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Abstract

We show that although we can not distill a singlet from many pairs of

bound entangled states, the concurrence and tangle of two entangled

quantum states are always strictly larger than that of one, even both

entangled quantum states are bound entangled. We present a relation

between the concurrence and the fidelity of optimal teleportation. We

also give new upper and lower bounds for concurrence and tangle.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

I. INTRODUCTION

Quantum entanglement plays crucial roles in quantum information processing [1]. Quan-

tum entangled states have become the key ingredient in the rapidly expanding field of

quantum information science, with remarkable prospective applications such as quantum

teleportation [2], quantum cryptography [3], quantum dense coding [4] and parallel comput-

ing [5].

However, it has been shown that not all of the entangled quantum states are useful in

quantum information. There exist bound entangled states from which no pure entangled

states can be distilled under local operation and classical communication (LOCC) [6]. With

bound entangled states as the entangled resource teleportation can not be performed better

than with a classical channel, even if conclusive teleportation is allowed [7]. It has been

shown that bound entangled states can enhance the fidelity of teleportation other non-

bound entangled states [8, 9]. However, a bound entangled state can never enhance the

teleportation fidelity of another state which is also bound entangled [9].

An important problem in quantum information theory is the detection of quantum en-

tanglement. A series of excellent results have been obtained on separability criteria and
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evaluation of measures of quantum entanglement such as entanglement of formation (EOF)

[11] and concurrence [12, 13].

There have been some (necessary) criteria for separability, the Bell inequalities [14], PPT

(positive partial transposition) [15] (which is also sufficient for the cases 2 × 2 and 2 × 3

bipartite systems [16]), realignment [17–19] and generalized realignment [20], as well as some

necessary and sufficient operational criteria for low rank density matrices [21–23]. Further

more, separability criteria based on local uncertainty relation [24–27] and the correlation

matrix [28, 29] of the Bloch representation for a quantum state have been derived, which are

strictly stronger than or independent of the PPT and realignment criteria. The calculation

of entanglement of formation or concurrence is complicated except for 2 × 2 systems [30]

or for states with special forms [31]. For general quantum states with higher dimensions

or multipartite case, it seems to be a very difficult problem to obtain analytical formulas.

In stead, the lower and the upper bounds of concurrence [32–36] and EOF [37] have been

estimated.

In this paper we show in Section II that although we can not distill pure entangled states

from any bound entangled states, the concurrence and tangle of two entangled states will be

always strictly larger than that of one, even the two entangled states are both bound entan-

gled. We study the relation between the fidelity of optimal teleportation and concurrence in

section III, which connects the result in section II to that in [9]. We investigate bounds for

concurrence and tangle in Section IV . New lower and upper bounds for concurrence and

tangle are derived, which can be used not only for the estimation of entanglement, but also

for the investigation of separability. The subadditivity property of concurrence and tangle

is proved in Section V . We give concludes and remarks in the last section.

II. CONCURRENCE AND TANGLE OF TWO ENTANGLED QUANTUM

STATES

The concurrence and the tangle are two well defined entanglement measures satisfying

the standard properties usually regarded as essential for a good entanglement measure (see,

for example, [38]).

Let HA (resp. HB) be an M (resp. N)-dimensional complex vector space with |i〉,
i = 1, · · · ,M (resp. |j〉, j = 1, · · · , N), as an orthonormal basis. We assume M ≤ N for

convenience. A general pure state on HA ⊗HB is of the form

|Ψ〉 =
M

∑

i=1

N
∑

j=1

aij|i〉 ⊗ |j〉, (1)

where aij ∈ C satisfy the normalization
∑M

i=1

∑N
j=1 aija

∗
ij = 1.
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For a bipartite pure quantum state |ψ〉 the concurrence is defined by [12]

C(|ψ〉) =
√

2(1 − Trρ2
A), (2)

where ρA = TrB|ψ〉〈ψ|, while the tangle is defined by [39]

τ(|ψ〉) = C2(|ψ〉) = 2(1 − Trρ2
A). (3)

The definition is extended to general mixed states ρ =
∑

i pi|ψi〉〈ψi| by the convex roof,

C(ρ) = min
{pi,|ψi〉}

∑

i

piC(ψi); (4)

τ(ρ) = min
{pi,|ψi〉}

∑

i

piτ(ψi). (5)

Let ρ =
∑

ijkl ρij,kl|ij〉〈kl| ∈ HA ⊗ HB and σ =
∑

i
′
j
′
k
′
l
′ σi

′
j
′
,k

′
l
′ |i′j ′〉〈k′

l
′| ∈ HA

′ ⊗ HB
′ .

We denote ρ ⊗ σ =
∑

ijkl,i
′
j
′
k
′
l
′ ρij,klσi′j′ ,k′ l′ |ii

′〉AA′ 〈kk
′| ⊗ |jj ′〉BB′ 〈ll′| the bipartite state in

the bipartite partition AA
′

and BB
′

.

Lemma 1: For pure states |ψ〉 ∈ HA ⊗HB and |ϕ〉 ∈ HA
′ ⊗HB

′ , the inequalities

C(|ψ〉 ⊗ |ϕ〉) ≥ max{C(|ψ〉), C(|ϕ〉)} (6)

and

τ(|ψ〉 ⊗ |ϕ〉) ≥ max{τ(|ψ〉), τ(|ϕ〉)} (7)

always hold, the equalities hold if and only if at least one of the states, |ψ〉 and |ϕ〉, is

separable.

Proof: Without loss of generality we assume C(|ψ〉) ≥ C(|ϕ〉). First note that

ρ
|ψ〉⊗|ϕ〉
AA′ = ρ

|ψ〉
A ⊗ ρ

|ϕ〉
A

′ , (8)

where ρ
|ψ〉
A = TrB|ψ〉〈ψ|, ρ

|ϕ〉
A

′ = TrB′ |ϕ〉〈ϕ|, ρ
|ψ〉⊗|ϕ〉
AA

′ = TrBB′ (|ψ〉〈ψ| ⊗ |ϕ〉〈ϕ|). Let ρ
|ψ〉
A =

∑

i λi|i〉〈i| and ρ
|ϕ〉
A′ =

∑

j πj|j〉〈j| be the spectral decomposition of ρ
|ψ〉
A and ρ

|ϕ〉
A

′ , with
∑

i λi =

1 and
∑

j πj = 1 respectively. By using (8) one obtains that

Tr[(ρ
|ψ〉⊗|ϕ〉
AA′ )2] =

∑

λiπjλi
′πj

′ |ij〉〈ij|i′j ′〉〈i′j ′| =
∑

λ2
i π

2
j (9)

and

Tr[(ρ
|ψ〉
A )2] =

∑

i

λ2
i . (10)

From the definition of concurrence and the normalization conditions of λi and πj one

immediately gets

C(|ψ〉 ⊗ |ϕ〉) =
√

2(1 − Tr[(ρ
|ψ〉⊗|ϕ〉
AA

′ )2]) ≥
√

2(1 − Tr[(ρ
|ψ〉
A )2]) = C(|ψ〉). (11)
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If one of the states |ψ〉, |ϕ〉, say |ϕ〉, is separable, then the rank of ρ
|ϕ〉
A

′ must be one,

which means that there is only one item in the spectral decomposition in ρ
|ϕ〉
A

′ . From the

normalization condition of πj we obtain Tr[(ρ
|ψ〉⊗|ϕ〉
AA

′ )2] = Tr[(ρ
|ψ〉
A )2]. Hence the inequality

(11) becomes an equality.

On the other hand, if both |ψ〉 and |ϕ〉 are not separable, there must be at least two

items in the decomposition of their reduced density matrices ρ
|ψ〉
A and ρ

|ϕ〉
A′ which means that

Tr[(ρ
|ψ〉⊗|ϕ〉
AA′ )2] is strictly larger than Tr[(ρ

|ψ〉
A )2].

The inequality (7) also holds because for pure quantum state ρ, τ(ρ) = C2(ρ). ¤

By using the lemma, we have

Theorem 1: For any quantum mixed states ρ ∈ HA ⊗ HB and σ ∈ HA′ ⊗ HB′ , the

inequalities

C(ρ ⊗ σ) ≥ max{C(ρ), C(σ)} (12)

and

τ(ρ ⊗ σ) ≥ max{τ(ρ), τ(σ)} (13)

hold. They become equalities if and only if at least one of the states, ρ and σ, is separable.

Proof: We assume C(ρ) ≥ C(σ) for convenience. Let ρ =
∑

i piρi and σ =
∑

j qjσj be

the optimal decompositions such that C(ρ⊗σ) =
∑

i piqjC(ρi⊗σj). By using the inequality

in Lemma 1 we have

C(ρ ⊗ σ) =
∑

ij

piqjC(ρi ⊗ σj) ≥
∑

ij

piqjC(ρi) =
∑

i

piC(ρi) ≥ C(ρ). (14)

Case 1. If one of the states ρ and σ, say σ, is separable, i.e. σ can be written as

σ =
∑

j qjσj, where
∑

j qj = 1 and σj are the density matrices of separable pure states.

Suppose ρ =
∑

i piρi be the optimal decomposition of ρ such that C(ρ) =
∑

i piC(ρi). Using

Lemma 1 we have

C(ρ ⊗ σ) ≤
∑

ij

piqjC(ρi ⊗ σj) =
∑

ij

piqjC(ρi) =
∑

i

piC(ρi) = C(ρ). (15)

Inequalities (14) and (15) show that if σ is separable, then C(ρ ⊗ σ) = C(ρ).

Case 2: If both ρ and σ are not separable, using Lemma 1 we have

C(ρ ⊗ σ) =
∑

ij

piqjC(ρi ⊗ σj) >
∑

ij

piqjC(ρi) =
∑

i

piC(ρi) ≥ C(ρ), (16)

i.e. (12) is strictly an inequality.

The inequality (13) for tangle τ can be proved similarly. ¤

Remark : In [9] the author shew that any entangled state ρ can enhance the teleportation

power of a state σ. This holds even if the state ρ is bound entangled. But if ρ is bound
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entangled, the corresponding state σ must be free entangled (distillable). From Theorem 1,

we see that even both ρ and σ are bound entangled states, the concurrence and tangle can

be still strictly larger than that of one state.

III. RELATION BETWEEN CONCURRENCE AND FULLY ENTANGLED

FRACTION

Quantum entangled states are the key resources in quantum teleportation [40]. As shown

in [41], the optimal teleportation fidelity is related to the concurrence of a two-qubit quantum

state. For high dimensional case, the optimal fidelity of teleportation with a quantum state

ρ ∈ HA ⊗HB as an entangled resource, with dimensions M = N = d is given by [42]

F (ρ) =
d

d + 1
F(ρ) +

1

d + 1
, (17)

where F(ρ) is the fully entangled fraction of ρ defined by

F(ρ) = max
φ∈ǫ

〈φ|ρ|φ〉, (18)

where ǫ denotes the set of d × d-dimensional maximally entangled states.

Theorem 2: For any bipartite quantum state ρ ∈ HA⊗HB with dimensions M = N = d,

we have

C(ρ) ≥
√

2d

d − 1
[F(ρ) − 1

d
]. (19)

Proof: It is shown that for any pure state |ψ〉 ∈ HA⊗HB, the following inequality holds

[43]:

C(|ψ〉) ≥
√

2d

d − 1
(max|φ〉∈ε|〈ψ|φ〉|2 −

1

d
). (20)

Let ρ =
∑

i pi|ψi〉〈ψi| be the optimal decomposition such that C(ρ) =
∑

i piC(|ψi〉).We

have

C(ρ) =
∑

i

piC(|ψi〉) ≥
∑

i

pi

√

2d

d − 1
(max|φ〉∈ε|〈ψi|φ〉|2 −

1

d
)

≥
√

2d

d − 1
(max|φ〉∈ε

∑

i

pi|〈ψi|φ〉|2 −
1

d
)

=

√

2d

d − 1
(max|φ〉∈ε〈φ|ρ|φ〉 −

1

d
) =

√

2d

d − 1
(F(ρ) − 1

d
),

which ends the proof. ¤

The inequality (19) shows a relation between the lower bound of concurrence and the

fully entangled fraction (thus the optimal teleportation fidelity), namely the fully entangled

fraction of a quantum state ρ is limited by it’s concurrence. Moreover (19) also gives a lower

bound for concurrence which is obviously closer than that in [43].
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IV. ESTIMATION OF CONCURRENCE, TANGLE AND SEPARABILITY

In this section we derive new lower and upper bounds of concurrence and tangle for

arbitrary quantum states. Using these bounds we can detect more entangled states. Detailed

examples are given to show that the new bounds of concurrence are better than that have

been obtained so far.

A. Bounds of Concurrence and Tangle for bipartite quantum systems

We see that (12) and (13) can be regarded as lower bounds for τ and C of a certain

state that can be achieved with the help of another state. In fact there have been many

lower and upper bounds for concurrence and tangle [32–36, 44–48]. Here we just list several

important ones that will be used in the following. In [32] a lower bound for a bipartite state

ρ ∈ HA ⊗HB, with dimensions M ≤ N , has been obtained,

C(ρ) ≥
√

2

M(M − 1)
[max(||TA(ρ)||KF , ||R(ρ)||KF ) − 1]. (21)

where TA, R and || · ||KF stand for the partial transpose, realignment, and the trace norm

(sum of the singular values), respectively.

In [34, 44, 45], from the separability criteria related to local uncertainty relation, covari-

ance matrix and correlation matrix, the following lower bounds for bipartite concurrence are

obtained:

C(ρ) ≥ 2||C(ρ)||KF − (1 − Tr{ρ2
A}) − (1 − Tr{ρ2

B})
√

2M(M − 1)
(22)

and

C(ρ) ≥
√

8

M3N2(M − 1)
(||T (ρ)||KF −

√

MN(M − 1)(N − 1)

2
), (23)

where the entries of the matrices C and T are given by, Cij = 〈λA
i ⊗λB

j 〉−〈λA
i ⊗IN〉〈IM⊗λB

j 〉,
Tij = MN

2
〈λA

i ⊗ λB
j 〉, λ

A/B
k stands for the normalized generator of SU(M/N) satisfying

Tr{λA/B
k λ

A/B
l } = δkl and 〈X〉 = Tr{ρX} stands for the expection value of X. It is shown

that the lower bounds (22) and (23) are independent of (21). Besides, in [35], a lower bound

for tangle has been derived:

τ(ρ) ≥ 8

MN(M + N)
(||T (ρ)||2HS − MN(M − 1)(N − 1)

4
), (24)

where ||X||HS =
√

Tr(XX†) denotes the Frobenius (Hilbert-Schmidt) norm. Experimen-

tally measurable lower and upper bounds for concurrence have been presented in [36, 47]:
√

2(Tr[ρ2] − Tr[ρ2
A]) ≤ C(ρ) ≤

√

2(1 − Tr[ρ2
A]). (25)
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Since the convexity of C2(ρ), we have that τ(ρ) ≥ C2(ρ) always holds. In [39] the author

point out that for two qubits quantum systems, tangle τ is always equal to the square of

concurrence C2, as a decomposition {pi, |ψi〉} achieving the minimum in Eq. (4) will have

the property that C(|ψi〉) = C(|ψj〉) for all i, j. But for higher dimensional systems we do

not have similar equations. Therefore it is meaningful to derive valid upper bound for tangle

and lower bound for concurrence. In the following we derive an effective upper bound for

tangle, which can be used to estimate the entanglement of quantum states. We also derive

new lower bound for concurrence which is better than that in (21), (22) and (23) for certain

quantum states.

Theorem 3: For any quantum state ρ ∈ HA ⊗HB, we have

τ(ρ) ≤ min{2(1 − Tr(ρ2
A)), 2(1 − Tr(ρ2

B))} (26)

C(ρ) ≥
√

8

MN(M + N)
(||T (ρ)||HS −

√

MN(M − 1)(N − 1)

2
) (27)

where ρA/B are the reduced matrices of ρ, and T (ρ) is the correlation matrix of ρ defined in

(23).

Proof: We assume 1 − Tr(ρ2
A) ≤ 1 − Tr(ρ2

B) for convenience. From the definition of τ ,

we have that for a pure state |ψ〉, τ(|ψ〉) = 2(1 − Tr(ρ
|ψ〉
A )2). Let ρ =

∑

i piρi be the optimal

decomposition such that τ(ρ) =
∑

i piτ(ρi). We get

τ(ρ) =
∑

i

piτ(ρi) =
∑

i

pi2[1 − Tr(ρ
|ψi〉
A )2] = 2[1 − Tr

∑

i

pi(ρ
|ψi〉
A )2] ≤ 2[1 − Tr(ρ2

A)]. (28)

.

To prove (27), first note that in [35] the author obtains, for pure state |ψ〉 ∈ HA ⊗HB,

C(|ψ〉) =

√

8

MN(M + N)
(||T (|ψ〉)||2HS − MN(M − 1)(N − 1)

4
). (29)

Using the inequality
√

a − b ≥ √
a −

√
b for any a ≥ b, we get

C(|ψ〉) ≥
√

8

MN(M + N)
(||T (|ψ〉)||HS −

√

MN(M − 1)(N − 1)

2
). (30)

Now let ρ =
∑

i piρi be the optimal decomposition such that C(ρ) =
∑

i piC(ρi). We get

C(ρ) =
∑

i

piC(ρi) ≥
∑

i

pi

√

8

MN(M + N)
(||T (ρi)||HS −

√

MN(M − 1)(N − 1)

2
)

=

√

8

MN(M + N)
(
∑

i

pi||T (ρi)||HS −
√

MN(M − 1)(N − 1)

2
)

≥
√

8

MN(M + N)
(||T (ρ)||HS −

√

MN(M − 1)(N − 1)

2
),
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FIG. 1: We take the following 3 × 3 mixed state as an example: ρ = 1−p
9 I9 + p|ψ〉〈ψ|, where |ψ〉

is a randomly generated pure state, I9 is the 9 × 9 identity matrix. The upper line is the bound,

the lower one is the tangle for pure state |ψ〉. To compare the validity of the estimation of tangle,

we take p = 0.981, 0.993 and 0.998 respectively. As seen from the figures, for weakly mixed states

(with large p), the bounds provide an excellent estimation for tangle.

which ends the proof. ¤

The measurable upper bound (26), together with the lower bound in (21), (22), (23), (24)

and (25) allow for better estimation of entanglement for arbitrary quantum states. Moreover,

since the upper bound is exactly the value of tangle for pure states, the upper bound can

be a good estimation when the state is very weakly mixed, see Fig. 1. One can also easily

find that the lower bound (27) is obviously stronger than (23) when ||T ||KF ≈ ||T ||HS.

B. Bounds for Multipartite Concurrence and Separability

For a pure N-partite quantum state |ψ〉 ∈ H1 ⊗H2 ⊗ · · · ⊗HN , dimHi = di, i = 1, ..., N ,

the concurrence of bipartite decomposition between subsystems 12 · · ·M and M +1 · · ·N is

defined by

C2(|ψ〉〈ψ|) =
√

2(1 − Tr{ρ2
12···M}), (31)

where ρ12···M = TrM+1···N{|ψ〉〈ψ|} is the reduced density matrix of ρ = |ψ〉〈ψ| by tracing

over subsystems M + 1, · · · , N .

On the other hand, the concurrence of |ψ〉 is defined by [13]

CN(|ψ〉〈ψ|) = 21−N

2

√

(2N − 2) −
∑

α

Tr{ρ2
α}, (32)

where α labels all different reduced density matrices.
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For a mixed multipartite quantum state, ρ =
∑

i pi|ψi〉〈ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , the

corresponding concurrence of (31) and (32) are then given by the convex roof:

C2(ρ) = min
{pi,|ψi}〉

∑

i

piC2(|ψi〉〈ψi|), (33)

CN(ρ) = min
{pi,|ψi}〉

∑

i

piCN(|ψi〉〈ψi|). (34)

We now investigate the relation between these two kinds of concurrences.

Lemma 2: For a bipartite density matrix ρ ∈ HA ⊗HB, one has

1 − Tr{ρ2} ≤ 1 − Tr{ρ2
A} + 1 − Tr{ρ2

B}, (35)

where ρA/B = TrB/A{ρ} are the reduced density matrices.

Proof: Let ρ =
∑

ij

λij|ij〉〈ij| be the spectral decomposition, where λij ≥ 0,
∑

ij λij = 1.

Then ρA =
∑

ij λij|i〉〈i|, ρB =
∑

ij λij|j〉〈j|. Therefore

1 − Tr{ρ2
A} + 1 − Tr{ρ2

B} − 1 + Tr{ρ2} = 1 − Tr{ρ2
A} − Tr{ρ2

B} + Tr{ρ2}
= (

∑

ij

λij)
2 −

∑

i,j,j′

λijλij
′ −

∑

i,i′ ,j

λijλi
′
j +

∑

ij

λ2
ij

= (
∑

i=i
′
,j=j

′

λ2
ij +

∑

i=i
′
,j 6=j

′

λijλij
′ +

∑

i6=i
′
,j=j

′

λijλi
′
j +

∑

i6=i
′
,j 6=j

′

λijλi
′
j
′ ) − (

∑

i,j=j
′

λ2
ij +

∑

i,j 6=j
′

λijλij
′ )

−(
∑

i=i
′
,j

λ2
ij +

∑

i6=i
′
,j

λijλi
′
j) +

∑

i,j

λ2
ij

=
∑

i6=i
′
,j 6=j

′

λijλi′j′ ≥ 0.

¤

Similar result has also been derived in [36, 46] in proving the subadditivity of the linear

entropy. Here we just give a simpler and direct proof. From Lemma 2 we have.

Theorem 4: For a multipartite quantum state ρ ∈ H1 ⊗H2 ⊗· · ·⊗HN with N ≥ 3, the

following inequality holds,

CN(ρ) ≥ max 2
3−N

2 C2(ρ), (36)

where the maximum is taken over all kinds of bipartite concurrence.

Proof: Without lose of generality, we suppose that the maximal bipartite concurrence is

attained between subsystems 12 · · ·M and (M + 1) · · ·N .
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For a pure multipartite state |ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , Tr{ρ2
12···M} = Tr{ρ2

(M+1)···N}.
From (35) we have

C2
N(|ψ〉〈ψ|) = 22−N((2N − 2) −

∑

α

Tr{ρ2
α}) ≥ 23−N(N −

N
∑

k=1

Tr{ρ2
k})

≥ 23−N(1 − Tr{ρ2
12···M} + 1 − Tr{ρ2

(M+1)···N})
= 23−N ∗ 2(1 − Tr{ρ2

12···M}) = 23−NC2
2(|ψ〉〈ψ|),

i.e. CN(|ψ〉〈ψ|) ≥ 2
3−N

2 C2(|ψ〉〈ψ|).
Let ρ =

∑

i

pi|ψi〉〈ψi| attain the minimal decomposition of the multipartite concurrence.

One has

CN(ρ) =
∑

i

piCN(|ψi〉〈ψi|) ≥ 2
3−N

2

∑

i

piC2(|ψi〉〈ψi|)

≥ 2
3−N

2 min
{pi,|ψi}

∑

i

piC2(|ψi〉〈ψi|) = 2
3−N

2 C2(ρ).

¤

Corollary For a tripartite quantum state ρ ∈ H1 ⊗ H2 ⊗ H3, the following inequality

hold:

C3(ρ) ≥ max C2(ρ) (37)

where the maximum is taken over all kinds of bipartite concurrence.

Now we consider a multipartite quantum state ρ ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN as a bipartite

state belonging to HA ⊗ HB with the dimensions of the subsystems A and B being dA =

ds1
ds2

· · · dsi
and dB = dsi+1

dsi+2
· · · dsN

respectively. By using the corollary, (21), (22), (23)

and (27) we have the following lower bound:

Theorem 5: For any N-partite quantum state ρ, we have:

CN(ρ) ≥ 2
3−N

2 max{B1, B2, B3, B4}, (38)

where

B1 = max
{i}

√

2

Mi(Mi − 1)

[

max(||TA(ρi)||KF , ||R(ρi)||KF ) − 1
]

,

B2 = max
{i}

2||C(ρi)||KF − (1 − Tr{(ρi
A)2}) − (1 − Tr{(ρi

B)2})
√

2Mi(Mi − 1)
,

B3 = max
{i}

√

8

M3
i N2

i (Mi − 1)
(||T (ρi)||KF −

√

MiNi(Mi − 1)(Ni − 1)

2
),

B4 = max
{i}

√

8

MiNi(Mi + Ni)
(||T (ρi)||HS −

√

MiNi(Mi − 1)(Ni − 1)

2
),

10



ρis are all possible bipartite decompositions of ρ, and Mi =

min {ds1
ds2

· · · dsi
, dsi+1

dsi+2
· · · dsN

}, Ni = max {ds1
ds2

· · · dsi
, dsi+1

dsi+2
· · · dsN

}.
In [36, 47, 48], it is shown that the upper and lower bound of multipartite concurrence

satisfy
√

(4 − 23−N)Tr{ρ2} − 22−N
∑

α

Tr{ρ2
α} ≤ CN(ρ) ≤

√

22−N [(2N − 2) −
∑

α

Tr{ρ2
α}]. (39)

In fact we can obtain a more effective upper bound for multi-partite concurrence. Let

ρ =
∑

i

λi|ψi〉〈ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , where |ψi〉s are the orthogonal pure states and
∑

i

λi = 1. We have

CN(ρ) = min
{pi,|ϕi}〉

∑

i

piCN(|ϕi〉〈ϕi|) ≤
∑

i

λiCN(|ψi〉〈ψi|). (40)

The right side of (40) gives a new upper bound of CN(ρ). Since

∑

i

λiCN(|ψi〉〈ψi|) = 21−N

2

∑

i

λi

√

(2N − 2) −
∑

α

Tr{(ρi
α)2}

≤ 21−N

2

√

(2N − 2) −
∑

α

Tr{
∑

i

λi(ρi
α)2}

≤ 21−N

2

√

(2N − 2) −
∑

α

Tr{(ρα)2},

the upper bound obtained in (40) is better than that in (39).

The lower and upper bounds can be used to estimate the value of the concurrence.

Meanwhile, the lower bound of concurrence can be used to detect entanglement of quantum

states. We now show that our upper and lower bounds can be better than that in (39) by

detail examples.

Example 1: Consider the 2 × 2 × 2 Dür-Cirac-Tarrach states defined by [49]:

ρ =
∑

σ=±
λσ

0 |Ψσ
0〉〈Ψσ

0 | +
3

∑

j=1

λj(|Ψ+
j 〉〈Ψ+

j | + |Ψ−
j 〉〈Ψ−

j |), (41)

where the orthonormal Greenberger-Horne-Zeilinger (GHZ)-basis |Ψ±
j 〉 ≡ 1√

2
(|j〉12|0〉3±|(3−

j)〉12|1〉3), |j〉12 ≡ |j1〉1|j2〉2 with j = j1j2 in binary notation. From theorem 5 we have that

the lower bound of ρ is 1
3
. If we mix the state with white noise,

ρ(x) =
(1 − x)

8
I8 + xρ, (42)

by direct computation we have, as shown in FIG. 2, the lower bound obtained in (39) is

always zero, while the lower bound in (38) is larger than zero for 0.425 ≤ x ≤ 1, which

11
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FIG. 2: Our lower and upper bounds of C3(ρ) from (38), (40) (solid line) and the upper bound

obtained in (39) (doted line). The lower bound in (39) is always zero.

shows that ρ(x) is detected to be entangled in this situation. And the upper bound (doted

line) in (39) is much larger than the upper bound we have obtained in (40) (solid line).

Example 2: We consider the depolarized state [49]:

ρ =
(1 − x)

8
I8 + x|ψ+〉〈ψ+|, (43)

where 0 ≤ x ≤ 1 represents the degree of depolarization, |ψ+〉 = 1√
2
(|000〉 + |111〉). From

FIG. 3 one can obviously see that our upper bound is tighter. For 0 ≤ x ≤ 0.7237 our lower

bound is higher than that in (39), i.e. our lower bound is closer to the true concurrence.

Moreover for 0.2 ≤ x ≤ 0.57735, our lower bound can detect the entanglement of ρ, while

the lower bound in (39) not.

V. SUBADDITIVITY OF CONCURRENCE AND TANGLE

The additivity is an important property of entanglement measures, though it is usually

rather difficult to prove. The strong subadditivity of relative entropy has been proved in

[50]. In this section, we prove the subadditivity of concurrence and tangle.

Theorem 6: Let ρ and σ be two mixed quantum states in HA ⊗HB. We have

C(ρ ⊗ σ) ≤ C(ρ) + C(σ) and τ(ρ ⊗ σ) ≤ τ(ρ) + τ(σ). (44)

Proof: We first prove the theorem for pure states. Let |ψ〉 and |φ〉 be two pure states in

HA ⊗HB. Assume that ρ
|ψ〉
A =

∑

i λi|i〉〈i| and ρ
|φ〉
A =

∑

j πj|j〉〈j| be the spectral decompo-

12
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FIG. 3: Our lower and upper bounds of C3(ρ) from (38) and (40) (solid line) and the bounds

obtained in (39) (dot line).

sition of the reduced matrices of ρ|ψ〉 and ρ|φ〉. Then:

1

2
[C(|ψ〉) + C(|φ〉)]2 ≥ 1 − Tr[(ρ

|ψ〉
A )2] + 1 − Tr[(ρ

|φ〉
A )2]

= 1 −
∑

i

λ2
i + 1 −

∑

j

π2
j ≥ 1 −

∑

ij

λ2
i π

2
j =

1

2
C2(|ψ〉 ⊗ |φ〉). (45)

Namely, C(|ψ〉 ⊗ |φ〉) ≤ C(|ψ〉) + C(|φ〉). For tangle τ , the following inequality can be

obtained similarly by changing the first inequality in (45) to be equality, τ(|ψ〉 ⊗ |φ〉) ≤
τ(|ψ〉) + τ(|φ〉).

Now let ρ =
∑

i piρi and σ =
∑

j qjσj be two mixed states at optimal decomposition such

that C(ρ) =
∑

i piC(ρi) and C(σ) =
∑

j qjC(σj). We have

C(ρ) + C(σ) =
∑

ij

piqj[C(ρi) + C(σj)] ≥
∑

ij

piqjC(ρi ⊗ σj) ≥ C(ρ ⊗ σ). (46)

The inequality for τ can be derived similarly. ¤

VI. CONCLUSIONS AND REMARKS

We have investigated the concurrence and tangle of quantum states. It has been shown

that although one can not distill singlets from many bound entangled state, the con-

currence (and tangle) C(ρ ⊗ σ) (and τ(ρ ⊗ σ)) is always larger than max{C(ρ), C(σ)}
(max{τ(ρ), τ(σ)}) respectively. We have derived a relation between concurrence and the

optimal fidelity of teleportation, which shows that the optimal fidelity of teleportation is

13



limited by the concurrence. These results show that to improve the fidelity of teleportation,

one can use the two bound entangled states directly rather than do distillation first. We

have also presented new upper and lower bounds for concurrence and tangle, which give

rise to better estimation for entanglement of quantum states. At last we have proved the

subadditivity of concurrence and tangled.
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