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1 Abstract

In this paper we deal with the approximation of a given function f on [0, 1]2

by special bilinear forms
∑k

i=1 gi ⊗ hi via the so-called cross approximation. In

particular we are interested in estimating the error function f −
∑k

i=1 gi ⊗ hi of
the corresponding algorithm in the maximum norm. Because of the large amount
of papers available that deal with similar matrix algorithms in applied situations
without giving satisfactory error estimates, we concentrate on the theoretical
issues of the problem in the language of functions. We connect it with related
results from other areas of Analysis in an historical survey and give a lot of
references. Our main result is the connection of the error of our algorithm with
the error of best approximation by arbitrary bilinear forms.

2 Introduction and preliminaries

We are basically concerned with the following question:
Given a function f : [0, 1]2 → R, how well can we approximate it by something
like

f ∼

k∑

i=1

gi ⊗ hi, (1)

i.e., by a finite sum of tensor products of one-dimensional functions (here we write
(g⊗h)(x, y) = g(x)h(y))? The right-hand side of (1) is also called a bilinear form
and the first famous result in this direction is due to Schmidt ([23]), who gave a
complete answer in the case f ∈ L2. A standard reference for questions in this
area is [11], a nice survey can be found in [10].
In this paper we consider a very special choice of functions g, h in (1), namely
the restriction of f itself to certain lines, as will be described in the sequel.
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2.1 The Construction

Now we describe the algorithm CA2D and fix the notation. We are given an
arbitrary function f on the unit square [0, 1]2. In the first step we choose the
point (x1, y1) ∈ [0, 1]2 with f(x1, y1) 6= 0 and define the auxiliary function

f1(x, y) =
f(x1, y)f(x, y1)

f(x1, y1)
.

Then it is easy to see that

f1(x, y) = f(x, y) for all (x, y) ∈ C1 = {(x, y) ∈ [0, 1]2 : x = x1 ∨ y = y1}.

Hence, for the remainder we have

R1 = f − f1 = 0 on C1.

Now we want to approximate the remainder function R1 by the same idea. There-
fore, we choose (x2, y2) ∈ [0, 1]2 with
(f − f1)(x2, y2) 6= 0 and define

f2(x, y) =
(f − f1)(x, y2)(f − f1)(x2, y)

(f − f1)(x2, y2)
.

Then we verify

f2 = f − f1 = R1 on C2 = {(x, y) ∈ [0, 1]2 : x = x2 ∨ y = y2}

and f2 = 0 on C1, hence

f1 + f2 = f on G2 = C1 ∪ C2 and so R2 = f − f1 − f2 = 0 on G2.

We go on with this scheme and define for j ∈ N the iterative expression

fj(x, y) =

(
f −

j−1∑

i=1

fi

)
(xj, y)

(
f −

j−1∑

i=1

fi

)
(x, yj)

(
f −

j−1∑

i=1

fi

)
(xj, yj)

,

where the pivot points (xj, yj) are always chosen such that

(
f −

j−1∑

i=1

fi

)
(xj, yj) 6= 0.
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For a detailed discussion about how to choose those points we refer to the next
subsection. The function given by

Fk(x, y) =
k∑

j=1

fj(x, y)

is the resulting k-th interpolation function of f via this algorithm, the two-
dimensional cross approximation (CA2D). We observe that Fk has the property
of the right hand-side of (1) as a sum of products of one-dimensional functions.
By repeating the same arguments as before, one can prove

Fk(x, y) = f(x, y) for all (x, y) ∈ Gk =
k⋃

j=1

Cj,

where Cj = {(x, y) ∈ [0, 1]2 : x = xj ∨ y = yj}, hence,

Rk(x, y) := f(x, y) − Fk(x, y) = 0 for all (x, y) ∈ Gk (2)

for k ∈ N. So one can think of Rk as a function that lives inside of small rectangles
and vanishes on their edges. By the above construction we have

Rk(x, y) = Rk−1(x, y) −
Rk−1(x, yk)Rk−1(xk, y)

Rk−1(xk, yk)
, (3)

which also shows, how to recursively implement CA2D.

2.2 Questions

Our main goal is to estimate the maximum norm of the CA2D error function Rk

by the error of best approximation by bilinear forms. This will be done in section
5 for functions either belonging to the space C([0, 1]2) of continuous functions or
to the space L∞([0, 1]2) of bounded functions. There are some questions related
to this, for example: What are the influences of smoothness and structural prop-
erties of f? We discuss those issues in section 3.
The point we want to treat now is the choice of the pivot elements (xj, yj). At the
first glance it seems reasonable to choose the remaining maximum of the error in
[0, 1]2 (full pivoting), i.e.

(
f −

j−1∑

i=1

fi

)
(xj, yj) = max

(x,y)∈[0,1]2

(
f −

j−1∑

i=1

fi

)
(x, y) 6= 0,

to minimize the error after the next step. But as soon as it comes to the im-
plementation, one of course intends to avoid full pivoting. Therefore, another
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alternative was considered (partial pivoting), see [7], Chapter 4, where the x-
coordinates of the crosses are chosen randomly such that Rk(xk+1, y) does not
vanish for all y ∈ [0, 1] and the y-coordinates as the maxima on the line. When
we implemented CA2D for testing we used an even more restrictive algorithm
(special pivoting), where the xk are determined by the following procedure:
x1 = 1/2, x2 = 1/4, x3 = 3/4 and going on from left to right by always dividing
the remaining intervals in the middle. The y-coordinates are again the maxima
on the line. (One has to be careful here with symmetric functions !). We will
see in sections 4 and 5 that there is also another pivot strategy of interest called
maximal-volume concept, see [13], we will discuss it at the end of 4.1. However,
the results of the following section are independent of such a strategy.

3 Basic results

We start with an observation already mentioned as formula (2) in 2.1. Using the
notation introduced there we will formulate it as Proposition and refer to it later
on as interpolation property.

Proposition 3.1 For any function f : [0, 1]2 → R, we have

Rk(x, y) = 0 for all (x, y) ∈ Gk.

The next result takes an a priori knowledge about structural properties of the
underlying function into account. We say that a function f has separation rank
k, if one can represent it as

f(x, y) =
k∑

i=1

gi(x)hi(y)

and there is no such representation with reduced summing order. We call the
following the rank property.

Proposition 3.2 Let f have separation rank k. Then CA2D reproduces f after
k steps exactly, that means

Rk = f − Fk = 0 on [0, 1]2.

A matrix version of this result can be found in [7](Chapter 4).
Proof We will prove that Rk′ = f − Fk′ has separation rank k − k′ for k′ ∈
{0, 1, . . . , k} by induction. For k′ = 0 there is nothing to prove, so let for k′ < k
the function Rk′ have separation rank k − k′. We define

V = span{Rk′(·, y) : y ∈ [0, 1]}
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and
V ′ = span{Rk′+1(·, y) : y ∈ [0, 1]}.

We know that dimV = k − k′ and want to show dimV ′ = k − k′ − 1. For each
ȳ ∈ [0, 1] we write with the notation of section 2.1 (formula (3))

Rk′+1(x, ȳ) = Rk′(x, ȳ) −
Rk′(x, yk′+1)Rk′(xk′+1, ȳ)

Rk′(xk′+1, yk′+1)

and see, that both terms on the right hand-side belong to V , hence V ′ ⊂ V .
Furthermore, we know Rk′(·, yk′+1) ∈ V but because Rk′(xk′+1, yk′+1) 6= 0 and
Rk′+1(xk′+1, y) = 0 for all y ∈ [0, 1], there is no representation of Rk′(·, yk′+1) as
a linear combination of functions Rk′+1(·, y), hence Rk′(·, yk′+1) /∈ V ′. It follows
dimV ′ < dimV and because those dimensions can differ at most by one, we get
dimV ′ = dimV − 1 = k − k′ − 1. Now we know that for all ȳ ∈ [0, 1] we have a
representation

Rk′+1(x, ȳ) =
k−k′−1∑

i=1

αi,ȳϕi(x)

with coefficients αi,ȳ and functions ϕi(x). If we now identify ψi(y) = αi,y, we
conclude that Rk′+1 has separation rank k − (k′ + 1).

2

This result tells us that the algorithm is exact, if f has already a tensor product
structure as in (1), even if f is not smooth at all. Besides that one would expect
that CA2D converges faster if f shares some nice smoothness properties. To
get an explicit estimate for a more general class of functions determined by the
smoothness, we follow the basic idea appearing for polynomial interpolation on
an interval. For that we define

ωk(x) =
k∏

i=1

(x− xi)

and denote by f
(k)
x the k-th partial derivative of f with respect to x.

Proposition 3.3 Let f ∈ Ck([0, 1]2). Then the error of CA2D can be estimated
by

|Rk(x, y)| ≤
|ωk(x)|

k!
2k sup

x∈[0,1]

|f (k)
x (x, y)|. (4)

Proof We fix (x̄, ȳ) ∈ [0, 1]2 and define

F (x) = Rk(x, ȳ) −Kωk(x).

Now we determine K such that F (x̄) = 0. Then F has at least n + 1 zeros in
[0, 1], hence F (k)(ξ) = 0 for ξ ∈ [0, 1]. We find

K =
R

(k)
k (ξ, ȳ)

k!
,
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where the derivative is with respect to the first variable, and because of |R
(k)
k (x, y)| ≤

2k|f
(k)
x (x, y)| we can estimate

|Rk(x̄, ȳ)| = |Kωk(x̄)| ≤
|ωk(x̄)|

k!
2k|f (k)

x (ξ, ȳ)|,

which finishes the proof.
2

Let us discuss this result. First one observes, that it is basically one-dimensional,
where the behavior in the other direction is not taken into account. So one can
do the same argumentation with respect to y and the corresponding assertion
would also be true. That means the error Rk is bounded by the expression (4)
with respect to x or y, therefore,

|Rk(x, y)| ≤
2k

k!
min

(
|ωx

k(x)| sup
x∈[0,1]

|f (k)
x (x, y)|, |ωy

k(y)| sup
y∈[0,1]

|f (k)
y (x, y)|

)
.

But that of course doesn’t change the quality of the estimate. We tested the
algorithm with our special pivoting for the function f(x, y) = exp(−xy), where

|f
(k)
x (x, y)| ≤ 1. After 15 steps the error of CA2D was 5.2479 · 10−15, where

estimate (4) gives 2.8422·10−14. This seems reasonable, but the situation changes
dramatically if the partial derivatives of f are not uniformly bounded. We tested
also f(x, y) = sin(10xy), where the corresponding factor in (4) grows like 10k, here
the algorithm gave after 15 steps an error of 2.8084 · 10−11 but our estimate gives
28.422. That means, derivatives of f itself can not be a suitable factor in the error
estimate, but of course smoothness should influence it somehow. So observing
that Rk does not change after ”nice” transformations Φ : [0, 1]2 → [0, 1]2, not
the derivatives of f itself, but the ”smallest possible” derivatives after a suitable
transformation Φ are of interest. So we conclude

‖Rk‖∞ ≤
2k

k!
inf
Φ

(
min

(∥∥∥∥ω
x
k

∂k

∂xk
(f ◦ Φ)

∥∥∥∥
∞

,

∥∥∥∥ω
y
k

∂k

∂yk
(f ◦ Φ)

∥∥∥∥
∞

))
.

Unfortunately we can not see a way of simplifying this expression and we can
also not test it.
When we realized that direct error estimates would need new techniques, we
started to search intensively through the literature for similar ideas. The most
important results of this process are presented in the next section.

4 Historical survey on related questions

This survey is not meant to be complete or even ordered in time. It simply shows,
how the literature influenced this work. We start with the most recent interest
in approximation schemes by low rank matrices.
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4.1 Asymptotically smooth functions

In [5] Bebendorf and later in [6] Bebendorf and Rjasanov considered the ap-
proximation of matrices A = (aij)

n
i,j=1 generated by a function f if one assigns

aij = f(xi, yj) on a sufficiently fine grid (xi, yj)
n
i,j=1 in the corresponding domain.

Such a function was assumed to be asymptotically smooth. We will repeat the
definition now in a form that fit to our purposes.

Definition 4.1 A function f : [a, b] × [c, d] → R is called asymptotically smooth
if there are constants C1, C2 > 0 and s ≤ 0 such that for all α, β ∈ N0

|∂α
x∂

β
y f(x, y)| ≤ C1l!C

l
2|x− y|s−l, l = α+ β.

Compare also [15] (Definition 4.2.5). In addition to that they assumed

|c− d| ≤ η dist([a, b], [c, d])

for some 0 < η < C−1
2 . In other words the function was considered off the diagonal

y = x, which is quite different from our original question in [0, 1]2. An important
class of examples is given by the fundamental solutions of elliptic equations. The
kernels log |x−y| with s = 0 or |x−y|−a with s = a are prominent representatives.
As mentioned in [15] asymptotically smooth functions are also called Calderon-
Zygmund kernels, see also [12] and [16]. Unfortunately, the focus of the authors
in those papers lies on the operators generated by such functions, but not on the
functions itself. It would be desirable to clarify what kind of function spaces,
maybe in the sense of microlocal analysis by Moritoh/Yamada [21] and Kempka
[18] or even in the sense of varying smoothness [24], would be the right scale for
these kernels. But that is not done within this work.
Using a result about high-dimensional Lagrange interpolation Bebendorf proved
in [5] (Theorem 4) the following estimate for the error of CA2D off the diagonal
with partial pivoting

|Rk(x, y)| ≤ Ck dists([a, b], [c, d])ηk,

where Ck = C1C
k
2 (1 + 2k)C3. This seems satisfactory since the factor ηk suggests

an exponential decay. However, a closer look at the number Ck together with
the condition η < C−1

2 destroys this hope. But it was still a big improvement
in terms of explicit error estimates for CA2D in comparison with earlier results
concerning for example so-called Pseudoskeleton Approximations by Goreinov,
Tyrtyshnikov and Zamarashkin, see [14]. Also in [5] Bebendorf mentions the
maximum-volume concept to control the error of CA2D. This concept proposes
to choose the pivots (xi, yi) such that the absolute value of the determinant
det (f(xi, yi))

k
i,j=1 is maximal. That is of course practically not acceptable but

because of the nice formula

k∏

i=0

Ri(xi+1, yi+1) = det (f(xi, yi))
k+1
i,j=1 , (5)
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for all k ∈ N (which you can also find in [5], Lemma 2), we can see, that partial
pivoting is the best strategy with respect to maximal determinants if we want
to keep all previous pivots fixed. Much work concerning asymptotically smooth
functions and the maximal volume concept in connection with the numerical
application was done for example by Tyrtyshnikov, see [28], where also some
more references are given.
It is one aim of this paper to extend the class of functions for which CA2D error
estimates are available. In the next subsections we examine older examples in
literature that are already very close to our purposes.

4.2 Totally positive functions

Already more than thirty years ago, Micchelli and Pinkus wrote an very inter-
esting paper [20] concerning the approximation problem (1) in mixed p, q-norms.
The main assumption on their functions was total positivity. Here we repeat the
definition.

Definition 4.2 A real valued kernel K(x, y) continuous on [0, 1]2 is called totally
positive if all its Fredholm minors

K

(
s1, . . . , sm

t1, . . . , tm

)
= det (K(si, ti))

m
i,j=1 =

∣∣∣∣∣∣∣

K(s1, t1) · · · K(s1, tm)
...

...
K(sm, t1) · · · K(sm, tm)

∣∣∣∣∣∣∣

are nonnegative for 0 ≤ s1 < · · · < sm ≤ 1, 0 ≤ t1 < · · · < tm ≤ 1 and all m ≥ 1.

For further details about total positivity see [17], where also many examples are
given. Micchelli and Pinkus were concerned with finding the best approximation
by bilinear forms, i.e.

En
p,q(K) = inf

{∣∣∣K −

n∑

i=1

ui ⊗ vi

∣∣∣
p,q

}
,

where the infimum is taken over all u1, . . . , un ∈ Lp[0, 1] and v1, . . . , vn ∈ Lq[0, 1]
and

|K|p,q =

(∫ 1

0

(∫ 1

0

|K(x, y)qdy

)p/q

dx

)1/p

, (6)

for 1 ≤ p, q ≤ ∞. That is exactly our problem (1) in these mixed norms restricted
to those special functions. Before we state their results we need some preparation.
By the notation in [20] let

E(x, y) =
K
(

x,τ1,...,τn

y,ξ1,...,ξn

)

K
(

τ1,...,τn

ξ1,...,ξn

) .
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By using Laplace extension twice we see

E(x, y) = K(x, y) −
n∑

i,j=1

cijK(x, ξi)K(τj, y),

where

cij = (−1)i+j
K
(

τ1,...,τj−1,τj+1,...,τn

ξ1,...,ξj−1,ξj+1,...,ξn

)

K
(

τ1,...,τn

ξ1,...,ξn

) .

Remark 4.3 It is easy to see that E(x, y) is nothing else than our error function
R(x, y) for CA2D after n steps, compare with (5) and the construction given in
2.1. This observation will play the central role in section 5.

The question remains, how the points (ξi, τi) ∈ [0, 1]2 were chosen. We clarify
that by stating the first result given in [20].
For 0 = s0 < s1 < · · · < sn < sn+1 = 1 let

hs(x) = (−1)i, si ≤ x < si+1

be the corresponding step function according to the n-partition s = (s0, . . . sn+1)
of [0, 1]. The set of those partitions may be denoted by Λn. Given a nondegenerate
totally positive kernel K there exists a n-partition ξ of [0, 1] such that for any
other t ∈ Λn

‖Khξ‖1 :=

∫ 1

0

∣∣∣∣
∫ 1

0

K(x, y)hξ(y)dy

∣∣∣∣ dx ≤

∫ 1

0

∣∣∣∣
∫ 1

0

K(x, y)ht(y)dy

∣∣∣∣ dx =: ‖Kht‖1.

Moreover, Khξ has exactly n distinct zeros in (0, 1) at (τ1, . . . , τn) ∈ Λn and

sgnKhξ = hτ , sgnKThτ = hξ.

This is a very helpful result in finding good estimates for En
p,q(K), but one should

be aware that the choice of pivots here is not constructive. The additional as-
sumption on K of being nondegenerate just means that each of the sets of func-
tions {K(s1, y), . . . , K(sm, y)} and {K(x, t1), . . . , K(x, tm)} are linearly indepen-
dent for all choices s, t ∈ Λm and all m ≥ 1.
Now let’s state the interesting results obtained in [20] which generalize a former
work on n-widths [19].
The first one concerns the case p = q = 1 and says that for a nondegenerate
totally positive kernel K

En
1,1(K) =

∫ 1

0

∫ 1

0

|E(x, y)|dxdy = ‖Khξ‖1

=

∫ 1

0

∫ 1

0

∣∣∣∣∣K(x, y) −
n∑

i=1

K(x, ξi)
n∑

j=1

cijK(τj, y)

∣∣∣∣∣ dxdy
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holds. Here (τi, ξi) are defined as in the result before. In other words, this choice
of tensor product approximation as in CA2D is optimal in this norm. The proof
of that is really nice and uses the Hobby-Rice Theorem.
After that Micchelli and Pinkus generalized this to all values p ∈ [1,∞] and
related the question to n-widths of certain subspaces of Lp. Here we briefly recall
their notation. The Kolmogorov n-width is defined by

dn(U,X) = inf
Xn

sup
x∈U

inf
y∈Xn

‖x− y‖,

where U is a subset of the normed linear space X and Xn any n-dimensional
subspace of X. The subspaces of interest here are

Kp = {Kh : ‖h‖p ≤ 1}.

Now, the result states that for a nondegenerate totally positive kernel K

En
p,1(K) =

(∫ 1

0

(∫ 1

0

|E(x, y)|dy
)p

dx

)1/p

= dn(K∞, L
p[0, 1])

=

(∫ 1

0

(∫ 1

0

∣∣∣K(x, y) −
n∑

i=1

K(x, ξi)
n∑

j=1

cijK(τj, y)
∣∣∣dy
)p

dx

)1/p

holds. Here for the choice of points (τi, ξi) an analogue result as above was used,
so we have optimality of the construction as in CA2D again, although we have
an existence assertion only for the pivot points.
In [22], chapter V, some further work is done in this direction, but the question
of error estimates of our specific construction slipped out of interest. All those
results are contained, generalized and considered under a more complex frame-
work in [8]. To conclude this section we remark that these results connect the
error of CA2D with the error of best approximation by bilinear forms, as in (1),
for certain mixed Lp-norms. If one has asymptotic estimates for the error of best
approximation by bilinear forms in such spaces, now one can make direct use of
it, see section 6. In the next subsection we find a hint how to connect the best
approximation error and the one of CA2D also for other norms than mixed Lp,
namely for the sup-norm in the first place.

4.3 Exact annihilators

At the beginning of the eighties M.-B. A. Babaev, see [1] and [2], introduced the
concept of an exact annihilator (EA) of a set of functions and used it to solve sev-
eral problems in approximation theory. In particular, he gave two-sided estimates
for the best approximation by bilinear forms, as in (1), using the operator norm of
such an EA corresponding to the underlying spaces. We start with repeating his
notion of an EA of a set G ⊂ X(T ), where T = [0, 1]2 and either X = C(T ), the
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space of continuous functions, or X = Lp,q(T ), the space of integrable functions
normed as in (6). We keep his notation as far as possible.

Definition 4.4 Let M ∈ N and Θ = TM . An exact annihilator (EA) of the set
G is a continuous operator ∇ : X(T ) −→ X(Θ), such that

f ∈ G if, and only if, (∇f)(θ) = 0 ∀θ ∈ Θ.

Because our main goal in this paper is to get information about the error of CA2D
in the maximum norm we concentrate now on the cases X = C and X = L∞

separately.

4.3.1 The case C([0, 1]2)

All what follows in this part can be found in [1]. For θ = (x1, . . . , xM , y1, . . . , yM) ∈

Θ we define the operator
M

∇∗ by

(
M

∇∗ f)(θ) =






(
M

∇f)(θ)

‖
M−1
∇ f‖

C(TM−1)

, (
M

∇ f)(θ) 6= 0,

0, (
M

∇ f)(θ) = 0.

,

where (
M

∇ f)(θ) = det (f(xi, yi))
M
i,j=1.

Theorem 4.5 For each M ≥ 2 the operator
M

∇∗ is an EA of the following set of
bilinear forms

G = GM−1
C (T ) =

{
g =

M−1∑

i=1

ϕi(x)ψi(y), ϕi, ψi ∈ C([0, 1])

}
.

Here we already see that some close connection between this operator and the
error of CA2D seems possible. If we interpret θ = (x1, . . . , xM , y1, . . . , yM) ∈ Θ as
the set of pivot coordinates and keep Remark 4.3 in mind, obviously the Theorem
above reminds us of the rank property of CA2D in Proposition 3.2. Now we state
the main result of [1] from which we can establish the connection of the errors of
CA2D and best approximation, i.e,

E(f,G)C(T ) = inf
g∈G

‖f − g‖C(T ).

Theorem 4.6 For any function f ∈ C(T ) we have

1/M2‖
M

∇∗ f‖C(T M ) ≤ E(f,G)C(T ) ≤ ‖
M

∇∗ f‖C(T M ).

This result is one of the keys to our main results in section 5. Because CA2D
does not require continuity we assume only boundedness in the next part.
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4.3.2 The case L∞([0, 1]2)

In [3] Babaev used the concept of an exact annihilator to attack the problem of
estimating the best approximation by bilinear forms in mixed Lp spaces including
L∞. We state his results in this part in full generality even though we are most
interested in the L∞ versions, which we will use afterwards to find a concrete
error estimate for CA2D.

For θ = (x1, . . . , xM , y1, . . . , yM) ∈ Θ we define the operator
M

∇+ by

(
M

∇+ f)(θ) =






(
M

∇f)(θ)

‖
M−1
∇ f‖

Lp,q(TM−1)

, (
M

∇ f)(θ) 6= 0,

0, (
M

∇ f)(θ) = 0.

,

where (
M

∇ f)(θ) = det (f(xi, yi))
M
i,j=1 has the same meaning as in the previous

case.

Theorem 4.7 For each M ≥ 2 the operator
M

∇+ is an EA of the following set of
bilinear forms

B = BM−1
p,q (T ) =

{
g =

M−1∑

i=1

ϕi(x)ψi(y), ϕi ∈ Lp([0, 1]), ψi ∈ Lq([0, 1])

}
.

Now we state the part of the main result of [3] that we can use for the connection
of the errors of CA2D and best approximation, i.e,

E(f,B)Lp,q(T ) = inf
g∈B

‖f − g‖Lp,q(T ).

Theorem 4.8 For any function f ∈ Lp,q(T ) with 0 < p, q ≤ ∞ we have

AM,p,q(f)bM,p,q‖
M

∇+ f‖Lp,q(T M ) ≤ E(f,B)Lp,q(T ),

where

AM,p,q(f) =
‖

M−1

∇ f‖Lp,q(T M−1)

‖f‖M−1
Lp,q(T )

and

bM,p,q =

(
2Mp∗ − 1

2p∗ − 1
M !

)−1/p∗

, p∗ = min(1, p, q).

We don’t believe that these constants can not be improved, especially if one
imposes more properties of the function f , but we did not yet succeed in proving
it.
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5 Main results

Now we are in the position to combine everything we learned from the literature
and state our main results. Let the points (x1, y1), . . . , (xk, yk) according to CA2D
be chosen, such that

∣∣∣∣(
k

∇ f)(θ)

∣∣∣∣ =
∣∣∣det (f(xi, yi))

k
i,j=1

∣∣∣ =

∣∣∣∣f
(
x1, . . . , xk

y1, . . . , yk

)∣∣∣∣

is maximal with respect to θ = (x1, . . . , xk, y1, . . . , yk) ∈ T k. This is the maximal-
volume concept already discussed at the end of 4.1.

Theorem 5.1 Let Rk(x, y) be the remainder function of CA2D after k steps with
the above choice of pivots, then we have

|Rk(x, y)| ≤ (k + 1)2E(f,G)C(T ).

Proof By Remark 4.3 we have the following identity

|Rk(x, y)| =

∣∣∣∣∣
f
(

x,x1,...,xk

y,y1,...,yk

)

f
(

x1,...,xk

y1,...,yk

)
∣∣∣∣∣ .

Because of the special choice of pivots we can for θ̂ = (x, x1, . . . , xm, y, y1, . . . , ym)
write

|Rk(x, y)| =

∣∣∣∣∣∣
(
k+1

∇ f)(θ̂)

‖
k

∇ f‖C(T k)

∣∣∣∣∣∣
.

Using Definition 4.4 and Theorem 4.6 we can conclude

|Rk(x, y)| =

∣∣∣∣(
k+1

∇ ∗ f)(θ̂)

∣∣∣∣ ≤ ‖
k+1

∇ ∗ f‖C(T k+1) ≤ (k + 1)2E(f,G)C(T ).

2

The proof of Theorem 5.1 allows an immediate generalization in terms of the
pivot strategy. Let now the points (x1, y1), . . . , (xk, yk) be chosen, such that

‖
k

∇ f‖C(T k) ≤ τ

∣∣∣∣f
(
x1, . . . , xm

y1, . . . , ym

)∣∣∣∣

for a real number τ ≥ 1.

Corollary 5.2 With the above notation we have

|Rk(x, y)| ≤ τ(k + 1)2E(f,G)C(T ).

13



Finally, we established an estimate of the error of CA2D for continuous functions
from above by the error of best approximation by arbitrary bilinear forms. If there
would be an explicit estimate of E(f,G)C(T ) for special functions f (say smooth)
available, one could immediately plug it in here to obtain a concrete estimate for
CA2D. For the next case, we will follow this idea in section 6. Now we state the
analogue of Theorem 5.1 for the L∞-norm. Let the points (x1, y1), . . . , (xk, yk)
according to CA2D be chosen, such that

∣∣∣∣(
k

∇ f)(θ)

∣∣∣∣ = ‖
k

∇ f‖L∞(T k).

Then we can state:

Theorem 5.3 Let Rk(x, y) be the remainder function of CA2D after k steps with
the above choice of pivots, then we have

|Rk(x, y)| ≤ (2k+1 − 1)(k + 1)!
‖f‖k

L∞(T )

‖
k

∇ f‖L∞(T k)

E(f,B)L∞(T ).

The idea of the proof is exactly the same as for Theorem 5.1, one can follow it
line by line. Also in analogy to the case of C([0, 1]2) we can formulate an easy
modification. Let now the points (x1, y1), . . . , (xk, yk) be chosen, such that

‖
k

∇ f‖L∞(T k) ≤ τ

∣∣∣∣(
k

∇ f)(θ)

∣∣∣∣

for a real number τ ≥ 1.

Corollary 5.4 With the above notation we have

|Rk(x, y)| ≤ τ(2k+1 − 1)(k + 1)!
‖f‖k

L∞(T )

‖
k

∇ f‖L∞(T k)

E(f,B)L∞(T ).

Because of the bad looking constants this result lost some beauty. Nevertheless,
we use it in the next section to show how explicit error estimates for CA2D can
be produced.

6 Best approximation

In this section we complement the results obtained in the previous section by
two-sided error estimates for the best approximation by bilinear forms available
in the literature. We concentrate here on the papers published by Babaev (see
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[4]) and Temlyakov (see for example [25]-[27]). They were concerned with the
following question: What is the exact asymptotic behavior of the quantities

τM(f)p1,p2 = inf
ui,vi;i=1,...,M

∥∥∥∥∥f(x, y) −
M∑

i=1

ui(x)vi(y)

∥∥∥∥∥
p1,p2

and
τM(F )p1,p2 = sup

f∈F
τM(f)p1,p2

for various choices of function classes F ? Here we keep the notation for best
approximation used by these authors.
Babaev concentrated on the unit ball of the classical Sobolev class W r

q (T ), where
Temlyakov treated periodic functions f defined on the 2d-dimensional torus π2d

belonging to a Sobolev class with bounded mixed derivatives. We will formulate
some of their results in a common notation.
A typical result in Temlyakovs papers, obtained in [25] for p1 = p2 = p, looks like

τM(W r

q,α)p ∼






M−2r+1/q−1/p, 1 ≤ q ≤ p ≤ 2, r > 1/q − 1/p,
M−2r, 2 ≤ q, p ≤ ∞, r > 1/2,

M−2r+1/q−1/2, 1 ≤ q < 2 < p ≤ ∞, r > 1/q.
,

for r = (r1, r2) = r.
For our purposes the results of Babaev ([4]) fit better to our needs. He found

τM(W r
q )p ∼M−r

for all 2 ≤ q ≤ p ≤ ∞ and r > 2/q − 1/p.
Now we combine this result with Corollary 5.4 to establish a quantitative error
estimate of CA2D in the L∞-norm.

Theorem 6.1 With the assumptions of Corollary 5.4 we have for all f belonging
to the unit ball of W r

∞(T )

|Rk(x, y)| ≤ cτ(2k+1 − 1)(k + 1)!
(k + 1)−r

‖
k

∇ f‖L∞(T k)

.

This estimate surely suffers again from the k-dependence of the constants. But
one could argue the following way : If we assume f to be very smooth, we can
reach a very large r in the estimate. Since we know by experiments that CA2D
converges very fast for nice functions, we only need to consider small values of k
and the terms blowing up with k would not destroy the nice flavor of the estimate.
But of course it is desirable to improve the constants, which we postpone to
further work.
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