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Abstract. An introduction to some recently developed methods for the analysis of systems
of singularly perturbed ordinary differential equations is given in the context of a specific problem
describing glycolytic oscillations. In suitably scaled variables the governing equations are a planar
system of ordinary differential equations depending singularly on two small parameters ε and δ. In
[20] it was argued that a limit cycle of relaxation type exists for ε ≪ δ ≪ 1. The existence of this
limit cycle is proven by analyzing the problem in the spirit of geometric singular perturbation theory.
The degeneracies of the limiting problem corresponding to (ε, δ) = (0, 0) are resolved by repeatedly
applying the blow-up method. It is shown that the blow-up method leads to a clear geometric picture
of this fairly complicated two parameter multi-scale problem.
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1. Introduction. This work is intended to be an introduction to some recently
developed methods for the analysis of systems of singularly perturbed ordinary dif-
ferential equations. Concepts from geometric singular perturbation theory and geo-
metric desingularization based on the blow-up method are explained in the context
of a specific problem describing glycolytic oscillations.

The equations we consider are of the form

x′ = f(x, y, ε),

y′ = εg(x, y, ε)
(1.1)

with smooth functions f and g and a small parameter ε > 0. The derivative is with
respect to the time variable τ . Near points where f(x, y, ε) is O(1) the variable x
varies on the fast scale τ , while near points where f(x, y, ε) is O(ε) solutions vary on
the slow time scale t = τε. On the time scale t the governing equations are

εẋ = f(x, y, ε),

ẏ = g(x, y, ε).
(1.2)

Systems of this form arise in many different applications. The most well-known
problem of this type is perhaps the Van der Pol oscillator which is the prototype of a
slow-fast system exhibiting relaxation oscillations [6], [16]. A detailed description of
relaxation oscillations in the context of glycolytic oscillations will be given in Section 2.

By setting ε = 0 in (1.1) we obtain the layer problem

x′ = f(x, y, 0),

y′ = 0.
(1.3)
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2 I. GUCWA AND P. SZMOLYAN

The corresponding reduced problem on the slow time scale t, obtained by setting
ε = 0 in (1.2), is given by

0 = f(x, y, 0),

ẏ = g(x, y, 0).
(1.4)

The set S defined by the equation f(x, y, 0) = 0 is called the critical manifold. The
critical manifold is the set of equilibria of the layer problem (1.3), whereas the reduced
problem (1.4) is a dynamical system on S. The critical manifold S is not always a
manifold in the strict sense, since points of self-intersection or other singularities
may arise. In a neighborhood of any point in S where the Jacobian fx(x, y, 0) is
nonsingular the equation f(x, y, 0) = 0 can be solved for x = h(y) by the implicit
function theorem. In this situation the reduced problem (1.4) is described by the
equation

ẏ = g(h(y), y, 0). (1.5)

In many problems valuable information on the dynamics of system (1.1) with ε small
can be obtained by analyzing and suitably combining the dynamics of the layer prob-
lem and the reduced problem. It is natural to expect that the layer problem is an
approximation of the fast dynamics and that the reduced problem is an approximation
of the slow dynamics. In many situations higher order approximations are obtained
by the method of matched asymptotic expansions [6], [11], [16], [17].

During the last twenty years another more qualitative approach based on methods
from dynamical systems theory known as geometric singular perturbation theory has
been developed. This approach goes back to Fenichel [4], as an introduction we
recommend the survey [10], where also references to numerous applications can be
found. However, Fenichel theory applies only to normally hyperbolic parts of the
critical manifold S, where the Jacobian fx(x, y, 0) is uniformly hyperbolic, i.e. its
spectrum is uniformly bounded away from the imaginary axis.

Points on the critical manifold S where the Jacobian fx(x, y, 0) is non-hyperbolic,
i.e. fx(x, y, 0) has a zero eigenvalue or a purely imaginary eigenvalue, are a major
source of difficulties in all approaches. A zero eigenvalue of fx(x, y, 0) at a point in
S is typically related to a singularity of the critical manifold S. The most common
singularity in that context are fold points corresponding to a saddle-node bifurcation
of S. In the method of matched asymptotic expansions these singularities of S lead to
complicated asymptotic expansions containing fractional powers and logarithms of ε,
see e.g.[6], [16], and also [5], [13].

For a long time it was unclear how to extend geometric singular perturbation the-
ory to fold points and other non-hyperbolic points of the critical manifold S. After
the pioneering work of Dumortier and Roussarie [1] it turned out that the blow-up
method is a powerful tool in the analysis of singular perturbation problems with non-
hyperbolic points. We refer to [13] for a detailed introduction to the blow-up method
in the context of singularly perturbed planar folds. In this approach a fold point is
considered as a very degenerate equilibrium of the extended system in R

3 obtained
by adding the equation ε′ = 0 to a planar system of the form (1.1). This degener-
ate equilibrium is blown-up to a sphere by introducing suitably weighted spherical
coordinates. Since an equilibrium is blown-up, the blown-up vector field vanishes on
the sphere. After dividing out a suitable power of the radial variable, a sufficiently
non-degenerate flow on the sphere is obtained to allow a complete analysis. A brief
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introduction to geometric singular perturbation theory and the blow-up method in
the context of planar systems with folded critical manifolds is given in Appendix A.
For more general background on dynamical systems, we refer to [7].

By now this method has found numerous applications in the analysis of the dy-
namics associated with non-hyperbolic points of singularly perturbed differential equa-
tions, see e.g. [1], [2], [3], [12], [14], [15], [18], [21], [22]. In many of these applications
degenerate points are blown-up to spheres, however there are also works where higher
dimensional degenerate objects are blown-up, e.g. non-hyperbolic curves are blown-
up to cylinders [8], [9], [19]. In some of these works the blow-up method has to be
used iteratively, i.e. several consecutive blow-ups have to be used to obtain a complete
desingularization. More explicitly this means that if a certain blow-up leads to a less
degenerate problem which however still has degenerate points, these points can be
treated by additional blow-ups [8].

In this paper we explain some of the above mentioned features of the geometric
approach to singular perturbation problems and especially of the blow-up method
in the context of the specific example (1.9). In addition to the intrinsic interest in
system (1.9) as a model for glycolytic oscillations there are several other motivations
for choosing this example. We believe that the problem under consideration is well-
suited to serve as an introduction to the blow-up method in the context of a non-trivial
application. In particular, the iterative nature of the procedure is clearly visible.
Furthermore, the blow-up approach to this two parameter problem could be useful
in other problems depending singularly on several parameters. It will turn out that
the parameter ε mainly affects the slow-fast structure while the parameter δ mainly
influences the geometry and the singularities of the critical manifold. We will show
that the blow-up method leads to a clear geometric picture of this fairly complicated
two parameter multi-scale problem. Last, but not least, all necessary computations
can be easily carried out explicitly. We tried to give a careful explanation of the
blow-up procedure with respect to δ, i.e. we give all the details leading to Theorem
4.5 and the geometry shown in Figure 4.6. The subsequent perturbation analysis with
respect to ε is described in a slightly less detailed way.

We now turn to the description of the specific problem which will be studied
in this work. In [20] Segel and Goldbeter analyzed a model describing glycolytic
oscillations. In dimensionless variables the governing equations have the form

ρα′ = µ − φ(α, γ),

γ′ = λφ(α, γ) − γ,
(1.6)

where α and γ denote certain substrate and product concentrations and

φ(α, γ) =
α2(γ + 1)2

L + α2(γ + 1)2
.

The equations contain four positive parameters where L and λ turn out to be large
and satisfy λ ≪ L, while µ and ρ are of moderate size.

In their analysis of system (1.6) Segel and Goldbeter applied what they call the
method of scaling. In particular they identified a small parameter

ε :=

√

λ

L
(1.7)

which causes the slow-fast structure of system (1.6). It turns out that system (1.6)
exhibits classical relaxation oscillations in the limit of large L and fixed λ. However,
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the main interest in [20] lies in the situation where L and λ are both large. In this case,
the asymptotics of system (1.6) becomes more complicated. By considering several
different scaling regimes Segel and Goldbeter argued that the condition

√

λ

L
≪ 1√

λ
≪ 1 (1.8)

implies the existence of a relaxation cycle.
In this work we complement the reasoning given in [20] by proving that condition

(1.8) indeed implies the existence of a relaxation cycle of system (1.6). We will rewrite
system (1.6) in the standard form (1.1) of singularly perturbed problems, which we
then examine geometrically in the spirit described above. By a suitable scaling of the
variables α and γ we rewrite system (1.6) in the form

a′ = ε(a2b2(µ − 1) + µδ2),

b′ = a2b2(1 − b) + δ2(a2b2 − b + δ2),
(1.9)

where (a, b) correspond to (α, γ), ε is given by equation (1.7) and

δ := λ−1/2. (1.10)

Hence, a is the slow variable and b is the fast variable with respect to ε. In our
notation condition (1.8) has the from

ε ≪ δ ≪ 1. (1.11)

We now briefly outline our approach to the analysis of system (1.6). Setting ε = 0
and δ = 0 in system (1.9) gives the layer problem

a′ = 0,
b′ = a2b2(1 − b).

(1.12)

The corresponding critical manifold S0 defined by a2b2(1− b) = 0 consists of the lines
a = 0, b = 0, and b = 1, which we denote by lb, la, and lh, respectively. Since the zeros
a = 0 and b = 0 have multiplicity two, the lines la and lb are non-hyperbolic lines
of equilibria, whereas the line lh corresponding to the simple zero b = 1 is normally
hyperbolic. Hence, this limiting problem is quite degenerate and the structure of the
relaxation oscillations is not visible at all.

The main point of this work is to show that the blow-up method is well suited to
overcome these difficulties. It turns out that two blow-ups of the degenerate critical
manifold S0 (with respect to δ) lead to a complete desingularization of the problem
such that uniform results in ε become possible. In this approach the degenerate
lines a = 0 and b = 0 are blown-up to cylinders by rewriting the original (a, b, δ)
variables in suitable cylindrical variables. In the blown-up geometry the existence of
the relaxation cycle can be proven. Not surprisingly, the scaling regimes of Segel and
Goldbeter are also recovered in the course of the analysis.

The article is organized as follows. In Section 2 we discuss basic properties of
the model, in particular a preliminary slow-fast analysis is given. A more detailed
analysis of three scaling regimes is performed in Section 3. In Section 4 the blow-
up analysis is carried out and the existence of a periodic orbit of relaxation type is
proven. To make the paper self-contained a brief introduction to geometric singular
perturbation theory in the context of planar systems with folded critical manifolds is
given in Appendix A.
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2. The model and its singular limits.

2.1. Basic properties and scaling. We begin by reproducing a numerical
simulation of system (1.6) from [20] for the parameter values L = 5 × 106, ρ = 2.5,
λ = 40, µ = 0.15. The results shown in Figure 2.1 indicate the existence of an
attracting periodic solution of relaxation type.

Figure 2.1 illustrates the nullclines in the (α, γ)-plane. Straightforward calcula-
tions in [20] prove the following properties. The condition λ > 8 guarantees that the γ
nullcline is a folded curve with fold points B and D. For µ < 1 the nullclines intersect
just once in the unique equilibrium point of the system. The steady state is unstable
when it lies between the fold points B and D of the γ-nullcline. This is the situation
where a limit cycle is expected to exist. For µ = 0.15 we have this situation. The
numerically computed attracting limit cycle is shown in Figure 2.1. The limit cycle
is of relaxation type, i.e. the solution follows the left branch of the γ-nullcline until
it reaches the fold point B, from there the solution jumps to a point C on the right
branch of the γ-nullcline, follows the right branch until it reaches the fold point D,
from where it jumps back to a point A on the left branch. Here we have followed the
notation of [20], where more details can be found.

Figure 2.1. Nullclines and numerically computed limit cycle for µ = 0.15, L = 5 × 106, λ = 40.

Following [20] our analysis will be based on the assumption that L and λ are
large, where L is larger then λ in the sense of condition (1.8). The scaling analysis in
[20] is based on the following scaling properties of the points A, B, C, D with respect
to L and λ. To leading order these points are

A ≈ (
2
√

L

λ
, 1), B ≈ (

1

2

√

L

λ
, 1), C ≈ (

1

2

√

L

λ
, λ), D ≈ (

2
√

L

λ
,
λ

2
). (2.1)

To simplify notation we make the shift α = â, γ = b̂ − 1, which does not affect
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the validity of (2.1). Based on the orders of magnitude of B and C we introduce the
scaling

â =

√

L

λ
a, b̂ = λb. (2.2)

For the rest of the paper we set ρ = 1 and restrict attention to the physically mean-
ingful range of the variables a, b ≥ 0. In these variables system (1.6) has the form

a′ = ε[µ − a2b2

δ2+a2b2 ],

b′ = a2b2

δ2+a2b2 − b + δ2,
(2.3)

where ε and δ are defined by equations (1.7) and (1.10), respectively. For computa-
tional purposes we prefer to write system (2.3) in the equivalent polynomial form

a′ = ε[a2b2(µ − 1) + µδ2],

b′ = a2b2(1 − b) + δ2(a2b2 − b + δ2).
(2.4)

System (2.4) is obtained by multiplying the right hand side of (2.3) by the non-
vanishing factor δ2 + a2b2, which leaves the orbits of the system unchanged. The
resulting rescaled time variable is denoted by τ .

System (2.4) with ε small is in the standard form of slow-fast systems with slow
variable a and fast variable b. By transforming to the slow time scale t = ετ the
equivalent system

ȧ = a2b2(µ − 1) + µδ2,

εḃ = a2b2(1 − b) + δ2(a2b2 − b + δ2)
(2.5)

is obtained, where the derivative is with respect the slow time scale t.

2.2. Slow-fast analysis of classical relaxation oscillations for fixed δ > 0.
Setting ε = 0 in (2.4) and (2.5) defines two limiting systems: the layer problem

a′ = 0,
b′ = a2b2(1 − b) + δ2(a2b2 − b + δ2),

(2.6)

and the reduced problem

ȧ = a2b2(µ − 1) + µδ2,

0 = a2b2(1 − b) + δ2(a2b2 − b + δ2).
(2.7)

The equation

a2b2(1 − b) + δ2(a2b2 − b + δ2) = 0

defines the critical manifold S, which is of crucial importance for problems of this type,
because it controls the slow and the fast dynamics as explained in the introduction.

Since S is precisely the γ-nullcline in the new variables, it is again a folded curve
for δ < 1/

√
8. The fold points of S are still denoted by B and D, respectively, see

Figure 2.2. The points B and D divide S into an attracting left branch Sl, a repelling
middle branch Sm, and an attracting right branch Sr, where attracting and repelling
refer to the stability properties of points in S considered as steady states of the layer
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problem (2.6). Since the a-nullcline intersects S only once in the middle branch Sm

with ȧ > 0 on the left of this nullcline, the variable a increases for the reduced flow on
Sl and decreases on Sr. Hence, we obtain the following standard scenario of relaxation
oscillations for fixed δ > 0. A solution starting close to the point A is attracted by
Sl, follows the reduced dynamics on Sl until it reaches the point B, jumps from the
point B to the point C ∈ Sr, follows the reduced dynamics on Sr until it reaches the
point D from where it finally jumps back to the point A. The closed curve consisting
of the segment of Sl from A to B, the heteroclinic orbit of the layer problem (2.6)
connecting B to C, the segment of Sr from C to D, and the heteroclinic orbit of the
layer problem (2.6) connecting D to A is called a singular cycle Γ0.

Figure 2.2. Critical manifold S and singular cycle Γ0.

Remark 2.1. In the figures of this paper the dynamics of the certain reduced
problems and corresponding layer problems are shown simultaneously. Hyperbolic be-
havior of the layer problem is indicated by double arrows, e.g. near points A and C,
while a single arrow indicates non-hyperbolic behavior of the layer problem, e.g. near
points B and D, see e.g. Figure 2.2.

The situation is essentially as in the classical Van der Pol oscillator [6], [16]. In
these works and the references therein problems of this type have been analyzed by
the method of matched asymptotic expansions. The main difficulty in the analy-
sis of relaxation oscillations is the analysis of the behavior of the solutions near the
fold points B and D. During the last decade it became clear how to approach these
problems in the framework of geometric singular perturbation theory by combining
standard Fenichel theory [4] with the blow-up method [1], [13]. The relevant results
from geometric singular perturbation theory and the treatment of fold points by the
blow-up method are summarized in Appendix A. Theorem 2.1 in [14] implies the ex-
istence of an attracting relaxation cycle of system (2.5) for fixed δ > 0 and sufficiently
small ε.

Our main interest will be the analysis of a certain limit where ε and δ tend
to zero simultaneously. For later reference we now change the notation for all the
objects introduced in this section by explicitly adding the parameter δ, i.e. the critical
manifold is denoted Sδ, the points defining the singular cycle Γδ

0 are denoted by Aδ,
Bδ, Cδ and Dδ, where δ ∈ (0, 1/

√
8). The above analysis for ε → 0 for δ fixed is highly
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non-uniform with respect to δ. In particular, the geometry of the critical manifold Sδ

depends singularly on δ for δ → 0.

2.3. The case ε, δ small. It turns out that the limit (ε, δ) → (0, 0) for system
(2.4) is more singular then the limit ε → 0 in Subsection 2.2. In [20] it is argued that
condition (1.8) is sufficient for the existence of a relaxation cycle. We will show that
this condition indeed implies the existence of a relaxation cycle.

For (ε, δ) = (0, 0) system (2.4) has the simple form

a′ = 0,
b′ = a2b2(1 − b),

(2.8)

which is the layer problem (2.6) with δ = 0. This limiting problem is dynamically
fairly degenerate as shown in the following. System (2.8) has a set of equilibria defined
by the equation a2b2(1 − b) = 0 which we denote by S0. The critical manifold S0 of
(2.8) consists of the lines a = 0, b = 0, and b = 1, which we denote by lb, la, and
lh, respectively. Since the zeros a = 0 and b = 0 have multiplicity two, the lines la
and lb are non-hyperbolic lines of equilibria, whereas the line lh corresponding to the
simple zero b = 1 is normally hyperbolic. The family of critical manifolds Sδ from
Subsection 2.2 converges to (the more degenerate) critical manifold S0 as δ → 0 in a
singular way.

The lines of equilibria la and lh are connected by heteroclinic orbits, i.e. an
equilibrium (a0, 0) ∈ la is connected to the equilibrium (a0, 1) ∈ lh by an orbit of the
layer problem lying on the straight line a = a0, see Figure 2.3. This very degenerate
situation allows to define many singular cycles, consisting of segments of lh, lb, la, and
one heteroclinic orbit of the layer problem. Fenichel theory applies near the normally
hyperbolic line lh, but we have no control of the behavior of the non-hyperbolic lines
la and lb for (ε, δ) 6= (0, 0).

Figure 2.3. Critical manifold S0 of system (2.6).

Remark 2.2. In view of the scaling properties (2.1) of the points A, B, C,D
the collapse of the folded critical manifold Sδ of system (2.4) for δ > 0 to the more
singular “manifold” S0 = la ∪ lb ∪ lh for δ = 0 is not surprising, i.e. roughly speaking
Sδ

l and the left half of Sδ
m are compressed onto la, the right half of Sδ

m and the lower
part of Sδ

r are compressed onto lb, while the upper part of Sδ
r converges to the line lh.
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3. Scaling regimes. Essential parts of the sought limit cycle are “hidden” in
the non-hyperbolic lines la and lb. To make these parts visible we use appropriate
re-scalings corresponding to Regimes 1-3 below. The starting point for the scaling
analysis are the equations (2.4), where ε plays the role of a singular perturbation
parameter causing the slow-fast structure, while δ affects mainly the shape of the
critical manifold Sδ corresponding to ε = 0. It turns out that in Regime 3 the slow-
fast structure persists only if the assumption ε ≪ δ ≪ 1 is used. To make this
assumption more explicit we will write

ε = δε̃ (3.1)

in certain places, where ε̃ ≥ 0 is still considered as a small parameter.

3.1. Regime 1, a = O(1), b = O(δ2). We introduce the scaling

a = a1, b = δ2b1. (3.2)

In these variables system (2.4) has the form

a′

1 = εδ2[δ2a2
1b

2
1(µ − 1) + µ],

δ2b′1 = δ4a2
1b

2
1(1 − δ2b1) + δ2(δ4a2

1b
2
1 − δ2b1 + δ2).

(3.3)

By rescaling time we cancel a factor of δ2 on the right hand side to obtain the equiv-
alent system

a′

1 = ε[δ2a2
1b

2
1(µ − 1) + µ],

b′1 = a2
1b

2
1(1 − δ2b1) + δ2a2

1b
2
1 − b1 + 1.

(3.4)

This system is a slow-fast system for ε small which depends regularly on δ ∈ [0, δ0]
for (a1, b1) bounded.

For ε = 0 we obtain a new layer problem depending on δ

a′

1 = 0,
b′1 = a2

1b
2
1(1 − δ2b1) + δ2a2

1b
2
1 − b1 + 1.

(3.5)

By setting δ = 0 problem (3.5) simplifies to

a′

1 = 0,
b′1 = a2

1b
2
1 − b1 + 1.

(3.6)

The critical manifold S0
1 of this system defined by a2

1b
2
1 − b1 + 1 = 0 has an attracting

branch S0
l,1 corresponding to b1 < 2, and a repelling part S0

m,1 corresponding to b1 > 2

which are separated by a fold point B0
1 = (1/2, 2). The branch S0

m,1 is asymptotic to
the b1-axis as b1 → ∞. An orbit which starts close to the b1-axis is rapidly attracted
by S0

l,1, follows the reduced dynamics until it reaches the fold point from where it
jumps to the right along the orbit ω of the layer problem, see Figure 3.1. Thus, we
have the situation of a jump point as described in Appendix A. We specify Regime
1 by the conditions a1 ∈ [−0.1, 0.6] and b1 ∈ [0, β1], where β1 is a large positive
constant, shown as a rectangle in Figure 3.1. This gives meaning to the assertion
that the original variables a, b satisfy a = O(1) and b = O(δ2) in Regime 1. On the
domain under consideration, results for δ > 0 follow by regular perturbation theory,
i.e. system (3.5) has a folded critical manifold Sδ

1 close to S0
1 with similar dynamics
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Figure 3.1. Critical manifold S0

1
and fast dynamics in Regime 1.

(slow motion on the left branch Sδ
l,1 and a fast jump from the point Bδ

1 to the right).
We conclude from the results described in Appendix A that the attracting critical
manifolds S0

l,1 and Sδ
l,1 perturb smoothly to attracting slow invariant manifolds for

small ε > 0.
Remark 3.1. The slow manifold S0

1 is the limit of parts of the rescaled slow
manifolds Sδ

l and Sδ
m from Subsection 2.1 as δ → 0. The fold point B0

1 corresponds
to the fold point Bδ and the point A0

1 = (0, 1) corresponds to the point Aδ. In some
sense the fold point Dδ corresponds to b1 = ∞ on S0

m,1 in the limit δ → 0. Hence, the

jump back from Dδ to Aδ in Figure 2.1 corresponds to the unbounded stable fiber of
the point A0

1 on the positive b1-axis, which is however not included in Regime 1 since
perturbation methods do not apply there uniformly in ε and δ.

3.2. Regime 2, a = O(1), b = O(1). In Regime 2 we consider system (2.4) away
from the non-hyperbolic lines la and lb, i.e. we consider a ∈ [α2, 1] and b ∈ [β2, 2]
with constants α2 > 0, β2 > 0. Setting ε = 0 in system (2.4) gives the layer problem
(2.6). In this regime systems (2.4) and (2.6) depend regularly in δ. For δ = 0 the
layer problem (2.6) has the form

a′ = 0,
b′ = a2b2(1 − b).

(3.7)

In the region under consideration the line lh,2 defined by b = 1 is a normally hyperbolic
attracting critical manifold. The reduced flow for system (2.7) on lh,2 for δ = 0 is
governed by the equation

ȧ = a2(µ − 1),

hence a decreases under the slow flow on lh,2.
For δ > 0 the line lh,2 perturbs regularly to a part of the normally hyperbolic

attracting critical manifold Sδ
r with similar dynamics. Results for ε > 0 follow from
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standard Fenichel theory uniformly for small δ, i.e. solutions starting on the left side
of lh,2 are rapidly attracted by the slow manifold corresponding to lh,2 respectively
Sδ

r and follow the slow flow.

Figure 3.2. Critical manifold lh,2 and fast dynamics in Regime 2.

Remark 3.2. In the limit δ → 0 the line lh,2 corresponds to the part of Sδ
r

where the variable a is large. The point C0
1 = (1/2, 1) ∈ lh,2 corresponds to the point

Cδ ∈ Sδ
r . The fold point Dδ is not visible in this regime. Parts of the singular orbit

connecting B0
1 to C0

1 are visible as the left side of the stable fiber of the point C0
1 .

3.3. Regime 3, a = O(δ), b = O(1). We use equation (3.1) and rewrite sys-
tem (2.4) as

a′ = ε̃δ[a2b2(µ − 1) + µδ2],

b′ = a2b2(1 − b) + δ2(a2b2 − b + δ2),
(3.8)

where ε̃ causes the slow-fast structure, while δ affects mainly the shape of the critical
manifold Sδ corresponding to ε̃ = 0.

We use the scaling

a = δa3, b = b3 (3.9)

with a3 ∈ [0, α3] and b3 ∈ [−0.1, 2], with a large constant α3 > 0. In these variables
system (2.4) has the form

a′

3 = ε̃[a2
3b

2
3(µ − 1) + µ],

b′3 = a2
3b

2
3(1 − b3) − b3 + δ(a2

3b
2
3 + 1),

(3.10)

where we have again divided out a factor δ, i.e. the derivative is now with respect to
the rescaled time variable δτ . In the following system (3.10) is considered as a slow-
fast system with ε̃ being a singular perturbation parameter, whereas δ acts as a regular
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perturbation parameter. This is the place, where the condition (1.11) expressed in
the form (3.1) is crucial. For δ = 0 the layer problem, obtained from (3.10) by setting
ε̃ = 0 has the form

a′

3 = 0,

b′3 = a2
3b

2
3(1 − b3) − b3.

(3.11)

The critical manifold S0
3 of (3.11) is defined by the equation

b3[a
2
3b3(1 − b3) − 1] = 0.

It consists of an attracting branch S0
l,3 defined by b3 = 0, a repelling branch S0

m,3 and

an attracting branch S0
r,3 which are the left and the right branches of the curve

a3 =

√

1

b3(1 − b3)

corresponding to b3 ∈ (0, 1/2) and b3 ∈ (1/2, 1), respectively. These branches are sep-
arated by the fold point D0

3 = (2, 1/2) corresponding to the point Dδ, see Figure 3.3.

Figure 3.3. Critical manifold S0

3
and fast dynamics in Regime 3.

It is easy to see that D0
3 is a jump point as described in Appendix A. Our main

interest is in the singular orbit which follows the slow flow on S0
r,3 until it reaches the

fold point D0
3 from where it jumps to A0

3 to follow the slow flow on S0
l,3. Note that

the fast jump from B0
3 to C0

3 is not visible in this regime. Since δ acts as a regular
perturbation parameter in (3.10), we obtain a slightly perturbed critical manifold Sδ

3

with branches Sδ
l,3, Sδ

m,3, Sδ
r,3 and the fold point Dδ

3, which is still a jump point. As

before these critical manifolds correspond to parts of the critical manifolds Sδ
l , Sδ

m,
and Sδ

r from Subsection 2.2.
Geometric singular perturbation theory is applicable in Regime 3 to obtain rig-

orous results for small ε̃ > 0 uniformly in δ ≥ 0. In particular, we conclude from the
results described in Appendix A that the attracting critical manifolds S0

r,3 and Sδ
r,3

perturb smoothly to attracting slow invariant manifolds for small ε > 0.
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3.4. Singular cycles . Based on these results we now define the singular cycle
Γ0

0 of system (2.4) for (ε, δ) = (0, 0) as

Γ0
0 := σ1 ∪ σ2 ∪ σ3 ∪ σ4, (3.12)

where σ1 is the segment of the slow manifold lh connecting the points C0 = (1/2, 1)
to D0 = (0, 1), σ2 is the segment of the slow manifold lb connecting the point D0

with the point A0 = (0, 0), σ3 is the segment of the slow manifold la connecting the
points A0 to B0 = (1/2, 0), and σ4 is the heteroclinic orbit of (2.6) connecting the
point B0 with the point C0. Keep in mind that all of Regime 1 collapses onto the
non-hyperbolic line la, all of Regime 3 collapses onto the non-hyperbolic line lb, and
σ1, σ2, σ3 are just sets of equilibria of system (2.8).

The analysis in Regimes 1-3 suggests that Γ0
0 is indeed a good candidate to obtain

relaxation oscillations of the form described in Section 2 given approximately by slow
motion from the point Aδ to Bδ, a fast jump from Bδ to Cδ, slow motion from Cδ to
Dδ, and a final jump from Dδ to Aδ for (ε̃, δ) close to (0, 0). The degeneracy of the

Figure 3.4. Critical manifold S0 of system (2.6) and singular cycle Γ0

0
.

singular cycle Γ0
0 and of the non-hyperbolic slow manifolds la and lb has been partially

resolved by the scaling methods used in Regimes 1 and 2, respectively. However,
uniform perturbations results are only possible for Regimes 1-3 in the way they were
defined. Note that the domains in the (a, b)-plane corresponding to Regimes 1-3 do
not overlap. Hence, the perturbation analysis of the singular cycle Γ0

0 requires a
detailed study of extending and matching the individual regimes.

This could be possibly carried out in the framework of classical matched asymp-
totic expansions, but the procedure would be much more complicated than in the case
of classical relaxation oscillations. Thus, the main purpose of this paper is to show
that a geometric approach based on the blow-up method is well-suited to carry out
the matching and to provide a comprehensive and clear picture of the global situation
in this two-parameter singular perturbation problem.

Our main result is
Theorem 3.1. For µ < 1 there exist δ0 > 0 and ε̃0 > 0 such that system (1.9)

has a unique attracting periodic orbit Γδ
ε for 0 < δ ≤ δ0 and 0 < ε ≤ ε̃0δ with the

properties
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1. Γδ
ε tends to Γδ

0 as ε → 0 for δ ∈ (0, δ0],

2. Γδ
ε tends to the singular cycle Γ0

0 as (δ, ε) → (0, 0).
Proof. The assertions of the theorem will follow from Theorem 4.10 by setting

ε = ε̃δ and by applying the blow-up transformations (4.2) and (4.13).

4. Blow-up analysis. In this section we carry out the blow-up analysis for (1.9).
We start by rewriting system (1.9) with ε = ε̃δ (see equation (3.1)) as

a′ = ε̃δ[a2b2(µ − 1) + µδ2],

b′ = a2b2(1 − b) + δ2(a2b2 − b + δ2),

δ′ = 0,

(4.1)

i.e. we consider (4.1) as a three-dimensional vector field Xε̃ defined on R
3, by treating

the parameter δ as a variable, while ε̃ is the singular perturbation parameter causing
the slow-fast structure. Obviously, all planes δ = const. are invariant for system
(4.1). The family of critical manifolds Sδ, δ ∈ [0, δ0], from Section 2.1 and Section
3 is now viewed as a two-dimensional critical manifold S. For δ > 0 the critical
manifold S has a folded structure, i.e. S = Sl ∪ Sm ∪ Sr with folds along the curves
FB := {(Bδ, δ) : δ ∈ [0, δ0]} and FD := {(Dδ, δ) : δ ∈ [0, δ0]}. On the plane δ = 0
the critical manifold S limits on S0 × {0} with S0 = la ∪ lb ∪ lh. For δ bounded away
from zero the results on the existence of slow manifolds and relaxation cycles from
Section 2.2 can be readily interpreted for analogous two dimensional objects obtained
by adding the δ direction.

It turns out that the main task is to analyze the dynamics close to the degenerate
lines la ∪ {0} and lb ∪ {0} where for ε̃ = 0 the linearization of system (4.1) at points
of la ∪ {0} and lb ∪ {0} has a triple zero eigenvalue. This will be achieved by a
cylindrical blow-up of the line lb ∪ {0} followed by a cylindrical blow-up of the line
la ∪ {0}, which leads to a desingularization of the extended system (4.1) at δ = 0.
Roughly speaking the non-hyperbolic lines la and lb will be blown-up to cylinders by
introducing suitable polar-like coordinates in the directions transverse to the lines. We
will see that the blow-up procedure is able to resolve the degeneracies of the original
problem. In particular, the critical manifold S of system (4.1) will be blown-up to a
critical manifold S̄, which is normally hyperbolic away from the fold curves.

The analysis of the blown-up problem will be carried out in charts K1 − K4

introduced below. We use the following notation: any object O of the extended system
(4.1) is denoted as Ō for the blown-up problem, and by Mi in chart Ki, i = 1, . . . , 4.
It will turn out that the charts K1 and K3 correspond to the scaling Regimes 1 and
3, respectively, and that scaling Regime 2 is covered by parts of chart K2 (and also
by parts of K4). We will see that chart K2 and parts of K4 provide sufficient overlap
to match the Regimes 1-3. We will be able to identify a singular cycle Γ̄0

0 of the
blown-up system with improved hyperbolicity and transversality properties. Once
the correct singular cycle has been found the proof of Theorem 3.1 on the existence of
the relaxation cycle can be based on well established methods from geometric singular
perturbation theory.

4.1. Blow-up of the non-hyperbolic line lb × {0}. We define the blow-up
transformation of the non-hyperbolic line of steady states lb × {0} by

a = rā,
b = b̄,
δ = rδ̄

(4.2)
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Dynamics in K4. Inserting (4.4) into system (4.1) gives a system of differential
equations for r4, b4, δ4. We obtain

r′4 = ε̃r3
4δ4[b

2
4(µ − 1) + µδ2

4 ],

b′4 = r2
4[b

2
4(1 − b4) + δ2

4(r2
4b

2
4 − b4 + r2

4δ
2
4)],

δ′4 = −ε̃r2
4δ

2
4 [b2

4(µ − 1) + µδ2
4 ].

(4.6)

By dividing out a factor r2
4 we obtain the (partially desingularized) blown-up system

r′4 = ε̃r4δ4[b
2
4(µ − 1) + µδ2

4 ],

b′4 = b2
4(1 − b4) + δ2

4(r2
4b

2
4 − b4 + r2

4δ
2
4),

δ′4 = −ε̃δ2
4 [b2

4(µ − 1) + µδ2
4 ].

(4.7)

The derivative in (4.7) is with respect to a rescaled time variable τ4. The plane r4 = 0,
which corresponds to the cylinder Zb, and the plane δ4 = 0, are both invariant under
the flow of (4.7). System (4.7) is a singularly perturbed system with slow variables
r4, δ4, fast variable b4 and singular perturbation parameter ε̃.

Setting ε̃ = 0 gives the layer problem

r′4 = 0,

b′4 = b2
4(1 − b4) + δ2

4(r2
4b

2
4 − b4 + r2

4δ
2
4),

δ′4 = 0.

(4.8)

The surface defined by

b2
4(1 − b4) + δ2

4(r2
4b

2
4 − b4 + r2

4δ
2
4) = 0 (4.9)

is denoted by S4, since it corresponds to the critical manifold S of system (4.1).
Instead of analyzing the equation defining S4 directly, it is instructive to restrict
attention to the invariant planes r4 = 0 and δ4 = 0 of system (4.7).

In the invariant plane r4 = 0 the dynamics is governed by

b′4 = b2
4(1 − b4) − δ2

4b4,

δ′4 = −ε̃δ2
4 [b2

4(µ − 1) + µδ4].
(4.10)

This system is the standard form of slow-fast systems with respect to the small pa-
rameter ε̃, i.e. with slow variable δ4 and fast variable b4. Setting ε̃ = 0 gives the layer
problem

b′4 = b2
4(1 − b4) − δ2

4b4,
δ′4 = 0.

(4.11)

The critical manifold Ŝ4 of system (4.11), defined by the equation

b4[b4(1 − b4) − δ2
4 ] = 0,

consists of the invariant line b4 = 0, denoted by Ŝl,4, a branch Ŝm,4 and a branch Ŝ4,r,
which are given by

δ4 =
√

b4(1 − b4)

with b4 ∈ [0, 1/2) and b4 ∈ (1/2, 1], respectively, see Figure 4.2. Obviously, Ŝl,4, Ŝm,4,

Ŝr,4 are the branches of the intersection of S4 with the plane r4 = 0. Ŝm,4 and Ŝr,4
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are separated by the fold point D0
4 = (1/2, 1/2). Ŝl,4 and Ŝm,4 intersect in the non-

hyperbolic point (0, 0). The branch Ŝr,4 is attracting for the flow in r4 = 0. Similarly,

away from the origin the line Ŝl,4 is attracting, while the branch Ŝm,4 is repelling.

The variable δ4 increases for the slow flow on Ŝr,4, while it decreases for the slow flow

on Ŝl,4. Hence the fold point D0
4 is a jump point from where a fast jump to the point

A0
4 = (0, 1/2) ∈ Ŝl,4 takes place. Note that the origin is still a degenerate steady state

of system (4.11).
Remark 4.1. The relevant dynamics in chart K3 takes place in the region a3 ≥ 1.

Since this region is covered by chart K4, chart K3 is not explicitly needed in our
analysis, i.e. the critical manifold S0

3 corresponds to the parts of Ŝ4 with δ4 ≥ 1/α3

(compare Figure 3.1 with Figure 4.2). Furthermore, the parts of Ŝ4 with δ4 ∈ [0, 1/α3]
correspond to the unbounded branches of S0

3 corresponding to a3 ≥ α3 which had to
be excluded from the analysis in Regime 3.

Remark 4.2. It is an important property of the blow-up method that all results,
which are obtained in the scaling regimes, are recovered in some charts, i.e. here in
chart K3. The power of the blow-up method comes from the fact that other charts,
i.e. here chart K4, provide a compactification of the unbounded domains in the scaling
regimes where perturbation methods were not applicable.

In the invariant plane δ4 = 0 the dynamics is governed by

r′4 = 0,
b′4 = b2

4(1 − b4).
(4.12)

The equilibria of this system are the line b4 = 0 and the line b4 = 1, which we denote
by la,4 and Šr,4, respectively. Clearly, la,4 and Šr,4 are the intersections of S4 with

the plane δ4 = 0. The curves Ŝr,4 and Šr,4 meet at the point q̌4 = (0, 1, 0). Similarly,

the curves Ŝl,4, Ŝm,4 and la,4 intersect in the origin, see Figure 4.2.

Figure 4.2. Dynamics of system (4.7) in r4 = 0 and δ4 = 0.

From the above discussion we conclude
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Lemma 4.1. The critical manifold S4 described by the equation (4.9) has the
following properties at least for r4 or δ4 small:

1. S4 is smooth away from the line la,4.
2. S4 has a folded structure, i.e. S4 = Sl,4∪Sm,4∪Sr,4, where Sm,4 and Sr,4 are

separated by the fold curve FD,4 while the branches Sl,4 and Sm,4 intersect
cusp-like along la,4. The branches Sl,4 and Sr,4 are attracting and Sm,4 is
repelling for the layer problem (4.8).

3. The branch Sr,4 limits on Ŝr,4 for r4 = 0 and on Šr,4 for δ4 = 0. Similarly,

Sm,4 limits on Ŝm,4 for r4 = 0 and on la,4 for δ4 = 0. Sl,4 limits on Ŝl,4 for
r4 = 0 and on la,4 for δ4 = 0. The fold curve FD,4 limits on D0

4 (see Figure
4.2).

Proof. Outside a neighborhood of the line la,4 the assertions of the lemma follow
from the implicit function theorem and the structural stability of folds. The properties
of the critical manifold S4 close to the line la,4 will be proven in Subsection 4.2.

Summing up, the singular relaxation cycle Γ0
0,4 in chart K4 consists of slow motion

along the branch Šr,4, followed by slow motion along Ŝr,4 from the point q̌4 to the
fold point D0

4, a fast jump from the point D0
4 to the point A0

4, slow motion along the
branch Ŝl,4 from the point A0

4 to the origin, followed by (not yet analyzed) slow motion
along the line la,4, see Figure 4.2. Since the linearization of system (4.7) at points in
the line la,4 has a triple zero eigenvalue for ε̃ = 0, the line la,4 is still degenerate. The
geometry of the critical manifold S4 and the dynamics in a neighborhood of the line
la,4 will be studied by means of a further blow-up in the following.

4.2. Blow-up of the non-hyperbolic line la,4. To study the dynamics of
system (4.7) close to the non-hyperbolic line la,4, we introduce the blow-up transfor-
mation

r4 = r̄,
b4 = ρ2b̄,
δ4 = ρδ̄

(4.13)

with (b̄, δ̄, ρ, r̄) ∈ S
1 × R × R. By this construction the line la,4 is blown-up to the

cylinder Za := S
1 × {0} × R, see Figure 4.3.

The vector field (4.7) induces a vector field on the blown-up space S
1 × R × R,

which again leaves the cylinder Za invariant. The analysis of this blown-up vector
field is performed in local charts K1, K2, which are defined by setting δ̄ = 1, b̄ = 1,
respectively, in the blow-up transformation (4.13). Chart K1 covers the upper part of
the cylinder Za corresponding to δ̄ > 0, while K2 covers its front side corresponding
to b̄ > 0. In chart K1 the blow-up transformation is given by

r4 = r1, b4 = ρ2
1b1, δ4 = ρ1, (4.14)

and in chart K2 the blow-up transformation is given by

r4 = r2, b4 = ρ2
2, δ4 = ρ2δ2. (4.15)

Dynamics in K1. By inserting the transformation (4.14) into system (4.7) and
dividing out a factor of ρ2

1 we obtain the final desingularized blown-up system

r′1 = ε̃r1ρ1[ρ
2
1b

2
1(µ − 1) + µ],

b′1 = 2ε̃ρ1[ρ
2
1b

2
1(µ − 1) + µ] + b2

1(1 − ρ2
1b1) + ρ2

1r
2
1b

2
1 − b1 + r2

1,

ρ′1 = −ε̃ρ2
1[ρ

2
1b

2
1(µ − 1 + µ)].

(4.16)
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Figure 4.3. Blow-up transformation (4.13) for system (4.7).

System (4.16) is a singularly perturbed system with slow variables r1, ρ1, fast
variable b1, singular perturbation parameter ε̃, and the layer problem

r′1 = 0,

b′1 = b2
1(1 − ρ2

1b1) + ρ2
1r

2
1b

2
1 − b1 + r2

1,

ρ′1 = 0.

(4.17)

The layer problem (4.17) has a two-dimensional critical manifold S1 described by the
equation

b2
1(1 − ρ2

1b1) + ρ2
1r

2
1b

2
1 − b1 + r2

1 = 0. (4.18)

As before, we first restrict attention to the invariant planes, namely the plane
r1 = 0 which corresponds to a region in the front of the cylinder Zb of the first
blow-up and the plane ρ1 = 0 corresponding to the cylinder Za.

In the invariant plane r1 = 0 the dynamics is governed by

b′1 = 2ε̃ρ1[ρ
2
1b

2
1(µ − 1) + µ] + b2

1(1 − ρ2
1b1) − b1,

ρ′1 = −ε̃ρ2
1[ρ

2
1b

2
1(µ − 1 + µ)],

(4.19)
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which is a slow-fast system with singular perturbation parameter ε̃, fast variable b1

and slow variable ρ1. The corresponding layer problem (ε̃ = 0) has the form

b′1 = b2
1(1 − ρ2

1b1) − b1,
ρ′1 = 0.

(4.20)

The corresponding critical manifold Ŝ1 defined by the equation b1[b1(1−ρ2
1b1)−1] = 0

consists of a stable branch Ŝl,1 with b1 = 0, an unstable branch Ŝm,1 and a stable

branch Ŝr,1 given by ρ1 =
√

1

b1
− 1

b2
1

with b1 ∈ [1, 2) and b1 ∈ (2,∞), respectively.

The fold point D0
1 = (2, 1/2) separates the branches Ŝm,1 and Ŝr,1, see Figure 4.4.

Again, Ŝl,1, Ŝm,1 and Ŝr,1 are the branches of the intersection of S1 with the plane
r1 = 0.

Remark 4.3. The configuration in the plane r1 = 0 of chart K1 is a desingu-
larized version of the configuration in the plane r4 = 0 of chart K4. The degenerate
equilibrium at the origin of system (4.11) has been blown-up to the line ρ1 = 0 (which
is in fact the circle S

1×{0}×{0} on the cylinder of the second blow-up). The branches
Ŝl,1 and Ŝm,1 which intersected in chart K4 have been separated and are attracting and
repelling, respectively. Their endpoints in the plane r1 = 0 are denoted by p̂1 = (0, 0)
and q̂1 = (1, 0).

In the invariant plane ρ1 = 0 system (4.16) reduces to

r′1 = 0,
b′1 = b2

1 − b1 + r2
1.

(4.21)

The equilibria of system (4.21) are given by the curve r1 =
√

b1 − b2
1. This curve, de-

noted by Š1, consists of a stable branch Šl,1 corresponding to b1 ∈ [0, 1/2), a repelling
branch Šm,1 corresponding to b1 ∈ (1/2, 1], and the fold point B0

1 = (1/2, 1/2), see
Figure 4.4. Clearly, Šl,1 and Šm,1 are the branches of the intersection of S1 with the
plane ρ1 = 0.

Remark 4.4. Chart K1 covers essentially Regime 1. In particular, the manifold
Š1 described above is precisely the critical manifold S0

1 of system (3.4) from Regime 1.

Remark 4.5. Note that for ρ1 = 0 the reduced (slow) vector fields with respect to
ε̃ on Šl,1 and Šm,1 (on the corresponding slow manifolds) vanish identically. Hence,
the fold point B0

1 is not a jump point in the sense of Appendix A. This apparent
difficulty is in some sense an artefact caused by setting ε = ε̃δ which is needed in
Regime 3 but not in Regime 1, see also the proof of Lemma 4.8.

As before we conclude

Lemma 4.2. The critical manifold S1 defined by the equation (4.18) has the
following properties at least for r1 or ρ1 small:

1. S1 is smooth.
2. S1 has a folded structure, i.e. S1 = Sl,1 ∪Sm,1 ∪Sr,1, where Sl,1 and Sr,1 are

attracting and Sm,1 is repelling for the layer problem (4.17). The branches
Sl,1 and Sm,1 are separated by the fold curve FB,1 while Sm,1 and Sr,1 are
separated by the fold curve FD,1.

3. The branch Sl,1 limits on Ŝl,1 for r4 = 0 and on Šl,1 for ρ1 = 0. Similarly,

Sm,1 limits on Ŝm,1 for r1 = 0 and on Šm,1 for ρ1 = 0. Sr,1 limits on Ŝr,1

for r1 = 0. The fold curve FD,1 limits on D0
1 and the fold curve FB,1 limits

on B0
1 (see Figure 4.4).
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Figure 4.4. Dynamics in K1.

Summing up, the singular relaxation cycle Γ0
0,1 in chart K1 follows the slow dy-

namics along the branch Ŝr,1 to the fold point D0
1, the fast orbit from the point D0

1

to the point A0
1, and the branch Sl,1 from the point A0

1 to the point B0
1 through the

point p̂1, and finally jumps to the right from the point B0
1 . To see how the singular

orbit continues for large b1 we have to switch to chart K2.

Dynamics in K2. By inserting transformation (4.15) into system (4.7) and
dividing out a factor of ρ2

2 we obtain the final desingularized blown-up system written
in chart K2

r′2 = ε̃r2ρ2δ2[ρ
2
2(µ − 1) + µδ2

2 ],

ρ′2 = 1

2
ρ2[1 − ρ2

2 + δ2
2(r2

2ρ
2
2 − 1 + r2

2δ
2
2)],

δ′2 = −ε̃ρ2δ
2
2 [ρ2

2(µ − 1) + µδ2
2 ] − 1

2
δ2[1 − ρ2

2 + δ2
2(r2

2ρ
2
2 − 1 + r2

2δ
2
2)].

(4.22)

System (4.22) is a singularly perturbed system with singular perturbation parameter
ε̃. Setting ε̃ = 0 gives the layer problem

r′2 = 0,

ρ′2 = 1

2
ρ2[1 − ρ2

2 + δ2
2(r2

2ρ
2
2 − 1 + r2

2δ
2
2)],

δ′2 = − 1

2
δ2[1 − ρ2

2 + δ2
2(r2

2ρ
2
2 − 1 + r2

2δ
2
2)].

(4.23)

The layer problem (4.23) has a 2-dimensional critical manifold S2 described by the
equation

1 − ρ2
2 + δ2

2(r2
2ρ

2
2 − 1 + r2

2δ
2
2) = 0. (4.24)

Additionally, there exists a line of equilibria l2 defined by δ2 = 0, ρ2 = 0, i.e. l2 is the
r2-axis.
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Remark 4.6. All of the critical manifold S2 has been covered in chart K1 and
K4 already. The following discussion of S2 is included just for completeness. The
important dynamics occurs close to the line l2 which is not visible in other charts
and provides the so far missing overlap between chart K1 and K4 (i.e. Regime 1 and
Regime 3).

Remark 4.7. Note that away from S2, ρ2 and δ2 are fast variables. This shows
that system (4.22) is not in the standard form (1.1) of slow-fast systems. However,
Fenichel Theory applies in this more general situation as well. Since we focus on the
dynamics close to the line l2 we do not give further details.

The planes r2 = 0, ρ2 = 0, and δ2 = 0 are invariant under the flow of (4.22).
The plane r2 = 0 corresponds to a region in the front of the cylinder Zb of the first
blow-up, while the plane ρ2 = 0 corresponds to the front side of the cylinder Za of
the second blow-up, see Figure 4.5.

In the invariant plane ρ2 = 0 system (4.22) reduces to the system

r′2 = 0,
δ′2 = − 1

2
δ2[1 + r2

2δ
4
2 − δ2

2 ].
(4.25)

The line l2 is attracting for this system. Again, the equation 1+ r2
2δ

4
2 − δ2

2 = 0 defines
a folded curve Š2 of equilibria. The fold point B0

2 separates Š2 into an attracting
branch Šl,2, and a repelling branch Šm,2, see Figure 4.5. Clearly, Šl,2 corresponds to
the curve Šl,1 and Šm,2 corresponds to the curve Šm,1 from chart K1.

In the invariant plane δ2 = 0 system (4.22) has the form

ρ′2 = 1

2
ρ2(1 − ρ2

2),
r′2 = 0.

(4.26)

The line Šr,2 defined by ρ2 = 1 and the line l2 are the lines of equilibria. The situation
in the plane δ2 = 0 is similar to the situation in the plane δ4 = 0 in chart K4, with
the only difference that the non-hyperbolic line la,4 from chart K4 has been replaced
by the hyperbolic line l2 due to the second blow-up (4.13). Within δ2 = 0 the line l2
is repelling and the line Šr,2 is attracting.

The dynamics in the plane r2 = 0 can be analyzed similarly and turns out to
be consistent with results obtained in charts K1 and K4. Since this part of phase
space is already covered by charts K1 and K4, we omit more details. We find a curve
of equilibria connecting the point q̌2 to the point q̂2, which consists of an attracting
branch Ŝr,2 and a repelling branch Ŝm,2 separated by a fold point D0

2, see Figure 4.5.
As before we conclude
Lemma 4.3. The critical manifold S2 defined by equation (4.24) has the following

properties if at least one of the variables r2, ρ2, or δ2 is small:
1. S2 is smooth.
2. S2 is a folded surface, i.e. S2 = Sl,2 ∪ Sm,2 ∪ Sr,2 with fold curves FB,2 and

FD,2, where Sl,2 and Sm,2 are attracting and Sr,2 is repelling for the layer
problem (4.23).

3. The branch Sl,2 limits on Šl,2 for ρ2 = 0. The branch Sm,2 limits on Šm,2

for ρ2 = 0 and on Ŝl,2 for r2 = 0. Similarly, Sr,2 limits on Ŝr,2 for r2 = 0
and on Šr,2 for δ2 = 0. The fold curve FB,2 limits on B0

2 and FD,2 limits on
D0

2 (see Figure 4.5).
Lemma 4.4. The line l2 considered as a line of equilibria of system (4.22) is of

saddle-type. Its stable manifold lies in the plane ρ2 = 0 and its unstable manifold lies
in the plane r2 = 0.
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Figure 4.5. Dynamics in K2.

Summing up, we obtain the following description of the singular relaxation cycle in
chart K2. From the fold point B0

2 there is a fast jump to the point p̌2 = (1/2, 0, 0) ∈ l2,
then a fast jump to the point C0

2 = (1/2, 1, 0), followed by slow motion along Šr,2 to
the point D0

2 from where another fast jump takes place.

4.3. Properties of the blown-up system. The geometry of the blown-up
space M̄ after the two consecutive blow-ups (4.2) and (4.13) is shown schematically
in Figure 4.6. Recall that first the line lb is blown-up to the cylinder Zb shown in the
back of the figure. In the second blow-up (4.13) the line la (actually a part of its pre-
image under the first blow-up) is blown-up to the cylinder Za, shown in the front of
the figure. The vector field Xε̃ on M = R

3 corresponding to system (4.1) induces the
blown-up vector field X̄ε̃ on the blown-up space M̄ , which has been analyzed in detail
in the individual charts. Recall that the blow-up construction resolves the degeneracy
of the critical manifold S at δ = 0, while ε̃ still acts as a singular perturbation
parameter in the vector field X̄ε̃. The equation δ′ = 0 from system (4.1) implies that
the blown-up phase space has an invariant foliation corresponding to constant values
of δ. The singular leaf corresponding to δ = 0 is the union of the cylinders Zb, Za, and
the plane ∆, where the plane ∆ is defined by setting δ̄ = 0 in (4.13), see Figure 4.6.

These properties imply that the vector field X̄0 restricted to Zb ∪Za ∪∆ provides
the unperturbed dynamics corresponding to (ε̃, δ) = (0, 0). In particular, we will be
able to identify the singular cycle Γ̄0

0 ⊂ Zb ∪ Za ∪ ∆. The analysis in the individual
charts K4, K1 and K2 implies the following results, see also Figure 4.6.

Theorem 4.5. The blown-up vector field X̄0 on M̄ has the following properties:
1. There exists a smooth two-dimensional critical manifold S̄ with a folded struc-

ture, i.e.

S̄ = S̄l ∪ F̄B ∪ S̄m ∪ F̄D ∪ S̄r,
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Similarly, the non-uniform behavior of the singular cycle Γδ
0 for system (2.4) as

δ → 0 has been resolved in the blown-up problem.
In this global picture of the critical manifold S̄ we recover all the results from the

scaling Regimes 1-3. In addition, compact neighborhoods of the intersections Zb ∩∆,
Za∩∆, and Zb∩Za cover the unbounded domains of the scaling regimes which cannot
be analyzed perturbatively. We will see that smoothness and hyperbolicity properties
of the blown-up vector field X̄ε̃, ε̃ ∈ [0, ε̃0] permit a perturbation analysis in these
neighborhoods, which allows to match the regimes. A first result in this direction is
that the attracting slow manifolds from Regimes 1-3 fit together smoothly as parts of
global attracting slow manifolds.

Theorem 4.6. There exists ε̃0 > 0 such that the blown-up vector field X̄ε̃ has
smooth attracting slow manifolds S̄l,ε̃ and S̄r,ε̃ for ε̃ ∈ [0, ε̃0].

Proof. The result follows from Fenichel theory [4], [10] applied to normally hy-
perbolic parts of the critical manifolds S̄r and S̄l.

Remark 4.9. In the following we will assume that the slow manifolds have been
extended beyond the fold lines F̄B and F̄D by the flow corresponding to the blown-up
vector field X̄ε̃.

4.4. Poincaré map and existence of limit cycles. To prove Theorem 3.1 we
analyze a Poincaré map defined in a neighborhood of the singular cycle Γ̄0

0. We will
show that within each leaf δ = const. the Poincaré map is a strong contraction for ε̃
small and has an attracting fixed point corresponding to the limit cycle.

To construct the Poincaré map for the vector field X̄ε̃ we choose sections Σ, Σa,
and Σb, as shown in Figure 4.7, i.e.

Σ is transversal to the heteroclinic orbit ω2,
Σb is transversal to the heteroclinic orbit ω5,
Σa is transversal to the heteroclinic orbit ω1.

The sections will be defined more precisely later, where the Poincaré map is considered
in the individual charts. In the following we outline the construction of the Poincaré
map.

The Poincaré map will be obtained as the composition of three maps. All orbits
starting in Σ approach S̄r,ε̃, follow the slow flow along S̄r,ε̃, pass the non-hyperbolic
fold curve F̄D and follow the heteroclinic orbit ω5 to intersect Σb. This defines the
map

Π1 : Σ → Σb.

Similarly, all orbits starting in Σb approach S̄l,ε̃, follow the slow flow along S̄l,ε̃ until
they pass the non-hyperbolic fold curve F̄B and follow the heteroclinic orbit ω1 to
intersect Σa. This defines the map

Π2 : Σb → Σa.

The map

Π3 : Σa → Σ

describes how orbits pass through a neighborhood of the hyperbolic line l. The
Poincaré map Π : Σ → Σ is defined as

Π = Π3 ◦ Π2 ◦ Π1.
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Figure 4.8. Image of the section Σ under the transition map Π1.

summarized in Appendix A. Although these two points of view are equivalent, the
latter is useful to obtain a more detailed description. For the analysis of the fold
curve in chart K4 one has to use the results of [22] for folds in R

3.

The transition map Π2. The transition map Π2 is studied in chart K1. The
transformation from chart K4 to chart K1 is carried out according to equations (4.14).
Hence, the section Σb is now given by ρ2

1b1 = 1/2 with ρ1 close to 1/2, and r1 small.
Because of δ = ρ1r1, the invariant leaves δ = const. are given by r1 ≈ 2δ in Σb. We
define the section Σa by b1 = 1, r1 close to 1/2, and ρ1 small. Because of δ = ρ1r1,
the invariant leaves δ = const. are given by ρ1 ≈ 2δ in Σa.

Lemma 4.8. The transition map Π2 : Σb → Σa is well defined for ε̃ small enough.
There exists a constant c > 0 such that the map Π2 restricted to a leaf δ = const. is
a contraction with a contraction rate e−c/δε̃.

Proof. All orbits starting in Σb are attracted by the extended slow manifold S̄l,ε̃

at the exponential rate stated above. The intersection of S̄l,ε̃ with Σa is a curve σ1,ε̃.
Hence, all of Σb is mapped to an exponentially thin wedge close to σ1,ε̃. Note that the
results in [13], [22] do not apply directly to system (4.16), however the dynamics close
to the fold curve FB,1 can also be described in Regime 1, which is a family of planar
singularly perturbed folds with singular perturbation parameter ε parameterized by
δ, where the results of [13] as summarized in Appendix A apply. This shows further
that within a leaf δ = const. the curve σ1,ε̃ is O(ε2/3) = O(δ2/3ε̃2/3) close to the
point Γ̄δ

0 ∩ Σa.

The transition map Π3. The transition map Π3 is studied in chart K2. The
transformation from chart K1 to chart K2 is carried out according to

r2 = r1, δ2 = b
−1/2

1 , ρ2 = b
1/2

1 ρ1. (4.27)

The section Σa written in chart K2 is given by the conditions δ2 = 1, r2 close to 1/2,
and ρ2 small. The invariant leaves δ = const. in Σa are now described by ρ2 ≈ 2δ.
The transformation from chart K4 to chart K2 is carried out according to

r2 = r4, ρ2 = b
1/2

4 , δ2 = δ4b
−1/2

4 . (4.28)
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Hence, the section Σ is now given by ρ2 = 1/
√

2, r2 close to 1/2 and δ2 small. The
invariant leaves δ = const. in Σ are now described by δ2 ≈ 2

√
2δ.

Remark 4.11. In order to guarantee that Π3 maps Σa into Σ the size of the
section Σ in the direction of r2 (which is equal to r4) has to be chosen slightly larger
than the size of the section Σa in the direction of r2.

Lemma 4.9. The transition map

Π3 : Σa → Σ, (r2,in, ρ2,in, 1) 7→ (r2,out, 1/
√

2, δ2,out)

is well defined for ε̃ small and δ ∈ [0, δ0] for δ0 small enough. The map Π3 is essen-
tially a small translation in r2-direction, i.e.

r2,out = r2,in + O(ε̃δ ln(1/δ)).

Restricted to a leaf δ = const. the map is at most weakly (algebraically) expanding.
Proof. By dividing the vector field (4.22) by the non-vanishing factor

1

2
ρ2[1 − ρ2

2 + δ2
2(r2

2ρ
2
2 − 1 + r2

2ρ2δ
2
2)

we rewrite the system as

r′2 = ε̃r2ρ2δ2R(r2, ρ2, δ2),

ρ′2 = ρ2,

δ′2 = −δ2 + ε̃r2ρ2δ2R(r2, ρ2, δ2),

(4.29)

with a smooth function R(r2, ρ2, δ2) which is O(1) in the domain of interest. We
consider this system as a perturbation of the linear system

r′2 = 0,

ρ′2 = ρ2,

δ′2 = −δ2.

(4.30)

A short computation shows that the transition time T , which a solution starting in
Σa needs to reach the section Σ, is

T = O(ln
1

δ
),

where we have used that δ = r2ρ2δ2. The assertions of the lemma follow.
This completes the construction and analysis of the Poincaré map Π and allows

to prove the existence of limit cycles for ε̃ small.
Theorem 4.10. For µ < 1 there exists δ0 > 0 and ε̃0 > 0 such that the blown-up

vector field X̄ε̃ has a unique family of attracting periodic orbits Γ̄δ
ε̃ for 0 < δ ≤ δ0 and

0 < ε̃ ≤ ε̃0 with the properties
1. Γ̄δ

ε̃ tends to Γ̄δ
0 as ε̃ → 0 uniformly for δ ∈ (0, δ0],

2. Γ̄δ
ε̃ tends to the singular cycle Γ̄0

0 as (ε̃, δ) → (0, 0).
Proof. We conclude from Lemmas 4.7, 4.8, and 4.9 that there exist δ0 > 0 and

ε̃0 > 0 such that the Poincaré map Π : Σ → Σ is well defined for δ ∈ [0, δ0] and
ε̃ ∈ [0, ε̃0]. Restricted to a leaf δ = const., i.e. δ = δ4r4 with r4 ≈ 1/2, the map Π is
a contraction with contraction rate e−c/δε̃ for some constant c > 0. The contraction
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mapping theorem implies the existence of a unique fixed point γδ
ε̃ corresponding to

the limit cycle Γ̄δ
ε̃.

The point γδ
ε̃ is O(e−c/δε̃) close to the curve S̄l,ε̃ ∩ Σ. The proofs of Lemmas 4.8

and 4.9 imply that within a leaf δ = const. the curve S̄l,ε̃ ∩ Σ is O(δ2/3ε̃2/3) close to
the point Γ̄δ

0 ∩ Σ, see Figure 4.9. The assertions of the theorem follow.

Figure 4.9. Image of the section Σ under the Poincaré map Π.

Remark 4.12. By setting ε = ε̃δ and by applying the blow-up transformations
(4.2) and (4.13) the limit cycles Γ̄δ

ε̃ become the limit cycles Γδ
ε̃ of the original system

(2.4). Thus, also the proof of Theorem 3.1 is completed.

Appendix A. Slow manifolds and fold points.

In this appendix we briefly describe results from [13] on slow manifolds of planar
singularly perturbed systems with critical manifolds containing non-degenerate fold
points.

We consider planar systems of the form

x′ = f(x, y, ε),

y′ = εg(x, y, ε)
(A.1)

with smooth functions f and g and a small parameter ε > 0. The derivative in system
(A.1) is with respect to the fast time scale τ . By setting ε = 0 we obtain the layer
problem

x′ = f(x, y, 0),

y′ = 0.
(A.2)

The corresponding reduced problem on the slow time scale t = τε is given by

0 = f(x, y, 0),

ẏ = g(x, y, 0).
(A.3)



30 I. GUCWA AND P. SZMOLYAN

The critical manifold S is defined by the equation f(x, y, 0) = 0. The critical
manifold S is a manifold of equilibria of the layer problem (A.2), while the reduced
problem (A.3) is a dynamical system on S. Assume that the critical manifold S is
a folded curve with a non-degenerate fold point at the origin. Thus, S consists of
an attracting branch Sa and a repelling branch Sr with fx(x, y, 0) < 0 on Sa and
fx(x, y, 0) > 0 on Sr. At the fold point fx(0, 0, 0) = 0 while fxx(0, 0, 0) 6= 0.

Figure A.1. Jump point and dynamics of the layer and the reduced problems.

Without loss of generality we assume that the position of the critical manifold S is
as shown in Figure A.1. We further assume that the reduced flow on S is downwards,
i.e. g(x, y, 0) is strictly negative on S. The dynamics of the layer problem and the
reduced problem are as shown in Figure A.1. Thus, we have the typical behavior of
a jump point. Solutions starting between Sa and Sr are attracted by Sa, follow the
reduced flow until the fold point from where they jump to the right along the weakly
unstable fiber of the fold point.

Compact parts of Sa and Sr are normally hyperbolic. Fenichel theory [4], [10]
implies that Sa and Sr perturb smoothly to locally invariant slow manifolds Sa,ε and
Sr,ε for ε small. The slow manifold Sa,ε (Sr,ε) is attracting (repelling) and has an
invariant stable (unstable) foliation with fibers close to the horizontal orbits of the
layer problem. The slow flow on Sa,ε and Sr,ε is a smooth perturbation of the reduced
flow on Sa and Sr, hence is still directed downwards, see Figure A.2.

These results are valid outside any fixed small neighborhood of the fold point.
The analysis of the asymptotic behavior of solutions close to the fold point has been
the central problem in the analysis of relaxation oscillations [6], [16] by the method
of matched asymptotic expansions. A more recent approach in the analysis of critical
manifolds with non-hyperbolic points based on the blow-up method was introduced
in [1]. A detailed geometric analysis of the dynamics and asymptotics close to the
fold point based on the blow-up method is given in [13]. There it is shown that the
dynamics close to the fold point is governed by equations of the form

x′ = x2 − y + O(ε, xy, y2, x3),
y′ = ε(−1 + O(x, y, ε)),
ε′ = 0.

(A.4)

The degenerate equilibrium (0, 0, 0) of system (A.4) is blown-up to a sphere by the
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Figure A.2. Slow manifolds and sections.

transformation

x = rx̄, y = r2ȳ, ε = r3ε̄ (A.5)

with (x̄, ȳ, ε̄) ∈ S
2 and r ∈ R. After dividing out a suitable power of the radial

variable r, a nontrivial flow on the sphere is obtained. The resulting flow on the
sphere is sufficiently non-degenerate to allow a complete analysis. For details we refer
to [13].

In order to describe the behavior of the attracting slow manifold Sa,ε beyond the
fold point we consider a section Σin transverse to Sa defined by y = y0, y0 > 0 and a
section Σout transverse to the unstable fiber of the fold point defined by x = x0, x0 > 0.
The following result has been proven as Theorem 2.1 in [13].

Theorem A.1. Under the assumptions made in this section there exists ε0 > 0
such that the following assertions hold for ε ∈ (0, ε0]:

1. The manifold Sa,ε passes through Σout at a point (x0, h(ε)) where h(ε) =
O(ε2/3).

2. Under the flow of system (A.1) the section Σin is mapped to an interval
around Sa,ε ∩ Σout. The transition map from Σin to Σout is a contraction
with contraction rate e−c/ε, where c is a positive constant.

We conclude that for ε small solutions starting between Sa,ε and Sr,ε are exponen-
tially contracted onto Sa,ε, follow the slow flow on Sa,ε downwards and jump almost
horizontally to the right after passing the fold point.

Remark A.1. In the situation of relaxation oscillations described in Section 2.2
Theorem A.1 readily implies the existence of relaxation cycles for ε small obtained as
fixed points of a Poincaré map which is defined as the composition of two maps of the
type described in the theorem, see ([14]) for details.
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