section 6 to de�ne theFukaya-Floer homology. This homology provides the categori�cation of theCasson invariant. Knot polynomials and their categori�cation are discussedin sections 7 and 8 respectively. Section 9 is devoted to a general discus-sion of TQFT and its applications to invariants of links and 3-manifolds.Atiyah-Segal axioms for TQFT are introduced in subsection 9.1. In subsec-tion 9.2 we de�ne quantum observables and introduce the Feynman path



4 Kishore Maratheintegral approach to QFT. The Euclidean version of this theory is applied insubsection 9.3 to the Chern-Simons Lagrangian to obtain the skein relationsfor the Jones-Witten polynomial of a link in S3. A by product of this is thefamily of WRT invariants of 3-manifolds. They are discussed in subsection9.4. Section 10 is devoted to studying the relation between WRT invariantsof S3 with gauge group SU(n) and the open and closed string amplitudesin generalized Calabi-Yau manifolds. Change in geometry and topology viaconifold transition which plays an important role in this study is introducedin subsection 10.1 in the form needed for our speci�c problem. Expansionof free energy and its relation to string amplitudes is given in subsection10.2 This result is a special case of the general program introduced by Wit-ten in [82]. A realization of this program even within Euclidean �eld theorypromises to be a rich and rewarding area of research. We have given someindication of this at the end of this section. Links between Yang-Mills, grav-ity and string theory are considered in the concluding section 11. Relation ofYang-Mills equations with Einstein's equations for gravitational �eld in theEuclidean setting is considered in subsection 11.1. Various formulations ofEinstein's equations for gravitational �eld are discussed in subsection 11.2.They also make a surprising appearance in Perelaman's proof of Thurston'sGeometrization conjecture. A brief indication of this is given in subsection11.3.We have included some basic material and given more details than nec-essary to make the paper essentially self-contained. A fairly large number ofreferences ranging from January 1833 to January 2009, when the Heidelbergconference was held, are included to facilitate further study and research inthis exciting and rapidaly expanding area.2 Gauss' Formula for Linking Number of knotsKnots have been known since ancient times but knot theory is of quite re-cent origin. One of the earliest investigations in combinatorial knot theory iscontained in several unpublished notes written by Gauss between 1825 and1844 and published posthumously as part of his Nachla�(estate). They dealmostly with his attempts to classify \Tract�guren" or plane closed curveswith a �nite number of transverse self-intersections. However, one fragmentdeals with a pair of linked knots. We reproduce a part of this fragment below.Es seien die Coordinaten eines unbestimmten Punkts der ersten Linie r =(x; y; z); der zweiten r0 = (x0; y0; z0) undZ Z (r0 � r) � (dr � dr0)jr0 � rj3 = V



Geometric Topology and Field Theory on 3-Manifolds 5dann ist dies Integral durch beide Linien ausgedehnt = 4�m und m die Anzahlder Umschlingungen. Der Werth ist gegenseitig, d.i. er bleibt derselbe, wennbeide Linien gegen einander umgetauscht werden 1833. Jan. 22.In this fragment of a note from his Nachla�, Gauss had given an analyticformula for the linking number of a pair of knots. This number is a combi-natorial topological invariant. As is quite common in Gauss's work, there isno indication of how he obtained this formula. The title of the section wherethe note appears, \Zur Electrodynamik" (\On Electrodynamics") and hiscontinuing work with Weber on the properties of electric and magnetic �eldsleads us to guess that it originated in the study of magnetic �eld generatedby an electric current 
owing in a curved wire.Maxwell knew Gauss's formula for the linking number and its topologicalsigni�cance and its origin in electromagnetic theory. In fact, before he knewof Gauss's formula, he had rediscovered it. He mentions it in a letter to Taitdated December 4, 1867. He wrote several manuscripts which study knots,links and also addressed the problem of their classi�cation. In these andother topological problems his approach was not mathematically rigorous butwas rather based on his deep understanding of physics. Indeed this situationpersists today in several mathematical results obtained by physical reasoning.Like Maxwell, Tait used his physical intuition to correctly classify all knotsup to seven crossings and made a number of conjectures, the last of whichremained open for over hundred years.In obtaining a topological invariant by using a physical �eld theory, Gausshad anticipated Topological Field Theory by almost 150 years. Even theterm topology was not used then. It was introduced in 1847 by J. B. Listing,a student and proteg�e of Gauss, in his essay \Vorstudien zur Topologie".Gauss's linking number formula can also be interpreted as the equality oftopological and analytic degree of the function � de�ned by�(r; r0) := (r� r0)jr� r0j ; 8(r; r0) 2 C � C 0It is well de�ned by the disjointness of C and C 0. If ! denotes the standardvolume form on S2, then the pull back ��(!) of ! to C � C 0 is preciselythe integrand in the Gauss formula and R ! = 4�. One can check that thetopological degree of � equals the linking number m.Recently, Bott and Taubes have used these ideas to study a self-linkinginvariant of knots [12]. It turns out that this invariant belongs to a familyof knot invariants, called �nite type invariants, de�ned by Vassiliev. Gaussforms with di�erent normalization are used by Kontsevich [39] in the for-mula for this invariant and it is stated that the invariant is an integer equalto the second coe�cient of the Alexander-Conway polynomial of the knot. In[10, 11] Bott and Cattaneo obtain invariants of rational homology 3-spheresin terms of con�guration space integrals. Kontsevich views these formulasas forming a small part of a very broad program to relate the invariants of



6 Kishore Marathelow-dimensional manifolds, homotopical algebras, and non-commutative ge-ometry with topological �eld theories and the calculus of Feynman diagrams.It seems that the full realization of this program would require the best e�ortsof mathematicians and physicists for years to come.3 Supersymmetry and Morse TheoryClassical Morse theory on a �nite dimensional, compact, di�erentiable man-ifold M relates the behaviour of critical points of a suitable function on Mwith topological information about M . The relation is generally stated as anequality of certain polynomials as follows. Recall �rst that a smooth functionf : M ! R is called a Morse function if its critical points are isolated andnon-degenerate. If x 2 M is a critical point (i.e. df(x) = 0), then by Taylorexpansion of f around x, we obtain the Hessian of f at x de�ned byf @2f@xi@xj (x)g:Then the non-degeneracy of the critical point x is equivalent to the non-degeneracy of the quadratic form determined by the Hessian. The dimensionof the negative eigenspace of this form is called the Morse index, or simplyindex, of f at x and is denoted by �f (x) or simply �(x) when f is understood.It can be veri�ed that these de�nitions are independent of the choice of thelocal coordinates. Let mk be the number of critical points with index k. Thenthe Morse series of f is the formal power seriesXk mktk ;where mk = 0;8k > dimM:Recall that the Poincar�e series of M is given by Pk bktk, where bk � bk(M)is the k-th Betti number of M . The relation between the two series is givenby Xk mktk =Xk bktk + (1 + t)Xk qktk; (1)where qk are non-negative integers. Comparing the coe�cients of the powersof t in this relation leads to the well-known Morse inequalitiesiXk=0mi�k(�1)k � iXk=0 bi�k(�1)k ; 0 � i � n� 1;nXk=0mn�k(�1)k = nXk=0 bn�k(�1)k :



Geometric Topology and Field Theory on 3-Manifolds 7The Morse inequalities can also be obtained from the following observation.Let C� be the graded vector space over the set of critical points of f . Thenthe Morse inequalities are equivalent to the existence of a certain coboundaryoperator @ : C� ! C� so that @2 = 0 and the cohomology of the complex(C�; @) coincides with the deRham cohomology of M .In his fundamental paper [78], Witten arrives at precisely such a complexby considering a suitable supersymmetric quantum mechanical Hamiltonian.Witten showed how the standard Morse theory (see, for example, Milnor[53]) can be modi�ed by considering the gradient 
ow of the Morse functionf between pairs of critical points of f . One may think of this as a sort ofrelative Morse theory. He was motivated by the phenomenon of the quantummechanical tunnelling. We now discuss this approach. From a mathematicalpoint of view, supersymmetry may be regarded as a theory of operators ona Z2-graded Hilbert space. In recent years this theory has attracted a greatdeal of interest from theoretical point of view even though as yet there is nophysical evidence for its existence.Graded Algebraic StructuresIn this subsection we recall brie
y a few important properties of graded vectorspaces and graded operators in a slightly more general situation than is im-mediately needed. We will use this information again in studying Khovanovhomology. Graded algebraic structures appear naturally in many mathemat-ical and physical theories. We shall restrict our considerations only to Z- andZ2-gradings. The most basic such structure is that of a graded vector spacewhich we now describe. Let V be a vector space. We say that V is Z-graded(resp. Z2-graded) if V is the direct sum of vector subspaces Vi, indexed bythe integers (resp. integers mod. 2), i.e.V =Mi2ZVi ( resp. V = V0 � V1):The elements of Vi are said to be homogeneous of degree i. In the case ofZ2-grading it is customary to call the elements of V0 (resp. V1) even (resp.odd). If V and W are two Z-graded vector spaces, a linear transformationf : V ! W is said to be graded of degree k if f(Vi) � Wi+k ; 8i 2 Z: IfV and W are Z2-graded , then a linear map f : V ! W is said to be evenif f(Vi) � Wi; i 2 Z2 and is said to be odd if f(Vi) � Wi+1; i 2 Z2. Analgebra A is said to be Z-graded if A is Z-graded as a vector space, i.e.A =Mi2ZAi



8 Kishore Maratheand AiAj � Ai+j ; 8i; j 2 Z:An ideal I � A is called a homogeneous idealif I =Mi2Z(I \ Ai):A similar de�nition can be given for a Z2-graded algebra. In the physicalliterature a Z2-graded algebra is referred to as a superalgebra. Otheralgebraic structures (such as Lie, commutative etc.) have their superalgebracounterparts. An example of a Z-graded algebra is given by the exterioralgebra of di�erential forms �(M) of a manifold M if we de�ne �i(M) = 0for i < 0: The exterior di�erential d is a graded linear transformation ofdegree 1 of �(M): The graded or quantum dimension of V is de�ned bydimq V =Xi2Zqi(dim(Vi)) ;where q is a formal variable. If we write q = exp2�iz; z 2 C then dimq V canbe regarded as the Fourier expansion of a complex function. A spectacularapplication of this occurs in the study of �nite groups. We discuss this brie
yin the next paragraph. It is not needed in the rest of the paper. However, ithas surprising connections with conformal �eld theory and vertex algebras. Itdoes not deal with 3-manifolds and may be omitted without loss of continuity.Monstrous MoonshineIt was his study of Kepler's sphere packing conjecture, that led John Con-way to the discovery of his sporadic simple group. Soon thereafter the lastholdouts in the complete list of the 26 �nite sporadic simple groups werefound. All the in�nite families of �nite simple groups (such as the groupsZp; for p a prime number and alternating groups An; n > 4 that we studyin the �rst course in algebra) were already known. So the classi�cation of�nite simple groups was complete. It ranks as the greatest achievement oftwentieth century mathematics. Hundreds of mathematicians contributed toit. The various parts of the classi�cation together �ll more than ten thousandpages. Conway's group and other sporadic simple groups are closely relatedto the symmetries of lattices. The study of representations of the largest ofthese groups (called the Friendly Giant or Fisher-Griess Monster) has ledto the creation of a new �eld of mathematics called Vertex algebras. Theyturn out to be closely related to the chiral algebras in conformal �eld theory.These and other ideas inspired by string theory have led to a proof of Conwayand Norton's Moonshine conjectures ( see, for example, Borcherds [9], andthe book [22] by Frenkel, Lepowski, Meurman). The monster Lie algebra isthe simplest example of a Lie algebra of physical states of a chiral string ona 26-dimensional orbifold. This algebra can be de�ned by using the in�nite



Geometric Topology and Field Theory on 3-Manifolds 9dimensional graded representation V of the monster simple group. Its quan-tum dimension is related to Jacobi's SL(2;Z) hauptmodul (elliptic modularfunction of genus 0) j(q), where q = e2�iz ; z 2 H bydimq V = j(q)� 744 = q�1 + 196884q+ 21493760q2+ : : :The above formula is one small part in the proof of the moonshine conjectures.For more information see my review [52] in the Mathematical Intelligencer.SUSY Quantum TheoryThe Hilbert space E of a supersymmetric theory is Z2-graded, i.e. E =E0 � E1, where the even (resp. odd) space E0 (resp. E1) is called the spaceof bosonic (resp. fermionic) states. These spaces are distinguished by an op-erator S : E ! E de�ned bySu = u; 8u 2 E0;Sv = �v; 8v 2 E1:The operator S is interpreted as counting the number of fermions modulo2. A supersymmetric theory begins with a collection fQi j i = 1; : : : ; ng ofsupercharge (or supersymmetry) operators on E which are of odd degree, i.e.anti-commute with S SQi +QiS = 0; 8i (2)and satisfy the following anti-commutation relationsQiQj +QjQi = 0; 8i 6= j: (3)The dynamics is introduced by the Hamiltonian operator H which com-mutes with the supercharge operators and is usually required to satisfy ad-ditional conditions. For example, in the simplest non-relativistic theory onerequires that H = Q2i ; 8i: (4)In fact this simplest supersymmetric theory has surprising connections withMorse theory which we now discuss.Let M be a compact di�erentiable manifold and de�ne E byE := �(M)
 C :The natural grading on �(M) induces a grading on E. We de�neE0 :=Mj �2j(M)
 C (resp. E1 :=Mj �2j+1(M)
 C )



10 Kishore Marathethe space of complex-valued even (resp. odd) forms on M . The exterior dif-ferential d and its formal adjoint � have natural extension to odd operatorson E and thus satisfy (2). We de�ne supercharge operators Qj ; j = 1; 2, byQ1 = d+ �; (5)Q2 = i(d� �): (6)The Hamiltonian is taken to be the Hodge-deRham operator extended to E,i.e. H = d� + �d: (7)The relations d2 = �2 = 0 imply the supersymmetry relations (3) and (4).We note that in this case bosonic (resp. fermionic) states correspond to even(resp. odd) forms. The relation to Morse theory arises in the following way.If f is a Morse function on M , de�ne a one-parameter family of operatorsdt = e�ftdeft; �t = eft�e�ft; t 2 R (8)and the corresponding supersymmetry operatorsQ1;t = dt + �t; Q2;t = i(dt � �t); Ht = dt�t + �tdt:It is easy to verify that d2t = �2t = 0 and that Q1;t; Q2;t; Ht satisfy thesupersymmetry relations (3) and (4). The parameter t interpolates betweenthe deRham cohomology and the Morse indices as t goes from 0 to +1. Att = 0, the number of linearly independent eigenvectors with zero eigenvalueis just the k-th Betti number bk when H0 = H is restricted to act on k-forms.In fact these ground states of the Hamiltonian are just the harmonic forms.On the other hand, for large t the spectrum of Ht simpli�es greatly with theeigenfunctions concentrating near the critical points of the Morse function.It is in this way that the Morse indices enter into this picture. We can writeHt as a perturbation of H near the critical points. In fact, we haveHt = H + tXj;k f;jk[�j ; iXk ] + t2kdfk2;where �j = dxj acts by exterior multiplication, Xk = @=@xk and iXk is theusual action of inner multiplication by Xk on forms and the norm kdfk isthe norm on �1(M) induced by the Riemannian metric on M . In a suitableneighborhood of a �xed critical point taken as origin, we can approximateHt up to quadratic terms in xj byHt =Xj  � @2@x2j + t2�2jx2j + t�j [�j ; iXj ]! ;



Geometric Topology and Field Theory on 3-Manifolds 11where �j are the eigenvalues of the Hessian of f . The �rst two terms corre-spond to the quantized Hamiltonian of a harmonic oscillator with eigenvaluestXj j �j j (1 + 2Nj);whereas the last term de�nes an operator with eigenvalues ��j . It commuteswith the �rst and thus the spectrum of Ht is given bytXj [j �j j (1 + 2Nj) + �jnj ];where Nj 's are non-negative integers and nj = �1. We remark that the clas-sical harmonic oscillator was the �rst dynamical system that was quantizedby using the canonical quantization principle. Dirac introduced his creationand annihilation operators to obtain its spectrum without solving the cor-responding Schrodinger equation. Feynman used this result to test his pathintegral quantization method. Restricting H to act on k-forms we can �ndthe ground states by requiring all the Nj to be 0 and by choosing nj tobe 1 whenever �j is negative. Thus the ground states (zero eigenvalues) ofH correspond to the critical points of Morse index k. All other eigenvaluesare proportional to t with positive coe�cients. Starting from this observa-tion and using standard perturbation theory, one �nds that the number ofk-form ground states equals the number of critical points of Morse index k.Comparing this with the ground state for t = 0, we obtain the weak Morseinequalities mk � bk. As we observed in the introduction the strong Morseinequalities are equivalent to the existence of a certain cochain complex whichhas cohomology isomorphic to H�(M), the cohomology of the base manifoldM . Witten de�nes Cp, the set of p-chains of this complex, to be the freegroup generated by the critical points of Morse index p. He then argues thatthe operator dt de�ned in (8) de�nes in the limit as t ! 1 a coboundaryoperator d1 : Cp ! Cp+1and that the cohomology of this complex is isomorphic to the deRham coho-mology of Y .Thus we see that in establishing both the weak and strong form of Morseinequalities a fundamental role is played by the ground states of the super-symmetric quantum mechanical system (5), (6), (7). In a classical systemthe transition from one ground state to another is forbidden, but in a quan-tum mechanical system it is possible to have tunneling paths between twoground states. In gauge theory the role of such tunneling paths is played byinstantons. Indeed, Witten uses the prescient words \instanton analysis" todescribe the tunneling e�ects obtained by considering the gradient 
ow of theMorse function f between two ground states (critical points). If � (resp. �)is a critical point of f of Morse index p+1 (resp. p) and � is a gradient 
ow



12 Kishore Maratheof f from � to �, then by comparing the orientation of negative eigenspacesof the Hessian of f at � and �, Witten de�nes the signature n� of this 
ow.By considering the set S of all such 
ows from � to �, he de�nesn(�; �) :=X�2S n� :Now de�ning �1 by�1 : Cp ! Cp+1 by � 7! X�2Cp+1 n(�; �)�; (9)he shows that (C�; �1) is a cochain complex with integer coe�cients. Wittenconjectures that the integer-valued coboundary operator �1 actually givesthe integral cohomology of the manifold M . The complex (C�; �1), with thecoboundary operator de�ned by (9), is referred to as the Witten complex.As we will see later, Floer homology is the result of such \instanton analysis"applied to the gradient 
ow of a suitable Morse function on the moduli spaceof gauge potentials on an integral homology 3-sphere. Floer has also usedthese ideas to study a \symplectic homology" associated to a manifold. Acorollary of this theory proves the Witten conjecture for �nite dimensionalmanifolds (see [64] for further details), namelyH�(C�; �1) = H�(M;Z):A direct proof of the conjecture may be found in the appendix to K. C.Chang [15]. A detailed study of the homological concepts of �nite dimensionalMorse theory in anology with Floer homology may be found in M. Schwarz[67]. While many basic concepts of \Morse homology" can be found in theclassical investigations of Milnor, Smale and Thom, its presentation as anaxiomatic homology theory in the sense of Eilenberg and Steeenrod [18] isgiven for the �rst time in [67]. One consequence of this axiomatic approachis the uniqueness result for \Morse homology" and its natural equivalencewith other axiomatic homology theories de�ned on a suitable category oftopological spaces. Witten conjecture is then a corollary of this result. Adiscussionof the relation of equivariant cohomolgy and supersymmetry maybe found in Guillemin and Sternberg's book [24].4 Chern-Simons TheoryLet M be a compact manifold of dimension m = 2r + 1; r > 0; and letP (M;G) be a principal bundle overM with a compact, semisimple Lie groupG as its structure group. Let �m(!) denote the Chern-Simons m-form on Mcorresponding to the gauge potential (connection) ! on P ; then the Chern-



Geometric Topology and Field Theory on 3-Manifolds 13Simons action ACS is de�ned byACS = c(G) ZM �m(!); (10)where c(G) is a coupling constant whose normalization depends on the groupG. In the rest of this paragraph we restrict ourselves to the case r = 1 andG = SU(n). The most interesting applications of the Chern-Simons theoryto low dimensional topologies are related to this case. It has been extensivelystudied by both physicists and mathematicians in recent years. In this casethe action (10) takes the formACS = k4� ZM tr(A ^ F � 13A ^ A ^A) (11)= k4� ZM tr(A ^ dA+ 23A ^A ^ A); (12)where k 2 R is a coupling constant, A denotes the pull-back to M of thegauge potential ! by a local section of P and F = F! = d!A is the gauge�eld onM corresponding to the gauge potential A. A local expression for (11)is given by ACS = k4� ZM ���
tr(A�@�A
 + 23A�A�A
); (13)where A� = Aa�Ta are the components of the gauge potential with respectto the local coordinates fx�g, fTag is a basis of the Lie algebra su(n) inthe fundamental representation and ���
 is the totally skew-symmetric Levi-Civita symbol with �123 = 1. We take the basis fTag with the normalizationtr(TaTb) = 12�ab; (14)where �ab is the Kronecker � function. Let g 2 G be a gauge transformationregarded (locally) as a function from M to SU(n) and de�ne the 1-form � by� = g�1dg = g�1@�gdx�:Then the gauge transformation Ag of A by g has the local expressionAg� = g�1A�g + g�1@�g: (15)In the physics literature, the connected component of the identity, Gid � G iscalled the group of small gauge transformations. A gauge transformationnot belonging to Gid is called a large gauge transformation. By a directcalculation, one can show that the Chern-Simons action is invariant undersmall gauge transformations, i.e.ACS(Ag) = ACS(A); 8g 2 Gid:



14 Kishore MaratheUnder a large gauge transformation g the action (13) transforms as follows:ACS(Ag) = ACS(A) + 2�kAWZ ; (16)where AWZ := 124�2 ZM ���
tr(�����
) (17)is the Wess-Zumino action functional. It can be shown that the Wess-Zumino functional is integer valued and hence, if the Chern-Simons couplingconstant k is taken to be an integer, then we haveeiACS(Ag) = eiACS(A):The integer k is called the level of the corresponding Chern-Simons theory.It follows that the path integral quantization of the Chern-Simons model isgauge-invariant. This conclusion holds more generally for any compact simplegroup if the coupling constant c(G) is chosen appropriately. The action ismanifestly covariant since the integral involved in its de�nition is independentof the metric on M . It is in this sense that the Chern-Simons theory is atopological �eld theory. We will consider this aspect of the Chern-Simonstheory later.In general, the Chern-Simons action is de�ned on the space AP (M;G) ofall gauge potentials on the principal bundle P (M;G). But when M is 3-dimensional P is trivial (in a non-canonical way). We �x a trivializationto write P (M;G) = M � G and write AM for AP (M;G). Then the groupof gauge transformations GP can be identi�ed with the group of smoothfunctions from M to G and we denote it simply by GM . For k 2 N, thetransformation law (16) implies that the Chern-Simons action descends tothe quotient BM = AM=GM as a function with values in R=Z. We denotethis function by fCS , i.e.fCS : BM ! R=Z is de�ned by [!] 7! ACS(!); 8 [!] = !GM 2 BM : (18)The �eld equations of the Chern-Simons theory are obtained by setting the�rst variation of the action to zero as�ACS = 0:We shall discuss two approaches to this calculation. Consider �rst a one pa-rameter family c(t) of connections on P with c(0) = ! and _c(0) = �. Di�eren-tiating the action ACS(c(t)) with respect to t and noting that di�erentiationcommutes with integration and the tr operator, we getddt ACS(c(t)) = 14� ZM tr (2 _c(t) ^ dc(t) + 2( _c(t) ^ c(t) ^ c(t)))



Geometric Topology and Field Theory on 3-Manifolds 15= 12� ZM tr ( _c(t) ^ (dc(t) + c(t) ^ c(t)))= 12� ZM < _c(t) ; �Fc(t) >where the inner product on the right is as de�ned in De�nition 2.1. It followsthat �ACS = ddt ACS(c(t))jt=0 = 12� ZM < � ; �F! > : (19)Since � can be chosen arbitrarily, the �eld equations are given by�F! = 0 or equivalently F! = 0: (20)Alternatively, one can start with the local coordinate expression of equa-tion (13) as followsACS = k4� ZM ���
tr(A�@�A
 + 23A�A�A
)= k4� ZM ���
tr(Aa�@�Ac
TaTb + 23Aa�Ab�Ac
TaTbTc)and �nd the �eld equations by using the variational equation�ACS�Aa� = 0: (21)This method brings out the role of commutation relations and the structureconstants of the Lie algebra su(n) as well as the boundary conditions usedin the integration by parts in the course of calculating the variation of theaction. The result of this calculation gives�ACS�Aa� = k2� ZM ���
 �@�Aa
 +Ab�Ac
fabc� (22)where fabc are the structure constants of su(n) with respect to the basis Ta.The integrand on the right hand side of the equation (22) is just the localcoordinate expression of �FA, the dual of the curvature, and hence leads tothe same �eld equations.The calculations leading to the �eld equations (20) also show that thegradient vector �eld of the function fCS is given bygrad fCS = 12� � F (23)The gradient 
ow of fCS plays a fundamental role in the de�nition of Floerhomology. The solutions of the �eld equations (20) are called the Chern-Simons connections. They are precisely the 
at connections. In the next



16 Kishore Maratheparagraph we discuss 
at connections on a manifold N and their relation tothe homomorphisms of the fundamental group �1(N) into the gauge group.Flat connectionsLet H be a compact Lie group and Q(N;H) be a principal bundle withstructure group H over a compact Riemannian manifold N . A connection !on Q is said to be 
at if its curvature is zero, i.e. F! = 0: The pair (Q;!)is called a 
at bundle. Let 
(N; x) be the loop space at x 2 N . Recallthat the horizontal lift hu of c 2 
(N; x) to u 2 ��1(x) determines a uniqueelement of H . Thus we have the maphu : 
(N; x) ! H:It is easy to see that ! 
at implies that this map hu depends only on thehomotopy class of the loop c and hence induces a map (also denoted by hu)hu : �1(N; x)! H:It is this map that is related to the Bohm-Aharonov e�ect. It can be shownthat the map hu is a homomorphism of groups. The group H acts on theset Hom(�1(N); H) by conjugation sending hu to g�1hug = hug. Thus a 
atbundle (Q;!) determines an element of the quotient Hom(�1(N); H)=H: Ifa 2 G(Q), the group of gauge transformations of Q, then a � ! is also a 
atconnection on Q and determines the same element of Hom(�1(N); H)=H:Conversely, let f 2 Hom(�1(N); H) and let (U; q) be the universal cover-ing of N . Then U is a principal bundle over N with structure group �1(N).De�ne Q := U �f H to be the bundle associated to U by the action fwith standard �ber H . It can be shown that Q admits a natural 
at con-nection and that f and g�1fg; g 2 H , determine isomorphic 
at bundles.Thus the moduli spaceMf (N;H) of 
at H-bundles over N can be identi�edwith the set Hom(�1(N); H)=H: The moduli space Mf (N;H) and the setHom(�1(N); H) have a rich mathematical structure which has been exten-sively studied in the particular case when N is a compact Riemann surface[3].The 
at connection deformation complex is the generalized deRhamsequence with the usual di�erential d replaced by the covariant di�erentiald!. The fact that in this case it is a complex follows from the observation that! 
at implies d! � d! = 0. By rolling up this complex, we can consider therolled up deformation operator d! + �! : �ev ! �odd: By the index theorem,we have Ind(d! + �!) = �(N)dimHand hence



Geometric Topology and Field Theory on 3-Manifolds 17nXi=0(�1)ibi = �(N)dimH; (24)where bi is the dimension of the i-th cohomology of the deformation complex.Both sides are identically zero for odd n. For even n, the formula can be usedto obtain some information on the virtual dimension of Mf (= b1): Forexample, if N = �g is a Riemann surface of genus g > 1, then �(�g) =�2g + 2, while, by Hodge duality, b0 = b2 = 0 at an irreducible connection.Thus, equation (24) gives �b1 = �(2g � 2)dimH:From this it follows thatdimMf (�g; H) = dimMf = (2g � 2)dimH: (25)In even dimensions greater than 2, the higher cohomology groups provideadditional obstructions to smoothability of Mf : For example, for n = 4,Hodge duality implies that b0 = b4 and b1 = b3 and (24) givesb1 = b0 + (b2 � �(N)dimH)=2:Equation (25) shows that dimMf is even. Identifying the �rst cohomologyH1(�(M;adh); d!) of the deformation complex with the tangent space T!Mfto Mf , the intersection form de�nes a map �! : T!Mf � T!Mf ! R by�(X;Y ) = Z�g X ^ Y; X; Y 2 T!Mf : (26)The map �! is skew-symmetric and bilinear. The map� : ! 7! �! ; 8! 2Mf ; (27)de�nes a 2-form � onMf . If h admits an H-invariant inner product, then this2-form � is closed and non-degenerate and hence de�nes a symplectic structureon Mf . It can be shown that, for a Riemann surface with H = PSL(2;R),the form �, restricted to the Teichm�uller space, agrees with the well-knownWeil-Petersson form.We now discuss an interesting physical interpretation of the symplecticmanifold (Mf (�g; H); �). Consider a Chern-Simons theory on the principalbundle P (M;H) over the 2+1-dimensional space-time manifoldM = �g�Rwith gauge group H and with time independent gauge potentials and gaugetransformations. LetA (resp.H) denote the space (resp. group) of these gaugeconnections (resp. transformations). It can be shown that the curvature F!de�nes an H-equivariant moment map� : A ! LH �= �1(M;adP ); by ! 7! �F!;



18 Kishore Marathewhere LH is the Lie algebra of H. The zero set ��1(0) of this map is preciselythe set of 
at connections and henceMf �= ��1(0)=H := A==H (28)is the reduced phase space of the theory, in the sense of the Marsden-Weinstein reduction. We call A==H the symplectic quotient of A by H.Marsden-Weinstein reduction and symplectic quotient are fundamental con-structions in geometrical mechanics and geometric quantization. They alsoarise in many other mathematical applications.A situation similar to that described above, also arises in the geomet-ric formulation of canonical quantization of �eld theories. One proceeds byanalogy with the geometric quantization of �nite dimensional systems. Forexample, Q = A=H can be taken as the con�guration space and T �Q as thecorresponding phase space. The associated Hilbert space is obtained as thespace of L2 sections of a complex line bundle over Q. For physical reasonsthis bundle is taken to be 
at. Inequivalent 
at U(1)-bundles are said to cor-respond to distinct sectors of the theory. Thus we see that at least formallythese sectors are parametrized by the moduli spaceMf (Q;U(1)) �= Hom(�1(Q); U(1))=U(1) �= Hom(�1(Q); U(1))since U(1) acts trivially on Hom(�1(Q); U(1)).We note that the Chern-Simons theory has been extended by Witten tothe cases when the gauge group is �nite and when it the complexi�cationof compact real gauge groups [17, 81]. While there are some similarities be-tween these theories and the standard CS theory, there are major di�erencesin the corresponding TQFTs. New invariants of some hyperbolic 3-manifoldshave recently been obtained by considering the complex gauge groups lead-ing to the concept of arithmetic TQFT by Zagier and collaborators (seearXiv:0903.24272v1 [hep-th]). See also Dijkgraaf and Fuji arXiv:0903.2084[hep-th] and Gukov and Witten arXiv:0809.0305 [hep-th].5 Casson invariant and Flat ConnectionsLet Y be a homology 3-sphere. Let D1, D2 be two unitary, unimodular rep-resentations of �1(Y ) in C 2 . We say that they are equivalent if they areconjugate under the natural SU(2)-action on C 2 , i.e.D2(g) = S�1D1(g)S; 8g 2 �1(Y ); S 2 SU(2):Let us denote by R(Y ) the set of equivalence classes of such representations.It is customary to write



Geometric Topology and Field Theory on 3-Manifolds 19R(Y ) := Homf�1(Y )! SU(2)g=conj: (29)The set R(Y ) can be given the structure of a compact, real algebraic variety.It is called the SU(2)-representation variety of Y . Let R�(Y ) be the class ofirreducible representations. Fixing an orientation of Y , Casson showed how toassign a sign s(�) to each element � 2 R�(Y ). He showed that the set R�(Y )is 0-dimensional and compact and hence �nite. Casson de�ned a numericalinvariant of Y by counting the signed number of elements of R�(Y ) byc(Y ) := X�2R�(Y ) s(�):1 (30)The integer c(Y ) is called the Casson invariant of Y .Theorem 1 The Casson invariant c(Y ) is well de�ned up to sign for anyhomology sphere Y and satis�es the following properties:i) c(�Y ) = �c(Y ),ii) c(X#Y ) = c(X) + c(Y ), X a homology sphere,iii) c(Y )=2 = �(Y ) mod 2, � Rokhlin invariant.We now give a gauge theory description of R(Y ) leading to Taubes' theorem.In [71] Taubes gives a new interpretation of the Casson invariant c(Y ) ofan oriented homology 3-sphere Y , which is de�ned above in terms of thesigned count of equivalence classes of irreducible representations of �1(Y )into SU(2). As indicated above, this space can be identi�ed with the modulispace Mf (Y; SU(2)) of 
at connections in the trivial SU(2)- bundle overY . Recall that this is also the space of solutions of the Chern-Simons �eldequations (20) The map F : ! 7! F! de�nes a natural 1-form on A=G andthe zeros of this form are just the 
at connections. We note that since A=Gis in�nite dimensional, it is necessary to use suitable Fredholm perturbationsto get simple zeros and to count them with appropriate signs. Let Z denotethe set of zeros of the perturbed vector �eld and let s(a) be the sign of a 2 Z.Taubes shows that Z is contained in a compact set and thatc(Y ) =Xa2Z s(a):1The right hand side of this equation can be interpreted as the index of avector �eld in the in�nite dimensional setting. The classical Poincar�e-Hopftheorem can also be generalized to interpret the index as Euler characteristic.A natural question to ask is if this Euler characteristic comes from somehomology theory? An a�rmative answer is provided by Floer's instantonhomology. We discuss it in the next section.Another approach to Casson's invariant involves symplectic geometry andtopology. We conclude this section with a brief indication of this approach.Let Y+[�g Y� be a Heegaard splitting of Y along the Riemann surface �g ofgenus g. The space R(�g) of conjugacy classes of representations of �1(�g)



20 Kishore Maratheinto SU(2) can be identi�ed with the moduli space Mf (�g ; SU(2)) of 
atconnections. This identi�cation endows it with a natural symplectic struc-ture which makes it into a (6g � 6)-dimensional symplectic manifold. Therepresentations which extend to Y+ (resp. Y�) form a (3g � 3)-dimensionalLagrangian submanifold of R(�g) which we denote by R(Y+) (resp. R(Y�)).Casson's invariant is then obtained from the intersection number of the La-grangian submanifolds R(Y+) and R(Y�) in the symplectic manifold R(�g).How the Floer homology of Y �ts into this scheme seems to be unknown atthis time.6 Fukaya-Floer HomologyThe idea of instanton tunnelling and the corresponding Witten complex wasextended by Floer to do Morse theory on the in�nite dimensional modulispace of gauge potentials on a homology 3-sphere Y and to de�ne new topo-logical invariants of Y . Fukaya has generalized this work to apply to arbitraryoriented 3-manifolds. We shall refer to the invariants of Floer and Fukaya col-lectively as Fukaya-Floer Homology. Fukaya-Floer Homology associates to anoriented, connected, closed, smooth 3-dimensional manifold Y , a family ofZ8-graded instanton homology groups FFn(Y ); n 2 Z8. We begin by intro-ducing Floer's original de�nition, which requires Y to be a homology 3-sphere.Let R(Y ) be the SU(2)-representation variety of Y as de�ned in (29 and letR�(Y ) be the class of irreducible representations. We say that � 2 R�(Y ) isa regular representation ifH1(Y; ad(�)) = 0: (31)We identify R(Y ) with the space of 
at or Chern-Simons connections on Y .The Chern-Simon functional has non-degenerate Hessian at � if � is regular.Fix a trivialization P of the given SU(2)-bundle over Y . Using the trivialconnection � on P = Y � SU(2) as a background connection on Y , we canidentify the space of connections AY with the space of sections of �1(Y ) 
su(2). In what follows we shall consider a suitable Sobolev completion of thisspace and continue to denote it by AY .Let c : I ! AY be a path from � to �. The family of connections c(t) onY can be identi�ed as a connection A on Y � I . Using this connection we canrewrite the Chern-Simons action (11) as followsACS = 18�2 ZY�I tr(FA ^ FA): (32)We note that the integrand corresponds to the second Chern class of thepull-back of the trivial SU(2)-bundle over Y to Y �I . Recall that the criticalpoints of the Chern-Simons action are the 
at connections. The gauge group



Geometric Topology and Field Theory on 3-Manifolds 21GY acts on ACS : A ! R byACS(�g) = ACS(�) + deg(g); g 2 GY :It follows that ACS descends to BY := AY =GY as a map fCS : BY ! R=Zand we can take R(Y ) � BY as the critical set of fCS . The gradient 
ow ofthis function is given by the equation@c(t)@t = �Y Fc(t): (33)Since Y is a homology 3-sphere, the critical points of the 
ow of grad fCSand the set of reducible connections intersect at a single point, the trivialconnection �. If all the critical points of the 
ow are regular then it is aMorse-Smale 
ow. If not, one can perturb the function fCS to get a Morsefunction.In general the representation space R�(Y ) � BY contains degenerate crit-ical points of the Chern-Simons function fCS. In this case Floer de�nes a setof perturbations of fCS as follows. Let m 2 N and let _mi=1S1i be a bouquetof m copies of the circle S1. Let �m be the set of maps
 : m_i=1S1i �D2 ! Ysuch that the restrictions
x : m_i=1S1i � fxg ! Y and 
i : S1i �D2 ! Yare smooth embeddings for each x 2 D2 and for each i; 1 � i � m. Let 
̂xdenote the family of holonomy maps
̂x : AY ! SU(2)� � � � � SU(2)| {z }m times ; x 2 D2:The holonomy is conjugated under the action of the group of gauge transfor-mations and we continue to denote by 
̂x the induced map on the quotientBY = AY =G. Let Fm denote the set of smooth functionsh : SU(2)� � � � � SU(2)| {z }m times ! Rwhich are invariant under the adjoint action of SU(2). Floer's set of pertur-bations � is de�ned as � := [m2N�m �Fm:



22 Kishore MaratheFloer proves that for each (
; h) 2 � the functionh
 : BY ! R de�ned by h
(�) = ZD2 h(
̂x(�))is a smooth function and that for a dense subset P � RM(Y )�� the criticalpoints of the perturbed functionf(
;h) := fCS + h
are non-degenerate and the corresponding moduli space decomposes intosmooth, oriented manifolds of regular trajectories of the gradient 
ow of thefunction f(
;h) with respect to a generic metric � 2 RM(Y ). Furthermore,the homology groups of the perturbed chain complex are independent of thechoice of perturbation in P . We shall assume that this has been done. Let�; � be two critical points of the function fCS . Considering the spectral 
ow(denoted by sf) from � to � we obtain the moduli space M(�; �) as themoduli space of self-dual connections on Y � R which are asymptotic to �and � (as t ! �1). Let Mj(�; �) denote the component of dimension j inM(�; �). There is a natural action of R on M(�; �). Let M̂j(�; �) denotethe component of dimension j� 1 inM(�; �)=R. Let #M̂1(�; �) denote thesigned sum of the number of points in M̂1(�; �). Floer de�nes the Morseindex of � by considering the spectral 
ow from � to the trivial connection �.It can be shown that the spectral 
ow and hence the Morse index are de�nedmodulo 8. Now de�ne the chain groups byRn(Y ) = Zf� 2 R�(Y ) j sf(�) = ng; n 2 Z8and de�ne the boundary operator @@ : Rn(Y )! Rn�1(Y )by @� = X�2Rn�1(Y )#M̂1(�; �)�: (34)It can be shown that @2 = 0 and hence (R(Y ); @) is a complex. This complexcan be thought of as an in�nite dimensional generalization [21] of Witten'sinstanton tunnelling and we will call it the Floer-Witten Complex of thepair (Y; SU(2)). Since the spectral 
ow and hence the dimensions of thecomponents of M(�; �) are congruent modulo 8, this complex de�nes theFloer homology groups FHj(Y ); j 2 Z8, where j is the spectral 
ow of � to� modulo 8. If rj denotes the rank of the Floer homology group FHj(Y ); j 2Z8, then we can de�ne the corresponding Euler characteristic �F (Y ) by�F (Y ) := Xj2Z8(�1)jrj :



Geometric Topology and Field Theory on 3-Manifolds 23Combining this with Taubes' interpretation of the Casson invariant c(Y ) weget c(Y ) = �F (Y ) = Xj2Z8(�1)jrj : (35)An important feature of Floer's instanton homology is that it can be re-garded as a functor from the category of homology 3-spheres with morphismsgiven by oriented cobordism, to the category of graded abelian groups. LetM be a smooth, oriented cobordism from Y1 to Y2 so that @M = Y2 � Y1.By a careful analysis of instantons on M , Floer showed [20] that M inducesa graded homomorphismMj : FHj(Y1)! FHj+b(M)(Y2); j 2 Z8; (36)where b(M) = 3(b1(M)� b2(M)): (37)Then the homomorphisms induced by cobordism has the following functorialproperties. (Y � R)j = id; (38)(MN)j = Mj+b(N)Nj : (39)An algorithm for computing the Floer homology groups for Seifert-�beredhomology 3-spheres with three exceptional �bers (or orbits) has been dis-cussed in [19].In addition to these invariants of 3-manifolds and the linking number, thereare several other invariants of knots and links in 3-manifolds. We introducethem in the next section and study their �eld theory interpretations in thelater sections.7 Knot PolynomialsIn the second half of the nineteenth century, a systematic study of knots in R3was made by Tait. He was motivated by Kelvin's theory of atoms modelledon knotted vortex tubes of ether. Tait classi�ed the knots in terms of thecrossing number of a plane projection and made a number of observationsabout some general properties of knots which have come to be known as the\Tait conjectures". Recall that a knot � in S3 is an embedding of the circleS1 and that a link is a disjoint union of knots. A link diagram of � is aplane projection with crossings marked as over or under. By changing a linkdiagram at one crossing we can obtain three diagrams corresponding to links�+, �� and �0.



24 Kishore MaratheIn the 1920s, Alexander gave an algorithm for computing a polynomialinvariant A�(q) of a knot �, called the Alexander polynomial, by usingits projection on a plane. He also gave its topological interpretation as anannihilator of a certain cohomology module associated to the knot �. In the1960s, Conway de�ned his polynomial invariant and gave its relation to theAlexander polynomial. This polynomial is called the Alexander-Conwaypolynomial or simply the Conway polynomial. The Alexander-Conway poly-nomial of an oriented link L is denoted by rL(z) or simply by r(z) whenL is �xed. We denote the corresponding polynomials of L+, L� and L0 byr+, r� and r0 respectively. The Alexander-Conway polynomial is uniquelydetermined by the following simple set of axioms.AC1. Let L and L0 be two oriented links which are ambient isotopic. ThenrL0(z) = rL(z) (40)AC2. Let S1 be the standard unknotted circle embedded in S3. It is usuallyreferred to as the unknot and is denoted by O. ThenrO(z) = 1: (41)AC3. The polynomial satis�es the following skein relationr+(z)�r�(z) = zr0(z): (42)We note that the original Alexander polynomial �L is related to theAlexander-Conway polynomial by the relation�L(t) = rL(t1=2 � t�1=2):Despite these and other major advances in knot theory, the Tait conjecturesremained unsettled for more than a century after their formulation. Then inthe 1980s, Jones discovered his polynomial invariant V�(q), called the Jonespolynomial, while studying Von Neumann algebras and gave its interpreta-tion in terms of statistical mechanics. These new polynomial invariants haveled to the proofs of most of the Tait conjectures. As with the earlier invariants,Jones' de�nition of his polynomial invariants is algebraic and combinatorialin nature and was based on representations of the braid groups and relatedHecke algebras. The Jones polynomial V�(t) of � is a Laurent polynomial int (polynomial in t and t�1) which is uniquely determined by a simple set ofproperties similar to the axioms for the Alexander-Conway polynomial. Moregenerally, the Jones polynomial can be de�ned for any oriented link L as aLaurent polynomial in t1=2. Reversing the orientation of all components of Lleaves VL unchanged. In particular, V� does not depend on the orientation ofthe knot �. For a �xed link, we denote the Jones polynomial simply by V .Recall that there are 3 standard ways to change a link diagram at a cross-ing point. The Jones polynomials of the corresponding links are denoted by



Geometric Topology and Field Theory on 3-Manifolds 25V+; V� and V0 respectively. Then the Jones polynomial is characterized bythe following properties:JO1. Let � and �0 be two oriented links which are ambient isotopic. ThenV�0(t) = V�(t) (43)JO2. Let O denote the unknot. ThenVO(t) = 1: (44)JO3. The polynomial satis�es the following skein relationt�1V+ � tV� = (t1=2 � t�1=2)V0: (45)An important property of the Jones polynomial that is not shared by theAlexander-Conway polynomial is its ability to distinguish between a knotand its mirror image. Let �m be the mirror image of the knot �. ThenV�m(t) = V�(t�1) 6= V�(t) (46)Since the Jones polynomial is not symmetric in t and t�1. Soon after Jones'discovery a two variable polynomial generalizing V was found by severalmathematicians. It is called the HOMFLY polynomial and is denoted byP . The HOMFLY polynomial P (�; z) satis�es the following skein relation�P+ � ��1P� = zP0: (47)If we put � = t�1 and z = (t1=2 � t�1=2) in equation (47) we get the skeinrelation for the original Jones polynomial V . If we put � = 1 we get the skeinrelation for the Alexander-Conway polynomial.Knots and links in R3 can also be obtained by using braids. A braid onn strands (or with n strings or simply an n-braid) can be thought of as aset of n pairwise disjoint strings joining n distinct points in one plane with ndistinct points in a parallel plane in R3 . The set of equivalence classes of n-braids is denoted by Bn. A braid is called elementary if only two neighboringstrings cross. We denote by �i the elementary braid where the i-th stringcrosses over the (i+ 1)-th string.Theorem (M. Artin): The set Bn with multiplication operation induced byconcatenation of braids is a group generated by the elementary braids �i; 1 �i � n� 1 subject to the braid relations�i�i+1�i = �i+1�i�i+1 ; 1 � i � n� 2: (48)and the far commutativity relations�i�j = �j�i ; 1 � i; j � n� 1 and ji� jj > 1: (49)



26 Kishore MaratheThe closure of a braid b obtained by gluing the endpoints is a link de-noted by c(b). A classical theorem of Alexander shows that the closure mapfrom the set of braids to the set of links is surjective, i.e. any link (and, inparticular, knot) is the closure of some braid. Moreover, if braids b and b0are equivalent, then the links c(b) and c(b0) are equivalent. There are severaldescriptions of the braid group leading to various approaches to the studyof its representations and invariants of links. For example, Bn is isomorphicto the fundamental group of the con�guration space of n distinct points inthe plane. The action of Bn on the homology of the con�guration space isrelated to the representations of certain Hecke algebras leading to invariantsof links such as the Jones polynomial that we have discussed earlier. Thegroup Bn is also isomorphic to the mapping class group of the n-punctureddisc. This de�nition was recently used by Krammer and Bigelow in showingthe linearity of Bn over the ring Z[q�1; t�1] of Laurent polynomials in twovariables.8 Categori�cation of Knot PolynomialsWe begin by recalling that a categori�cation of an invariant I is the con-struction of a suitable (co)homology H� such that its Euler characteristic�(H�) (the alternating sum of the ranks of (co)homology groups) equalsI . Historically, the Euler charactristic was de�ned and understood well be-fore the advent of algebraic topology. Theorema egregium of Gauss and theclosely related Gauss-Bonnet theorem and its generalization by Chern givea geometric interpretation of the Euler characteristic �(M) of a manifoldM . They can be regarded as precursors of Chern-Weil theory as well as in-dex theory. Categori�cation �(H�(M)) of this Euler characteristic �(M) byvarious (co)homolgy theories H�(M) came much later. A well known recentexample that we have discussed is the categori�cation of the Casson invariantby the Fukaya-Floer homology. Categori�cation of quantum invariants suchas Knot Polynomials requires the use of quantum Euler characteristic andmulti-graded knot homologies.Recently Khovanov [29] has obtained a categori�cation of the Jones poly-nomial V�(q) by constructing a bi-graded sl(2)-homology Hi;j determinedby the knot �. It is called the Khovanov homology of the knot � and isdenoted by KH(�). The Khovanov polynomial Kh�(t; q) is de�ned byKh�(t; q) =Xi;j tjqidim Hi;j :It can be thought of as a two variable generalization of the Poincar�e polyno-mial. The quantum or graded Euler characteristic of the Khovanov homologyequals the Jones polynomial. i.e.



Geometric Topology and Field Theory on 3-Manifolds 27V�(q) = �q(KH(�)) =Xi;j (�1)jqidim Hi;j :Khovanov's construction follows Kau�man's state-sum model of the link Land his alternative de�nition of the Jones polynomial. Let L̂ be a regularprojection of L with n = n+ + n� labelled crossings. At each crossing wecan de�ne two resolutions or states, the vertical or 1-state and horizontal or0-state. Thus there are 2n total resolutions of L̂ which can be put into oneto one correspondence with the vertices of an n-dimensional unit cube. Foreach vertex x let jxj be the sum of its coordinates and let c(x) be the numberof disjoint circles in the resolution L̂x of L̂ determined by x. Kau�man'sstate-sum expression for the non-normalized Jones polynomial V̂ (L) can bewritten as follows:V̂ (L) = (�1)n�q(n+�2n�)X(�q)jxj(q + q�1)c(x) : (50)Dividing this by the unknot value (q+q�1) gives the usual normalized Jonespolynomial V (L). The Khovanov complex is constructed as follows. Let Vbe a graded vector space over a �xed ground �eld K, generated by two basisvectors v� with respective degrees �1. The total resolution associates to eachvertex x a one dimensional manifold Mx consisting of c(x) disjoint circles.We can construct a (1+1)-dimensioal TQFT (along the lines of Atiyah-Segalaxioms discussed in the next section) for each edge of the cube as follows. Ifxy is an edge of the cube we can get a pair of pants cobordism from Mx toMy by noting that a circle at x can split into two at y or two circles at xcan fuse into one at y. If a circle goes to a circle than the cylinder providesthe cobordism. To the manifold Mx at each vertex x we associate the gradedvector space Vx(L) := V 
c(x)fjxjg ; (51)where fkg is the degree shift by k. We de�ne the Frobenius structure (see thebook [34] by Kock for Frobenius algebras and their relation to TQFT) on Vas follows. Multiplication m : V 
 V ! V is de�ned bym(v+ 
 v+) = v+; m(v+ 
 v�) = v�;m(v� 
 v+) = v�; m(v� 
 v�) = 0:Co-multiplication � : V ! V 
 V is de�ned by�(v+) = v+ 
 v� + v� 
 v+ ; �(v�) = v� 
 v�:Thus v+ is the unit. The co-unit � 2 V � is de�ned by mapping v+ to 0 and v�to 1 in the base �eld. The r-th chain group Cr(L) in the Khovanov complexis the direct sum of all vector spaces Vx(L), where jxj = r; and the di�erentialis de�ned by the Frobenius structure. Thus



28 Kishore MaratheCr(L) := �jxj=rVx(L): (52)We remark that the TQFT corresponds to the Frobenius algebra structureon V de�ned above. The r-th homology group of the Khovanov complex isdenoted by KHr. Khovanov has proved that the homology is independent ofthe various choices made in de�ning it. Thus we haveTheorem 2 The homology groups KHr are link invariants. In particular,the Khovanov polynomialKhL(t; q) =Xj tjdimq(KHj)is a link invariant that specializes to the non-normalized Jones polynomial.The Khovanov polynomial is strictly stronger than the Jones polynomial.We note that the knots 942 and 10125 are chiral. Their chirality is detectedby the Khovanov polynomial but not by the Jones polynomial. Also thereare several pairs of knots with the same Jones polynomials but di�erentKhovanov polynomials. For example (51; 10132) is such a pair.8.1 Categori�cation of V (31)Using equations (51) and (52) and the algebra structure on V the calcula-tion of the Khovanov complex can be reduced to an algorithm. A computerprogram implementing such an algorithm is discussed in [6]. A table of Kho-vanov polynomials for knots and links up to 11 crossings is also given there.We now illustrate Khovanov's categori�cation of the Jones polynomial ofthe right handed trefoil knot 31. For the standard diagram of the trefoil,n = n+ = 3 and n� = 0. The quantum dimensions of the non-zero terms ofthe Khovanov complex with the shift factor included are given byC0 = (q + q�1)2; C1 = 3q(q + q�1); C2 = 3q2(q + q�1)2; C3 = q3(q + q�1)3:(53)The non-normalized Jones polynomial can be obtained from (53) or directlyfrom (50) giving V̂ (L) = (q + q3 + q5 � q9) (54)The normalized or standard Jones polynomial is then given byV (q) = (q + q3 + q5 � q9)=(q + q�1) = q2 + q6 � q8:By direct computation or using the program in [6] we obtain the followingformula for the Khovanov polynomial of the trefoilKh(t; q) = q + q3 + t2q5 + t3q9;Kh(�1; q) = �q = V̂ (L):



Geometric Topology and Field Theory on 3-Manifolds 29Based on computations using the program described in [6], Khovanov, Garo-fouladis and Bar-Natan (BKG) have formulated some conjectures on thestructure of Khovanov polynomials over di�erent base �elds. We now statethese conjectures.The BKG Conjectures: For any prime knot �, there exists an even integers = s(�) and a polynomial Kh0�(t; q) with only non-negative coe�cients suchthat1. Over the base �eld K = Q,Kh�(t; q) = qs�1[1 + q2 + (1 + tq4)Kh0�(t; q)]2. Over the base �eld K = Z2,Kh�(t; q) = qs�1(1 + q2)[1 + (1 + tq2)Kh0�(t; q)]3. Moreover, if the � is alternating, then s(�) is the signature of the knot andKh0�(t; q) contains only powers of tq2.The conjectured results are in agreement with all the known values of theKhovanov polynomials.If S � R4 is an oriented surface cobordism between links L1 and L2, thenit induces a homomorphism of Khovanov homologies of links L1 and L2.These homomorphisms de�ne a functor from the category of link cobordismsto the category of bigraded abelian groups. Khovanov homology extends tocolored links (i.e. oriented links with components labelled by irreducible �nitedimensional representations of sl(2)) to give a categori�cation of the coloredJones polynomial. Khovanov and Rozansky have de�ned an sl(n)-homologyfor links colored by either the de�ning representation or its dual. This givescategori�cation of the specialization of the HOMFLY polynomial P (�; q) witha = qn. The sequence of such specializations for n 2 N would categorify thetwo variable HOMFLY polynomial P (�; q). For n = 0 the theory coincideswith the Heegaard Floer homology of Ozsv�ath and Szabo [57].In the 1990s Reshetikhin, Turaev and other mathematicians obtained sev-eral quantum invariants of triples (g; L;M), where g is a simple Lie algebra,L � M is an oriented, framed link with components labelled by irreduciblerepresentations of g and M is a 2-framed 3-manifold. In particular, thereare polynomial invariants < L > that take values in Z[q�1; q]. Khovanovhas conjectured that at least for some classes of Lie algebras (e.g. simply-laced) there exists a bigraded homology theory of labelled links such thatthe polynomial invariant < L > is the quantum Euler characteristic of thishomology. It should de�ne a functor from the category of framed link cobor-disms to the category of bigraded abelian groups. In particular, the homologyof the unknot labelled by an irreducible representation U of g should be aFrobenius algebra of dimension dim(U).



30 Kishore Marathe9 Topological Quantum Field TheoryQuantization of classical �elds is an area of fundamental importance in mod-ern mathematical physics. Although there is no satisfactory mathematicaltheory of quantization of classical dynamical systems or �elds, physicistshave developed several methods of quantization that can be applied to speci�cproblems. Most successful among these is QED (Quantum Electrodynamics),the theory of quantization of electromagnetic �elds. The physical signi�canceof electromagnetic �elds is thus well understood at both the classical andthe quantum level. Electromagnetic theory is the prototype of classical gaugetheories. It is therefore, natural to try to extend the methods of QED tothe quantization of other gauge �eld theories. The methods of quantizationmay be broadly classi�ed as non-perturbative and perturbative. The litera-ture pertaining to each of these areas is vast. See for example [17, 66, 70].Our aim in this section is to discuss some aspects of a new area of researchin quantum �eld theory, namely, topological quantum �eld theory (or TQFTfor short). Ideas from TQFT have already led to new ways of looking at oldtopological invariants as well as to surprising new invariants.9.1 Atiyah-Segal axioms for TQFTIn 2 and 3 dimensional geometric topology, Conformal Field Theory (CFT)methods have proved to be useful. An attempt to put the CFT on a �rmmathematical foundation was begun by Segal in [68] by proposing a set ofaxioms for CFT. CFT is a two dimensional theory and it was necessary tomodify and generalize these axioms to apply to topological �eld theory inany dimension. We now discuss brie
y these TQFT axioms following AtiyahThe Atiyah-Segal axioms for TQFT (see, for example, [2], [40]) arose from anattempt to give a mathematical formulation of the non-perturbative aspectsof quantum �eld theory in general and to develop, in particular, compu-tational tools for the Feynman path integrals that are fundamental in theHamiltonian approach to Witten's topological QFT. The most spectacularapplication of the non-perturbative methods has been in the de�nition andcalculation of the invariants of 3-manifolds with or without links and knots.In most physical applications however, it is the perturbative calculations thatare predominantly used. Recently, perturbative aspects of the Chern-Simonstheory in the context of TQFT have been considered in [5]. For other ap-proaches to the invariants of 3-manifolds see [30, 32, 55, 72, 74]Let Cn denote the category of compact, oriented, smooth n-dimensionalmanifolds with morphism given by oriented cobordism. Let VC denote thecategory of �nite dimensional complex vector spaces. An (n+1)-dimensionalTQFT is a functor T from the category Cn to the category VC which satis�esthe following axioms.



Geometric Topology and Field Theory on 3-Manifolds 31A1. Let �� denote the manifold � with the opposite orientation of � andlet V � be the dual vector space of V 2 VC . ThenT (��) = (T (�))�; 8� 2 Cn:A2. Let t denote disjoint union. ThenT (�1 t�2) = T (�1)
 T (�2); 8�1; �2 2 Cn:A3. Let Yi : �i ! �i+1; i = 1; 2 be morphisms. ThenT (Y1Y2) = T (Y2)T (Y1) 2 Hom(T (�1); T (�3));where Y1Y2 denotes the morphism given by composite cobordism Y1 [�2 Y2.A4. Let ;n be the empty n-dimensional manifold. ThenT (;n) = C :A5. For every � 2 CnT (� � [0; 1]) : T (�)! T (�)is the identity endomorphism.We note that if Y is a compact, oriented, smooth (n + 1)-manifold withcompact, oriented, smooth boundary �, thenT (Y ) : T (�n)! T (�)is uniquely determined by the image of the basis vector 1 2 C � T (�n). Inthis case the vector T (Y ) � 1 2 T (�) is often denoted simply by T (Y ) also.In particular, if Y is closed, thenT (Y ) : T (�n)! T (�n) and T (Y ) � 1 2 T (�n) � Cis a complex number which turns out to be an invariant of Y . Axiom A3suggests a way of obtaining this invariant by a cut and paste operation onY as follows. Let Y = Y1 [� Y2 so that Y1 (resp. Y2) has boundary � (resp.��). Then we have T (Y ) � 1 =< T (Y1) � 1; T (Y2) � 1 >; (55)where < ; > is the pairing between the dual vector spaces T (�) andT (��) = (T (�))�. Equation (55) is often referred to as a gluing formula.Such gluing formulas are characteristic of TQFT. They also arise in Fukaya-Floer homology theory of 3-manifolds, Floer-Donaldson theory of 4-manifoldinvariants as well as in 2-dimensional conformal �eld theory. For speci�c ap-plications the Atiyah axioms need to be re�ned, supplemented and modi�ed.For example, one may replace the category VC of complex vector spaces by



32 Kishore Marathethe category of �nite-dimensional Hilbert spaces. This is in fact, the situationof the (2 + 1)-dimensional Jones-Witten theory. In this case it is natural torequire the following additional axiom.A6. Let Y be a compact oriented 3-manifold with @Y = �1t (��2). Thenthe linear transformationsT (Y ) : T (�1)! T (�2) and T (�Y ) : T (�2)! T (�1)are mutually adjoint.For a closed 3-manifold Y the axiom A6 implies thatT (�Y ) = T (Y ) 2 C :It is this property that is at the heart of the result that in general, the Jonespolynomials of a knot and its mirror image are di�erent, i.e.V�(t) 6= V�m(t);where �m is the mirror image of the knot �.An important example of a (3 + 1)-dimensional TQFT is provided by theFloer-Donaldson theory. The functor T goes from the category C of compact,oriented Homology 3-spheres to the category of Z8-graded abelian groups. Itis de�ned by T : Y ! HF�(Y ); Y 2 C:For a compact, oriented, 4-manifold M with @M = Y , T (M) is de�ned tobe the vector q(M;Y )q(M;Y ) := (q1(M;Y ); q2(M;Y ); : : :);where the components qi(M;Y ) are the relative polynomial invariants ofDonaldson de�ned on the relative homology group H2(M;Y ;Z).The axioms also suggest algebraic approaches to TQFT. The most widelystudied of these approaches are based on quantum groups, operator algebras,modular tensor categories and Jones' theory of subfactors. See, for example,books [38, 34, 35, 73], and articles [72, 74, 75]. Turaev and Viro gave analgebraic construction of such a TQFT by using the quantum 6j-symbolsfor the quantum group Uq(sl2) at roots of unity.. Ocneanu [56] starts witha special type of subfactor to generate the data which can be used with theTuraev and Viro construction.The correspondence between geometric (topological) and algebraic struc-tures has played a fundamental role in the development of modern mathe-matics. Its roots can be traced back to the classical work of Descartes. Recentdevelopments in low dimensional geometric topology have raised this corre-spondence to a new level bringing in ever more exotic algebraic structuressuch as quantum groups, vertex algebras, monoidal and higher categories.



Geometric Topology and Field Theory on 3-Manifolds 33This broad area is now often referred to as quantum topology. See, for exam-ple, [84, 43].9.2 Quantum ObservablesA quantum �eld theory may be considered as an assignment of the quan-tum expectation < � >� to each gauge invariant function � : A(M)! C ,where A(M) is the space of gauge potentials for a given gauge group G andthe base manifold (space-time) M . � is called a quantum observable orsimply an observable in quantum �eld theory. Note that the invariance of� under the group of gauge transformations G implies that � descends to afunction on the moduli space B = A=G of gauge equivalence classes of gaugepotentials. In the Feynman path integral approach to quantization the quan-tum or vacuum expectation < � >� of an observable is given by the followingexpression. < � >�= RB(M) e�S�(!)�(!)DBRB(M) e�S�(!)DB ; (56)where e�S�DB is a suitably de�ned measure on B(M). It is customary toexpress the quantum expectation< � >� in terms of the partition functionZ� de�ned by Z�(�) := ZB(M) e�S�(!)�(!)DB: (57)Thus we can write < � >�= Z�(�)Z�(1) : (58)In the above equations we have written the quantum expectation as < � >�to indicate explicitly that, in fact, we have a one-parameter family of quan-tum expectations indexed by the coupling constant � in the action. There areseveral examples of gauge invariant functions. For example, primary charac-teristic classes evaluated on suitable homology cycles give an important fam-ily of gauge invariant functions. The instanton number and the Yang-Millsaction are also gauge invariant functions. Another important example is theWilson loop functional well known in the physics literature.Wilson loop functional: Let � denote a representation of G on V . Let � 2
(M;x0) denote a loop at x0 2 M: Let � : P (M;G) ! M be the canonicalprojection and let p 2 ��1(x0): If ! is a connection on the principal bundleP (M;G), then the parallel translation along � maps the �ber ��1(x0) intoitself. Let �̂! : ��1(x0)! ��1(x0) denote this map. Since G acts transitivelyon the �bers, 9g! 2 G such that �̂!(p) = pg!: Now de�neW�;�(!) := Tr[�(g!)] 8! 2 A: (59)



34 Kishore MaratheWe note that g! and hence �(g!), change by conjugation if, instead of p,we choose another point in the �ber ��1(x0); but the trace remains un-changed. We call these W�;� the Wilson loop functionals associated to therepresentation � and the loop �. In the particular case when � = Ad theadjoint representation of G on g, our constructions reduce to those consid-ered in physics. If L = (�1; : : : ; �n) is an oriented link with component knots�i; 1 � i � n and if �i is a representation of the gauge group associated to�i, then we can de�ne the quantum observable W�;L associated to the pair(L; �), where � = (�1; : : : ; �n) byW�;L = nYi=1W�i;�i :9.3 Link InvariantsIn the 1980s, Jones discovered his polynomial invariant V�(q), called theJones polynomial, while studying Von Neumann algebras and gave its in-terpretation in terms of statistical mechanics. These new polynomial invari-ants have led to the proofs of most of the Tait conjectures. As with most ofthe earlier invariants, Jones' de�nition of his polynomial invariants is alge-braic and combinatorial in nature and was based on representations of thebraid groups and related Hecke algebras. The Jones polynomial V�(t) of � isa Laurent polynomial in t (polynomial in t and t�1) which is uniquely deter-mined by a simple set of properties similar to the well known axioms for theAlexander-Conway polynomial. More generally, the Jones polynomial can bede�ned for any oriented link L as a Laurent polynomial in t1=2.A geometrical interpretation of the Jones' polynomial invariant of linkswas provided by Witten by applying ideas from QFT to the Chern-SimonsLagrangian constructed from the Chern-Simons actionACS = k4� ZM tr(A ^ dA+ 23A ^ A ^ A);where A is the gauge potential of the SU(n) connection !. Chern-Simonsaction is not gauge invariant. Under a gauge transformation g the actiontransforms as follows:ACS(Ag) = ACS(A) + 2�kAWZ ; (60)where AWZ is the Wess-Zumino action functional. It can be shown thatthe Wess-Zumino functional is integer valued and hence, if the Chern-Simonscoupling constant k is taken to be an integer, then the partition function Infact, Witten's model allows us to consider the knot and link invariants in anycompact 3-manifold M . Z de�ned by



Geometric Topology and Field Theory on 3-Manifolds 35Z(�) := ZB(M) e�iACS(!)�(!)DBis gauge invariant. We take for � the Wilson loop functional W�;L, where �is a representation of SU(n) and L is the link under consideration.We denote the Jones polynomial of L simply by V . Recall that there are3 standard ways to change a link diagram at a crossing point. The Jonespolynomials of the corresponding links are denoted by V+; V� and V0 re-spectively. To verify the de�ning relations for the Jones' polynomial of a linkL in S3, Witten [80] starts by considering the Wilson loop functionals for theassociated links L+; L�; L0. For a framed link L, we denote by < L > theexpectation value of the corresponding Wilson loop functional for the Chern-Simons theory of level k and gauge group SU(n) and with �i the fundamentalrepresentation for all i. To verify the de�ning relations for the Jones' polyno-mial of a link L in S3, Witten considers the expectation values of the Wilsonloop functionals for the associated links L+; L�; L0 and obtains the relation� < L+ > +� < L0 > +
 < L� >= 0 (61)where the coe�cients �; �; 
 are given by the following expressions� = �exp( 2�in(n+ k) ); (62)� = �exp(�i(2� n� n2)n(n+ k) ) + exp(�i(2 + n� n2)n(n+ k) ); (63)
 = exp(2�i(1� n2)n(n+ k) ): (64)We note that the result makes essential use of 3-manifolds with boundary.The calculation of the coe�cients �; �; 
 is closely related to the Verlindefusion rules [76] and 2d conformal �eld theories. Substituting the values of�; �; 
 into equation (61) and cancelling a common factor exp(�i(2�n2)n(n+k) ), weget �tn=2 < L+ > +(t1=2 � t�1=2) < L0 > +t�n=2 < L� >= 0; (65)where we have put t = exp( 2�in+ k ):This is equivalent to the following skein relation for the polynomial invariantV of the link tn=2V+ � t�n=2V� = (t1=2 � t�1=2)V0 (66)For SU(2) Chern-Simons theory, equation (66) is the skein relation that de-�nes a variant of the original Jones' polynomial. This variant also occurs inthe work of Kirby and Melvin [31] where the invariants are studied by using



36 Kishore Maratherepresentation theory of certain Hopf algebras and the topology of framedlinks. It is not equivalent to the Jones polynomial. In an earlier work [49]I had observed that under the transformation pt ! �1=pt, it goes overinto the equation which is the skein relation characterizing the Jones poly-nomial. The Jones polynomial belongs to a di�erent family that correspondsto the negative values of the level. Note that the coe�cients in the skeinrelation (66) are de�ned for positive values of the level k. To extend them tonegative values of the level we must also note that the shift in k by the dualCoxeter number would now change the level �k to �k�n. If in equation (66)we now allow negative values of n and take t to be a formal variable, thenthe extended family includes both positive and negative levels.Let V (n) denote the Jones-Witten polynomial corresponding to the skeinrelation (66), (with n 2 Z) then the family of polynomials fV (n)g can beshown to be equivalent to the two variable HOMFLY polynomial P (�; z)which satis�es the following skein relation�P+ � ��1P� = zP0: (67)If we put � = t�1 and z = (t1=2 � t�1=2) in equation (47) we get the skeinrelation for the original Jones polynomial V . If we put � = 1 we get the skeinrelation for the Alexander-Conway polynomial.To compare our results with those of Kirby and Melvin we note thatthey use q to denote our t and t to denote its fourth root. They constructa modular Hopf algebra Ut as a quotient of the Hopf algebra Uq(sl(2; C ))which is the well known q-deformation of the universal enveloping algebra ofthe Lie algebra sl(2; C ). Jones polynomial and its extensions are obtained bystudying the representations of the algebras Ut and Uq .9.4 WRT invariantsIf Zk(1) exists, it provides a numerical invariant of M . For example, forM = S3 and G = SU(2), using the Chern-Simons action Witten obtains thefollowing expression for this partition function as a function of the level kZk(1) =r 2k + 2 sin� �k + 2� : (68)This partition function provides a new family of invariants for M = S3,indexed by the level k. Such a partition function can be de�ned for a moregeneral class of 3-manifolds and gauge groups. More precisely, let G be a com-pact, simply connected, simple Lie group and let k 2 Z. Let M be a 2-framedclosed, oriented 3-manifold. We de�ne theWitten invariant TG;k(M) of thetriple (M;G; k) by



Geometric Topology and Field Theory on 3-Manifolds 37TG;k(M) := Z(1) := ZB(M) e�iACSDB; (69)where e�iACSDB, is a suitable measure on B(M). We note that no precisede�nition of such a measure is available at this time and the de�nition is tobe regarded as a formal expression. Indeed, one of the aims of TQFT is tomake sense of such formal expressions. We de�ne the normalized Witteninvariant WG;k(M) of a 2-framed, closed, oriented 3-manifold M byWG;k(M) := TG;k(M)TG;k(S3) : (70)If G is a compact, simply connected, simple Lie group and M;N be two2-framed, closed, oriented 3-manifolds. Then we have the following results:TG;k(S2 � S1) = 1 (71)TSU(2);k(S3) = r 2k + 2 sin� �k + 2� (72)WG;k(M#N) = WG;k(M)WG;k(N) (73)If G is a compact simple group then the WRT invariant TG;k(S3) can begiven in a closed form in terms of the root and weight lattices associated toG. In particular, for G = SU(n) we getT = 1pn(k + n)(n�1) n�1Yj=1 �2 sin� j�k + n��n�j :We will show later that this invariant can be expressed in terms of the gener-ating function of topological string amplitudes in a closed string theory com-pacti�ed on a suitable Calabi-Yau manifold. More generally, if a manifold Mcan be cut into pieces over which the CS path integral can be computed, thenthe gluing rules of TQFT can be applied to these pieces to �nd T . Di�erentways of using such a cut and paste operation can lead to di�erent ways ofcomputing this invariant. Another method that is used in both the theoreticaland experimental applications is the perturbative quantum �eld theory. Therules for perturbative expansion around classical solutions of �eld equationsare well understood in physics. It is called the stationary phase approxima-tion to the partition function. It leads to the asymptotic expansion in termsof a parameter depending on the coupling constants and the group. If �c(G)is the dual Coxeter number of G then the asymptotic expansion is in termsof } = 2�i=(k + �c(G)). This notation in TQFT is a reminder of the Planck'sconstant used in physical �eld theories. The asymptotic expansion of log(T )is then given by



38 Kishore Marathelog(T ) = �b log}+ a0} + 1Xn=1 an+1}n ;where ai are evaluated on Feynman diagrams with i loops. The expansionmay be around any 
at connection and the dependence of ai the choice ofconnection may be explicitly indicated if necessary. For Chern-Simons theorythe above perturbative expansion is also valid for non-compact groups. In histalk at this conference, Garofouladis discussed the asymptotic expansion ofthe free energy associated to the LMO invariant of a 3-manifold and itsmany interesting properties (see . Garofouladis et al in these proceedings) Iasked Stavros if he has looked at his expansion as a generating function fortopological string moduli. I also asked a similar question to Don Zagier aboutthe free energy expansion of Chern-Simons invariant with complex gaugegroup considered by Zagier et al in (arXiv:0903.24272v1 [hep-th]). Both ofthem told me that they had not considered this aspect. It seems that thegeneral program of relating gauge theoretic and string theoretic invariantsis still far from well formulated, even in the cases where explicit asymptoticexpansions are available.CFT approach to WRT InvariantsIn [36] Kohno de�nes a family of invariants �k(M) of a 3-manifoldM by usingits Heegaard decomposition along a Riemann surface �g and representationsof the mapping class group of �g. Kohno's work makes essential use of ideasand results from conformal �eld theory. We now give a brief discussion ofKohno's de�nition.We begin by reviewing some information about the geometric topologyof 3-manifolds and their Heegaard splittings. Recall that two compact 3-manifolds X1; X2 with homeomorphic boundaries can be glued togetheralong a homeomorphism f : @X1 ! @X2 to obtain a closed 3-manifoldX = X1 [f X2. If X1; X2 are oriented with compatible orientations on theboundaries, then f can be taken to be either orientation preserving or revers-ing. Conversely, any closed orientable 3-manifold can be obtained by such agluing procedure where each of the pieces is a special 3-manifold called a han-dlebody. Recall that a handlebody of genus g is an orientable 3-manifoldobtained from gluing g copies of 1-handles D2 � [�1; 1] to the 3-ball D3.The gluing homeomorphisms join the 2g discs D2 � f�1g to the 2g pairwisedisjoint 2-discs in @D3 = S2 in such a way that the resulting manifold isorientable. The handlebodies H1; H2 have the same genus and a commonboundary H1 \H2 = @H1 = @H2. Such a decomposition of a 3-manifold Xis called a Heegaard splitting of X of genus g. We say that X has Hee-gaard genus g if it has some Heegaard splitting of genus g but no Heegaardsplitting of smaller genus. Given a Heegaard splitting of genus g of X , there



Geometric Topology and Field Theory on 3-Manifolds 39exists an operation called stabilization which gives another Heegaard split-ting of X of genus g+1. Two Heegaard splitting of X are called equivalentif there exists a homeomorphism of X onto itself taking one splitting intothe other. Two Heegaard splitting of X are called stably equivalent if theyare equivalent after a �nite number of stabilizations. A proof of the followingtheorem is given in [65].Theorem 3 Any two Heegaard splittings of a closed orientable 3-manifoldX are stably equivalent.The mapping class groupM(M) of a connected, compact, smooth sur-face M is the quotient group of the group of di�eomorphisms Diff(M) ofM modulo the group Diff0(M) of di�eomorphisms isotopic to the identity.i.e. M(M) := Diff(M)=Diff0(M)If M is oriented, thenM(M) has a normal subgroupM+(M) of index 2 con-sisting of orientation preserving di�eomorphisms ofM modulo isotopies. ThegroupM(M) can also be de�ned as �0(Diff(M)). Smooth closed orientablesurfaces �g are classi�ed by their genus g and in this case it is customary todenote M(�g) by Mg . In the applications that we have in mind, it is thisgroup Mg that we shall use. The group Mg is generated by Dehn twistsalong simple closed curves in �g . Let c be a simple closed curve in �g whichforms one of the boundaries of an annulus. In local complex coordinate zwe can identify the annulus with fz j 1 � jzj � 2g and the curve c withfz j jzj = 1g. Then the Dehn twist �c along c is an automorphism of �gwhich is the identity outside the annulus and in the annulus, is given by theformula�c(rei�) = rei(�+2�(r�1)); where z = rei�; 1 � r � 2; 0 � � � 2�Changing the curve c by an isotopic curve or changing the annulus givesisotopic twists. However, twists in opposite directions de�ne elements of Mgwhich are the inverses of each other. Note that any two homotopic simpleclosed curves on �g are isotopic. A useful description of Mg is given by thefollowing theorem.Theorem 4 Let �g be a smooth closed orientable surface of genus g. Thenthe group Mg is generated by the 3g � 1 Dehn twists along the curves�i; �j ; 
k; 1 � i; j � g; 1 � k < g which are Poincar�e dual to a basis ofthe �rst integral homology of �g.In [36] Kohno obtains a representation of the mapping class group Mg inthe space of conformal blocks which arise in conformal �eld theory. He thenuses a special function for this representation and the stabilization to de�nea family of invariants �k(M) of the 3-manifold M which are independent ofits stable Heegaard decomposition. Kohno obtains the following formulas:



40 Kishore Marathe�k(S2 � S1) =  r 2k + 2 sin� �k + 2�!�1 ; (74)�k(S3) = 1; (75)�k(M#N) = �k(M) � �k(N): (76)Kohno's invariant coincides with the normalized Witten invariant with thegauge group SU(2). Similar results were also obtained by Crane [16]. Theagreement of these results with those of Witten may be regarded as strongevidence for the correctness of the TQFT calculations. In [36] Kohno also ob-tains the Jones-Witten polynomial invariants for a framed colored link in a3-manifoldM by using representations of mapping class groups via conformal�eld theory. In [37] the Jones-Witten polynomials are used to estimate thetunnel number of knots and the Heegaard genus of a 3-manifold. The mon-odromy of the Knizhnik-Zamolodchikov equation [33] plays a crucial role inthese calculations.WRT Invariants via Quantum GroupsShortly after the publication of Witten's paper [80], Reshetikhin and Turaev[62] gave a precise combinatorial de�nition of a new invariant by using the rep-resentation theory of quantum group Uqsl2 at the root of unity q = e2�i=(k+2).The parameter q coincides with Witten's SU(n) Chern-Simons theory param-eter t when n = 2 and in this case the invariant of Reshetikhin and Turaevis the same as the normalized Witten invariant. In view of this it is nowcustomary to call the normalized Witten invariant as Witten-Reshetikhin-Turaev invariant or WRT invariant. We now discuss their construction in theform given by Kirby and Melvin in [31].LetU denote the universal enveloping algebra of sl(2; C ) and letUh denotethe quantized universal enveloping algebra of formal power series in h. Recallthat U is generated by X;Y;H subject to relations as in the algebra sl(2; C ),i.e. [H;X ] = 2X; [H;Y ] = �2Y; [X;Y ] = H:In Uh the last relation is replaced by[X;Y ] = [H ]s := sH � s�Hs� s�1 ; s = eh=2:It can be shown that Uh admits a Hopf algebra structure as a module overthe ring of formal power series. However, the presence of divergent seriesmake this algebra unsuitable for representation theory. We construct a �nitedimensional algebra by using Uh. De�ne



Geometric Topology and Field Theory on 3-Manifolds 41K := ehH=4 and �K := e�hH=4 = K�1:Fix an integer r > 1 (r = k+2 of the Witten formula) and set q = eh = e2�i=r.We restrict this to a subalgebra over the ring of convergent power series inh generated by X;Y;K; �K. This in�nite dimensional algebra occurs in thework of Jimbo. We take its quotient by settingXr = 0; Y r = 0; K4r = 1:It is the representations of this quotient algebra A that are used to de�necolored Jones polynomials and the WRT invariants. The algebra A is a �nitedimensional complex algebra satisfying the relations�K = K�1; KX = sXK; KY = �sY K;[X;Y ] = K2 �K�2s� �s ; s = e�i=rThere are irreducible A-modules V i in each dimension i > 0. If we puti = 2m+1, then V i has a basis fem; : : : ; e�mg. The action of A on the basisvectors is given byXej = [m+ j + 1]sej+1; Y ej = [m� j + 1]sej�1; and Kej = sjej :The A-modules V i are self dual for 0 < i < r. The structure of their tensorproducts is similar to that in the classical case. The algebra A has the ad-ditional structure of a quasitriangular Hopf algebra with Drinfeld's universalR-matrix R satisfying the Yang-Baxter equation. One has an explicit formulafor R 2 A 
A of the formR =X cnabXaKb 
 Y nKb :If V;W are A-modules, then R acts on V 
W . Composing with the permu-tation operator we get the operator R0 : V 
W ! W 
 V . These are theoperators used in the de�nition of our link invariants. Let L be a framed linkwith n components Li colored by k = fk1; : : : ; kng. Let JL;k be the corre-sponding colored Jones polynomial. The colors are restricted to lie in a familyof irreducible modules V i, one for each dimension 0 < i < r. Let � denotethe signature of the linking matrix of L. De�ne �L by�L = �p2=r sin(�=r)�n e3(2�r)�=(8r)X[k]JL;k ;where the sum is over all admissible colors. Every 3-manifold can be obtainedby surgery on a link in S3. Two links give isomorphic manifolds if they arerelated by Kirby moves. It can be shown that the invariant �L is preservedunder Kirby moves and hence de�nes an invariant of the 3-manifold ML ob-tained by surgery on L. With suitable normaliazation it coincides with the



42 Kishore MaratheWRT invariant. WRT invariants do not belong to the class of polynomialinvariants or other known 3-manifold invariants. They arose from topologi-cal quantum �eld theory applied to calculate the partition functions in theChern-Simons gauge theory.A number of other mathematicians have also obtained invariants that areclosely related to the Witten invariant. The equivalence of these invariantsde�ned by using di�erent methods was a folk theorem until a complete proofwas given by Piunikhin in [61]. Another approach to WRT invariants is viaHecke algebras and related special categories. A detailed construction of mod-ular categories from Hecke algebras at roots of unity is given in [8]. For aspecial choice of the framing parameter, one recovers the Reshetikhin-Turaevinvariants of 3-manifolds constructed from the representations of the quan-tum groups Uqsl(N) by Reshetikhin, Turaev and Wenzl [62, 75, 77]. Theseinvariants were constructed by Yokota [85] by using skein theory. As we havediscussed earlier the quantum invariants were obtained by Witten [79] by us-ing path integral quantization of Chern-Simons theory. In "Quantum Invari-ants of Knots and 3-Manifolds" [73], Turaev showed that the idea of modularcategories is fundamental in the construction of these invariants and that itplays an essential role in extending them to a Topological Quantum FieldTheory. Since these early results, WRT invariants for several other manifoldsand gauge groups have been obtained. We collect together some of theseresults below.Theorem 5 The WRT invariant for the lens space L(p; q) in the canonicalframing is given byWk(L(p; q)) = � ip2p(k + 2)e( 6�isk+2 ) X�2f�1;1g pXn=1 �e �2p(k+2) e 2�iqn2(k+2)p e 2�in(q+�)p ;where s = s(q; p) is the Dedekind sum de�ned bys(q; p) := 14p p�1Xk=1 cot(�kp ) cot(�kqp ) :In all of these the invariant is well de�ned only at roots of unity andperhaps near roots of unity if a perturbative expansion is possible. This sit-uation occurs in the study of classical modular functions and Ramanujan'smock theta functions. Ramanujan had introduced his mock theta functionsin a letter to Hardy in 1920 (the famous last letter) to describe some powerseries in variable q = e2�iz ; z 2 C . He also wrote down (without proof, aswas usual in his work) a number of identities involving these series whichwere completely veri�ed only in 1988 by Hickerson [28]. Recently, Lawrenceand Zagier have obtained several di�erent formulas for the Witten invariantWSU(2);k(M) of the Poincar�e homology sphere M = �(2; 3; 5) in [41]. Usingthe work of Zwegers [86], they show how the Witten invariant can be extended



Geometric Topology and Field Theory on 3-Manifolds 43from integral k to rational k and give its relation to the mock theta function.In particular, they obtain the following fantastic formula, a la Ramanujan,for the Witten invariant WSU(2);k(M) of the Poincar�e homology sphereWSU(2);k(�(2; 3; 5)) = 1 + 1Xn=1x�n2(1 + x)(1 + x2) : : : (1 + xn�1)where x = e�i=(k+2). We note that the series on the right hand side of thisformula terminates after k + 2 terms1.We have not discussed the Kau�mann bracket polynomial or the theoryof skein modules in the study of 3-manifold invariants. An invariant thatcombines these two ideas has been de�ne in the following general setting. LetR be a commutative ring and let A be a �xed invertible element of R. Thenone can de�ne a new invariant, S2;1(M ;R;A), of an oriented 3-manifoldM called the Kau�mann bracket skein module. The theory of skeinmodules is related to the theory of representations of quantum groups. Thisconnection should prove useful in developing the theory of quantum groupinvariants which can be de�ned in terms of skein theory as well as by usingthe theory of representations of quantum groups.10 Chern-Simons and String TheoryThe general question \what is the relationship between gauge theory andstring theory?" is not meaningful at this time. So I will follow the strongadmonition by Galileo against2 \disputar lungamente delle massime questionisenza conseguir verit�a nissuna". However, interesting special cases where suchrelationship can be established are emerging. For example, Witten [82] hasargued that Chern-Simons gauge theory on a 3-manifoldM can be viewed asa string theory constructed by using a topological sigma model with targetspace T �M . The perturbation theory of this string will coincide with Chern-Simons perturbation theory, in the form discussed by Axelrod and Singer[4]. The coe�cient of k�r in the perturbative expansion of SU(n) theory inpowers of 1=k comes from Feynman diagrams with r loops. Witten shows howeach diagram can be replaced by a Riemann surface � of genus g with h holes(boundary components) with g = (r�h+1)=2. Gauge theory would then givean invariant �g;h(M) for every topological type of �. Witten shows that thisinvariant would equal the corresponding string partition function Zg;h(M).We now give an example of gauge theory to string theory correspondencerelating the non-perturbative WRT invariants in Chern-Simons theory withgauge group SU(n) and topological string amplitudes which generalize the1 I would like to thank Don Zagier for bringing this work to my attention2 lengthy discussions about the greatest questions that fail to lead to any truth whatever.



44 Kishore MaratheGW (Gromov-Witten) invariants of Calabi-Yau 3-folds following the work in[23, 1]. The passage from real 3 dimensional Chern-Simons theory to the 10dimensional string theory and further onto the 11 dimensional M-theory canbe schematically represented by the following:3 + 3 = 6 (real symplectic 6-manifold)= 6 (conifold in C 4 )= 6 (Calabi-Yau manifold)= 10� 4 (string compacti�cation)= (11� 1)� 4 (M-theory)We now discuss the signi�cance of the various terms of the above equation ar-ray. Recall that string amplitudes are computed on a 6-dimensional manifoldwhich in the usual setting is a complex 3-dimensional Calaby-Yau manifoldobtained by string compacti�cation. This is the most extensively studiedmodel of passing from the 10-dimensional space of supersymmetric stringtheory to the usual 4-dimensional space-time manifold. However, in our workwe do allow these so called extra dimensions to form an open or a symplecticCalabi-Yau manifold. We call these the generalized Calabi-Yau manifolds.The �rst line suggests that we consider open topological strings on such ageneralized Calabi-Yau manifold, namely, the cotangent bundle T �S3, withDirichlet boundary conditions on the zero section S3. We can compute theopen topological string amplitudes from the SU(n) Chern-Simons theory.Conifold transition [69] has the e�ect of closing up the holes in open stringsto give closed strings on the Calabi-Yau manifold obtained by the usual stringcompacti�cation from 10 dimensions. Thus we recover a topological gravityresult starting from gauge theory. In fact, as we discussed earlier, Wittenhad anticipated such a gauge theory string theory correspondence almost tenyears ago. Signi�cance of the last line is based on the conjectured equiva-lence of M-theory compacti�ed on S1 to type IIA strings compacti�ed on aCalabi-Yau threefold. We do not consider this aspect here. The crucial stepthat allows us to go from a real, non-compact, symplectic 6-manifold to acompact Calabi-Yau manifold is the conifold or geometric transition. Such achange of geometry and topology is expected to play an important role inother applications of string theory as well. A discussion of this example fromphysical point of view may be found in [1, 23].10.1 Conifold TransitionTo understand the relation of the WRT invariant of S3 for SU(n) Chern-Simons theory with open and closed topological string amplitudes on \Calabi-Yau" manifolds we need to discuss the concept of conifold transition. From



Geometric Topology and Field Theory on 3-Manifolds 45the geometrical point of view this corresponds to symplectic surgery in sixdimensions. It replaces a vanishing Lagrangian 3-sphere by a symplectic S2.The starting point of the construction is the observation that T �S3 minusits zero section is symplectomorphic to the cone z21 + z22 + z23 + z24 = 0 minusthe origin in C 4 , where each manifold is taken with its standard symplecticstructure. The complex singularity at the origin can be smoothed out by themanifold M� de�ned by z21 + z22 + z23 + z24 = � producing a Lagrangian S3vanishing cycle. There are also two so called small resolutions M� of thesingularity with exceptional set CP 1.They are de�ned byM� := �z 2 C 4 j z1 + iz2z3 � iz4 = �z3 � iz4z1 � iz2 � :Note that M0 n f0g is symplectomorphic to each of M� n CP 1. Blowing upthe exceptional set CP 1 � M� gives a resolution of the singularity whichcan be expressed as a �ber bundle F over CP 1. Going from the �ber bundleT �S3 over S3 to the �ber bundle F over CP 1is referred to in the physicsliterature as the conifold transition. We note that the holomorphic automor-phism of C 4 given by z4 7! �z4 switches the two small resolutions M� andchanges the orientation of S3. Conifold transition can also be viewed as anapplication of mirror symmetry to Calabi-Yau manifolds with singularities.Such an interpretation requires the notion of symplectic Calabi-Yau mani-folds and the corresponding enumerative geometry. The geometric structuresarising from the resolution of singularities in the conifold transition can alsobe interpreted in terms of the symplectic quotient construction of Marsdenand Weinstein.10.2 WRT Invariants and String AmplitudesTo �nd the relation between the large n limit of SU(n) Chern-Simons theoryon S3 to a special topological string amplitude on a Calabi-Yau manifold webegin by recalling the formula for the partition function (vacuum amplitude)of the theory TSU(n);k(S3) or simply T . Up to a phase, it is given byT = 1pn(k + n)(n�1) n�1Yj=1 �2 sin� j�k + n��n�j : (77)Let us denote by F(g;h) the amplitude of an open topological string theoryon T �S3 of a Riemann surface of genus g with h holes. Then the generatingfunction for the free energy can be expressed as



46 Kishore Marathe� 1Xg=0 1Xh=1�2g�2+hnhF(g;h) (78)This can be compared directly with the result from Chern-Simons theory byexpanding the log T as a double power series in � and n.Instead of that we use the conifold transition to get the topological am-plitude for a closed string on a Calabi-Yau manifold. We want to obtain thelarge n expansion of this amplitude in terms of parameters � and � whichare de�ned in terms of the Chern-Simons parameters by� = 2�k + n; � = n� = 2�nk + n: (79)The parameter � is the string coupling constant and � is the 't Hooft cou-pling n� of the Chern-Simons theory. The parameter � entering in the stringamplitude expansion has the geometric interpretation as the K�ahler modulusof a blown up S2 in the resolved M�. If Fg(�) denotes the amplitude for aclosed string at genus g then we haveFg(�) = 1Xh=1 �hF(g;h) (80)So summing over the holes amounts to �lling them up to give the closedstring amplitude.The large n expansion of T in terms of parameters � and � is given byT = exp"� 1Xg=0 �2g�2Fg(�)# ; (81)where Fg de�ned in (80) can be interpreted on the string side as the contri-bution of closed genus g Riemann surfaces. For g > 1 the Fg can be expressedin terms of the Euler characteristic �g and the Chern class cg�1 of the Hodgebundle of the moduli spaceMg of Riemann surfaces of genus g as followsFg = ZMg c3g�1 � �g(2g � 3)! 1Xn=1n2g�3e�n(�) : (82)The integral appearing in the formula for Fg can be evaluated explicitly togive ZMg c3g�1 = (�1)(g�1)(2�)(2g�2) 2�(2g � 2)�g: (83)The Euler characteristic is given by the Harer-Zagier [27] formula�g = (�1)(g�1)(2g)(2g � 2)B2g ; (84)



Geometric Topology and Field Theory on 3-Manifolds 47where B2g is the (2g)-th Bernoulli number. We omit the special formulasfor the genus 0 and genus 1 cases. The formulas for Fg for g � 0 coincidewith those of the g-loop topological string amplitude on a suitable Calabi-Yau manifold. The change in geometry that leads to this calculation can bethought of as the result of coupling to gravity. Such a situation occurs in thequantization of Chern-Simons theory. Here the classical Lagrangian does notdepend on the metric, however, coupling to the gravitational Chern-Simonsterm is necessary to make it TQFT.We have mentioned the following four approaches that lead to the WRTinvariants.1. Witten's QFT calculation of the Chern-Simons partition function2. Quantum group (or Hopf algebraic) computations initiated by Reshetikhinand Turaev3. Kohno's special functions corresponding to representations of mappingclass groups in the space of conformal blocks and a similar approach byCrane4. open or closed string amplitudes in suitable Calabi-Yau manifoldsThese methods can also be applied to obtain invariants of links, such as theJones polynomial. Indeed, this was the objective of Witten's original work.WRT invariants were a byproduct of this work. Their relation to topologicalstrings came later.The WRT to string theory correspondence has been extended by Gopaku-mar and Vafa (see, hep-th/9809187, 9812127) by using string theoretic argu-ments to show that the expectation value of the quantum observables de�nedby the Wilson loops in the Chern-Simons theory also has a similar interpre-tation in terms of a topological string amplitude. This leads them to con-jecture a correspondence between certain knot invariants (such as the Jonespolynomial) and Gromov-Witten type invariants of generalized Calabi-Yaumanifolds. Gromov-Witten invariants of a Calabi-Yau 3-fold X are in generalrational numbers, since one has to get the weighted count by dividing by theorder of automorphism groups.. Using M-theory Gopakumar and Vafa haveargued that the generating series FX of Gromov-Witten invariants in all de-grees and all genera is determined by a set of integers n(g; �). They give thefollowing remarkable formula for FXFX (�; q) =XXg�0Xk�1 1kn(g; �)(2sin(k�=2))2g�2qk� ;where � is the string coupling constant and the �rst sum is taken over allnonzero elements � in H2(X). We note that for a �xed genus there are only�nitely many nonzero integers n(g; �). A mathematical formulation of theGopakumar-Vafa conjecture (GV conjecture) has been given in [58]. Specialcases of the conjecture have been veri�ed (see, for example [59] and refer-ences therein). In [42] a new geometric approach relating the Gromov-Witteninvariants to equivariant index theory and 4-dimensional gauge theory has



48 Kishore Marathebeen used to compute the string partition functions of some local Calabi-Yauspaces and to verify the GV conjecture for them.A knot should correspond to a Lagrangian D-brane on the string side andthe knot invariant would then give a suitably de�ned count of compact holo-morphic curves with boundary on the D-brane. To understand a proposedproof, recall �rst that a categori�cation of an invariant I is the constructionof a suitable homology such that its Euler characteristic equals I . A wellknown example of this is Floer's categori�cation of the Casson invariant. Wehave already discussed earlier, Khovanov's categori�cation of the Jones poly-nomial V�(q) by constructing a bi-graded sl(2)-homology Hi;j determinedby the knot �. Its quantum or graded Euler characteristic equals the Jonespolynomial. i.e. V�(q) =Xi;j (�1)jqi dimHi;j :Now let L� be the Lagrangian submanifold corresponding to the knot � of a�xed Calabi-Yau space X . Let r be a �xed relative integral homology class ofthe pair (X;L�). LetMg;r denote the moduli space of pairs (�g ; A), where�g is a compact Riemann surface in the class r with boundary S1 and A is a
at U(1) connection on �g. This data together with the cohomology groupsHk(Mg;r) determines a tri-graded homology. It generalizes the Khovanovhomology. Its Euler characteristic is a generating function for the BPS states'invariants in string theory and these can be used to obtain the Gromov-Witten invariants. Taubes has given a construction of the Lagrangians in theGopakumar-Vafa conjecture. We note that counting holomorphic curves withboundary on a Lagrangian manifold was introduced by Floer in his work onthe Arnold conjecture.The tri-graded homology is expected to unify knot homologies of the Kho-vanov type as well as knot Floer homology constructed by Ozsw�ath andSzab�o [57] which provides a categori�cation of the Alexander polynomial.Knot Floer homology is de�ned by counting pseudo-holomorphic curves andhas no known combinatorial description. An explicit construction of a tri-graded homology for certain torus knots has been recently given by Dun�eld,Gukov and Rasmussen [math.GT/0505662].11 Yang-Mills, Gravity and StringsRecall that in string theory, an elementary particle is identi�ed with a vibra-tional mode of a string. Di�erent particles correspond to di�erent harmonicsof vibration. The Feynman diagrams of the usual QFT are replaced by fatgraphs or Riemann surfaces that are generated by moving strings splittingor joining together. The particle interactions described by these Feynmandiagrams are built into the basic structure of string theory. The appearance



Geometric Topology and Field Theory on 3-Manifolds 49of Riemann surfaces explains the relation to conformal �eld theory. We havealready discussed Witten's argument relating gauge and string theories. Itnow forms a small part of the program of relating quantum group invariantsand topological string amplitudes. In general, the string states are identi�edwith �elds. The ground state of the closed string turns out to be a masslessspin two �eld which may be interpreted as a graviton. In the large distancelimit, (at least at the lower loop levels) string theory includes the vacuumequations of Einstein's general relativity theory. String theory avoids theultraviolet divergences that appear in conventional attempts at quantizinggravity. In physically interesting string models one expects the string spaceto be a non-trivial bundle over a Lorentzian space-time M with compact ornon-compact �bers. Relating the usual Einstein's equations with cosmologicalconstant with the Yang-Mills equations requires the ten dimensional mani-fold �2(M) of di�erential forms of degree two. There are several di�erencesbetween the Riemannian functionals used in theories of gravitation and theYang-Mills functional used to study gauge �eld theories. The most importantdi�erence is that the Riemannian functionals are dependent on the bundle offrames of M or its reductions, while the Yang-Mills functional can be de�nedon any principal bundle over M . However, we have the following interestingtheorem [7].Theorem: Let (M; g) be a compact, 4-dimensional, Riemannian manifold.Let �2+(M) denote the bundle of self-dual 2-forms onM with induced metricG+. Then the Levi-Civita connection �g on M satis�es the Euclidean gravi-tational instanton equations if and only if the Levi-Civita connection �G+ on�2+(M) satis�es the Yang-Mills instanton equations.Gravitational Field EquationsA geometric formulation of gravitational �eld equations is generally not inthe tool kit of topologists. We review them as the full Einstein equationswith energy-momentum tensor corresponding to the dilaton �eld appear inPerelman's work on the Thruston geometrization conjecture. There are sev-eral ways of deriving Einstein's gravitational �eld equations. For example,we can consider natural tensors satisfying the conditions that they containderivatives of the fundamental (pseudo-metric) tensor up to order two anddepend linearly on the second order derivatives. Then we obtain the tensorc1Rij + c2gijS + c3gij ;where Rij are the components of the Ricci tensor Ric and S is the scalarcurvature. Requiring this tensor to be divergenceless and using the Bianchiidentities leads to the relation c1 +2c2 = 0 between the constants c1; c2; c3.Choosing c1 = 1 and c3 = 0 we obtain Einstein's equations (without the



50 Kishore Marathecosmological constant) which may be expressed asE = �T (85)where E := Ric� 12Sg is the Einstein tensor and T is an energy-momentumtensor on the space-time manifold which acts as the source term. Now theBianchi identities satis�ed by the curvature tensor imply thatdiv E := riEij = 0:Hence, if Einstein's equations (85) are satis�ed, then for consistency we musthave div T = riT ij = 0: (86)Equation (86) is called the di�erential (or local) law of conservation of en-ergy and momentum. However, integral (or global) conservation laws can beobtained by integrating equation (86) only if the space-time manifold admitsKilling vectors. Thus equation (86) has no clear physical meaning, except inspecial cases. An interesting discussion of this point is given by Sachs andWu [63]. Einstein was aware of the tentative nature of the right hand sideof equation (85), but he believed strongly in the expression on the left handside of (85). By taking the trace of both sides of equations (85) we are led tothe condition S = t (87)where t denotes the trace of the energy-momentum tensor. The physicalmeaning of this condition seems even more obscure than that of condi-tion (86). If we modify equation (85) by adding the cosmological term �g (�is called the cosmological constant) to the left hand side of equation (85),we obtain Einstein's equation with cosmological constantE + �g = �T: (88)This equation also leads to the consistency condition (86), but condition (87)is changed to S = t+ 4�: (89)Using (89), equation (88) can be rewritten in the following formK = �(T � 14tg); (90)where K = (Ric� 14Sg) (91)is the trace-free part of the Ricci tensor of g. We call equations (90) gener-alized �eld equations of gravitation. We now show that these equations



Geometric Topology and Field Theory on 3-Manifolds 51arise naturally in a geometric formulation of Einstein's equations. We beginby de�ning a tensor of curvature type.Let C be a tensor of type (4; 0) on M . We can regard C as a quadrilinearmapping (pointwise) so that for each x 2 M , Cx can be identi�ed with amultilinear mapCx : T �x (M)� T �x (M)� T �x (M)� T �x (M)! R:We say that the tensor C is of curvature type if Cx satis�es the followingconditions for each x 2M and for all �; �; 
; � 2 T �x (M).1. Cx(�; �; 
; �) = �Cx(�; �; 
; �);2. Cx(�; �; 
; �) = �Cx(�; �; �; 
);3. Cx(�; �; 
; �) + Cx(�; 
; �; �) + Cx(�; �; 
; �) = 0:From the above de�nition it follows that a tensor C of curvature type alsosatis�es the following condition:Cx(�; �; 
; �) = Cx(
; �; �; �); 8x 2M:We denote by C the space of all tensors of curvature type. The Riemann-Christo�el curvature tensor Rm is of curvature type. Indeed, the de�nition oftensors of curvature type is modelled after this fundamental example. Anotherimportant example of a tensor of curvature type is the tensor G de�ned byGx(�; �; 
; �) = gx(�; 
)gx(�; �) � gx(�; �)gx(�; 
); 8x 2M (92)where g is the fundamental or metric tensor of M .We now de�ne the curvature product of two symmetric tensors of type(2; 0) on M . It was introduced by the author in [44] and used in [46] toobtain a geometric formulation of Einstein's equations.Let g and T be two symmetric tensors of type (2; 0) onM . The curvatureproduct of g and T , denoted by g�c T , is a tensor of type (4; 0) de�ned by(g �c T )x(�; �; 
; �) := 12�g(�; 
)T (�; �) + g(�; �)T (�; 
)�g(�; �)T (�; 
)� g(�; 
)T (�; �)�;for all x 2M and �; �; 
; � 2 T �x (M).In the following proposition we collect together some important propertiesof the curvature product and tensors of curvature type.Proposition 6 ) Let g and T be two symmetric tensors of type (2; 0) on Mand let C be a tensor of curvature type on M . Then we have the following:1. g �c T = T �c g.2. g �c T is a tensor of curvature type.3. g �c g = G; where G is the tensor de�ned in (92).4. Gx induces a pseudo-inner product on �2x(M);8x 2M .



52 Kishore Marathe5. Cx induces a symmetric, linear transformation of �2x(M);8x 2M:The orthogonal group O(g) of the metric acts on the space C and splits it intothree irreducible subspaces of dimensions 10, 9, and 1. Under this splittingthe Riemann curvature Rm into three parts as follows:Rm =W + c1(K �c g) + c2S(g �c g):The ten dimensional partW is the Weyl conformal curvature tensor. It splitsfurther into its self-dual part W+ and anti-dual part W� under the action ofSO(g). The part involving the trace-free Ricci tensor K is 9 dimensional. Allof these tensors occur in functionals on the space of metrics.We denote the Hodge star operator on �2x(M) by Jx. The fact thatM is a Lorentz 4-manifold implies that Jx de�nes a complex structure on�2x(M); 8x 2M: Using this complex structure we can give a natural structureof a complex vector space to �2x(M). Then we have the following proposition.Proposition 7 Let U : �2x(M) ! �2x(M) be a real, linear transformation.Then the following are equivalent:1. L commutes with Jx.2. L is a complex linear transformation of the complex vector space �2x(M).3. The matrix of L with respect to a Gx-orthonormal basis of �2x(M) is ofthe form � A B-B A� (93)where A;B are real 3� 3 matrices.We now de�ne the gravitational tensorWgr, of curvature type, which includesthe source term. Let M be a space-time manifold with fundamental tensor gand let T be a symmetric tensor of type (2; 0) onM . Then the gravitationaltensor Wgr is de�ned by Wgr := Rm+ g �c T; (94)where Rm is the Riemann-Christo�el curvature tensor of type (4; 0).We are now in a position to give a geometric formulation of the generalized�eld equations of gravitation.Theorem 8 Let Wgr denote the gravitational tensor de�ned by (94) withsource tensor T . We denote by Ŵgr the linear transformation of �2x(M) in-duced by Wgr. Then the following are equivalent:1. g satis�es the generalized �eld equations of gravitation (90);2. Ŵgr commutes with Jx;3. Ŵgr is a complex linear transformation of the complex vector space �2x(M).We shall call the triple (M; g; T ) a generalized gravitational �eld if anyone of the conditions of Theorem 8 is satis�ed. Generalized gravitational �eld



Geometric Topology and Field Theory on 3-Manifolds 53equations were introduced by the author in [44]. Their mathematical prop-erties have been studied in [48, 45, 54]. In local coordinates, the generalizedgravitational �eld equations can be written asRij � 14Rgij = �(T ij � 14Tgij): (95)We observe that the equation (95) does not lead to any relation between thescalar curvature and the trace of the source tensor, since both sides of equa-tion (95) are trace-free. Taking divergence of both sides of equation (95) andusing the Bianchi identities we obtain the generalized conservation conditionriT ij � gij�i = 0; (96)where ri is the covariant derivative with respect to the vector @@xi ,� = 14(T �R) (97)and �i = @@xi�. Using the function � de�ned by equation (97), the �eldequations can be written asRij � 12Rgij � �gij = �T ij : (98)In this form the new �eld equations appear as Einstein's �eld equations withthe cosmological constant replaced by the function �, which we may call thecosmological function. The cosmological function is intimately connected withthe classical conservation condition expressing the divergence-free nature ofthe energy-momentum tensor as is shown by the following proposition.Proposition 9 The energy-momentum tensor satis�es the classical conser-vation condition riT ij = 0 (99)if and only if the cosmological function � is a constant. Moreover, in thiscase the generalized �eld equations reduce to Einstein's �eld equations withcosmological constant.We note that, if the energy-momentum tensor is non-zero but is localizedin the sense that it is negligible away from a given region, then the scalarcurvature acts as a measure of the cosmological constant. By setting theenergy-momentum tensor to zero in (95) we obtain various characterizationsof the usual gravitational instanton. Solutions of the generalized gravitational�eld equations which are not solutions of Einstein's equations have beendiscussed in [13].We note that the theorem (8) and the last condition in proposition (6)can be used to discuss the Petrov classi�cation of gravitational �elds (seePetrov [60]). The tensor Wgr can be used in place of R in the usual de�nition



54 Kishore Maratheof sectional curvature to de�ne the gravitational sectional curvature on theGrassmann manifold of non-degenerate 2-planes overM and to give a furthergeometric characterization of gravitational �eld equations. We observe thatthe generalized �eld equations of gravitation contain Einstein's equationswith or without the cosmological constant as special cases. Solutions of thesource-free generalized �eld equations are called gravitational instantonsIf the base manifold is Riemannian, then gravitational instantons correspondto Einstein spaces. A detailed discussion of the structure of Einstein spacesand their moduli spaces may be found in [7]. Over a compact, 4-dimensional,Riemannian manifold (M; g), the gravitational instantons that are not solu-tions of the vacuum Einstein equations are critical points of the quadratic,Riemannian functional or action A2(g) de�ned byA2(g) = ZM S2dvg :Furthermore, the standard Hilbert-Einstein actionA1(g) = ZM Sdvgalso leads to the generalized �eld equations when the variation of the actionis restricted to metrics of volume 1.The generalized �eld equations of gravitation in the Euclidean theory canbe obtained by considerations similar to those given above. It is these equa-tions with the source the dilaton �eld that appear in Perelman's modi�cationof the Ricci 
ow. We give a brief discussion of his work in the next section.11.1 Geometrization Conjecture and GravityThe classi�cation problem for low dimensional manifolds is a natural questionafter the success of the case of surfaces by the uniformization theorem . In1905, Poincar�e formulated his famous conjecture which states in the smoothcase: A closed, simply-connected 3-manifold is di�eomorphic to S3, the stan-dard sphere. A great deal of work in three dimensional topology in the next100 years was motivated by this. In the 1980s Thurston studied hyperbolicmanifolds. This led him to his \Geometrization Conjecture" about the ex-istence of homogeneous metrics on all 3-manifolds. It includes the Poincar�econjecture as a special case. In the case of 4-manifolds, there is at presentno analogue of the geometrization conjecture. We discuss brie
y the currentstate of these problems in the next two subsections.The Ricci 
ow equations @gij@t = �2Rij



Geometric Topology and Field Theory on 3-Manifolds 55for a Riemannian metric g were introduced by Hamilton in [25]. They forma system of nonlinear second order partial di�erential equations. Hamiltonproved that this equation has a unique solution for a short time for anysmooth metric on a closed manifold. The evolution equation for the metricleads to the evolution equations for the curvature and Ricci tensors and forthe scalar curvature. By developing a maximum principle for tensors, Hamil-ton proved that the Ricci 
ow preserves the positivity of the Ricci tensorin dimension three and that of the curvature operator in dimension four[26]. In each of these cases he proved that the evolving metrics converge tometrics of constant positive curvature (modulo scaling). These and a seriesof further papers led him to conjecture that the Ricci 
ow with surgeriescould be used to prove the Thruston geometrization conjecture. In a seriesof e-prints Perelman developed the essential framework for implementing theHamilton program. We would like to add that the full Einstein equationswith dilaton �eld as source play a fundamental role in Perelman's work (see,arXiv.math.DG/0211159, 0303109, 0307245) on the geometrization conjec-ture. A corrolary of this work is the proof of the long standing Poincar�econjecture. A complete proof of the geometrization conjecture by applyingthe Hamilton-Perelman theory of the Ricci 
ow has just appeared in [14] ina special issue dedicated to the memory of S.-S. Chern,3 one of the greatestmathematicians of the twentieth century.The Ricci 
ow is perturbed by a scalar �eld which corresponds in stringtheory to the dilaton. It is supposed to determine the overall strength of allinteractions. The low energy e�ective action of the dilaton �eld coupled togravity is given by the action functionalF(g; f) = ZM (R+ jrf j2)e�fdv :Note that when f is the constant function the action reduces to the classicalHilbert-Einstein action. The �rst variation can be written as�F(g; f) = ZM [��gij(Rij+rifrjf)+(12�gij(gij��f)(2�f�jrf j2+R)]dm ;where dm = e�fdv : If m = RM e�fdv is kept �xed, then the second term inthe variation is zero and then the symmetric tensor �(Rij +rifrjf) is theL2 gradient 
ow of the action functional Fm = RM (R+jrf j2)dm : The choiceof m is similar to the choice of a gauge. All choices of m lead to the same
ow, up to di�eomorphism, if the 
ow exists. We remark that in the quan-3 I �rst met Prof. Chern and his then newly arrived student S.-T. Yau in 1973 at theAMS summer workshop on di�erential geometry held at Stanford University. Chern wasa gourmet and his conference dinners were always memorable. I attended the �rst onein 1973 and the last one in 2002 on the occasion of the ICM satellite conference at hisinstitute in Tianjin. In spite of his advanced age and poor health he participated in theentire program and then continued with his duties as President of the ICM in Beijing.



56 Kishore Marathetum �eld theory of the two-dimensional nonlinear �-model, Ricci 
ow can beconsidered as an approximation to the renormalization group 
ow. This sug-gests gradient-
ow like behaviour for the Ricci 
ow, from the physical pointof view. Perelman's calculations con�rm this result. The functional Fm hasalso a geometric interpretation in terms of the classical Bochner-Lichnerowiczformulas with the metric measure replaced by the dilaton twisted measuredm.The corresponding variational equations areRij � 12Rgij = �(rirjf � 12(�f)gij):These are the usual Einstein equations with the energy-momentum tensor ofthe dilaton �eld as source. They lead to the decoupled evolution equations(gij)t = �2(Rij +rirjf); ft = �R��f:After applying a suitable di�eomorphism these equations lead to the gradient
ow equations. This modi�ed Ricci 
ow can be pushed through the singular-ities by surgery and rescaling. A detailed case by case analysis is then used toprove Thurston's geometrization conjecture. This includes as a special casethe classical Poincar�e conjecture.We have seen that QFT calculations have their counterparts in stringtheory. One can speculate that this is a topological quantum gravity (TQG)interpretation of a result in TQFT, in the Euclidean version of the theories.If modes of vibration of a string are identi�ed with fundamental particles,then their interactions are already built into the theory. Consistency withknown physical theories requires string theory to include supersymmetry.While supersymmetry has had great success in mathematical applications, itsphysical veri�cation is not yet available. However, there are indications thatit may be the theory that uni�es fundamental forces in the standard modelat energies close to those at currently existing and planned accelarators.Perturbative supersymmetric string theory (at least up to lower loop levels)avoids the ultraviolet divergences that appear in conventional attempts atquantizing gravity. Recent work relating the Hartle-Hawking wave functionto string partition function can be used to obtain a wave function for themetric 
uctuations on S3 embedded in a Calabi-Yau manifold. This may bea �rst step in a realistic quantum cosmology relating the entropy of certainblack holes with the topological string wave function. While a string theorymodel unifying all fundamental forces is not yet available, a number of smallresults (some of which we have discussed in this paper) are emerging tosuggest that supersymmetric string theory could play a fundamental rolein constructing such a model. Developing a theory and phenomenology of4-dimensional string vacua and relating them to experimental physics andcosmological data would be a major step in this direction. New mathematicalideas may be needed for the completion of this project.



Geometric Topology and Field Theory on 3-Manifolds 57We would like to think of this work as part of a new area called \physicalmathematics". Many other aspects of physical mathematics are consideredin my forthcoming book \Topics in Physical Mathematics", Springer Ver-lag (2009). It is well known that the roots of \physical mathematics" goback to the very beginning of man's attempts to understand nature. Ab-stracting some of what he observed in the motion of heavenly bodies led tothe early developments in mathematics. Indeed mathematics was an integralpart of natural philosophy. Rapid growth of the physical sciences aided bytechnological progress and increasing abstraction in mathematical researchcaused a separation of the sciences and mathematics in the 20th century.Physicists methods were often rejected by mathematicians as imprecise andmathematicians approach to physical theories was not understood by thephysicists. We have already given many examples of this. However, theoret-ical physics did in
uence development of some areas of mathematics. Twofundamental physical theories, Relativity and Quantum theory now over acentury old sustained interest in geometry and functional analysis and grouptheory. Yang-Mills theory, now over half a century old was abandoned formany years before its relation to the theory of connections in a �ber bun-dle was found. It has paid rich dividends to the geometric topology of lowdimensional manifolds in the last quarter century. Secondary characteristicclasses were given less than secondary attention when they were introduced.Now a major conference celebrating twenty years of Chern-Simons theory isplanned by the Max Planck and the Hausdor� institutes in Bonn in August2009. Many areas such as statistical mechanics, conformal �eld theory andstring theory that we have not included in this work have already led to newdevelopments in mathematics. The scope of physical mathematics continuesto expand rapidly. Even in the topics that we have considered in this book anumber of new results are appearing and new connections between old resultsare emerging. In fact, the recent lecture4 by Curtis McMullen (Fields medal,ICM 1998, Berlin) was entitled \From Platonic Solids to Quantum Topol-ogy". McMullen weaves a fascinating tale from ancient to modern mathe-matics pointing out unexpected links between various areas of mathematicsand theoretical physics. He concludes with the statement of a special case ofthe volume conjecture interpreting it as the equality between a gauge the-oretic invariant and a topological gravity invariant. The vast and excitinglandscape of physical mathematics is open for exploration.AcknowledgementsThis work was supported in part by a research fellowship of the Max PlanckGesellschaft at the Max Planck Institute for Mathematics in the Sciences,4 The 2009 Reimar L�ust lecture in Bonn delivered on June 12
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