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We present a way of experimental determination of concurrence in terms of the expectation
value of local observables for arbitrary multipartite pure states. In stead of joint measurements on
two-copy states needed in the experiment [Nature 440, 20(2006)] for two-qubit systems, we need
only measurements on one-copy state in every single measurement for any arbitrary dimensional
multipartite states, which avoids the preparation of twin states or the imperfect copy of pure states.
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Introduction Entanglement is one of the most fasci-
nating features of quantum theory [1]. Thus character-
ization and quantification of entanglement become an
important issue. An important approach to character-
ize entanglement is the Bell-type inequalities [2–6]. For
instance, N. Gisin proved that all two-qubit pure entan-
gled states violate the CHSH inequality [4] and J. Chen
et al. presented a Bell-type inequality that would be vi-
olated by all three-qubit pure entangled states [5]. For
general mixed two-qubit states, S. Yu et al. [6] proposed
a three-measurement setting Bell-type inequality, which
gives a sufficient and necessary criterion of separability.
Another significant approach is the entanglement witness
[7], which could be also implemented experimentally with
the present technology [8].

Nevertheless, to detect the entanglement by Bell-type
inequalities one involves two or more measurement set-
tings per party. And one has to do infinitely many di-
chotomic measurements theoretically, let alone we have
no necessary and sufficient Bell inequalities to detect the
entanglement for general multiqubit systems. While the
entanglement witnesses work only for some special states.
In fact we have well defined entanglement measures such
as entanglement of formation (EoF) [9, 10] and concur-
rence [11, 12], whereas the concurrence is defined both
for bipartite and multipartite states and gives rise to not
only the separability, but also the degree of entangle-
ment (at least for arbitrary dimensional bipartite states).
The problem is how to use these measures to determine
the entanglement for an unknown quantum states exper-
imentally.

In [13] Mintert et al. proposed a method to measure
the concurrence directly by using joint measurements on
a twofold copy of pure states. Latter, S. P. Walborn et

al. [14, 15] reported the experimental determination of
concurrence for two-qubit, provided one has access to two
copies of the pure state at every measurement [15].

In this letter, we give a way of experimental determina-
tion of concurrence for two-qubit and multi-qubit states,
with only one-copy of the state in every single measure-
ment. For the concurrence of two-qubit state in [14, 15],

also only a one set measurement is needed, while the ex-
perimental difficult is dramatically reduced. The results
are generalized to the case for arbitrary multipartite pure
states.

Concurrence for N -qubit system For a
N -partite M dimensional pure state |ψ〉 =
∑M−1

i1, ··· , iN=0 ai1, ··· , iN
|i1, · · · , iN 〉, ai1, ··· , iN

∈ C, the
concurrence is given by [16],

CN (|ψ〉) = 21−N
2

√

(2N − 2) −
∑

i

trρ2
i , (1)

where the summation goes over all 2N − 2 subsets of the
N subsystems.

Up to a constant factor,(1) can be also written as [12],

C(|ψ〉) =

√

√

√

√

∑

p

M
∑

{α, α′, β, β′}
|aαβaα′β′ − aαβ′aα′β |2, (2)

where α and α′ (resp. β and β′) are subsets of the
subindices of a, associated with the same sub-Hilbert
spaces but with different summing indices. α (or α′) and
β (or β′) span the whole space of a given subindex of a.
∑

p stands for the summation over all possible combina-
tions of the indices of α and β.

Our main aim is to re-express concurrence in terms of
the expectation value of local observables with respect to
one-copy of a pure quantum state. In this way we can
avoid the preparation of the twin state or imperfect copy
of the pure state [13–15] and the experimental determi-
nation of concurrence becomes more available.

We first give a general proof that this can be always
done: the squared concurrence of N -qubit pure state |ψ〉,
C2(|ψ〉), can be expressed by the real linear summation
of 〈ψ|σi1σi2 · · ·σiN

|ψ〉〈ψ|σj1σj2 · · ·σjN
|ψ〉,

C2(|ψ〉) =
3

∑

i1, ··· , iN , j1, ··· , jN=0

xi1, ··· , iN , j1, ··· , jN

〈ψ|σi1σi2 · · ·σiN
|ψ〉〈ψ|σj1σj2 · · ·σjN

|ψ〉.
(3)
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where coefficients xi1, ··· , iN , j1, ··· , jN
are real, σ0 is the

2×2 identity matrix, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 i

−i 0

)

and

σ3 =

(

1 0
0 −1

)

are the Pauli matrices.

We only need to show each term in the squared of (2)
can be written as the form of right hand side of (3). Note
that

|aαβaα′β′ − aαβ′aα′β |2 = |aαβaα′β′ |2 + |aαβ′aα′β |2

− a∗
αβa∗

α′β′aαβ′aα′β − aαβaα′β′a∗
αβ′a∗

α′β .
(4)

Set A(11) = |αβ〉〈αβ|, A(21) = |α′β′〉〈α′β′|, A(12) =
|αβ′〉〈αβ′|, A(22) = |α′β〉〈α′β|, then

|aαβaα′β′ |2 + |aαβ′aα′β |2 = 〈ψ|A(11)|ψ〉〈ψ|A(21)|ψ〉

+〈ψ|A(12)|ψ〉〈ψ|A(22)|ψ〉.
(5)

A(ij), i, j = 1, 2, obviously has the form A(ij) = |i1〉〈i1|⊗
· · · ⊗ |iN 〉〈iN |, where i1, · · · , iN take value 0 or 1. As
|0〉〈0| = 1

2 (σ0 + σ3) and |1〉〈1| = 1
2 (σ0 − σ3), we have

|aαβaα′β′ |2 + |aαβ′aα′β |2 =
∑

i1,··· ,iN ,j1,··· ,jN=0,3

xi1,··· ,iN ,j1,··· ,jN
〈ψ|σi1σi2 · · ·σiN

|ψ〉〈ψ|σj1σj2 · · ·σjN
|ψ〉

for some real coefficients xi1,··· ,iN ,j1,··· ,jN
.

Denote further A(13) = 1√
2
(|αβ〉〈αβ′| + |αβ′〉〈αβ|),

A(23) = 1√
2
(|α′β〉〈α′β′| + |α′β′〉〈α′β|), A(14) =

i√
2
(|αβ〉〈αβ′| − |αβ′〉〈αβ|), A(24) = i√

2
(|α′β〉〈α′β′| −

|α′β′〉〈α′β|), then

−a∗
αβa∗

α′β′aαβ′aα′β − aαβaα′β′a∗
αβ′a∗

α′β = −(〈ψ|A(13)|ψ〉〈ψ|A(23)|ψ〉 + 〈ψ|A(14)|ψ〉〈ψ|A(24)|ψ〉). (6)

It is clear that |α〉〈α|, |α′〉〈α′|, |β〉〈β′| and |β′〉〈β| are ten-
sor products of |0〉〈0| = 1

2 (σ0 + σ3), |1〉〈1| = 1
2 (σ0 − σ3),

|0〉〈1| = 1
2 (σ1 − iσ2) and |1〉〈0| = 1

2 (σ1 + iσ2). With-

out loss of generality we assume A(13) = |i1〉〈i1| ⊗ · · · ⊗
|is〉〈is| ⊗ (|is+1〉〈js+1| ⊗ · · · ⊗ |iN 〉〈jN | + |js+1〉〈is+1| ⊗
· · · ⊗ |jN 〉〈iN |), where 1 ≤ s < N , ik, jk take values
0 or 1 and ik 6= jk for each s + 1 ≤ k ≤ N . The

part |i1〉〈i1| ⊗ · · · ⊗ |is〉〈is| is the real linear summation
of tensor products of σ0 and σ3. While the rest part
T ≡ |is+1〉〈js+1| ⊗ · · · ⊗ |iN 〉〈jN | + |js+1〉〈is+1| ⊗ · · · ⊗
|jN 〉〈iN | can be written as 1

2N−s

⊗N

l=s+1(σ1+i(−1)plσ2)+
1

2N−s

⊗N

l=s+1(σ1 + i(−1)1−plσ2), here pl takes values 0 or
1 for each l. T is further of the form

1
2N−s

∑N−s

l=0

∑

{number l of hj is 1, the others are 2} iN−s−l
⊗N−s

j=1 σhj
((−1)lm + (−1)N−s−l−lm),

0 ≤ lm ≤ N − s − l. If N − s − l is even, then iN−s−l

is real and each coefficient before
⊗N−s

j=1 σhj
is real. If

N − s − l is odd, then (−1)lm + (−1)N−s−l−lm = 0 and
each coefficient is real too. Hence A(13) is the real lin-
ear summation of tensor products of σi, 0 ≤ i ≤ 3.
Similarly one can show that A(14), A(23) and A(24) are
real linear summation of tensor products of σi, 0 ≤
i ≤ 3. Thus −a∗

αβa∗
α′β′aαβ′aα′β − aαβaα′β′a∗

αβ′a∗
α′β and

Eq. (4) can be expressed by real linear summation of
〈ψ|σi1σi2 · · ·σiN

|ψ〉〈ψ|σj1σj2 · · ·σjN
|ψ〉.

Therefore the squared concurrence of N -qubit pure
states can be expressed as the expectation values of ten-

sor products of σi (0 ≤ i ≤ 3) with respect to one copy
of the corresponding pure state, though such expressions
are not unique (From (5) and (6) one sees that it is pos-
sible to find an expression that is invariant under the
permutations of the N observables).

a. Concurrence for two-qubit system For any two-qubit
state |ψ〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉,

C2 = 4|a00a11 − a01a10|2, (7)

which can be expressed as
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C2 =
1

2
(1 + 〈σ3σ3〉2 − 〈σ3σ0〉2 − 〈σ0σ3〉2 − 〈σ0σ1〉2 + 〈σ3σ1〉2 − 〈σ0σ2〉2 + 〈σ3σ2〉2). (8)

For experimental determination of concurrence, one only
needs to measure 〈σ3σ3〉, 〈σ3σ1〉 and 〈σ3σ2〉 respectively.
An alternative expression with symmetry under the ex-
change of the two qubits can also be obtained [19].

For states in Schmidt decomposition, |ψ〉 = a0|00〉 +
a1|11〉, |a00|2 + |a11|2 = 1, we have

C2 =
1

8
(1 + 〈σ3σ3〉2 − 〈σ0σ3〉2 − 〈σ3σ0〉2). (9)

In this case experimentally we only need to measure
〈σ3σ3〉, or simply count the probability P (++), P (−−)
of projections | + +〉〈+ + |, | − −〉〈− − | with |+〉 =
1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉) respectively, as

C2 = 16P (++)P (−−). For the state α|01〉 + β|10〉 used
in [14], it is also true that we only need one set local mea-
surement to measure the concurrence. But here we only
need one copy of the state in every single measurement,
while in [14] joint measurement on two copies of the state
are needed in every single measurement.

For small deviation |ψ′〉 =
√

1 − ǫ|ψ〉 +
√

ǫ|φ〉 from an
ideal pure state |ψ〉 due to imperfect preparation, where
ǫ ∈ IR and |φ〉 is an arbitrary pure state, our protocol
shows that the concurrence obtained from the experi-
ment is exact the one of |ψ′〉. Hence if the parameter
ǫ is small enough, the difference of the concurrence be-

tween |ψ〉 and |ψ′〉 would be small enough. For a two-
crystal type-I down-conversion source, with improper
spatial mode matching and spectral filtering, the imper-
fect preparation procedure could result in mixed states,
ρ = (1 − ǫ)|ψ〉〈ψ| + ǫ(|α|2|HH〉〈HH| + |β|2|V V 〉〈V V |)
instead of the ideal pure state |ψ〉 = α|HH〉 + β|V V 〉,
where H and V stand for horizontal and vertical linear
polarization respectively. That is, the phase coherence
between |HH〉 and |V V 〉 is reduced by 1 − ǫ. Therefore
the actual concurrence of ρ is smaller than that of |ψ〉,
C(ρ) = (1 − ǫ)|αβ| [15, 17]. If we still measure the state
according to (8) or (9), we have C(ρ) = |αβ|. Thus the
relative error due to mixing is linear in ǫ.

In principle one can always use tomography to recon-
struct the unknown state. However it requires a large
number of measurements. In particular one needs 3N dif-
ferent settings to reconstruct an arbitrary N -qubit den-
sity matrix. To obtain all 16 expectation values of the
two-qubit density matrix, nine different settings have to
be used [18]. From (8) we only need three different set-
tings to know the entanglement of the state, which is
much less than tomography.

b. Concurrence for three-qubit system For any pure
three-qubit state |ψ〉 =

∑1
i,j,k=0 aijk|ijk〉, its squared

concurrence is of the form,

C2 = 4(|a000a111 − a001a110|2 + |a000a111 − a010a101|2 + |a000a111 − a011a100|2 + |a001a110 − a010a101|2 (10)

+|a001a110 − a011a100|2 + |a010a101 − a011a100|2) + 8(|a000a011 − a001a010|2 + |a000a101 − a001a100|2

+|a000a110 − a010a100|2 + |a001a111 − a011a101|2 + |a010a111 − a011a110|2 + |a100a111 − a101a110|2).

Up to a constant factor C2 can be expressed as

C2 =
1

4
(9 − 5〈σ0σ3σ0〉2 − 5〈σ0σ0σ3〉2 − 5〈σ3σ0σ0〉2 + 〈σ0σ3σ3〉2 + 〈σ3σ3σ0〉2 + 〈σ3σ0σ3〉2 + 3〈σ3σ3σ3〉2 (11)

−3〈σ0σ0σ1〉2 − 3〈σ0σ1σ0〉2 − 3〈σ1σ0σ0〉2 − 〈σ0σ3σ1〉2 − 〈σ1σ0σ3〉2 − 〈σ3σ1σ0〉2 + 3〈σ0σ1σ3〉2

+3〈σ3σ0σ1〉2 + 3〈σ1σ3σ0〉2 + 〈σ3σ3σ1〉2 + 〈σ3σ1σ3〉2 + 〈σ1σ3σ3〉2 − 3〈σ0σ0σ2〉2 − 3〈σ0σ2σ0〉2

−3〈σ2σ0σ0〉2 − 〈σ0σ3σ2〉2 − 〈σ2σ0σ3〉2 − 〈σ3σ2σ0〉2 + 3〈σ0σ2σ3〉2

+3〈σ3σ0σ2〉2 + 3〈σ2σ3σ0〉2 + 〈σ3σ3σ2〉2 + 〈σ3σ2σ3〉2 + 〈σ2σ3σ3〉2).

which is invariant under permutations of the three qubits. For experimental determination of the concurrence for
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arbitrary three-qubit states, seven quantities are needed
to be measured: 〈σ3σ3σ3〉, 〈σ3σ3σ1〉, 〈σ3σ1σ3〉, 〈σ1σ3σ3〉,
〈σ3σ3σ2〉, 〈σ3σ2σ3〉, 〈σ2σ3σ3〉.

In particular for the three-qubit generalized GHZ state,
|ψ〉 = a0|000〉 + a1|111〉, |a0|2 + |a1|2 = 1, and the
generalized W state |ψ〉 = a0|001〉 + a1|010〉 + a2|100〉,
|a0|2 + |a1|2 + |a2|2 = 1, their squared concurrence are
12|a000a111|2 and 8(|a001a010|2+ |a001a100|2+ |a010a100|2)
respectively. The concurrence of both generalized GHZ
states and generalized W states can be measured accord-
ing to the following formula:

C2 = 1
4 (9 − 5〈σ0σ3σ0〉2 − 5〈σ0σ0σ3〉2 − 5〈σ3σ0σ0〉2

+〈σ0σ3σ3〉2 + 〈σ3σ3σ0〉2 + 〈σ3σ0σ3〉2 + 3〈σ3σ3σ3〉2).
(12)

(12) shows that for experimental determination of entan-
glement for these states, we need only one set measure-
ment, 〈σ3σ3σ3〉.

Similar results can be obtained for multiqubit systems
such as N -qubit generalized GHZ state |ψ〉 = a0|0 · · · 0〉+
a1|1 · · · 1〉, |a0|2 + |a1|2 = 1, or N -qubit generalized W

state |ψ〉 = a0|0 · · · 01〉+a1|0 · · · 10〉+· · ·+aN−1|10 · · · 0〉,
|a0|2 + |a1|2 + · · · + |aN−1|2 = 1. For instance for the
generalized GHZ state, the concurrence is |a0a1| up to
a constant. Its squared concurrence can be expressed as
follows:

C2 = 1 +
∑k≤N

k is even〈σ
(i1···ik)
3 〉2 − ∑l≤N

l is odd〈σ
(i1···il)
3 〉2 +

∑k,k′≤N

k,k′ is even〈σ
(i1···ik)
3 〉〈σ(i1···ik′ )

3 〉

−∑l,l′≤N

l,l′ is even〈σ
(i1···il)
3 〉〈σ(i1···il′ )

3 〉.
(13)

Here 〈σ(i1···ik)
3 〉 denotes the expectation value of the local

operators such that the i1-th, · · · , ik-th are σ3 and others
are identities.

Concurrence for N -partite M -dimensional system Be-
sides qubit systems, our approach can be also used for ar-
bitrary M -dimensional cases. In stead of the Pauli oper-
ators, one can use the SU(M) generators as observables:

λ0 =
M−1
∑

j=0

|j〉〈j|,

λs =
s−1
∑

j=0

|j〉〈j| − s|s〉〈s|, 1 ≤ s ≤ M − 1,

λs = |j〉〈k| + |k〉〈j|, s = M, · · · ,
1

2
(M + 2)(M − 1),

λs = −i(|j〉〈k| − |k〉〈j|), s =
1

2
(M + 1)M, · · · ,M2 − 1,

where 0 ≤ j < k ≤ M − 1. Note that

|0〉〈0| =
1

M
λ0 +

1

M(M − 1)
λM−1 +

1

(M − 1)(M − 2)
λM−2 + · · · + 1

3 ∗ 2
λ2 +

1

2
λ1,

|1〉〈1| =
1

M
λ0 +

1

M(M − 1)
λM−1 +

1

(M − 1)(M − 2)
λM−2 + · · · + 1

3 ∗ 2
λ2 −

1

2
λ1,

...

|M − 3〉〈M − 3| =
1

M
λ0 +

1

M(M − 1)
λM−1 +

1

(M − 1)(M − 2)
λM−2 −

1

M − 2
λM−3,

|M − 2〉〈M − 2| =
1

M
λ0 +

1

M(M − 1)
λM−1 −

1

M − 1
λM−2,

|M − 1〉〈M − 1| =
1

M
λ0 −

1

M
λM−1.
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In addition, for arbitrary 0 ≤ j < k ≤ M − 1, it
has |j〉〈k| = 1

2 (λs + iλs′) and |k〉〈j| = 1
2 (λs − iλs′)

for some M ≤ s ≤ 1
2 (M + 2)(M − 1) and 1

2 (M +
1)M ≤ s′ ≤ M2 − 1. Similar to the proof of N -

qubit system, it is direct to show that the squared
concurrence of N -partite M -dimensional pure state |ψ〉
can be expressed in terms of real linear summation of
〈ψ|λi1λi2 · · ·λiN

|ψ〉〈ψ|λj1λj2 · · ·λjN
|ψ〉:

C2(|ψ〉) =
M2−1
∑

i1, ··· , iN , j1, ··· , jN=0

xi1, ··· , iN , j1, ··· , jN
〈ψ|λi1λi2 · · ·λiN

|ψ〉〈ψ|λj1λj2 · · ·λjN
|ψ〉, (14)

where xi1, ··· , iN , j1, ··· , jN
are real.

Conclusions We have proposed a method for experi-
mental determination of concurrence in terms of the ex-
pectation value of local observables, which gives not only
sufficient and necessary conditions for separability of the
quantum states, but also the relative degree of entangle-
ment. Moreover unlike the case of Bell-inequality where
measurements are needed with respect to infinitely many
observables, we need only a few mean value of observ-
ables. And in stead of joint measurement on two-copy
of the state needed in the experiment [13–15] for two-
qubit states, we need only the usual measurements on
one copy of the state in every single measurement for any
arbitrary dimensional multipartite states, which dramat-
ically simply the experiment and reduces the error rates
and the imperfectness in the preparation of the states.
Compared with entanglement witnesses, for which some
a priori knowledge about the states under investigation is
needed, we don’t need any information before measuring
the state in experiment. Moreover our method applies to
all pure states.
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[13] F. Mintert, M. Kuś and A. Buchleitner, Phys. Rev. Lett.
95, 260502(2005).

[14] S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, F.
Mintert and A. Buchleitner, Nature. 440, 20(2006).

[15] S. P. Walborn, P. H. Souto Ribeiro and L. Davidovich,
Phys Rev A 75, 032338(2007).

[16] L. Aolita and F. Mintert, Phys. Rev. Lett. 97,
050501(2006).

[17] W. K. Wootters, Phys. Rev. Lett. 80, 2245(1998).
[18] C. F. Roos, G. P. T. Lancaster, M. Riebe, H, Häffner,
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