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Geometric Topology and Field Theory
on 3-Manifolds

Kishore Marathe

Abstract In recent years the interaction between geometric topology and
classical and quantum field theories has attracted a great deal of attention
from both the mathematicians and physicists. This interaction has been es-
pecially fruitful in low dimensional topology. In this article We discuss some
topics from the geometric topology of 3-manifolds with or without links where
this has led to new viewpoints as well as new results. They include in ad-
dition to the early work of Witten, Casson, Bott, Taubes and others, the
categorification of knot polynomials by Khovanov. Rozansky, Bar-Natan and
Garofouladis and a special case of the gauge theory to string theory corre-
spondence in the Euclidean version of the theories, where exact results are
available. We show how the Witten-Reshetikhin-Turaev invariant in SU(n)
Chern-Simons theory on S? is related via conifold transition to the all-genus
generating function of the topological string amplitudes on a Calabi-Yau
manifold. This result can be thought of as an interpretation of TQFT as
TQG (Topological Quantum Gravity). A brief discussion of Perelman’s work
on the geometrization conjecture and its relation to gravity is also included.

1 Introduction

This paper is based in part on my seminars given at the Max Planck Institute
for Mathematics in the Sciences, and at other institutes, notably at the IIT
(Mumbai), Universitd di Firenze, University of Florida at Gainsville, Inter
University Center for Astronomy and Astrophysics, University of Pune, In-
dia and conferences given at the XXIV workshop on Geometric Methods in
Physics ,Poland [50] and the Blaubeuren workshop “Mathematical and Phys-
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ical Aspects of Quantum Gravity” [51]. In my lectures on the mathematical
and physical aspects of gauge theories in New York and Florence in the early
1980s, I began using the phrase gauge theoretic topology and geometry to
describe a rapidaly developing area of mathematics, where unexpected ad-
vances were made with essential use of gauge theory. By the late 1990s it
was evident that in addition to gauge theory, many other parts of theoretical
physics were contributing new ideas and methods to the study of topology,
geometry, algebra and other fields of mathematics. I then began using the
phrase “Physical Mathematics” to collectively denote the areas of mathe-
matics benefitting from an infusion of ideas from physics. It appears in print
for the first time in [48] and more recently, in [49] and is the theme of my
forthcoming book with Springer-Verlag on “Topics in Physical Mathematics”.

During the past two decades a surprising number of new structures have
appeared in the geometric topology of low-dimensional manifolds. Chiral,
Vertex, Affine and other infinite dimensional algebras are related to 2d CFT
and string theory as well as to sporadic finite groups such as the monster. In
three dimensions there are the polynomial link invariants of Jones, Kaufman.
HOMFLY and others, Witten-Reshetikhin-Turaev invariants of 3-manifolds,
Casson invariants of homology spheres and Fukaya-Floer instanton homolo-
gies. In 4 dimensions we have the instanton invariants of Donaldson and the
monopole invariants of Seiberg-Witten and the list continues to grow. These
invariants may be roughly split into two groups. Those in the first group
arise from combinatorial (algebraic or topological) considerations and can be
computed algorithmically. Those in the second group arise from the study of
moduli spaces of solutions of partial differential equations which have their
origin in physical field theories. Here the computations generally depend on
special conditions or extra structures. The main aim of these lectures is to
study some of the relations that have been found between the invariants
from the two groups and more generally, to understand the influence of ideas
from field theories in geometric topology and vice versa. For example, many
physicists consider supersymmetric string theory to be the most promising
candidate to lead to the so called grand unification of all four fundamental
forces. Unifying different string theories into a single theory (such as M-
theory) would seem to be the natural first step. This goal seems distant at
this time, since even the physical foundations for such unification are not
yet clear. However, in mathematics it has led to new areas such as mirror
symmetry, Calabi-Yau spaces, Gromov-Witten theory, and Gopakumar-Vafa
invariants. The earliest and the best understood example of the relationship
between invariants from the two groups is illustrated by the Casson invari-
ant which was defined by using combinatorial topological methods. Taubes
found a gauge theoretic interpretation of the Casson invariant as the Euler
characteristic by using the generalized Poincaré-Hopf index which can also
be obtained by using Floer’s instanton homology. Yet there is no algorithm
for computing the homology groups themselves.
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Topological quantum field theory was ushered in by Witten in his 1989
paper [80] “QFT and the Jones’ polynomial”. WRT invariants arose as a
byproduct of the quantization of Chern-Simons theory used to characterize
the Jones’ polynomial. At this time, it is the only known geometric char-
acterization of the Jones’ polynomial, although the Feynman integrals used
by Witten do not yet have a mathematically acceptable definition. Space-
time manifolds in such theories are compact Riemannian manifolds. They
are referred to as Euclidean theories in the physics literature. Their role in
physically interesting theories is not clear at this time and they should be
regarded as toy models.

In the last few years we have celebrated a number of special events. The
Gauss’ year and the 100th anniversary of Einstein’s “Annus Mirabilis” (the
miraculous year) are the most important among these. Indeed, Gauss’ “Dis-
quisitiones generale circa superficies curvas” was the basis and inspiration for
Riemann’s work which ushered in a new era in geometry. It is an extension
of this geometry that is the cornerstone of relativity theory. More recently,
we have witnessed the marriage between Gauge Theory and the Geometry of
Fiber Bundles from the sometime warring tribes of Physics and Mathematics.
Marriage brokers were none other than Chern and Simons. The 1975 paper by
Wu and Yang [83] can be regarded as the announcement of this union. It has
led to many wonderful offspring. The theories of Donaldson, Chern-Simons,
Floer-Fukaya, Seiberg-Witten, and TQFT are just some of the more famous
members of their extended family. Quantum Groups, CFT, Supersymmetry
(SUSY), String Theory, Gromov-Witten theory and Gravity also have close
ties with this family. Later in this paper we will discuss one particular re-
lationship between gauge theory and string theory, that has recently come
to light. The qualitative aspects of Chern-Simons theory as string theory
were investigated by Witten [82] almost ten years ago. Before recounting the
main idea of this work we review the Feynman path integral method of quan-
tization which is particularly suited for studying topological quantum field
theories. For general background on gauge theory and geometric topology
see, for example, [47, 48].

We now give a brief description of the contents of the paper. In section 2
we discuss Gauss’ Formula for Linking Number of knots, the earliest example
of TFT (Topological Field Theory) and its recent extension to self linking in-
variants. Witten’s fundamental work on supersymmetry and Morse theory is
covered in section 3. Chern-Simons theory is introduced in section 4. Its rela-
tion to Casson invariant via the moduli space of flat connections is explained
in section 5. Ideas from sections 3 and 4 are used in section 6 to define the
Fukaya-Floer homology. This homology provides the categorification of the
Casson invariant. Knot polynomials and their categorification are discussed
in sections 7 and 8 respectively. Section 9 is devoted to a general discus-
sion of TQFT and its applications to invariants of links and 3-manifolds.
Atiyah-Segal axioms for TQFT are introduced in subsection 9.1. In subsec-
tion 9.2 we define quantum observables and introduce the Feynman path
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integral approach to QFT. The Euclidean version of this theory is applied in
subsection 9.3 to the Chern-Simons Lagrangian to obtain the skein relations
for the Jones-Witten polynomial of a link in S3. A by product of this is the
family of WRT invariants of 3-manifolds. They are discussed in subsection
9.4. Section 10 is devoted to studying the relation between WRT invariants
of S3 with gauge group SU(n) and the open and closed string amplitudes
in generalized Calabi-Yau manifolds. Change in geometry and topology via
conifold transition which plays an important role in this study is introduced
in subsection 10.1 in the form needed for our specific problem. Expansion
of free energy and its relation to string amplitudes is given in subsection
10.2 This result is a special case of the general program introduced by Wit-
ten in [82]. A realization of this program even within Euclidean field theory
promises to be a rich and rewarding area of research. We have given some
indication of this at the end of this section. Links between Yang-Mills, grav-
ity and string theory are considered in the concluding section 11. Relation of
Yang-Mills equations with Einstein’s equations for gravitational field in the
Euclidean setting is considered in subsection 11.1. Various formulations of
Einstein’s equations for gravitational field are discussed in subsection 11.2.
They also make a surprising appearance in Perelaman’s proof of Thurston’s
Geometrization conjecture. A brief indication of this is given in subsection
11.3.

We have included some basic material and given more details than nec-
essary to make the paper essentially self-contained. A fairly large number of
references ranging from January 1833 to January 2009, when the Heidelberg
conference was held, are included to facilitate further study and research in
this exciting and rapidaly expanding area.

2 Gauss’ Formula for Linking Number of knots

Knots have been known since ancient times but knot theory is of quite re-
cent, origin. One of the earliest investigations in combinatorial knot theory is
contained in several unpublished notes written by Gauss between 1825 and
1844 and published posthumously as part of his Nachlafi(estate). They deal
mostly with his attempts to classify “Tractfiguren” or plane closed curves
with a finite number of transverse self-intersections. However, one fragment
deals with a pair of linked knots. We reproduce a part of this fragment below.

Es seien die Coordinaten eines unbestimmten Punkts der ersten Linie r =
(z,y, 2); der zweiten r' = (2',y',2") und

[t
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dann ist dies Integral durch beide Linien ausgedehnt = 47wm und m die Anzahl
der Umschlingungen. Der Werth ist gegenseitig, d.i. er bleibt derselbe, wenn
beide Linien gegen einander umgetauscht werden 1833. Jan. 22.

In this fragment of a note from his Nachlafl, Gauss had given an analytic
formula for the linking number of a pair of knots. This number is a combi-
natorial topological invariant. As is quite common in Gauss’s work, there is
no indication of how he obtained this formula. The title of the section where
the note appears, “Zur Electrodynamik” (“On Electrodynamics”) and his
continuing work with Weber on the properties of electric and magnetic fields
leads us to guess that it originated in the study of magnetic field generated
by an electric current flowing in a curved wire.

Maxwell knew Gauss’s formula for the linking number and its topological
significance and its origin in electromagnetic theory. In fact, before he knew
of Gauss’s formula, he had rediscovered it. He mentions it in a letter to Tait
dated December 4, 1867. He wrote several manuscripts which study knots,
links and also addressed the problem of their classification. In these and
other topological problems his approach was not mathematically rigorous but
was rather based on his deep understanding of physics. Indeed this situation
persists today in several mathematical results obtained by physical reasoning.
Like Maxwell, Tait used his physical intuition to correctly classify all knots
up to seven crossings and made a number of conjectures, the last of which
remained open for over hundred years.

In obtaining a topological invariant by using a physical field theory, Gauss
had anticipated Topological Field Theory by almost 150 years. Even the
term topology was not used then. It was introduced in 1847 by J. B. Listing,
a student and protegé of Gauss, in his essay “Vorstudien zur Topologie”.
Gauss’s linking number formula can also be interpreted as the equality of
topological and analytic degree of the function A defined by

/
Ar, ') = @, Y(r,x') e C x C'
r—r'|
It is well defined by the disjointness of C and C’. If w denotes the standard
volume form on S2, then the pull back A*(w) of w to C x C' is precisely
the integrand in the Gauss formula and [w = 4m. One can check that the
topological degree of A equals the linking number m.

Recently, Bott and Taubes have used these ideas to study a self-linking
invariant of knots [12]. It turns out that this invariant belongs to a family
of knot invariants, called finite type invariants, defined by Vassiliev. Gauss
forms with different normalization are used by Kontsevich [39] in the for-
mula for this invariant and it is stated that the invariant is an integer equal
to the second coefficient of the Alexander-Conway polynomial of the knot. In
[10, 11] Bott and Cattaneo obtain invariants of rational homology 3-spheres
in terms of configuration space integrals. Kontsevich views these formulas
as forming a small part of a very broad program to relate the invariants of
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low-dimensional manifolds, homotopical algebras, and non-commutative ge-
ometry with topological field theories and the calculus of Feynman diagrams.
It seems that the full realization of this program would require the best efforts
of mathematicians and physicists for years to come.

3 Supersymmetry and Morse Theory

Classical Morse theory on a finite dimensional, compact, differentiable man-
ifold M relates the behaviour of critical points of a suitable function on M
with topological information about M. The relation is generally stated as an
equality of certain polynomials as follows. Recall first that a smooth function
f: M — Ris called a Morse function if its critical points are isolated and
non-degenerate. If x € M is a critical point (i.e. df(z) = 0), then by Taylor
expansion of f around z, we obtain the Hessian of f at x defined by
2
T
xtox

Then the non-degeneracy of the critical point z is equivalent to the non-
degeneracy of the quadratic form determined by the Hessian. The dimension
of the negative eigenspace of this form is called the Morse index, or simply
index, of f at « and is denoted by pf(x) or simply pu(z) when f is understood.
It can be verified that these definitions are independent of the choice of the
local coordinates. Let mj be the number of critical points with index k. Then
the Morse series of f is the formal power series

katk ,where my = 0,Vk > dim M.
k

Recall that the Poincaré series of M is given by >, bit*, where by = by (M)
is the k-th Betti number of M. The relation between the two series is given

by
katk = Zbktk +(1+t)zqktk, (1)
k k k

where ¢, are non-negative integers. Comparing the coefficients of the powers
of ¢ in this relation leads to the well-known Morse inequalities

i i
Yomik(=DF 2 Y bk (-1)F, 0<i<n-1,
k=0 k=0

> ma i (=1)F = bk (-1)F.
k=0 k=0
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The Morse inequalities can also be obtained from the following observation.
Let C* be the graded vector space over the set of critical points of f. Then
the Morse inequalities are equivalent to the existence of a certain coboundary
operator 8 : C* — C* so that 8> = 0 and the cohomology of the complex
(C*, 9) coincides with the deRham cohomology of M.

In his fundamental paper [78], Witten arrives at precisely such a complex
by considering a suitable supersymmetric quantum mechanical Hamiltonian.
Witten showed how the standard Morse theory (see, for example, Milnor
[53]) can be modified by considering the gradient flow of the Morse function
f between pairs of critical points of f. One may think of this as a sort of
relative Morse theory. He was motivated by the phenomenon of the quantum
mechanical tunnelling. We now discuss this approach. From a mathematical
point of view, supersymmetry may be regarded as a theory of operators on
a Zs-graded Hilbert space. In recent years this theory has attracted a great
deal of interest from theoretical point of view even though as yet there is no
physical evidence for its existence.

Graded Algebraic Structures

In this subsection we recall briefly a few important properties of graded vector
spaces and graded operators in a slightly more general situation than is im-
mediately needed. We will use this information again in studying Khovanov
homology. Graded algebraic structures appear naturally in many mathemat-
ical and physical theories. We shall restrict our considerations only to Z- and
Zo-gradings. The most basic such structure is that of a graded vector space
which we now describe. Let V' be a vector space. We say that V is Z-graded
(resp. Zo-graded) if V is the direct sum of vector subspaces V;, indexed by
the integers (resp. integers mod. 2), i.e.

V:EBVi (resp. V=1 & W).
i€Z

The elements of V; are said to be homogeneous of degree i. In the case of
Zy-grading it is customary to call the elements of Vg (resp. Vi) even (resp.
odd). If V and W are two Z-graded vector spaces, a linear transformation
f:V — W is said to be graded of degree k if f(V;) C Wiy, Vi € Z. If
V and W are Zo-graded , then a linear map f : V — W is said to be even
if f(V;) C Wi, i € Zy and is said to be odd if f(V;) C W11, i € Zy. An
algebra A is said to be Z-graded if A is Z-graded as a vector space, i.e.

A=P A

i€EZ
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and A;A; C A;1j, Vi, j € Z. Anideal I C A is called a homogeneous ideal

if
I=EPUn 4.
i€

A similar definition can be given for a Zs-graded algebra. In the physical
literature a Zo-graded algebra is referred to as a superalgebra. Other
algebraic structures (such as Lie, commutative etc.) have their superalgebra
counterparts. An example of a Z-graded algebra is given by the exterior
algebra of differential forms A(M) of a manifold M if we define A*(M) = 0
for ¢+ < 0. The exterior differential d is a graded linear transformation of
degree 1 of A(M). The graded or quantum dimension of V' is defined by

dim, V =Y ¢'(dim(V;)) ,
i€EZ

where ¢ is a formal variable. If we write ¢ = exp27iz, z € C then dim, V can
be regarded as the Fourier expansion of a complex function. A spectacular
application of this occurs in the study of finite groups. We discuss this briefly
in the next paragraph. It is not needed in the rest of the paper. However, it
has surprising connections with conformal field theory and vertex algebras. It
does not deal with 3-manifolds and may be omitted without loss of continuity.

Monstrous Moonshine

It was his study of Kepler’s sphere packing conjecture, that led John Con-
way to the discovery of his sporadic simple group. Soon thereafter the last
holdouts in the complete list of the 26 finite sporadic simple groups were
found. All the infinite families of finite simple groups (such as the groups
Zy, for p a prime number and alternating groups A,,n > 4 that we study
in the first course in algebra) were already known. So the classification of
finite simple groups was complete. It ranks as the greatest achievement of
twentieth century mathematics. Hundreds of mathematicians contributed to
it. The various parts of the classification together fill more than ten thousand
pages. Conway’s group and other sporadic simple groups are closely related
to the symmetries of lattices. The study of representations of the largest of
these groups (called the Friendly Giant or Fisher-Griess Monster) has led
to the creation of a new field of mathematics called Vertex algebras. They
turn out to be closely related to the chiral algebras in conformal field theory.
These and other ideas inspired by string theory have led to a proof of Conway
and Norton’s Moonshine conjectures ( see, for example, Borcherds [9], and
the book [22] by Frenkel, Lepowski, Meurman). The monster Lie algebra is
the simplest example of a Lie algebra of physical states of a chiral string on
a 26-dimensional orbifold. This algebra can be defined by using the infinite
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dimensional graded representation V' of the monster simple group. Its quan-
tum dimension is related to Jacobi’s SL(2,Z) hauptmodul (elliptic modular
function of genus 0) j(q), where ¢ = €™ z € H by

dim, V = j(q) — 744 = ¢~ ' + 196884¢ + 214937604¢° + ...

The above formula is one small part in the proof of the moonshine conjectures.
For more information see my review [52] in the Mathematical Intelligencer.

SUSY Quantum Theory

The Hilbert space E of a supersymmetric theory is Zs-graded, ie. E =
Ey & E;, where the even (resp. odd) space Ey (resp. E) is called the space
of bosonic (resp. fermionic) states. These spaces are distinguished by an op-
erator S : E — FE defined by

Su=u, Yu€ FEy,

Sv=—-v, Yvé€FE.

The operator S is interpreted as counting the number of fermions modulo
2. A supersymmetric theory begins with a collection {@; | i = 1,...,n} of
supercharge (or supersymmetry) operators on E which are of odd degree, i.e.
anti-commute with S

SQi+Q:S=0, Vi (2)
and satisfy the following anti-commutation relations
QRiQ; +Q;Q; =0, Vi#j. (3)

The dynamics is introduced by the Hamiltonian operator H which com-
mutes with the supercharge operators and is usually required to satisfy ad-
ditional conditions. For example, in the simplest non-relativistic theory one

requires that
H=Q? Vi. (4)

In fact this simplest supersymmetric theory has surprising connections with
Morse theory which we now discuss.
Let M be a compact differentiable manifold and define E by

E:=AM)®C.
The natural grading on A(M) induces a grading on E. We define

Ey = @AQ-i(M) ®C (resp. E; := 69 AT (M) ® C)
j J
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the space of complex-valued even (resp. odd) forms on M. The exterior dif-
ferential d and its formal adjoint § have natural extension to odd operators
on E and thus satisfy (2). We define supercharge operators Q;, j = 1,2, by

Q1:d+(s: (5)

Qo = i(d - 0). (6)

The Hamiltonian is taken to be the Hodge-deRham operator extended to E,
ie.

H = do+dd. (7)

The relations d?> = 6% = 0 imply the supersymmetry relations (3) and (4).
We note that in this case bosonic (resp. fermionic) states correspond to even
(resp. odd) forms. The relation to Morse theory arises in the following way.
If f is a Morse function on M, define a one-parameter family of operators

dy = e ftdeft, 6, =eftoe ¥, teR (8)
and the corresponding supersymmetry operators
Qiri=de + 6, Qar=ri(d —0), Hp =d0r + 0dy.

It is easy to verify that d? = 67 = 0 and that Q1,, Q2,, H; satisfy the
supersymmetry relations (3) and (4). The parameter ¢ interpolates between
the deRham cohomology and the Morse indices as ¢ goes from 0 to +o0o. At
t = 0, the number of linearly independent eigenvectors with zero eigenvalue
is just the k-th Betti number b, when Hy = H is restricted to act on k-forms.
In fact these ground states of the Hamiltonian are just the harmonic forms.
On the other hand, for large ¢ the spectrum of H; simplifies greatly with the
eigenfunctions concentrating near the critical points of the Morse function.
It is in this way that the Morse indices enter into this picture. We can write
H; as a perturbation of H near the critical points. In fact, we have

Hy=H+1tY faulod i + £ df|1,
gk

where o/ = dx’ acts by exterior multiplication, X* = 9/9z* and ix is the
usual action of inner multiplication by X* on forms and the norm ||df|| is
the norm on A!(M) induced by the Riemannian metric on M. In a suitable
neighborhood of a fixed critical point taken as origin, we can approximate
H, up to quadratic terms in 27 by

_ 02 -
H, = Z (833? +t2)\?m? + tAj[on,sz]) ,
j
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where \; are the eigenvalues of the Hessian of f. The first two terms corre-
spond to the quantized Hamiltonian of a harmonic oscillator with eigenvalues

£ 1A | (1+2N;),

J

whereas the last term defines an operator with eigenvalues \;. It commutes
with the first and thus the spectrum of H; is given by

£ (A | (1+2N;) + Ajmy),

where N;’s are non-negative integers and n; = £1. We remark that the clas-
sical harmonic oscillator was the first dynamical system that was quantized
by using the canonical quantization principle. Dirac introduced his creation
and annihilation operators to obtain its spectrum without solving the cor-
responding Schrodinger equation. Feynman used this result to test his path
integral quantization method. Restricting H to act on k-forms we can find
the ground states by requiring all the IN; to be 0 and by choosing n; to
be 1 whenever A; is negative. Thus the ground states (zero eigenvalues) of
H correspond to the critical points of Morse index k. All other eigenvalues
are proportional to ¢t with positive coefficients. Starting from this observa-
tion and using standard perturbation theory, one finds that the number of
k-form ground states equals the number of critical points of Morse index k.
Comparing this with the ground state for ¢ = 0, we obtain the weak Morse
inequalities my > by. As we observed in the introduction the strong Morse
inequalities are equivalent to the existence of a certain cochain complex which
has cohomology isomorphic to H*(M), the cohomology of the base manifold
M. Witten defines C), the set of p-chains of this complex, to be the free
group generated by the critical points of Morse index p. He then argues that
the operator d; defined in (8) defines in the limit as ¢ — oo a coboundary
operator
doo : Cp - Cp+1

and that the cohomology of this complex is isomorphic to the deRham coho-
mology of Y.

Thus we see that in establishing both the weak and strong form of Morse
inequalities a fundamental role is played by the ground states of the super-
symmetric quantum mechanical system (5), (6), (7). In a classical system
the transition from one ground state to another is forbidden, but in a quan-
tum mechanical system it is possible to have tunneling paths between two
ground states. In gauge theory the role of such tunneling paths is played by
instantons. Indeed, Witten uses the prescient words “instanton analysis” to
describe the tunneling effects obtained by considering the gradient flow of the
Morse function f between two ground states (critical points). If 3 (resp. «)
is a critical point of f of Morse index p+ 1 (resp. p) and I" is a gradient flow
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of f from ( to a, then by comparing the orientation of negative eigenspaces
of the Hessian of f at 8 and «, Witten defines the signature np of this flow.
By considering the set S of all such flows from 3 to «, he defines

n(a, B) = Z nr.

res

Now defining ., by

0o 1 Cp = Cpy1 by a— Z n(a, 8)8, 9)

BECH 11

he shows that (C.,d~) is a cochain complex with integer coefficients. Witten
conjectures that the integer-valued coboundary operator ., actually gives
the integral cohomology of the manifold M. The complex (Ci,d ), with the
coboundary operator defined by (9), is referred to as the Witten complex.
As we will see later, Floer homology is the result of such “instanton analysis”
applied to the gradient flow of a suitable Morse function on the moduli space
of gauge potentials on an integral homology 3-sphere. Floer has also used
these ideas to study a “symplectic homology” associated to a manifold. A
corollary of this theory proves the Witten conjecture for finite dimensional
manifolds (see [64] for further details), namely

H*(C\,00) = H*(M, 7).

A direct proof of the conjecture may be found in the appendix to K. C.
Chang [15]. A detailed study of the homological concepts of finite dimensional
Morse theory in anology with Floer homology may be found in M. Schwarz
[67]. While many basic concepts of “Morse homology” can be found in the
classical investigations of Milnor, Smale and Thom, its presentation as an
axiomatic homology theory in the sense of Eilenberg and Steeenrod [18] is
given for the first time in [67]. One consequence of this axiomatic approach
is the uniqueness result for “Morse homology” and its natural equivalence
with other axiomatic homology theories defined on a suitable category of
topological spaces. Witten conjecture is then a corollary of this result. A
discussionof the relation of equivariant cohomolgy and supersymmetry may
be found in Guillemin and Sternberg’s book [24].

4 Chern-Simons Theory

Let M be a compact manifold of dimension m = 2r + 1, r > 0, and let
P(M, @) be a principal bundle over M with a compact, semisimple Lie group
G as its structure group. Let a,, (w) denote the Chern-Simons m-form on M
corresponding to the gauge potential (connection) w on P; then the Chern-
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Simons action A¢cg is defined by

Acs = ¢(@) / (), (10)

M

where ¢(G) is a coupling constant whose normalization depends on the group
G. In the rest of this paragraph we restrict ourselves to the case r = 1 and
G = SU(n). The most interesting applications of the Chern-Simons theory
to low dimensional topologies are related to this case. It has been extensively
studied by both physicists and mathematicians in recent years. In this case
the action (10) takes the form

k 1
ACS:—/tT(A/\Ff—A/\A/\A) (11)

k 2
—/ tr(ANdA+ -ANANA), (12)
4 M 3

where k € R is a coupling constant, A denotes the pull-back to M of the
gauge potential w by a local section of P and F' = F,, = d“ A is the gauge
field on M corresponding to the gauge potential A. A local expression for (11)
is given by

k 2
Acs = — / €tr(AadsAy + Z AaApA,), (13)
47 JMm 3

where A, = A%T, are the components of the gauge potential with respect
to the local coordinates {z,}, {T,} is a basis of the Lie algebra su(n) in
the fundamental representation and €*%7 is the totally skew-symmetric Levi-
Civita symbol with €'?* = 1. We take the basis {T,} with the normalization

t’l"(TaT(,) = %(Sab; (14)

where §,5 is the Kronecker § function. Let g € G be a gauge transformation
regarded (locally) as a function from M to SU(n) and define the 1-form 6 by

6 =g 'dg =g '0,gdx".
Then the gauge transformation A9 of A by g has the local expression
A =g ' Aug+9 0. (15)

In the physics literature, the connected component of the identity, G;q C G is
called the group of small gauge transformations. A gauge transformation
not belonging to G;4 is called a large gauge transformation. By a direct
calculation, one can show that the Chern-Simons action is invariant under
small gauge transformations, i.e.

Acs(A%) = Acs(A), Vg € Gig.



14 Kishore Marathe
Under a large gauge transformation g the action (13) transforms as follows:
Acs(A?) = Acs(A) + 2nkAw z, (16)

where

Awz :

=5 /M €*Ptr(0,056.) (17)

is the Wess-Zumino action functional. It can be shown that the Wess-
Zumino functional is integer valued and hence, if the Chern-Simons coupling
constant k is taken to be an integer, then we have

ei.A(;s (Ag) — ei.A(jS (A) .

The integer k is called the level of the corresponding Chern-Simons theory.
It follows that the path integral quantization of the Chern-Simons model is
gauge-invariant. This conclusion holds more generally for any compact simple
group if the coupling constant ¢(G) is chosen appropriately. The action is
manifestly covariant since the integral involved in its definition is independent
of the metric on M. It is in this sense that the Chern-Simons theory is a
topological field theory. We will consider this aspect of the Chern-Simons
theory later.

In general, the Chern-Simons action is defined on the space Ap(a ) of
all gauge potentials on the principal bundle P(M,G). But when M is 3-
dimensional P is trivial (in a non-canonical way). We fix a trivialization
to write P(M,G) = M x G and write Ay for Ap(pr,c). Then the group
of gauge transformations Gp can be identified with the group of smooth
functions from M to G and we denote it simply by Gys. For £ € N, the
transformation law (16) implies that the Chern-Simons action descends to
the quotient By = Apn/Gm as a function with values in R/Z. We denote
this function by fcg, i.e.

fos : By — R/Z is defined by [w] = Acs(w), V [w] =wGy € By. (18)

The field equations of the Chern-Simons theory are obtained by setting the
first variation of the action to zero as

0Acs = 0.

We shall discuss two approaches to this calculation. Consider first a one pa-
rameter family ¢(¢) of connections on P with ¢(0) = w and ¢(0) = a. Differen-
tiating the action Acs(c(t)) with respect to ¢ and noting that differentiation
commutes with integration and the tr operator, we get

% Acs(c(t)) = i /M tr (26() A de(t) + 2(é(E) A c(t) A e(t))
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QL tr (6(t) A (de(t) + (t) A c(t)))
™ Jm

1
27T_M

< C(t) s *Fc(t) >

where the inner product on the right is as defined in Definition 2.1. It follows
that

d 1
5Acs = L Aos(et))jmo = — / <o xF, > (19)
dt 2w JMm
Since a can be chosen arbitrarily, the field equations are given by
xF,, = 0 or equivalently F, = 0. (20)

Alternatively, one can start with the local coordinate expression of equa-
tion (13) as follows

k 2
Acs = - ePir(Ay,0p A, + = Ay AgA.)
™ Jm 3
k 2
_ af a c a Ab pc
= Ny €*7tr (AL 05 ASTo Ty + gAaAﬁAVTaTbTC)

and find the field equations by using the variational equation

0Acs _
5AY -

(21)

This method brings out the role of commutation relations and the structure
constants of the Lie algebra su(n) as well as the boundary conditions used
in the integration by parts in the course of calculating the variation of the
action. The result of this calculation gives

0Acs k 087 b
qa Ab Ac 29
SAZ 21 S ‘ (8ﬁ 7 b Vfabc) (22)

where f,p. are the structure constants of su(n) with respect to the basis T},.
The integrand on the right hand side of the equation (22) is just the local
coordinate expression of xFy, the dual of the curvature, and hence leads to
the same field equations.

The calculations leading to the field equations (20) also show that the
gradient vector field of the function fog is given by

1
grad fcs = —xF (23)

27
The gradient flow of fog plays a fundamental role in the definition of Floer
homology. The solutions of the field equations (20) are called the Chern-
Simons connections. They are precisely the flat connections. In the next
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paragraph we discuss flat connections on a manifold N and their relation to
the homomorphisms of the fundamental group m (V) into the gauge group.

Flat connections

Let H be a compact Lie group and Q(N,H) be a principal bundle with
structure group H over a compact Riemannian manifold N. A connection w
on (@ is said to be flat if its curvature is zero, i.e. F,, = 0. The pair (Q,w)
is called a flat bundle. Let 2(N,z) be the loop space at z € N. Recall
that the horizontal lift h, of ¢ € 2(N,z) to u € 7~ (z) determines a unique
element of H. Thus we have the map

hy : 2(N,z) — H.

It is easy to see that w flat implies that this map h, depends only on the
homotopy class of the loop ¢ and hence induces a map (also denoted by hy,)

hy :m(N,2) — H.

It is this map that is related to the Bohm-Aharonov effect. It can be shown
that the map h, is a homomorphism of groups. The group H acts on the
set Hom(m (N), H) by conjugation sending h, to g~ 'hyg = hyy. Thus a flat
bundle (Q),w) determines an element of the quotient Hom(m((N), H)/H. If
a € G(Q), the group of gauge transformations of @, then a - w is also a flat
connection on ) and determines the same element of Hom(m(N),H)/H.
Conversely, let f € Hom(m(N),H) and let (U,q) be the universal cover-
ing of N. Then U is a principal bundle over N with structure group m (N).
Define Q := U x; H to be the bundle associated to U by the action f
with standard fiber H. It can be shown that () admits a natural flat con-
nection and that f and g~'fg, g € H, determine isomorphic flat bundles.
Thus the moduli space M (N, H) of flat H-bundles over N can be identified
with the set Hom(m(N), H)/H. The moduli space M (N, H) and the set
Hom(m (N), H) have a rich mathematical structure which has been exten-
sively studied in the particular case when N is a compact Riemann surface

The flat connection deformation complex is the generalized deRham
sequence with the usual differential d replaced by the covariant differential
d“. The fact that in this case it is a complex follows from the observation that
w flat implies d¥ o d¥ = 0. By rolling up this complex, we can consider the
rolled up deformation operator d* + ¢% : A°Y — A°% By the index theorem,
we have

Ind(d” + 6%) = x(N)dimH

and hence
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n

> (-1)'b; = x(N)dimH, (24)

i=0
where b; is the dimension of the i-th cohomology of the deformation complex.
Both sides are identically zero for odd n. For even n, the formula can be used
to obtain some information on the virtual dimension of My (= b;). For
example, if N = X, is a Riemann surface of genus g > 1, then x(X,) =
—2g + 2, while, by Hodge duality, by = b, = 0 at an irreducible connection.
Thus, equation (24) gives

—by = —(29 — 2)dimH.
From this it follows that
dimMy(X,, H) = dimMj; = (29 — 2)dimH. (25)

In even dimensions greater than 2, the higher cohomology groups provide
additional obstructions to smoothability of M. For example, for n = 4,
Hodge duality implies that by = by and b; = b3 and (24) gives

Equation (25) shows that dimM; is even. Identifying the first cohomology
H'(A(M,adh),d”) of the deformation complex with the tangent space T, M ¢
to My, the intersection form defines a map ¢, : T,M¢ x T, Mz = R by

(X,Y) = / XAY, X,V €T,M;. (26)
29

The map ¢, is skew-symmetric and bilinear. The map
Liw by, Yw € My, (27)

defines a 2-form ¢ on M. If h admits an H-invariant inner product, then this
2-form ¢ is closed and non-degenerate and hence defines a symplectic structure
on M. It can be shown that, for a Riemann surface with H = PSL(2,R),
the form ¢, restricted to the Teichmiiller space, agrees with the well-known
Weil-Petersson form.

We now discuss an interesting physical interpretation of the symplectic
manifold (M (X, H), ). Consider a Chern-Simons theory on the principal
bundle P(M, H) over the 2+ 1-dimensional space-time manifold M = ¥, xR
with gauge group H and with time independent gauge potentials and gauge
transformations. Let 4 (resp. H) denote the space (resp. group) of these gauge
connections (resp. transformations). It can be shown that the curvature F,
defines an H-equivariant moment map

p:A—= LH =AY (M, adP), by w — *F,,
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where LH is the Lie algebra of H. The zero set u~1(0) of this map is precisely
the set of flat connections and hence

My = (0)/H = A JH (28)

is the reduced phase space of the theory, in the sense of the Marsden-
Weinstein reduction. We call A//H the symplectic quotient of A by H.
Marsden-Weinstein reduction and symplectic quotient are fundamental con-
structions in geometrical mechanics and geometric quantization. They also
arise in many other mathematical applications.

A situation similar to that described above, also arises in the geomet-
ric formulation of canonical quantization of field theories. One proceeds by
analogy with the geometric quantization of finite dimensional systems. For
example, @) = A/H can be taken as the configuration space and T*(@) as the
corresponding phase space. The associated Hilbert space is obtained as the
space of L? sections of a complex line bundle over . For physical reasons
this bundle is taken to be flat. Inequivalent flat U (1)-bundles are said to cor-
respond to distinct sectors of the theory. Thus we see that at least formally
these sectors are parametrized by the moduli space

M (Q,U(1)) = Hom(m (Q),U(1))/U(1) = Hom(m (Q),U(1))

since U(1) acts trivially on Hom(m(Q),U(1)).

We note that the Chern-Simons theory has been extended by Witten to
the cases when the gauge group is finite and when it the complexification
of compact real gauge groups [17, 81]. While there are some similarities be-
tween these theories and the standard CS theory, there are major differences
in the corresponding TQFTs. New invariants of some hyperbolic 3-manifolds
have recently been obtained by considering the complex gauge groups lead-
ing to the concept of arithmetic TQFT by Zagier and collaborators (see
arXiv:0903.24272v1 [hep-th]). See also Dijkgraaf and Fuji arXiv:0903.2084
[hep-th] and Gukov and Witten arXiv:0809.0305 [hep-th].

5 Casson invariant and Flat Connections

Let Y be a homology 3-sphere. Let Dy, D> be two unitary, unimodular rep-
resentations of 71(Y) in C2. We say that they are equivalent if they are
conjugate under the natural SU(2)-action on C2?, i.e.

Ds(g) = S 'Dy(g)S, Vg e m (Y), S € SU(2).

Let us denote by R(Y") the set of equivalence classes of such representations.
It is customary to write
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R(Y) := Hom{m, (Y) = SU(2)}/conj. (29)

The set R(Y') can be given the structure of a compact, real algebraic variety.
It is called the SU(2)-representation variety of Y. Let R*(Y") be the class of
irreducible representations. Fixing an orientation of Y, Casson showed how to
assign a sign s(a) to each element a € R*(Y"). He showed that the set R*(Y")
is 0-dimensional and compact and hence finite. Casson defined a numerical
invariant of ¥ by counting the signed number of elements of R*(Y) by

c(Y) = Z s(a).1 (30)

a€ER*(Y)
The integer ¢(Y) is called the Casson invariant of V.

Theorem 1 The Casson invariant c(Y) is well defined up to sign for any
homology sphere Y and satisfies the following properties:

i) o(=Y) = —c(Y),

i) ¢((X#Y) = ¢(X) 4+ ¢(Y), X a homology sphere,

iii) ¢(Y)/2 = p(Y) mod 2, p Rokhlin invariant.

We now give a gauge theory description of R(Y") leading to Taubes’ theorem.
In [71] Taubes gives a new interpretation of the Casson invariant ¢(Y") of
an oriented homology 3-sphere Y, which is defined above in terms of the
signed count of equivalence classes of irreducible representations of w1 (Y")
into SU(2). As indicated above, this space can be identified with the moduli
space M (Y, SU(2)) of flat connections in the trivial SU(2)- bundle over
Y. Recall that this is also the space of solutions of the Chern-Simons field
equations (20) The map F : w +— F, defines a natural 1-form on 4/G and
the zeros of this form are just the flat connections. We note that since A/G
is infinite dimensional, it is necessary to use suitable Fredholm perturbations
to get simple zeros and to count them with appropriate signs. Let Z denote
the set of zeros of the perturbed vector field and let s(a) be the sign of a € Z.
Taubes shows that Z is contained in a compact set and that

a€Z

The right hand side of this equation can be interpreted as the index of a
vector field in the infinite dimensional setting. The classical Poincaré-Hopf
theorem can also be generalized to interpret the index as Euler characteristic.
A natural question to ask is if this Euler characteristic comes from some
homology theory? An affirmative answer is provided by Floer’s instanton
homology. We discuss it in the next section.

Another approach to Casson’s invariant involves symplectic geometry and
topology. We conclude this section with a brief indication of this approach.
Let Yy Ux_ Y_ be a Heegaard splitting of ¥ along the Riemann surface X, of
genus g. The space R(X,) of conjugacy classes of representations of 71 (X))
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into SU(2) can be identified with the moduli space M;(X,,SU(2)) of flat
connections. This identification endows it with a natural symplectic struc-
ture which makes it into a (6g — 6)-dimensional symplectic manifold. The
representations which extend to Yy (resp. Y_) form a (3g — 3)-dimensional
Lagrangian submanifold of R(X,) which we denote by R(Y}) (resp. R(Y_)).
Casson’s invariant is then obtained from the intersection number of the La-
grangian submanifolds R (Y, ) and R(Y_) in the symplectic manifold R(X,).
How the Floer homology of Y fits into this scheme seems to be unknown at
this time.

6 Fukaya-Floer Homology

The idea of instanton tunnelling and the corresponding Witten complex was
extended by Floer to do Morse theory on the infinite dimensional moduli
space of gauge potentials on a homology 3-sphere Y and to define new topo-
logical invariants of Y. Fukaya has generalized this work to apply to arbitrary
oriented 3-manifolds. We shall refer to the invariants of Floer and Fukaya col-
lectively as Fukaya-Floer Homology. Fukaya-Floer Homology associates to an
oriented, connected, closed, smooth 3-dimensional manifold Y, a family of
Zg-graded instanton homology groups FF,(Y), n € Zg. We begin by intro-
ducing Floer’s original definition, which requires Y to be a homology 3-sphere.
Let R(Y') be the SU(2)-representation variety of Y as defined in (29 and let
R*(Y) be the class of irreducible representations. We say that a € R*(Y) is
a regular representation if

H'(Y,ad(a)) = 0. (31)

We identify R(Y') with the space of flat or Chern-Simons connections on Y.
The Chern-Simon functional has non-degenerate Hessian at a if «a is regular.
Fix a trivialization P of the given SU(2)-bundle over Y. Using the trivial
connection # on P =Y x SU(2) as a background connection on Y, we can
identify the space of connections Ay with the space of sections of A'(Y) ®
su(2). In what follows we shall consider a suitable Sobolev completion of this
space and continue to denote it by Ay.

Let ¢: I — Ay be a path from «a to 6. The family of connections ¢(¢) on
Y can be identified as a connection A on Y x I. Using this connection we can
rewrite the Chern-Simons action (11) as follows

1

82

Acg = / tT(FA A FA). (32)
JY I

We note that the integrand corresponds to the second Chern class of the
pull-back of the trivial SU(2)-bundle over Y to Y x I. Recall that the critical
points of the Chern-Simons action are the flat connections. The gauge group
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Gy actson Acs : A — R by

Acs(a?) = Acs(a) +deg(g), g € Gy

It follows that Acg descends to By := Ay /Gy as a map fos : By — R/Z
and we can take R(Y) C By as the critical set of fog. The gradient flow of
this function is given by the equation

82—(:) = *ch(t). (33)
Since Y is a homology 3-sphere, the critical points of the flow of grad fcs
and the set of reducible connections intersect at a single point, the trivial
connection 6. If all the critical points of the flow are regular then it is a
Morse-Smale flow. If not, one can perturb the function fos to get a Morse
function.

In general the representation space R*(Y) C By contains degenerate crit-
ical points of the Chern-Simons function fcg. In this case Floer defines a set
of perturbations of fcs as follows. Let m € N and let V™ S} be a bouquet
of m copies of the circle S*. Let I}, be the set of maps

v \/ S! xD?* »Y
i=1
such that the restrictions
’ym:\/S}X{m}—)Yand’yi:SilXDQAY
i=1

are smooth embeddings for each z € D? and for each i, 1 < i < m. Let 4,
denote the family of holonomy maps

Ae : Ay = SU(2) x --- x SU(2), = € D

'

m times

The holonomy is conjugated under the action of the group of gauge transfor-
mations and we continue to denote by 4, the induced map on the quotient
By = Ay /G. Let F,,, denote the set of smooth functions

h:SU(2)x---xSU((2) =R

m times

which are invariant under the adjoint action of SU(2). Floer’s set of pertur-
bations I is defined as
T = U Ty X Fon.
meN
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Floer proves that for each (v, h) € IT the function

hy : By — R defined by h,(a) = / h(¥.(a))
D2
is a smooth function and that for a dense subset P C RM(Y') x IT the critical
points of the perturbed function

fv.m) = fos + hy

are non-degenerate and the corresponding moduli space decomposes into
smooth, oriented manifolds of regular trajectories of the gradient flow of the
function f(, ) with respect to a generic metric o € RM(Y"). Furthermore,
the homology groups of the perturbed chain complex are independent of the
choice of perturbation in P. We shall assume that this has been done. Let
«, 3 be two critical points of the function fc-g. Considering the spectral flow
(denoted by sf) from a to 3 we obtain the moduli space M(«, 3) as the
moduli space of self-dual connections on Y x R which are asymptotic to «
and B (as t — 00). Let M7 (a, 3) denote the component of dimension j in
M(a, ). There is a natural action of R on M(a, 3). Let M (a, ) denote
the component of dimension j — 1 in M(«, 8)/R. Let #Ml(a, B) denote the
signed sum of the number of points in M](a,ﬁ). Floer defines the Morse
index of a by considering the spectral flow from « to the trivial connection 6.
It can be shown that the spectral flow and hence the Morse index are defined
modulo 8. Now define the chain groups by

Ro(Y)=Z{ae R*(Y)|sf(a) =n}, n€ Zsg
and define the boundary operator 9
0 :Ru(Y) = Rno1(Y)

by
da= Y #M(a,pB)B. (34)

BERA-1(Y)

It can be shown that 92 = 0 and hence (R(Y), 9) is a complex. This complex
can be thought of as an infinite dimensional generalization [21] of Witten’s
instanton tunnelling and we will call it the Floer-Witten Complex of the
pair (Y,SU(2)). Since the spectral flow and hence the dimensions of the
components of M(a, 3) are congruent modulo 8, this complex defines the
Floer homology groups FH;(Y), j € Zg, where j is the spectral flow of a to
6 modulo 8. If r; denotes the rank of the Floer homology group FH;(Y), j €

Zs, then we can define the corresponding Euler characteristic xg(Y) by
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Combining this with Taubes’ interpretation of the Casson invariant ¢(Y") we
get

oY) =xr(Y) =) (-1)r;. (35)

JEZs

An important feature of Floer’s instanton homology is that it can be re-
garded as a functor from the category of homology 3-spheres with morphisms
given by oriented cobordism, to the category of graded abelian groups. Let
M be a smooth, oriented cobordism from Y; to Y5 so that M = Y5 — 7.
By a careful analysis of instantons on M, Floer showed [20] that M induces
a graded homomorphism

M; : FH;(Y1) = FHj pr)(Ya), J € Zs, (36)

where

b(M) = 3(b1 (M) — by(M)). (37)

Then the homomorphisms induced by cobordism has the following functorial
properties.

(Y x R); = id, (38)
(MN)j = Mjion)N;- (39)

An algorithm for computing the Floer homology groups for Seifert-fibered
homology 3-spheres with three exceptional fibers (or orbits) has been dis-
cussed in [19].

In addition to these invariants of 3-manifolds and the linking number, there
are several other invariants of knots and links in 3-manifolds. We introduce
them in the next section and study their field theory interpretations in the
later sections.

7 Knot Polynomials

In the second half of the nineteenth century, a systematic study of knots in R?
was made by Tait. He was motivated by Kelvin’s theory of atoms modelled
on knotted vortex tubes of ether. Tait classified the knots in terms of the
crossing number of a plane projection and made a number of observations
about some general properties of knots which have come to be known as the
“Tait conjectures”. Recall that a knot x in S? is an embedding of the circle
S and that a link is a disjoint union of knots. A link diagram of & is a
plane projection with crossings marked as over or under. By changing a link
diagram at one crossing we can obtain three diagrams corresponding to links
K4, k— and Kg.
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In the 1920s, Alexander gave an algorithm for computing a polynomial
invariant A, (q) of a knot &, called the Alexander polynomial, by using
its projection on a plane. He also gave its topological interpretation as an
annihilator of a certain cohomology module associated to the knot k. In the
1960s, Conway defined his polynomial invariant and gave its relation to the
Alexander polynomial. This polynomial is called the Alexander-Conway
polynomial or simply the Conway polynomial. The Alexander-Conway poly-
nomial of an oriented link L is denoted by V(z) or simply by V(z) when
L is fixed. We denote the corresponding polynomials of L,, L_ and Ly by
V4, V_ and Vj respectively. The Alexander-Conway polynomial is uniquely
determined by the following simple set of axioms.

AC1. Let L and L' be two oriented links which are ambient isotopic. Then

Vi(z) =Vi(2) (40)

AC2. Let S' be the standard unknotted circle embedded in S3. Tt is usually
referred to as the unknot and is denoted by O. Then

Vo(z) =1. (41)
AC3. The polynomial satisfies the following skein relation
Vi(z) = V_(2) = 2Vy(2). (42)

We note that the original Alexander polynomial Aj is related to the
Alexander-Conway polynomial by the relation

Ap(t) = V(2 — 1712,

Despite these and other major advances in knot theory, the Tait conjectures
remained unsettled for more than a century after their formulation. Then in
the 1980s, Jones discovered his polynomial invariant Vi (q), called the Jones
polynomial, while studying Von Neumann algebras and gave its interpreta-
tion in terms of statistical mechanics. These new polynomial invariants have
led to the proofs of most of the Tait conjectures. As with the earlier invariants,
Jones’ definition of his polynomial invariants is algebraic and combinatorial
in nature and was based on representations of the braid groups and related
Hecke algebras. The Jones polynomial Vi (t) of & is a Laurent polynomial in
t (polynomial in ¢ and ¢~ !) which is uniquely determined by a simple set of
properties similar to the axioms for the Alexander-Conway polynomial. More
generally, the Jones polynomial can be defined for any oriented link L as a
Laurent polynomial in #!/2. Reversing the orientation of all components of L
leaves Vz, unchanged. In particular, V; does not depend on the orientation of
the knot k. For a fixed link, we denote the Jones polynomial simply by V.
Recall that there are 3 standard ways to change a link diagram at a cross-
ing point. The Jones polynomials of the corresponding links are denoted by
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V4, V_ and Vj respectively. Then the Jones polynomial is characterized by
the following properties:
JO1. Let x and &' be two oriented links which are ambient isotopic. Then

Vi (t) = Vi (t) (43)
JO2. Let O denote the unknot. Then
Vo(t) = 1. (44)
JO3. The polynomial satisfies the following skein relation
TV =tV = (12 — V)Y, (45)

An important property of the Jones polynomial that is not shared by the
Alexander-Conway polynomial is its ability to distinguish between a knot
and its mirror image. Let &, be the mirror image of the knot . Then

Vnm (t) = Vn(til) 7é Vn(t) (46)

Since the Jones polynomial is not symmetric in ¢ and ¢t~'. Soon after Jones’
discovery a two variable polynomial generalizing V' was found by several
mathematicians. It is called the HOMFLY polynomial and is denoted by
P. The HOMFLY polynomial P(«, z) satisfies the following skein relation

aP, —a 'P_ = zP,. (47)

If we put @ = ¢! and 2z = (t'/2 — ¢t~'/?) in equation (47) we get the skein
relation for the original Jones polynomial V. If we put @ = 1 we get the skein
relation for the Alexander-Conway polynomial.

Knots and links in R? can also be obtained by using braids. A braid on
n strands (or with n strings or simply an n-braid) can be thought of as a
set of n pairwise disjoint strings joining n distinct points in one plane with n
distinct points in a parallel plane in R?. The set of equivalence classes of n-
braids is denoted by B,,. A braid is called elementary if only two neighboring
strings cross. We denote by o; the elementary braid where the i-th string
crosses over the (i + 1)-th string.
Theorem (M. Artin): The set B,, with multiplication operation induced by
concatenation of braids is a group generated by the elementary braids ¢;,1 <
i <mn — 1 subject to the braid relations

0i0i410; = 0i410;0;41 , 1 <i<mn—2. (48)
and the far commutativity relations

oioj =0j0; , 1 <i,j<n-—1landli—j|>1. (49)
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The closure of a braid b obtained by gluing the endpoints is a link de-
noted by ¢(b). A classical theorem of Alexander shows that the closure map
from the set of braids to the set of links is surjective, i.e. any link (and, in
particular, knot) is the closure of some braid. Moreover, if braids b and '
are equivalent, then the links ¢(b) and ¢(b') are equivalent. There are several
descriptions of the braid group leading to various approaches to the study
of its representations and invariants of links. For example, B,, is isomorphic
to the fundamental group of the configuration space of n distinct points in
the plane. The action of B,, on the homology of the configuration space is
related to the representations of certain Hecke algebras leading to invariants
of links such as the Jones polynomial that we have discussed earlier. The
group B, is also isomorphic to the mapping class group of the n-punctured
disc. This definition was recently used by Krammer and Bigelow in showing
the linearity of B,, over the ring Z[q™!, t*'] of Laurent polynomials in two
variables.

8 Categorification of Knot Polynomials

We begin by recalling that a categorification of an invariant I is the con-
struction of a suitable (co)homology H* such that its Euler characteristic
X(H*) (the alternating sum of the ranks of (co)homology groups) equals
I. Historically, the Euler charactristic was defined and understood well be-
fore the advent of algebraic topology. Theorema egregium of Gauss and the
closely related Gauss-Bonnet theorem and its generalization by Chern give
a geometric interpretation of the Euler characteristic x(M) of a manifold
M. They can be regarded as precursors of Chern-Weil theory as well as in-
dex theory. Categorification x (H*(M)) of this Euler characteristic x(M) by
various (co)homolgy theories H*(M) came much later. A well known recent
example that we have discussed is the categorification of the Casson invariant
by the Fukaya-Floer homology. Categorification of quantum invariants such
as Knot, Polynomials requires the use of quantum Euler characteristic and
multi-graded knot homologies.

Recently Khovanov [29] has obtained a categorification of the Jones poly-
nomial Vj(¢q) by constructing a bi-graded sl(2)-homology H; ; determined
by the knot k. It is called the Khovanov homology of the knot x and is
denoted by K H(x). The Khovanov polynomial Kh(t,q) is defined by

Khy(t,q) =Y t'q'dim H;; .
ij
It can be thought of as a two variable generalization of the Poincare polyno-

mial. The quantum or graded Euler characteristic of the Khovanov homology
equals the Jones polynomial. i.e.
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Vila) = x(KH(r)) =) _(~1)q'dim H;; .

i.j

Khovanov’s construction follows Kauffman’s state-sum model of the link L
and his alternative definition of the Jones polynomial. Let L be a regular
projection of L with n = ny 4+ n_ labelled crossings. At each crossing we
can define two resolutions or states, the vertical or 1-state and horizontal or
0-state. Thus there are 2" total resolutions of L which can be put into one
to one correspondence with the vertices of an n-dimensional unit cube. For
each vertex z let |z| be the sum of its coordinates and let ¢(z) be the number
of disjoint circles in the resolution L, of L determined by z. Kauffman’s
state-sum expression for the non-normalized Jones polynomial V(L) can be
written as follows:

V(L) = (-1 ¢+ 2N ()"l g+ ¢ 1)) (50)

Dividing this by the unknot value (¢+¢~') gives the usual normalized Jones
polynomial V(L). The Khovanov complex is constructed as follows. Let V
be a graded vector space over a fixed ground field K, generated by two basis
vectors vy with respective degrees £1. The total resolution associates to each
vertex ¢ a one dimensional manifold M, consisting of ¢(z) disjoint circles.
We can construct a (1+1)-dimensioal TQFT (along the lines of Atiyah-Segal
axioms discussed in the next section) for each edge of the cube as follows. If
zy is an edge of the cube we can get a pair of pants cobordism from M, to
M, by noting that a circle at z can split into two at y or two circles at =
can fuse into one at y. If a circle goes to a circle than the cylinder provides
the cobordism. To the manifold M, at each vertex x we associate the graded

vector space
Vo (L) = Ve {jal} (51)

where {k} is the degree shift by k. We define the Frobenius structure (see the
book [34] by Kock for Frobenius algebras and their relation to TQFT) on V
as follows. Multiplication m : V ® V. — V is defined by

m(vy ®vg) = vy, m(vy ®v_) =v_,
m(v- ®vy) =v_, m(v_ ®v_) = 0.
Co-multiplication A : V — V ® V is defined by
Alvy) =vy Qu_ +v_ Quy , Alv_)=v_Quv_.

Thus vy is the unit. The co-unit 6 € V* is defined by mapping vy to 0 and v_
to 1 in the base field. The r-th chain group C,.(L) in the Khovanov complex
is the direct sum of all vector spaces V,,(L), where || = r, and the differential
is defined by the Frobenius structure. Thus
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Co(L) = ®|g/—,Va(L). (52)

We remark that the TQFT corresponds to the Frobenius algebra structure
on V defined above. The r-th homology group of the Khovanov complex is
denoted by K H,. Khovanov has proved that the homology is independent of
the various choices made in defining it. Thus we have

Theorem 2 The homology groups KH, are link invariants. In particular,
the Khovanov polynomial

Khy(t,q) =Y _ t/dim,(KH;)
J

is a link invariant that specializes to the non-normalized Jones polynomial.
The Khovanov polynomial is strictly stronger than the Jones polynomial.

We note that the knots 945 and 10,25 are chiral. Their chirality is detected
by the Khovanov polynomial but not by the Jones polynomial. Also there
are several pairs of knots with the same Jones polynomials but different
Khovanov polynomials. For example (51, 10132) is such a pair.

8.1 Categorification of V(3,)

Using equations (51) and (52) and the algebra structure on V the calcula-
tion of the Khovanov complex can be reduced to an algorithm. A computer
program implementing such an algorithm is discussed in [6]. A table of Kho-
vanov polynomials for knots and links up to 11 crossings is also given there.
We now illustrate Khovanov’s categorification of the Jones polynomial of
the right handed trefoil knot 3;. For the standard diagram of the trefoil,
n =ny = 3 and n_ = 0. The quantum dimensions of the non-zero terms of
the Khovanov complex with the shift factor included are given by

Co=(g+q ") Ci=3qlg+q "),Co=3¢(q+q¢ "), Cs =*(qg+q ")’
(53)
The non-normalized Jones polynomial can be obtained from (53) or directly
from (50) giving .
V(L)=(g+¢*+4¢" —¢°) (54)

The normalized or standard Jones polynomial is then given by
Vi)=(a+d+¢ —¢")/a+a ) = +4° — ¢

By direct computation or using the program in [6] we obtain the following
formula for the Khovanov polynomial of the trefoil

Kh(t,q) = q+ ¢ +t2¢° +t2¢°, Kh(~1,q) = x, = V(L).
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Based on computations using the program described in [6], Khovanov, Garo-
fouladis and Bar-Natan (BKG) have formulated some conjectures on the
structure of Khovanov polynomials over different base fields. We now state
these conjectures.

The BKG Conjectures: For any prime knot &, there exists an even integer
s = s(x) and a polynomial Kh! (t,q) with only non-negative coefficients such
that

1. Over the base field K = Q,
Kh(t,q) = ¢" ' [L+¢° + (1 + tq") KNy (t, q)]
2. Over the base field K = Zo,
Kh(t,q) = ¢~ (1+¢*)[1+ (1 + tg*) Khi (¢, 9)]

3. Moreover, if the & is alternating, then s(x) is the signature of the knot and
KR! (t,q) contains only powers of tqg>.

The conjectured results are in agreement with all the known values of the
Khovanov polynomials.

If S C R* is an oriented surface cobordism between links L; and Ls, then
it induces a homomorphism of Khovanov homologies of links L; and Ls.
These homomorphisms define a functor from the category of link cobordisms
to the category of bigraded abelian groups. Khovanov homology extends to
colored links (i.e. oriented links with components labelled by irreducible finite
dimensional representations of sl(2)) to give a categorification of the colored
Jones polynomial. Khovanov and Rozansky have defined an sl(n)-homology
for links colored by either the defining representation or its dual. This gives
categorification of the specialization of the HOMFLY polynomial P(a, q) with
a = q". The sequence of such specializations for n € N would categorify the
two variable HOMFLY polynomial P(a,q). For n = 0 the theory coincides
with the Heegaard Floer homology of Ozsvith and Szabo [57].

In the 1990s Reshetikhin, Turaev and other mathematicians obtained sev-
eral quantum invariants of triples (g, L, M), where g is a simple Lie algebra,
L C M is an oriented, framed link with components labelled by irreducible
representations of g and M is a 2-framed 3-manifold. In particular, there
are polynomial invariants < L > that take values in Z[g~ !, ¢]. Khovanov
has conjectured that at least for some classes of Lie algebras (e.g. simply-
laced) there exists a bigraded homology theory of labelled links such that
the polynomial invariant < L > is the quantum Euler characteristic of this
homology. It should define a functor from the category of framed link cobor-
disms to the category of bigraded abelian groups. In particular, the homology
of the unknot labelled by an irreducible representation U of g should be a
Frobenius algebra of dimension dim/(U).
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9 Topological Quantum Field Theory

Quantization of classical fields is an area of fundamental importance in mod-
ern mathematical physics. Although there is no satisfactory mathematical
theory of quantization of classical dynamical systems or fields, physicists
have developed several methods of quantization that can be applied to specific
problems. Most successful among these is QED (Quantum Electrodynamics),
the theory of quantization of electromagnetic fields. The physical significance
of electromagnetic fields is thus well understood at both the classical and
the quantum level. Electromagnetic theory is the prototype of classical gauge
theories. It is therefore, natural to try to extend the methods of QED to
the quantization of other gauge field theories. The methods of quantization
may be broadly classified as non-perturbative and perturbative. The litera-
ture pertaining to each of these areas is vast. See for example [17, 66, 70].
Our aim in this section is to discuss some aspects of a new area of research
in quantum field theory, namely, topological quantum field theory (or TQFT
for short). Ideas from TQFT have already led to new ways of looking at old
topological invariants as well as to surprising new invariants.

9.1 Atiyah-Segal axioms for TQFT

In 2 and 3 dimensional geometric topology, Conformal Field Theory (CFT)
methods have proved to be useful. An attempt to put the CFT on a firm
mathematical foundation was begun by Segal in [68] by proposing a set of
axioms for CFT. CFT is a two dimensional theory and it was necessary to
modify and generalize these axioms to apply to topological field theory in
any dimension. We now discuss briefly these TQFT axioms following Atiyah
The Atiyah-Segal axioms for TQFT (see, for example, 2], [40]) arose from an
attempt to give a mathematical formulation of the non-perturbative aspects
of quantum field theory in general and to develop, in particular, compu-
tational tools for the Feynman path integrals that are fundamental in the
Hamiltonian approach to Witten’s topological QFT. The most spectacular
application of the non-perturbative methods has been in the definition and
calculation of the invariants of 3-manifolds with or without links and knots.
In most physical applications however, it is the perturbative calculations that
are predominantly used. Recently, perturbative aspects of the Chern-Simons
theory in the context of TQFT have been considered in [5]. For other ap-
proaches to the invariants of 3-manifolds see [30, 32, 55, 72, 74]

Let C,, denote the category of compact, oriented, smooth n-dimensional
manifolds with morphism given by oriented cobordism. Let V¢ denote the
category of finite dimensional complex vector spaces. An (n + 1)-dimensional
TQFT is a functor 7 from the category C,, to the category V¢ which satisfies
the following axioms.
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Al. Let — X denote the manifold X with the opposite orientation of X and
let V* be the dual vector space of V' € V. Then

T(=X)=(T(X)", VY € C,.
A2. Let U denote disjoint union. Then
T(Z1UX) =T(Z)@T(Xs), VX1, X5 € Cy.
A3. Let Y; : X; = X1, i = 1,2 be morphisms. Then
TMNYs) =T(Y2)T (Y1) € Hom(T (), T(X3)),

where Y71Y> denotes the morphism given by composite cobordism Y; Uy, Y5.
A4. Let §,, be the empty n-dimensional manifold. Then

T(0,) =C.
A5. For every X € C,,
T(Ex[0,1]): T(X) = T(X)

is the identity endomorphism.
We note that if YV is a compact, oriented, smooth (n + 1)-manifold with
compact, oriented, smooth boundary X, then

TY):T(dn) = T(X)

is uniquely determined by the image of the basis vector 1 € C = T (¢,). In
this case the vector 7(Y) -1 € T(X) is often denoted simply by 7(Y") also.
In particular, if Y is closed, then

TY):T(dn) = T(pn) and T(Y)-1 € T(¢,) =C

is a complex number which turns out to be an invariant of Y. Axiom A3
suggests a way of obtaining this invariant by a cut and paste operation on
Y as follows. Let Y =Y; Uy Y3 so that Y] (resp. Y2) has boundary X' (resp.
—X). Then we have

TY)1=<TM) -1, T(Y2) 1>, (55)

where < , > is the pairing between the dual vector spaces 7 (X) and
T(=X) = (T(X))*. Equation (55) is often referred to as a gluing formula.
Such gluing formulas are characteristic of TQFT. They also arise in Fukaya-
Floer homology theory of 3-manifolds, Floer-Donaldson theory of 4-manifold
invariants as well as in 2-dimensional conformal field theory. For specific ap-
plications the Atiyah axioms need to be refined, supplemented and modified.
For example, one may replace the category V¢ of complex vector spaces by
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the category of finite-dimensional Hilbert spaces. This is in fact, the situation
of the (2 + 1)-dimensional Jones-Witten theory. In this case it is natural to
require the following additional axiom.

A6. Let Y be a compact oriented 3-manifold with 0Y = ¥ LI(—X,). Then
the linear transformations

TY): T(X) = T(X) and T(=Y): T (X)) = T(Xh)

are mutually adjoint.
For a closed 3-manifold Y the axiom A6 implies that

T(-Y)=T() eC.

It is this property that is at the heart of the result that in general, the Jones
polynomials of a knot and its mirror image are different, i.e.

Vie(t) # Vi, (1),

where &, is the mirror image of the knot «.

An important example of a (3 4+ 1)-dimensional TQFT is provided by the
Floer-Donaldson theory. The functor 7 goes from the category C of compact,
oriented Homology 3-spheres to the category of Zg-graded abelian groups. It
is defined by

T:Y—>HF.(Y), YeC.

For a compact, oriented, 4-manifold M with M =Y, T(M) is defined to
be the vector ¢(M,Y)

q(M,Y) = (Q1(M7Y)7Q2(M:Y)7"'):

where the components ¢;(M,Y) are the relative polynomial invariants of
Donaldson defined on the relative homology group Ho(M,Y;Z).

The axioms also suggest algebraic approaches to TQFT. The most widely
studied of these approaches are based on quantum groups, operator algebras,
modular tensor categories and Jones’ theory of subfactors. See, for example,
books [38, 34, 35, 73], and articles [72, 74, 75]. Turaev and Viro gave an
algebraic construction of such a TQFT by using the quantum 6j-symbols
for the quantum group U,(slz) at roots of unity.. Ocneanu [56] starts with
a special type of subfactor to generate the data which can be used with the
Turaev and Viro construction.

The correspondence between geometric (topological) and algebraic struc-
tures has played a fundamental role in the development of modern mathe-
matics. Its roots can be traced back to the classical work of Descartes. Recent
developments in low dimensional geometric topology have raised this corre-
spondence to a new level bringing in ever more exotic algebraic structures
such as quantum groups, vertex algebras, monoidal and higher categories.
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This broad area is now often referred to as quantum topology. See, for exam-
ple, [84, 43].

9.2 Quantum Observables

A quantum field theory may be considered as an assignment of the quan-
tum expectation < & >, to each gauge invariant function & : A(M) — C,
where A(M) is the space of gauge potentials for a given gauge group G and
the base manifold (space-time) M. & is called a quantum observable or
simply an observable in quantum field theory. Note that the invariance of
@ under the group of gauge transformations G implies that @ descends to a
function on the moduli space B = A/G of gauge equivalence classes of gauge
potentials. In the Feynman path integral approach to quantization the quan-
tum or vacuum expectation < @ >, of an observable is given by the following
expression.

fB(M) e Su“)(w)DB
e—Su(@)DB

<P >,= (56)

fB(M)

where e~ 5+DB is a suitably defined measure on B(M). Tt is customary to
express the quantum expectation < @ >, in terms of the partition function

Z,, defined by

Z,(®) = / e 9@ (w)DB. (57)
B(M)
Thus we can write 7,()
<P >,=F . 58
I3 Zu(l) ( )

In the above equations we have written the quantum expectation as < @ >,
to indicate explicitly that, in fact, we have a one-parameter family of quan-
tum expectations indexed by the coupling constant i in the action. There are
several examples of gauge invariant functions. For example, primary charac-
teristic classes evaluated on suitable homology cycles give an important fam-
ily of gauge invariant functions. The instanton number and the Yang-Mills
action are also gauge invariant functions. Another important example is the
Wilson loop functional well known in the physics literature.

Wilson loop functional: Let p denote a representation of G on V. Let a €
(M, zg) denote a loop at g € M. Let # : P(M,G) — M be the canonical
projection and let p € 7! (zq). If w is a connection on the principal bundle
P(M,@), then the parallel translation along o maps the fiber 7—1(xg) into
itself. Let &, : ' (zg) — 7 ' (70) denote this map. Since G acts transitively
on the fibers, 3g, € G such that &, (p) = pg.. Now define

Wy.a(w) :==Trp(g.)] Yw € A. (59)
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We note that g, and hence p(g.), change by conjugation if, instead of p,
we choose another point in the fiber 77 !(z), but the trace remains un-
changed. We call these W, , the Wilson loop functionals associated to the
representation p and the loop a. In the particular case when p = Ad the
adjoint representation of G on g, our constructions reduce to those consid-
ered in physics. If L = (&1, ..., ky) is an oriented link with component knots
ki, 1 <i <mn and if p; is a representation of the gauge group associated to
ki, then we can define the quantum observable W, 1 associated to the pair

(L,p), where p = (p1,...,pn) by

n
Wor = [[Woirn: -
i=1

9.3 Link Invariants

In the 1980s, Jones discovered his polynomial invariant V,(g), called the
Jones polynomial, while studying Von Neumann algebras and gave its in-
terpretation in terms of statistical mechanics. These new polynomial invari-
ants have led to the proofs of most of the Tait conjectures. As with most of
the earlier invariants, Jones’ definition of his polynomial invariants is alge-
braic and combinatorial in nature and was based on representations of the
braid groups and related Hecke algebras. The Jones polynomial Vi, (¢) of & is
a Laurent polynomial in ¢ (polynomial in ¢ and t~!) which is uniquely deter-
mined by a simple set of properties similar to the well known axioms for the
Alexander-Conway polynomial. More generally, the Jones polynomial can be
defined for any oriented link L as a Laurent polynomial in /2.

A geometrical interpretation of the Jones’ polynomial invariant of links
was provided by Witten by applying ideas from QFT to the Chern-Simons
Lagrangian constructed from the Chern-Simons action

k 2
A(js:—/tT(A/\dA+—A/\A/\A),

where A is the gauge potential of the SU(n) connection w. Chern-Simons
action is not gauge invariant. Under a gauge transformation g the action
transforms as follows:

Acs(Ag) = Acs(A) + 2k Aw 7, (60)

where Aw z is the Wess-Zumino action functional. It can be shown that
the Wess-Zumino functional is integer valued and hence, if the Chern-Simons
coupling constant & is taken to be an integer, then the partition function In
fact, Witten’s model allows us to consider the knot and link invariants in any
compact 3-manifold M. Z defined by
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Z(®) ::/ e Aes (@) (L) DB
B(M)

is gauge invariant. We take for ¢ the Wilson loop functional W, ;,, where p
is a representation of SU(n) and L is the link under consideration.

We denote the Jones polynomial of L simply by V. Recall that there are
3 standard ways to change a link diagram at a crossing point. The Jones
polynomials of the corresponding links are denoted by V,, V_ and V; re-
spectively. To verify the defining relations for the Jones’ polynomial of a link
L in S3, Witten [80] starts by considering the Wilson loop functionals for the
associated links Ly, L_, Ly. For a framed link L, we denote by < L > the
expectation value of the corresponding Wilson loop functional for the Chern-
Simons theory of level k& and gauge group SU(n) and with p; the fundamental
representation for all 4. To verify the defining relations for the Jones’ polyno-
mial of a link L in S3, Witten considers the expectation values of the Wilson
loop functionals for the associated links Ly, L_, Ly and obtains the relation

a< Ly >408< Ly >+y< L_ >=0 (61)
where the coefficients «, 3, are given by the following expressions

211

o= —€ﬂfp(m)= (62)
(M@= TR

B = —exp( Y p—— ) + exp( P ) (63)
B 27i(1 — n?)

v emp(m)- (64)

We note that the result makes essential use of 3-manifolds with boundary.
The calculation of the coefficients a, 3, is closely related to the Verlinde

fusion rules [76] and 2d conformal field theories. Substituting the values of
mi(2—n?)
n(n+k)

a, 3,7 into equation (61) and cancelling a common factor exp( ), we

get
—t"? < Ly >+ =177 < Lo >+P< Lo >=0,  (65)

where we have put
271, )
n+k’
This is equivalent to the following skein relation for the polynomial invariant
V of the link

t = exp(

t"/2V+ 2y = (t1/2 _ t*1/2)V0 (66)

For SU(2) Chern-Simons theory, equation (66) is the skein relation that de-
fines a variant of the original Jones’ polynomial. This variant also occurs in
the work of Kirby and Melvin [31] where the invariants are studied by using
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representation theory of certain Hopf algebras and the topology of framed
links. It is not equivalent to the Jones polynomial. In an earlier work [49]
I had observed that under the transformation vt — 71/\/1?, it goes over
into the equation which is the skein relation characterizing the Jones poly-
nomial. The Jones polynomial belongs to a different family that corresponds
to the negative values of the level. Note that the coefficients in the skein
relation (66) are defined for positive values of the level k. To extend them to
negative values of the level we must also note that the shift in & by the dual
Coxeter number would now change the level —k to —k —n. If in equation (66)
we now allow negative values of n and take ¢t to be a formal variable, then
the extended family includes both positive and negative levels.

Let V(") denote the Jones-Witten polynomial corresponding to the skein
relation (66), (with n € Z) then the family of polynomials {V("} can be
shown to be equivalent to the two variable HOMFLY polynomial P(a, z)
which satisfies the following skein relation

aP, —a 'P_ = 2P, (67)

If we put @ = ¢t~ ' and 2z = (t'/2 — ¢t~'/?) in equation (47) we get the skein
relation for the original Jones polynomial V. If we put @ = 1 we get the skein
relation for the Alexander-Conway polynomial.

To compare our results with those of Kirby and Melvin we note that
they use g to denote our ¢ and ¢ to denote its fourth root. They construct
a modular Hopf algebra U; as a quotient of the Hopf algebra U,(sl(2,C))
which is the well known g-deformation of the universal enveloping algebra of
the Lie algebra si(2,C). Jones polynomial and its extensions are obtained by
studying the representations of the algebras U; and U,,.

9.4 WRT invariants

If Z(1) exists, it provides a numerical invariant of M. For example, for
M = 83 and G = SU(2), using the Chern-Simons action Witten obtains the
following expression for this partition function as a function of the level k&

2 ™
k+28m<k+2>' (68)

This partition function provides a new family of invariants for M = S3,
indexed by the level k. Such a partition function can be defined for a more
general class of 3-manifolds and gauge groups. More precisely, let G be a com-
pact, simply connected, simple Lie group and let k£ € Z. Let M be a 2-framed
closed, oriented 3-manifold. We define the Witten invariant 7¢ ;. (M) of the
triple (M, G, k) by

Zr(1) =
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Tau(M)i=2(1) = [ e 4epp, (69)
JB(r)

where e *Acs DB, is a suitable measure on B(M). We note that no precise
definition of such a measure is available at this time and the definition is to
be regarded as a formal expression. Indeed, one of the aims of TQFT is to
make sense of such formal expressions. We define the normalized Witten
invariant Wg (M) of a 2-framed, closed, oriented 3-manifold M by

We k(M) = % (70)

If G is a compact, simply connected, simple Lie group and M, N be two
2-framed, closed, oriented 3-manifolds. Then we have the following results:

Tc,k(SQ X S]) =1 (71)
Tsu(2)(S?) = VkiQSin (kj—Q) (72)
Wa k(M#N) = Wa 1 (M)Wa ik (N) (73)

If G is a compact simple group then the WRT invariant 7¢ x(S®) can be
given in a closed form in terms of the root and weight lattices associated to
G. In particular, for G = SU(n) we get

1 n—1 ) j7T n—j
T e L e (5]

We will show later that this invariant can be expressed in terms of the gener-
ating function of topological string amplitudes in a closed string theory com-
pactified on a suitable Calabi-Yau manifold. More generally, if a manifold M
can be cut into pieces over which the CS path integral can be computed, then
the gluing rules of TQFT can be applied to these pieces to find 7. Different
ways of using such a cut and paste operation can lead to different ways of
computing this invariant. Another method that is used in both the theoretical
and experimental applications is the perturbative quantum field theory. The
rules for perturbative expansion around classical solutions of field equations
are well understood in physics. It is called the stationary phase approxima-
tion to the partition function. It leads to the asymptotic expansion in terms
of a parameter depending on the coupling constants and the group. If é¢(G)
is the dual Coxeter number of G then the asymptotic expansion is in terms
of h = 2mi/(k + ¢(G)). This notation in TQFT is a reminder of the Planck’s
constant used in physical field theories. The asymptotic expansion of log(7T)
is then given by
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log(T) = —blogh + %" +3 ap b

n=1

where a; are evaluated on Feynman diagrams with ¢ loops. The expansion
may be around any flat connection and the dependence of a; the choice of
connection may be explicitly indicated if necessary. For Chern-Simons theory
the above perturbative expansion is also valid for non-compact groups. In his
talk at this conference, Garofouladis discussed the asymptotic expansion of
the free energy associated to the LMO invariant of a 3-manifold and its
many interesting properties (see . Garofouladis et al in these proceedings) I
asked Stavros if he has looked at his expansion as a generating function for
topological string moduli. I also asked a similar question to Don Zagier about
the free energy expansion of Chern-Simons invariant with complex gauge
group considered by Zagier et al in (arXiv:0903.24272v1 [hep-th]). Both of
them told me that they had not considered this aspect. It seems that the
general program of relating gauge theoretic and string theoretic invariants
is still far from well formulated, even in the cases where explicit asymptotic
expansions are available.

CFT approach to WRT Invariants

In [36] Kohno defines a family of invariants @ (M) of a 3-manifold M by using
its Heegaard decomposition along a Riemann surface X; and representations
of the mapping class group of X'y. Kohno’s work makes essential use of ideas
and results from conformal field theory. We now give a brief discussion of
Kohno's definition.

We begin by reviewing some information about the geometric topology
of 3-manifolds and their Heegaard splittings. Recall that two compact 3-
manifolds X3, X with homeomorphic boundaries can be glued together
along a homeomorphism f : 0X; — 00X, to obtain a closed 3-manifold
X = Xy Uy Xo. If Xy, X5 are oriented with compatible orientations on the
boundaries, then f can be taken to be either orientation preserving or revers-
ing. Conversely, any closed orientable 3-manifold can be obtained by such a
gluing procedure where each of the pieces is a special 3-manifold called a han-
dlebody. Recall that a handlebody of genus g is an orientable 3-manifold
obtained from gluing g copies of 1-handles D? x [~1,1] to the 3-ball D?.
The gluing homeomorphisms join the 2g discs D? x {+1} to the 2g pairwise
disjoint 2-discs in D3 = S? in such a way that the resulting manifold is
orientable. The handlebodies H;, H, have the same genus and a common
boundary Hy N Hy = H; = 0Hs. Such a decomposition of a 3-manifold X
is called a Heegaard splitting of X of genus g. We say that X has Hee-
gaard genus g if it has some Heegaard splitting of genus g but no Heegaard
splitting of smaller genus. Given a Heegaard splitting of genus g of X, there
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exists an operation called stabilization which gives another Heegaard split-
ting of X of genus g+ 1. Two Heegaard splitting of X are called equivalent
if there exists a homeomorphism of X onto itself taking one splitting into
the other. Two Heegaard splitting of X are called stably equivalent if they
are equivalent after a finite number of stabilizations. A proof of the following
theorem is given in [65].

Theorem 3 Any two Heegaard splittings of a closed orientable 3-manifold
X are stably equivalent.

The mapping class group M (M) of a connected, compact, smooth sur-
face M is the quotient group of the group of diffeomorphisms Dif f(M) of
M modulo the group Dif fo(M) of diffeomorphisms isotopic to the identity.
ie.

M(M) := Dif f(M)/Dif fo(M)

If M is oriented, then M (M) has a normal subgroup M™ (M) of index 2 con-
sisting of orientation preserving diffeomorphisms of M modulo isotopies. The
group M(M) can also be defined as mo(Dif f(M)). Smooth closed orientable
surfaces Xy are classified by their genus g and in this case it is customary to
denote M(X;) by M,. In the applications that we have in mind, it is this
group M, that we shall use. The group M, is generated by Dehn twists
along simple closed curves in ¥,. Let ¢ be a simple closed curve in Y; which
forms one of the boundaries of an annulus. In local complex coordinate z
we can identify the annulus with {z | 1 < |2| < 2} and the curve ¢ with
{# | |2| = 1}. Then the Dehn twist 7. along ¢ is an automorphism of X,
which is the identity outside the annulus and in the annulus, is given by the
formula
Te(re?) = re!0T27(r=1) " where z = re??, 1<r<2,0<60<2r

Changing the curve ¢ by an isotopic curve or changing the annulus gives
isotopic twists. However, twists in opposite directions define elements of M,
which are the inverses of each other. Note that any two homotopic simple
closed curves on X, are isotopic. A useful description of M, is given by the
following theorem.

Theorem 4 Let Xy be a smooth closed orientable surface of genus g. Then
the group Mg is generated by the 3g — 1 Dehn twists along the curves
i, Biv, 1 < 6,5 <g, 1<k < g which are Poincaré dual to a basis of
the first integral homology of Y.

In [36] Kohno obtains a representation of the mapping class group M, in
the space of conformal blocks which arise in conformal field theory. He then
uses a special function for this representation and the stabilization to define
a family of invariants & (M) of the 3-manifold M which are independent of
its stable Heegaard decomposition. Kohno obtains the following formulas:
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2 1y _ 2 . ™ -
& (S xS)( k+28m<k+2>> , (74)
P (5?) =1, (75)
P (M#N) = (M) - Pi(N). (76)

Kohno's invariant coincides with the normalized Witten invariant with the
gauge group SU(2). Similar results were also obtained by Crane [16]. The
agreement of these results with those of Witten may be regarded as strong
evidence for the correctness of the TQFT calculations. In [36] Kohno also ob-
tains the Jones-Witten polynomial invariants for a framed colored link in a
3-manifold M by using representations of mapping class groups via conformal
field theory. In [37] the Jones-Witten polynomials are used to estimate the
tunnel number of knots and the Heegaard genus of a 3-manifold. The mon-
odromy of the Knizhnik-Zamolodchikov equation [33] plays a crucial role in
these calculations.

WRT Invariants via Quantum Groups

Shortly after the publication of Witten’s paper [80], Reshetikhin and Turaev
[62] gave a precise combinatorial definition of a new invariant by using the rep-
resentation theory of quantum group U,sl, at the root of unity ¢ = e?mi/ (k+2)
The parameter ¢ coincides with Witten’s SU(n) Chern-Simons theory param-
eter t when n = 2 and in this case the invariant of Reshetikhin and Turaev
is the same as the normalized Witten invariant. In view of this it is now
customary to call the normalized Witten invariant as Witten-Reshetikhin-
Turaev invariant or WRT invariant. We now discuss their construction in the
form given by Kirby and Melvin in [31].

Let U denote the universal enveloping algebra of sl(2, C) and let U, denote
the quantized universal enveloping algebra of formal power series in h. Recall
that U is generated by X,Y, H subject to relations as in the algebra sl(2, C)
ie.

3

[H,X]=2X, [H,Y]=-2Y, [X,Y]=H.
In Uy, the last relation is replaced by

sH g H

X, Y| =[H]s := 7,82617’/2.

X, Y] =[], = T

It can be shown that Uj; admits a Hopf algebra structure as a module over
the ring of formal power series. However, the presence of divergent series
make this algebra unsuitable for representation theory. We construct a finite
dimensional algebra by using Uyj,. Define
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K="/ and K := e MH/4 = g1

Fix an integer r > 1 (r = k42 of the Witten formula) and set ¢ = e/ = €>7/7.
We restrict this to a subalgebra over the ring of convergent power series in
h generated by X,Y, K, K. This infinite dimensional algebra occurs in the
work of Jimbo. We take its quotient by setting

X"=0,Y"=0, K =1.

It is the representations of this quotient algebra A that are used to define
colored Jones polynomials and the WRT invariants. The algebra A is a finite
dimensional complex algebra satisfying the relations

K=K"' KX =3sXK, KY =5YK,

1(2 47}{72

s§— S

wi/r

[X,Y] = s=e
There are irreducible A-modules V? in each dimension i > 0. If we put
i =2m+1, then V% has a basis {ep,...,e_m}. The action of A on the basis
vectors is given by

Xej=[m+j+1]sej41, Ye; =[m—j+1]sej_1, and Ke; = sjej.

The A-modules V' are self dual for 0 < i < r. The structure of their tensor
products is similar to that in the classical case. The algebra A has the ad-
ditional structure of a quasitriangular Hopf algebra with Drinfeld’s universal
R-matrix R satisfying the Yang-Baxter equation. One has an explicit formula
for R € A® A of the form

R= Z nap X KP @ YK .

If VW are A-modules, then R acts on V ® W. Composing with the permu-
tation operator we get the operator R’ : V. W — W ® V. These are the
operators used in the definition of our link invariants. Let L be a framed link
with n components L; colored by k = {k1,...,kn}. Let Jr kx be the corre-
sponding colored Jones polynomial. The colors are restricted to lie in a family
of irreducible modules V?, one for each dimension 0 < i < 7. Let o denote
the signature of the linking matrix of L. Define 7, by

L = (\/ﬁsin(ﬂ/r))n 32/ (8r) Z[k]JL’k ’

where the sum is over all admissible colors. Every 3-manifold can be obtained
by surgery on a link in S®. Two links give isomorphic manifolds if they are
related by Kirby moves. It can be shown that the invariant 77, is preserved
under Kirby moves and hence defines an invariant of the 3-manifold My, ob-
tained by surgery on L. With suitable normaliazation it coincides with the
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WRT invariant. WRT invariants do not belong to the class of polynomial
invariants or other known 3-manifold invariants. They arose from topologi-
cal quantum field theory applied to calculate the partition functions in the
Chern-Simons gauge theory.

A number of other mathematicians have also obtained invariants that are
closely related to the Witten invariant. The equivalence of these invariants
defined by using different methods was a folk theorem until a complete proof
was given by Piunikhin in [61]. Another approach to WRT invariants is via
Hecke algebras and related special categories. A detailed construction of mod-
ular categories from Hecke algebras at roots of unity is given in [8]. For a
special choice of the framing parameter, one recovers the Reshetikhin-Turaev
invariants of 3-manifolds constructed from the representations of the quan-
tum groups U,sl(N) by Reshetikhin, Turaev and Wenzl [62, 75, 77]. These
invariants were constructed by Yokota [85] by using skein theory. As we have
discussed earlier the quantum invariants were obtained by Witten [79] by us-
ing path integral quantization of Chern-Simons theory. In ” Quantum Invari-
ants of Knots and 3-Manifolds” [73], Turaev showed that the idea of modular
categories is fundamental in the construction of these invariants and that it
plays an essential role in extending them to a Topological Quantum Field
Theory. Since these early results, WRT invariants for several other manifolds
and gauge groups have been obtained. We collect together some of these
results below.

Theorem 5 The WRT invariant for the lens space L(p,q) in the canonical
framing is given by

. p g )
7 6ris ) 2rign?(k+2) 2min(q+38)
W/k(L(p7 q)) = —76(k+2) E E SeZ¥) ¢ = e > :

\/ 2p(k} + 2) se{-1,1} n=1
where s = s(q,p) is the Dedekind sum defined by

wkq
p

122 wk
s(g,p) i= — cot(—) cot .
(@:0) = g 3 co D) eot(T)

In all of these the invariant is well defined only at roots of unity and
perhaps near roots of unity if a perturbative expansion is possible. This sit-
uation occurs in the study of classical modular functions and Ramanujan’s
mock theta functions. Ramanujan had introduced his mock theta functions
in a letter to Hardy in 1920 (the famous last letter) to describe some power
series in variable ¢ = €%,z € C. He also wrote down (without proof, as
was usual in his work) a number of identities involving these series which
were completely verified only in 1988 by Hickerson [28]. Recently, Lawrence
and Zagier have obtained several different formulas for the Witten invariant
Wsu(2),k(M) of the Poincaré homology sphere M = X(2,3,5) in [41]. Using
the work of Zwegers [86], they show how the Witten invariant can be extended
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from integral k to rational k£ and give its relation to the mock theta function.
In particular, they obtain the following fantastic formula, a la Ramanujan,
for the Witten invariant Wsy (2),x(M) of the Poincaré homology sphere

Wsoex(2(2,3,5) =1+ o (1+z)(1+2%)...(1+2"")
n=1

where 2 = €™/(¥+2) We note that the series on the right hand side of this
formula terminates after k + 2 terms’.

We have not discussed the Kauffmann bracket polynomial or the theory
of skein modules in the study of 3-manifold invariants. An invariant that
combines these two ideas has been define in the following general setting. Let
R be a commutative ring and let A be a fixed invertible element of R. Then
one can define a new invariant, Ss o (M; R, A), of an oriented 3-manifold
M called the Kauffmann bracket skein module. The theory of skein
modules is related to the theory of representations of quantum groups. This
connection should prove useful in developing the theory of quantum group
invariants which can be defined in terms of skein theory as well as by using
the theory of representations of quantum groups.

10 Chern-Simons and String Theory

The general question “what is the relationship between gauge theory and
string theory?” is not meaningful at this time. So T will follow the strong
admonition by Galileo against? “disputar lungamente delle massime questioni
senza conseguir verita nissuna”. However, interesting special cases where such
relationship can be established are emerging. For example, Witten [82] has
argued that Chern-Simons gauge theory on a 3-manifold M can be viewed as
a string theory constructed by using a topological sigma model with target
space T* M. The perturbation theory of this string will coincide with Chern-
Simons perturbation theory, in the form discussed by Axelrod and Singer
[4]. The coefficient of k=" in the perturbative expansion of SU(n) theory in
powers of 1/k comes from Feynman diagrams with r loops. Witten shows how
each diagram can be replaced by a Riemann surface X of genus g with h holes
(boundary components) with g = (r—h+1)/2. Gauge theory would then give
an invariant I'y , (M) for every topological type of X. Witten shows that this
invariant would equal the corresponding string partition function Z, ,(M).
We now give an example of gauge theory to string theory correspondence
relating the non-perturbative WRT invariants in Chern-Simons theory with
gauge group SU(n) and topological string amplitudes which generalize the

1 T would like to thank Don Zagier for bringing this work to my attention

2 lengthy discussions about the greatest questions that fail to lead to any truth whatever.
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GW (Gromov-Witten) invariants of Calabi-Yau 3-folds following the work in
[23, 1]. The passage from real 3 dimensional Chern-Simons theory to the 10
dimensional string theory and further onto the 11 dimensional M-theory can
be schematically represented by the following:

3+ 3 = 6 (real symplectic 6-manifold)
= 6 (conifold in C* )
= 6 (Calabi-Yau manifold)
= 10 — 4 (string compactification)
= (11 — 1) — 4 (M-theory)

We now discuss the significance of the various terms of the above equation ar-
ray. Recall that string amplitudes are computed on a 6-dimensional manifold
which in the usual setting is a complex 3-dimensional Calaby-Yau manifold
obtained by string compactification. This is the most extensively studied
model of passing from the 10-dimensional space of supersymmetric string
theory to the usual 4-dimensional space-time manifold. However, in our work
we do allow these so called extra dimensions to form an open or a symplectic
Calabi-Yau manifold. We call these the generalized Calabi-Yau manifolds.
The first line suggests that we consider open topological strings on such a
generalized Calabi-Yau manifold, namely, the cotangent bundle T*S3, with
Dirichlet boundary conditions on the zero section S3. We can compute the
open topological string amplitudes from the SU(n) Chern-Simons theory.
Conifold transition [69] has the effect of closing up the holes in open strings
to give closed strings on the Calabi- Yau manifold obtained by the usual string
compactification from 10 dimensions. Thus we recover a topological gravity
result starting from gauge theory. In fact, as we discussed earlier, Witten
had anticipated such a gauge theory string theory correspondence almost ten
years ago. Significance of the last line is based on the conjectured equiva-
lence of M-theory compactified on S' to type IIA strings compactified on a
Calabi-Yau threefold. We do not consider this aspect here. The crucial step
that allows us to go from a real, non-compact, symplectic 6-manifold to a
compact Calabi-Yau manifold is the conifold or geometric transition. Such a
change of geometry and topology is expected to play an important role in
other applications of string theory as well. A discussion of this example from
physical point of view may be found in [1, 23].

10.1 Conafold Transition

To understand the relation of the WRT invariant of S* for SU(n) Chern-
Simons theory with open and closed topological string amplitudes on “Calabi-
Yau” manifolds we need to discuss the concept of conifold transition. From
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the geometrical point of view this corresponds to symplectic surgery in six
dimensions. It replaces a vanishing Lagrangian 3-sphere by a symplectic S2.
The starting point of the construction is the observation that 7*S® minus
its zero section is symplectomorphic to the cone z7 + 23 + 22 + z7 = 0 minus
the origin in C*, where each manifold is taken with its standard symplectic
structure. The complex singularity at the origin can be smoothed out by the
manifold M, defined by 27 + 23 + 23 + 27 = 7 producing a Lagrangian S*
vanishing cycle. There are also two so called small resolutions M* of the
singularity with exceptional set CP".
They are defined by

Mt {ZE(C4 | 21 + 129 _—z3:|:iz4}

z3 + 7:24 zZ1 — 7:22

Note that My \ {0} is symplectomorphic to each of M*\ CP'. Blowing up
the exceptional set CP' ¢ M¥ gives a resolution of the singularity which
can be expressed as a fiber bundle F over CP'. Going from the fiber bundle
T*S% over S* to the fiber bundle F' over CP'is referred to in the physics
literature as the conifold transition. We note that the holomorphic automor-
phism of C* given by z4 — —z4 switches the two small resolutions M* and
changes the orientation of S3. Conifold transition can also be viewed as an
application of mirror symmetry to Calabi-Yau manifolds with singularities.
Such an interpretation requires the notion of symplectic Calabi-Yau mani-
folds and the corresponding enumerative geometry. The geometric structures
arising from the resolution of singularities in the conifold transition can also
be interpreted in terms of the symplectic quotient construction of Marsden
and Weinstein.

10.2 WRT Invariants and String Amplitudes

To find the relation between the large n limit of SU(n) Chern-Simons theory
on S? to a special topological string amplitude on a Calabi-Yau manifold we
begin by recalling the formula for the partition function (vacuum amplitude)
of the theory Tgy(nx(S?) or simply 7. Up to a phase, it is given by

T

(77)

1 n—1 j’lT n—j
L fipe()]
w/n(k—}-n)(”*]) i1 k+n

Let us denote by F{, ;) the amplitude of an open topological string theory
on T*S? of a Riemann surface of genus g with h holes. Then the generating
function for the free energy can be expressed as
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- i i DS 0 IS (78)

9=0 h=1

This can be compared directly with the result from Chern-Simons theory by
expanding the log 7 as a double power series in A and n.

Instead of that we use the conifold transition to get the topological am-
plitude for a closed string on a Calabi-Yau manifold. We want to obtain the
large n expansion of this amplitude in terms of parameters A and 7 which
are defined in terms of the Chern-Simons parameters by

2 2mn
7k+n’T7n)‘7k+n' (79)

A

The parameter A is the string coupling constant and 7 is the 't Hooft cou-
pling nA of the Chern-Simons theory. The parameter 7 entering in the string
amplitude expansion has the geometric interpretation as the Kahler modulus
of a blown up S? in the resolved M*. If F,(7) denotes the amplitude for a
closed string at genus g then we have

Fy(r) =Y _t"Fn (80)
h=1

So summing over the holes amounts to filling them up to give the closed
string amplitude.
The large n expansion of 7 in terms of parameters A and 7 is given by

oo

T = exp [ Z MN2F (1)

9=0

; (81)

where F,; defined in (80) can be interpreted on the string side as the contri-
bution of closed genus g Riemann surfaces. For g > 1 the F,; can be expressed
in terms of the Euler characteristic x, and the Chern class ¢;,_; of the Hodge
bundle of the moduli space M, of Riemann surfaces of genus g as follows

X — g3 _
F = 3 . Xg 2g9—3 n(r) ] ]9
’ /M RSP IR (52

The integral appearing in the formula for Fy can be evaluated explicitly to
give

s _ (=nbY B

/M Cg—1 = m%(?g 2)Xg- (83)

The Euler characteristic is given by the Harer-Zagier [27] formula
(—1)le—1)

YT g o
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where B, is the (2g)-th Bernoulli number. We omit the special formulas
for the genus 0 and genus 1 cases. The formulas for F, for g > 0 coincide
with those of the g-loop topological string amplitude on a suitable Calabi-
Yau manifold. The change in geometry that leads to this calculation can be
thought of as the result of coupling to gravity. Such a situation occurs in the
quantization of Chern-Simons theory. Here the classical Lagrangian does not
depend on the metric, however, coupling to the gravitational Chern-Simons
term is necessary to make it TQFT.

We have mentioned the following four approaches that lead to the WRT
invariants.

1. Witten’s QFT calculation of the Chern-Simons partition function

2. Quantum group (or Hopf algebraic) computations initiated by Reshetikhin
and Turaev

3. Kohno’s special functions corresponding to representations of mapping
class groups in the space of conformal blocks and a similar approach by
Crane

4. open or closed string amplitudes in suitable Calabi-Yau manifolds

These methods can also be applied to obtain invariants of links, such as the
Jones polynomial. Indeed, this was the objective of Witten’s original work.
WRT invariants were a byproduct of this work. Their relation to topological
strings came later.

The WRT to string theory correspondence has been extended by Gopaku-
mar and Vafa (see, hep-th/9809187, 9812127) by using string theoretic argu-
ments to show that the expectation value of the quantum observables defined
by the Wilson loops in the Chern-Simons theory also has a similar interpre-
tation in terms of a topological string amplitude. This leads them to con-
jecture a correspondence between certain knot invariants (such as the Jones
polynomial) and Gromov-Witten type invariants of generalized Calabi-Yau
manifolds. Gromov-Witten invariants of a Calabi-Yau 3-fold X are in general
rational numbers, since one has to get the weighted count by dividing by the
order of automorphism groups.. Using M-theory Gopakumar and Vafa have
argued that the generating series Fy of Gromov-Witten invariants in all de-
grees and all genera is determined by a set of integers n(g, 3). They give the
following remarkable formula for Fx

Fx(ng) = 3303 1nlg, ) (2sin(kA/2)) %",

9>0 k>1

where A is the string coupling constant and the first sum is taken over all
nonzero elements 3 in Hy(X). We note that for a fixed genus there are only
finitely many nonzero integers n(g, ). A mathematical formulation of the
Gopakumar-Vafa conjecture (GV conjecture) has been given in [58]. Special
cases of the conjecture have been verified (see, for example [59] and refer-
ences therein). In [42] a new geometric approach relating the Gromov-Witten
invariants to equivariant index theory and 4-dimensional gauge theory has
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been used to compute the string partition functions of some local Calabi-Yau
spaces and to verify the GV conjecture for them.

A knot should correspond to a Lagrangian D-brane on the string side and
the knot invariant would then give a suitably defined count of compact holo-
morphic curves with boundary on the D-brane. To understand a proposed
proof, recall first that a categorification of an invariant [ is the construction
of a suitable homology such that its Euler characteristic equals I. A well
known example of this is Floer’s categorification of the Casson invariant. We
have already discussed earlier, Khovanov’s categorification of the Jones poly-
nomial Vj(¢q) by constructing a bi-graded sl(2)-homology H; ; determined
by the knot k. Its quantum or graded Euler characteristic equals the Jones
polynomial. i.e.

Vilg) =Y (~1)¢' dim H; ; .
ij

Now let L, be the Lagrangian submanifold corresponding to the knot « of a
fixed Calabi-Yau space X. Let r be a fixed relative integral homology class of
the pair (X, L,). Let M, denote the moduli space of pairs (X,, A), where
¥, is a compact Riemann surface in the class 7 with boundary S* and A4 is a
flat U(1) connection on Xy. This data together with the cohomology groups
H*(M,,,) determines a tri-graded homology. It generalizes the Khovanov
homology. Its Euler characteristic is a generating function for the BPS states’
invariants in string theory and these can be used to obtain the Gromov-
Witten invariants. Taubes has given a construction of the Lagrangians in the
Gopakumar-Vafa conjecture. We note that counting holomorphic curves with
boundary on a Lagrangian manifold was introduced by Floer in his work on
the Arnold conjecture.

The tri-graded homology is expected to unify knot homologies of the Kho-
vanov type as well as knot Floer homology constructed by Ozswath and
Szabé [57] which provides a categorification of the Alexander polynomial.
Knot Floer homology is defined by counting pseudo-holomorphic curves and
has no known combinatorial description. An explicit construction of a tri-
graded homology for certain torus knots has been recently given by Dunfield,
Gukov and Rasmussen [math.GT/0505662].

11 Yang-Mills, Gravity and Strings

Recall that in string theory, an elementary particle is identified with a vibra-
tional mode of a string. Different particles correspond to different harmonics
of vibration. The Feynman diagrams of the usual QFT are replaced by fat
graphs or Riemann surfaces that are generated by moving strings splitting
or joining together. The particle interactions described by these Feynman
diagrams are built into the basic structure of string theory. The appearance
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of Riemann surfaces explains the relation to conformal field theory. We have
already discussed Witten’s argument relating gauge and string theories. It
now forms a small part of the program of relating quantum group invariants
and topological string amplitudes. In general, the string states are identified
with fields. The ground state of the closed string turns out to be a massless
spin two field which may be interpreted as a graviton. In the large distance
limit, (at least at the lower loop levels) string theory includes the vacuum
equations of Einstein’s general relativity theory. String theory avoids the
ultraviolet divergences that appear in conventional attempts at quantizing
gravity. In physically interesting string models one expects the string space
to be a non-trivial bundle over a Lorentzian space-time M with compact or
non-compact fibers. Relating the usual Einstein’s equations with cosmological
constant with the Yang-Mills equations requires the ten dimensional mani-
fold A%(M) of differential forms of degree two. There are several differences
between the Riemannian functionals used in theories of gravitation and the
Yang-Mills functional used to study gauge field theories. The most important
difference is that the Riemannian functionals are dependent on the bundle of
frames of M or its reductions, while the Yang-Mills functional can be defined
on any principal bundle over M. However, we have the following interesting
theorem [7].

Theorem: Let (M, g) be a compact, 4-dimensional, Riemannian manifold.
Let A% (M) denote the bundle of self-dual 2-forms on M with induced metric
G+ . Then the Levi-Civita connection A, on M satisfies the Euclidean gravi-
tational instanton equations if and only if the Levi-Civita connection Az, on
A% (M) satisfies the Yang-Mills instanton equations.

Gravitational Field Equations

A geometric formulation of gravitational field equations is generally not in
the tool kit of topologists. We review them as the full Einstein equations
with energy-momentum tensor corresponding to the dilaton field appear in
Perelman’s work on the Thruston geometrization conjecture. There are sev-
eral ways of deriving Einstein’s gravitational field equations. For example,
we can consider natural tensors satisfying the conditions that they contain
derivatives of the fundamental (pseudo-metric) tensor up to order two and
depend linearly on the second order derivatives. Then we obtain the tensor

e RV + CQ'gijS + 03g"-77

where R are the components of the Ricci tensor Ric and S is the scalar
curvature. Requiring this tensor to be divergenceless and using the Bianchi
identities leads to the relation ¢; + 2¢9 = 0 between the constants ¢y, ¢o, c3.
Choosing ¢; = 1 and ¢3 = 0 we obtain Einstein’s equations (without the
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cosmological constant) which may be expressed as
E=-T (85)

where £ := Ric— %Sg is the Einstein tensor and 7' is an energy-momentum
tensor on the space-time manifold which acts as the source term. Now the
Bianchi identities satisfied by the curvature tensor imply that

div E := V;EY = (.

Hence, if Einstein’s equations (85) are satisfied, then for consistency we must
have -
div T =V;TY =0. (86)

Equation (86) is called the differential (or local) law of conservation of en-
ergy and momentum. However, integral (or global) conservation laws can be
obtained by integrating equation (86) only if the space-time manifold admits
Killing vectors. Thus equation (86) has no clear physical meaning, except in
special cases. An interesting discussion of this point is given by Sachs and
Wu [63]. Einstein was aware of the tentative nature of the right hand side
of equation (85), but he believed strongly in the expression on the left hand
side of (85). By taking the trace of both sides of equations (85) we are led to
the condition

S=t (87)

where t denotes the trace of the energy-momentum tensor. The physical
meaning of this condition seems even more obscure than that of condi-
tion (86). If we modify equation (85) by adding the cosmological term Ag (A
is called the cosmological constant) to the left hand side of equation (85),
we obtain Einstein’s equation with cosmological constant

E+Ag=-T. (88)

This equation also leads to the consistency condition (86), but condition (87)
is changed to

S =t+4A. (89)
Using (89), equation (88) can be rewritten in the following form
1
K = ~(T'~ {tg), (90)
where 1
K = (Ric— ZSg) (91)

is the trace-free part of the Ricci tensor of g. We call equations (90) gener-
alized field equations of gravitation. We now show that these equations
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arise naturally in a geometric formulation of Einstein’s equations. We begin
by defining a tensor of curvature type.

Let C be a tensor of type (4,0) on M. We can regard C as a quadrilinear
mapping (pointwise) so that for each x € M, C, can be identified with a
multilinear map

Cp - Ty (M) x T (M) x T; (M) x T; (M) = R.

We say that the tensor C is of curvature type if C, satisfies the following
conditions for each x € M and for all o, 8,7,6 € T(M).

1. Cw(a7ﬂ7’7,6) = _Cw(ﬂ7a77=6);
2. Cw(a7ﬂ7’7,6) = _Ow(a7ﬁ76=7);
3. Cr(aaﬂa’y,(s)+CT(07’Y,575)+CT(0‘:5,%5) =0.

From the above definition it follows that a tensor C' of curvature type also
satisfies the following condition:

Co(a, 8,7,6) = Cu(7,6,0,8), Vo € M.

We denote by C the space of all tensors of curvature type. The Riemann-
Christoffel curvature tensor Rm is of curvature type. Indeed, the definition of
tensors of curvature type is modelled after this fundamental example. Another
important example of a tensor of curvature type is the tensor G defined by

Go(a,3,7,0) = g2(,7)92(8,6) — 92(a,6)g2(B,7), Ve € M (92)

where g is the fundamental or metric tensor of M.

We now define the curvature product of two symmetric tensors of type
(2,0) on M. It was introduced by the author in [44] and used in [46] to
obtain a geometric formulation of Einstein’s equations.

Let g and T' be two symmetric tensors of type (2,0) on M. The curvature
product of g and T, denoted by g x. T, is a tensor of type (4,0) defined by

(g9 e T)ala, B,7,6) := 5[g(a,7)T(B,6) + g(B,0)T (v, 7)
—9(a,8)T(B8,7) — 9(8,7)T (e, 0)],

for all z € M and «, 3,7, € T (M).
In the following proposition we collect together some important properties
of the curvature product and tensors of curvature type.

Proposition 6 ) Let g and T be two symmetric tensors of type (2,0) on M
and let C' be a tensor of curvature type on M. Then we have the following:

1. gx.T=T X.g.

2. g x. T is a tensor of curvature type.

3. g X.g=G, where G is the tensor defined in (92).

4. G, induces a pseudo-inner product on A2(M),Vz € M.
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5. Cy induces a symmetric, linear transformation of A%2(M),Vz € M.

The orthogonal group O(g) of the metric acts on the space C and splits it into
three irreducible subspaces of dimensions 10, 9, and 1. Under this splitting
the Riemann curvature Rm into three parts as follows:

Bm =W +c¢1(K x.9g) 4+ c2S(g Xc g).

The ten dimensional part W is the Weyl conformal curvature tensor. It splits
further into its self-dual part W, and anti-dual part W_ under the action of
SO(g). The part involving the trace-free Ricci tensor K is 9 dimensional. All
of these tensors occur in functionals on the space of metrics.

We denote the Hodge star operator on AZ(M) by J,. The fact that
M is a Lorentz 4-manifold implies that .J, defines a complex structure on
A2(M), Vx € M. Using this complex structure we can give a natural structure
of a complex vector space to A2(M). Then we have the following proposition.

Proposition 7 Let U : A2(M) — A2(M) be a real, linear transformation.
Then the following are equivalent:

1. L commutes with J,.
2. L is a complex linear transformation of the complex vector space A%(M).
3. The matriz of L with respect to a G,-orthonormal basis of A%(M) is of

the form
A B
(_B A) (93)

where A, B are real 3 X 3 matrices.

We now define the gravitational tensor Wy, of curvature type, which includes
the source term. Let M be a space-time manifold with fundamental tensor g
and let T be a symmetric tensor of type (2,0) on M. Then the gravitational
tensor W, is defined by

Wyr :=Rm +g x.T, (94)

where Rm is the Riemann-Christoffel curvature tensor of type (4,0).
We are now in a position to give a geometric formulation of the generalized
field equations of gravitation.

Theorem 8 Let W,, denote the gravitational tensor defined by (94) with

source tensor T. We denote by qu the linear transformation of A%2(M) in-
duced by Wy,. Then the following are equivalent:

1. g satisfies the generalized field equations of gravitation (90);
2. Wy, commutes with J,;
3. Wy, is a complex linear transformation of the complex vector space AZ(M).

We shall call the triple (M, g,T) a generalized gravitational field if any
one of the conditions of Theorem 8 is satisfied. Generalized gravitational field
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equations were introduced by the author in [44]. Their mathematical prop-
erties have been studied in [48, 45, 54]. In local coordinates, the generalized
gravitational field equations can be written as

RY — leij = (T - ng"ff'). (95)
4 4

We observe that the equation (95) does not lead to any relation between the

scalar curvature and the trace of the source tensor, since both sides of equa-

tion (95) are trace-free. Taking divergence of both sides of equation (95) and

using the Bianchi identities we obtain the generalized conservation condition

VT — gid; =0, (96)

where V; is the covariant derivative with respect to the vector %;7

5 — %(T _R) (97)

and &; = %d). Using the function @ defined by equation (97), the field

equations can be written as

Rii _ %Rgz‘j _ pgii = i, (98)
In this form the new field equations appear as Einstein’s field equations with
the cosmological constant replaced by the function @, which we may call the
cosmological function. The cosmological function is intimately connected with
the classical conservation condition expressing the divergence-free nature of
the energy-momentum tensor as is shown by the following proposition.

Proposition 9 The energy-momentum tensor satisfies the classical conser-
vation condition -
V, T =0 (99)

if and only if the cosmological function @ is a constant. Moreover, in this
case the generalized field equations reduce to Finstein’s field equations with
cosmological constant.

We note that, if the energy-momentum tensor is non-zero but is localized
in the sense that it is negligible away from a given region, then the scalar
curvature acts as a measure of the cosmological constant. By setting the
energy-momentum tensor to zero in (95) we obtain various characterizations
of the usual gravitational instanton. Solutions of the generalized gravitational
field equations which are not solutions of Einstein’s equations have been
discussed in [13].

We note that the theorem (8) and the last condition in proposition (6)
can be used to discuss the Petrov classification of gravitational fields (see
Petrov [60]). The tensor W, can be used in place of R in the usual definition
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of sectional curvature to define the gravitational sectional curvature on the
Grassmann manifold of non-degenerate 2-planes over M and to give a further
geometric characterization of gravitational field equations. We observe that
the generalized field equations of gravitation contain Einstein’s equations
with or without the cosmological constant as special cases. Solutions of the
source-free generalized field equations are called gravitational instantons
If the base manifold is Riemannian, then gravitational instantons correspond
to Einstein spaces. A detailed discussion of the structure of Einstein spaces
and their moduli spaces may be found in [7]. Over a compact, 4-dimensional,
Riemannian manifold (M, g), the gravitational instantons that are not solu-
tions of the vacuum Einstein equations are critical points of the quadratic,
Riemannian functional or action As(g) defined by

Ag(g):/ SQd’Ug.
M

Furthermore, the standard Hilbert-Einstein action

Al(g):/ Sdv,
M

also leads to the generalized field equations when the variation of the action
is restricted to metrics of volume 1.

The generalized field equations of gravitation in the Euclidean theory can
be obtained by considerations similar to those given above. It is these equa-
tions with the source the dilaton field that appear in Perelman’s modification
of the Ricci flow. We give a brief discussion of his work in the next section.

11.1 Geometrization Conjecture and Gravity

The classification problem for low dimensional manifolds is a natural question
after the success of the case of surfaces by the uniformization theorem . In
1905, Poincaré formulated his famous conjecture which states in the smooth
case: A closed, simply-connected 3-manifold is diffeomorphic to S?, the stan-
dard sphere. A great deal of work in three dimensional topology in the next
100 years was motivated by this. In the 1980s Thurston studied hyperbolic
manifolds. This led him to his “Geometrization Conjecture” about the ex-
istence of homogeneous metrics on all 3-manifolds. It includes the Poincaré
conjecture as a special case. In the case of 4-manifolds, there is at present
no analogue of the geometrization conjecture. We discuss briefly the current
state of these problems in the next two subsections.
The Ricci flow equations

6gij
ot

= 72R,;j
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for a Riemannian metric g were introduced by Hamilton in [25]. They form
a system of nonlinear second order partial differential equations. Hamilton
proved that this equation has a unique solution for a short time for any
smooth metric on a closed manifold. The evolution equation for the metric
leads to the evolution equations for the curvature and Ricci tensors and for
the scalar curvature. By developing a maximum principle for tensors, Hamil-
ton proved that the Ricci flow preserves the positivity of the Ricci tensor
in dimension three and that of the curvature operator in dimension four
[26]. In each of these cases he proved that the evolving metrics converge to
metrics of constant positive curvature (modulo scaling). These and a series
of further papers led him to conjecture that the Ricci flow with surgeries
could be used to prove the Thruston geometrization conjecture. In a series
of e-prints Perelman developed the essential framework for implementing the
Hamilton program. We would like to add that the full Einstein equations
with dilaton field as source play a fundamental role in Perelman’s work (see,
arXiv.math.DG/0211159, 0303109, 0307245) on the geometrization conjec-
ture. A corrolary of this work is the proof of the long standing Poincaré
conjecture. A complete proof of the geometrization conjecture by applying
the Hamilton-Perelman theory of the Ricci flow has just appeared in [14] in
a special issue dedicated to the memory of S.-S. Chern,® one of the greatest
mathematicians of the twentieth century.

The Ricci flow is perturbed by a scalar field which corresponds in string
theory to the dilaton. It is supposed to determine the overall strength of all
interactions. The low energy effective action of the dilaton field coupled to
gravity is given by the action functional

F(g, f) = /M(R-I- Ve fdv .

Note that when f is the constant function the action reduces to the classical
Hilbert-Einstein action. The first variation can be written as

57(9.0) = [

[ [0 (R4 VA, + (o (-6 1) RAF [T P+ R

where dm = e Tdv . If m = fM e Fdv is kept fixed, then the second term in
the variation is zero and then the symmetric tensor —(R;; + V;fV; f) is the
L? gradient flow of the action functional F™ = [, (R+|V f|?)dm . The choice
of m is similar to the choice of a gauge. All choices of m lead to the same
flow, up to diffeomorphism, if the flow exists. We remark that in the quan-

3 1 first met Prof. Chern and his then newly arrived student S.-T. Yau in 1973 at the
AMS summer workshop on differential geometry held at Stanford University. Chern was
a gourmet and his conference dinners were always memorable. I attended the first one
in 1973 and the last one in 2002 on the occasion of the ICM satellite conference at his
institute in Tianjin. In spite of his advanced age and poor health he participated in the
entire program and then continued with his duties as President of the ICM in Beijing.



56 Kishore Marathe

tum field theory of the two-dimensional nonlinear o-model, Ricci flow can be
considered as an approximation to the renormalization group flow. This sug-
gests gradient-flow like behaviour for the Ricci flow, from the physical point
of view. Perelman’s calculations confirm this result. The functional F™ has
also a geometric interpretation in terms of the classical Bochner-Lichnerowicz
formulas with the metric measure replaced by the dilaton twisted measure
dm.
The corresponding variational equations are

1 1
R;j — §Rgz‘j =—(ViV,f - §(Af)gz'j)-

These are the usual Einstein equations with the energy-momentum tensor of
the dilaton field as source. They lead to the decoupled evolution equations

(9ij)t = =2(Rij + ViV, f), fr = —R— Af.

After applying a suitable diffeomorphism these equations lead to the gradient
flow equations. This modified Ricci flow can be pushed through the singular-
ities by surgery and rescaling. A detailed case by case analysis is then used to
prove Thurston’s geometrization conjecture. This includes as a special case
the classical Poincaré conjecture.

We have seen that QFT calculations have their counterparts in string
theory. One can speculate that this is a topological quantum gravity (TQG)
interpretation of a result in TQFT, in the Euclidean version of the theories.
If modes of vibration of a string are identified with fundamental particles,
then their interactions are already built into the theory. Consistency with
known physical theories requires string theory to include supersymmetry.
While supersymmetry has had great success in mathematical applications, its
physical verification is not yet available. However, there are indications that
it may be the theory that unifies fundamental forces in the standard model
at energies close to those at currently existing and planned accelarators.
Perturbative supersymmetric string theory (at least up to lower loop levels)
avoids the ultraviolet divergences that appear in conventional attempts at
quantizing gravity. Recent work relating the Hartle-Hawking wave function
to string partition function can be used to obtain a wave function for the
metric fluctuations on S* embedded in a Calabi-Yau manifold. This may be
a first step in a realistic quantum cosmology relating the entropy of certain
black holes with the topological string wave function. While a string theory
model unifying all fundamental forces is not yet available, a number of small
results (some of which we have discussed in this paper) are emerging to
suggest that supersymmetric string theory could play a fundamental role
in constructing such a model. Developing a theory and phenomenology of
4-dimensional string vacua and relating them to experimental physics and
cosmological data would be a major step in this direction. New mathematical
ideas may be needed for the completion of this project.
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We would like to think of this work as part of a new area called “physical
mathematics”. Many other aspects of physical mathematics are considered
in my forthcoming book “Topics in Physical Mathematics”, Springer Ver-
lag (2009). It is well known that the roots of “physical mathematics” go
back to the very beginning of man’s attempts to understand nature. Ab-
stracting some of what he observed in the motion of heavenly bodies led to
the early developments in mathematics. Indeed mathematics was an integral
part of natural philosophy. Rapid growth of the physical sciences aided by
technological progress and increasing abstraction in mathematical research
caused a separation of the sciences and mathematics in the 20th century.
Physicists methods were often rejected by mathematicians as imprecise and
mathematicians approach to physical theories was not understood by the
physicists. We have already given many examples of this. However, theoret-
ical physics did influence development of some areas of mathematics. Two
fundamental physical theories, Relativity and Quantum theory now over a
century old sustained interest in geometry and functional analysis and group
theory. Yang-Mills theory, now over half a century old was abandoned for
many years before its relation to the theory of connections in a fiber bun-
dle was found. It has paid rich dividends to the geometric topology of low
dimensional manifolds in the last quarter century. Secondary characteristic
classes were given less than secondary attention when they were introduced.
Now a major conference celebrating twenty years of Chern-Simons theory is
planned by the Max Planck and the Hausdorff institutes in Bonn in August
2009. Many areas such as statistical mechanics, conformal field theory and
string theory that we have not included in this work have already led to new
developments in mathematics. The scope of physical mathematics continues
to expand rapidly. Even in the topics that we have considered in this book a
number of new results are appearing and new connections between old results
are emerging. In fact, the recent lecture? by Curtis McMullen (Fields medal,
ICM 1998, Berlin) was entitled “From Platonic Solids to Quantum Topol-
ogy”. McMullen weaves a fascinating tale from ancient to modern mathe-
matics pointing out unexpected links between various areas of mathematics
and theoretical physics. He concludes with the statement of a special case of
the volume conjecture interpreting it as the equality between a gauge the-
oretic invariant and a topological gravity invariant. The vast and exciting
landscape of physical mathematics is open for exploration.
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