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Abstract

We construct explicit examples of Dirac-harmonic maps (¢, 1) between Rieman-
nian manifolds (M, g) and (N, g’) which are non-trivial in the sense that ¢ is not
harmonic. When dim M = 2, we also produce examples where ¢ is harmonic, but
not conformal, and v is non-trivial.
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1 Introduction

A Dirac-harmonic map is a pair that couples a map between Riemannian manifolds with a
nonlinear spinor field along that map [10]. Dirac-harmonic maps arise from the supersym-
metric nonlinear sigma model of quantum field theory [12]. They are a generalization and
combination of harmonic maps and harmonic spinors while preserving the essential proper-
ties of the former.

Both harmonic maps and harmonic spinors have been extensively studied. See, for instance

[13,15]. In particular, many non-trivial examples of harmonic maps and harmonic spinors
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are known (2, 3,4, 13]. A harmonic map and a vanishing spinor, or conversely a constant map
and a harmonic spinor constitute an example of a Dirac-harmonic map. A natural question
then is whether there exist other examples that couple a map and a spinor in a non-trivial
manner. The purpose of this paper therefore is to manufacture non-trivial examples of
Dirac-harmonic maps between Riemannian manifolds. For hypersurfaces in a Riemannian

manifold of constant sectional curvature, we prove the following:

Theorem 1 Let M be an n-dimensional manifold which is immersed in an (n + 1)-
dimensional Riemannian manifold N(c) of constant sectional curvature c. Assume ® is a

harmonic spinor on M, and ¥ € T'(XM) satisfies
—2cRe(®, U)v = H. (1)

where H is the mean curvature vector field of ¢, v is the unit normal field of ¢ and XM is

the spinor bundle of M. We define a spinor field ¢ along the immersion ¢ by
Y =Yntn VRod(er) + PRV

where €, is a local orthonormal basis of M.
(i) If n = 2, ¢ is minimal and U satisfies

61~V61\IJ—62-V€2\I/:)\1<I> (2)

where A1 is the principal curvature in the principal direction €1, then (¢, ) is Dirac-
harmonic.

(i) If n > 3, ¢ is totally umbilical and ¥ is a twistor spinor satisfying

I — _%@ (3)

then (¢, ©) is Dirac-harmonic.

Using Theorem 1, we can construct many Dirac-harmonic maps (¢, ¢) from R™ into
H"t(~1) where n > 3 and ¢ : R®™ — H"*!(—1) is not harmonic (see Section 5, Example
3).

Finding explicit non-trivial explicit solutions of (2) and (3) turns out to be difficult.
However in some special cases, we are able to get the non-trivial solutions, as in Example 3.

Let us take a look at the following special case of (i) of Theorem 1: when ® = 0, then
(¢, 1) is Dirac-harmonic if ¢ : M — N(c) is minimal and ¥ is a twistor spinor. In fact, in

the general case, we have the following:



Theorem 2 Let M be a Riemann surface and N a Riemannian manifold. Assume
¢ : M — N is a harmonic map and ¥ € T'(XM) is a twistor spinor. We define a spinor
field 14 w along map ¢ by

Yo v = Za€a - ¥ @ duleq) (4)
where €4 (o =1, 2) is a local orthonormal basis of M. Then (¢, ¥¢, w) is a Dirac-harmonic

map.

By using Theorem 2, we can manufacture Dirac-harmonic maps (¢, 1y, v) from a surface
for a (not necessarily conformal) map ¢ (see Section 4). Theorem 2 generalizes the result
of [10] that was derived for the special case when both source and target manifolds are
two-dimensional spheres.

Finally, by investigating spinor fields along a hypersurface with two constant principal
curvatures in a Riemannian manifold of constant curvature, we get Dirac-harmonic maps
(¢, 9) from surfaces for which ¢ is not harmonic (see Section 6 and Section 7).

Let us describe our construction. Let M := S*(r)x H*(v/R2 + r2) be a hyperbolic surface
of revolution (see Section 6 for definitions). Let a and b be arbitrary complex constants and
m be an arbitrary non-negative integer. For each k € {0, 1 ---,£m}, let ¢, and dj be
complex constants satisfying
VEE TR + %)

Re(ady + beg) = 5 R

(5)

and
ady, +be_j, = 0. (6)

We obtain the following result (see Section 7):

Theorem 3 Let ¢ : M — H3(R) be an isometric immersion from M into a hyperbolic
space and 1 € T(XSM @ ¢~ 'TH?3(R)) defined by

2

r
¢:61"I’®¢*(€1>_W62"1’®¢*(62)+X®V
where
v(0, t) VR £ cose 7R2+T2 s'ng r snhit r coshit
=- - in—, —si —
’ R ’ PR VR R VR 2
is a unit normal vector of M, and x = < Z )
,/ 2 . dre— 5t
W (o, 1) = i YT +7"t< ) m( ke )
k=—m Cker



are the spinors on M with respect to the "untwisted" spinor bundle on M satisfying (5) and
(6). {e1, €2} is a local orthonormal basis of M such that

€1(0,t) = <— sing7 cosg7 0, O)
r r

. . . W/ R2 2 . .
s a principal curvature % direction and

t . t
(0, t) = (07 oot e T R )

18 a principal curvature ﬁw direction. Then (¢, ©¥) is a Dirac-harmonic map from M

into H3(R) for which ¢ is not harmonic.

The proofs of our results are essentially of an algebraic nature. They carefully match the
algebraic structure of the curvature term in the Dirac-harmonic map equation, as displayed
in the next section, with the special properties of twistor spinors or those of particular sub-

manifolds defined in terms of ambient curvature properties in spaces of constant curvature.

2 Dirac-harmonic maps

Let (N, h) be a Riemannian manifold of dimension n’, (M, g) be an n-dimensional Rie-
mannian manifold with fixed spin structure, ~M its spinor bundle, on which we have a
Hermitian metric (-, -) induced by the Riemannian metric g(-, -) of M. Let ¢ be a smooth
map from (M, g) to (N, h) and ¢~'TN the pull-back bundle of TN by ¢. On the twisted
bundle ¥XM ® ¢~'TN there is a metric (still denoted by (-, -)) induced from the metrics
on XM and ¢~ 'TN. There is also a natural connection V on M ® ¢~ 'TN induced from
those on XM and ¢~ TN (which in turn come from the Levi-Civita connections of (M, g)
and (N, h), resp.).

For X e I'(TM), £ € T(XM), denote by X - £ their Clifford product, which satisfies the
skew-symmetry relation

(X-&m=-( X-n) (7)

as well as the Clifford relations
XY 9Y+Y - X -op=-29(X, V)¢

for X, Y eT(TM), &, neT(XM).
Let v be a section of the bundle XM ® ¢~ 'TN. The Dirac operator along the map ¢ is
defined as

ﬁl/) =€t @eaw



where €, is a local orthonormal basis of M. For more details about the spin bundle and
Dirac operator, we refer to [17, 21].
Set
x = {(¢,¥)| ¢ € C®°(M, N) and ¢ € C°(EM @ ¢ 'TN)}.

On y, we consider the following functional

L@, v) =5 [ [0 + (o, B)] L.

This functional couples the two fields ¢ and v because the operator I) depends on the map
¢. The Euler-Lagrange equations of L(¢, ¥) then also couple the two fields; they are:

7(¢) = R(¢, ¥) (8)
and
D=0 (9)
where 7(¢) := traceVd¢ is the tension field of the map ¢ and R(¢, 9) is defined by
R(6, ¥) = SRigulh, Ve - 4)-2
) 2 j ) 8yl’
where 5
Y=9'Q® @7
.0
f _ i
(dp)" = V' ® oy’
1 o 0 0 .0
o'rN (9 O O i O
f (33/’“’ 8yl> oy~ Mgy

where ! : T*M ®¢ TN — TM ®¢ TN is the standard (“musical”) isomorphism obtained
from the Riemannian metric g.
Solutions (¢, ¥) to (8) and (9) are called Dirac-harmonic maps from M into N [9].

We now start with some differential geometric identities: Let €, be a local orthonormal

basis of M. By using the Clifford relations we have

_wv a:ﬂ

10
—€g - €a - Y, a# 3 (10)

€a-ep- = (1) e eq - = {
for 1 € T(SM).

Lemma 2.1R(¢, 1) € ['(¢~'TN); in particular, it is real.



Proof For any (not necessarily orthonormal) frame {¢;} on ¢~1T'N, we put
Y =1° ® €q, (11)
(dp)F = V' © eq, (12)
RN (64, ep)ee = Rapec

where # : T*M ® ¢~ 'TN — TM @ ¢~ TN is the musical isomorphism as before. Take

0

i
€a = UL—,
oyt

then
. . ) ) ki 4 )
Pt =u Y, V' =u, Vo, wluga R jii = R qpetty.

A simple calculation gives following

R (v, Ve -l a‘zi = R%ca (¢(2)) (¥°, V¢’ - Ve, (6(2)) . (13)

It follows that the definition of R(¢, ¢) is independent of the choice of frame. Moreover,

from the skew-symmetry of R’j;; with respect to the induces k and [, we have

SRR, Vi o) = JRU(Ve ol o)
= %Rijlk(VW _¢k7 ¢l>
= —3Rju(Ve -k, ) = GR u{yh, Vel - ¢l).

It follows that R(¢, 1) is well-defined vector field on ¢~1TN, i.e., R(¢, ) € [(¢~'TN). O

A spinor (field) U € T'(XM) is called a twistor spinor if ¥ belongs to the kernel of the

twistor operator, equivalently,
1
VxVU+ =X -g¥ =0 VX e T(TM)
n

where n is the dimension of Riemannian manifold M, XM is the associated spinor bundle
of M and @ is the usual Dirac operator (cf. [1, 14, 20, 23]).

In fact the concept of a twistor spinor (in particular, a Killing spinor) is motivated by
theories from physics, like general relativity, 11-dimensional (resp. 10-dimensional) super-

gravity theory, supersymmetry (see, for example [5, 8, 11]).

3 Dirac-harmonic maps from surfaces I

In this section, we consider two-dimensional Riemannian manifolds (M, g). Since a metric

on a two-dimensional Riemannian manifold defines a conformal structure, we then also have



the structure of a Riemann surface. In fact, since the functional L and its critical points, the
Dirac-harmonic maps are conformally invariant (see [10]), in our subsequent considerations,

we only need the conformal structure in place of the full Riemannian metric g.

Lemma 3.1 Let ¥ be a section of EM. Then (eq -V, eg- €, - V) is purely imaginary for

any «, B, v where €4 (=1, 2) is a local orthonormal basis of M.

Proof: For the Hermitian product (-, -) on the spinor bundle XM, we have

(€a -V, eg-€y- W) = (eg-ey- ¥, eq-7)

= —(ey -V, €5 €, 7)

= —(=1)%s e, -V, €, €5 V)
(1Pt ey e T, 65 )
= (=Dt (=)t ey ea - U, €50 T)
(—1)0asF0vale e, - W, €5 V)

(1)t T, € 5 )

(D (1) (e W, 5 € )
= (=1)%esF0H0ale, W €5 ey V) = —(€0-V, €5 €, - V)

where we have used (10) and (7). It follows that
Re(eq -V, €g-€y-T) =0.

O

Proposition 3.2 For a map ¢ : (M, g) — (N, h) and a spinor ¥ € I'(XM), we define
a spinor field 1y v along the map by (4). Then

() R(, b, w) = 0:

(ii) Pp,w = —¥ @ 7(¢) —2(Ve U+ Len - JU) @ pul€q) where eq (=1, 2), as always,

s a local orthonormal basis of M.

Remark (a) The Dirac-harmonicity of (¢, ¥4, w) implies the harmonicity of ¢ by (i)
and (8).
(0) (Ve ¥+ Seq - V) @ ¢.(€,) is globally defined.

Proof of Proposition 3.2: (i) Define local vector fields V¢ on M by

Vo' = (dp)*(dy’)



where {dy'} is the natural local dual basis on N. By using (4), we have
V=g w(dy') = Vo' - ¥
Set dp = ¢%,0% ® 8%1‘ where 6% is the dual basis for €,. Then V¢! = 3" ¢ ¢, and
(W, VoI o) = oL dhel (o T, €5y - W),

Together with Lemma 3.1, we conclude that R (¢¥*, V7 -9!) is purely imaginary. On the
other hand, from the proof of Lemma 2.1, R%;; (¢*, V¢ - wl> must be real, and hence

R(¢, Yo, w) = *R (R, Vel >

(ii) By using (10) we have

(VEl\II+61‘€2'V€2\I/), a=1

. (14
(VU —€1 -6V, U), a=2 (14)

1 1
v%@+fhawzzv%w+2%{z%-v%@]:{

N N

We choose a local orthonormal frame field €, such that V. eg =0 at x € M. Then

Dyw = e3-V esVo, v

= €3 @6[3 (Ea U ® ¢u(ea))
= 5 [Ves(ca W) ® Pu(€a) + €a " U@ Ve, (¢4(ca))]

= €&~ [ ) Ut Ve, U) @ dulea) + €0 Y@ Ve, (¢*(fa))] (15)
= ¢5- a{v%@®@&@+m®v%@4%»}

= (Za:ﬁ + Ea#ﬁ)eﬁ "o {vﬁﬁ\I’ ® ¢*(€a) +¥Q® vfﬁ ((b* (ea))}

= )+ UD).
where
(I) = ea-€a {Ve,¥®¢ulea) + V@V, (dulea))}
= —{Ve ¥V ®¢u(€a) + ¥ @[V, (di(ea)) = 0x(Ve.(Px(€a))]} (16)
= - {Vea\lj ® ¢*(€o¢) +v ®T(¢)}
and
(1) = e e {Vi,¥®¢i(e2) + ¥ @ Ve, (¢s(e2))}

ter-€1 {Ve, U@ di(e1) + ¥ @ Ve, (di(er))}
= €1-€" {Vq‘y ® ¢u(€2) = Ve, ¥ @ ¢u(e1) + ¥ @ Ve, (du(e2)) — ¥ @ v@((b*(el)}

= e -6 {VaV®@di(e2) = Ve,V ® guler)}
(17)

here we have used the following

Ve (9x(e2)) = (Ve 0:)(€2) = (Ve 04)(€1) = Ve, (x(€1))



Substituting (16) and (17) into (15) yields

quﬁ,‘l’ = AV V@ du(ea) T+ VY RT(P)} +e1-€2-{Ve, VR pu(e2) = Ve, ¥ ® ¢uler)}
= —UR7(¢d) —(Ve,U+e-e Ve, V)R duler)
+(e1- € Ve, U =V, ¥) ® du(ea)
(18)
Plugging (14) into (18) yields (ii). O

4 Proof of Theorem 2 and Examples

Proof of Theorem 2 By using (i) of Proposition 3.2 and the harmonicity of ¢ we have

R, Yy, w) =0=7(0).

Thus, (¢, 1e, v) satisfies (8). On the other hand, since ¥ is a twistor spinor and n = 2 we
get )
Ve, U+ Seq- P =0.

Plugging this into the equation in (ii) of Proposition 3.2 yields D14 ¢ = 0. It follows that
(¢, g, w) satisfies (9), and hence (¢, ¥y, w) is a Dirac-harmonic map. O

Corollary 4.1 Let ¢y v be defined by (4) from a branched minimal conformal immersion
¢: M — N and a twistor spinor ¥ € T'(XM). Then (¢, Vg, w) is a Dirac-harmonic map.

This corollary comes from the fact that a conformal map from a Riemann surface is
harmonic if and only if it is a branched minimal immersion [6]. Say that an almost Hermitian
manifold (N, h, J) is (1, 2)-symplectic if

VIW e I(T"°N) for every Z, W € I(T"°N).

Lichnerowicz proved in [22] that any holomorphic map from a cosymplectic manifold to
a (1, 2)-symplectic manifold is harmonic. Since a Riemann surface is automatically cosym-

plectic, we have the following:

Corollary 4.2 Let 14 v be defined by (4) from a holomorphic map ¢ : M — N and a
twistor spinor ¥ € I'(XM) where N is a (1, 2)-symplectic manifold. Then (¢, Yy, w) is a

Dirac-harmonic map.



Example 1 (non-conformal Dirac-harmonic maps) Suppose that R? is given the metric
ds? = 2dzdZ, where z = x + iy is the standard complex coordinate, and let eg, -- -, e, be a
unitary basis of C"*!. Define ¢ : R?> — CP" by

n
$(z) = | Y _rjexp(u;z — fi2)e;
j=0
where rq, - -+, 7, are strictly positive real numbers and pug, -- -, u, are complex numbers of

unit modulus satisfying
n

ZT?ZL ZT’]‘ILL]'ZO.
7=0

j=0
Then ¢ is a harmonic map [6,19]. In particular, ¢ is totally real, and it is conformal if and

only if
>_ ik =0.
§=0

Let us consider a twistor spinor ¥ : R? — Ay = C? on R? (cf [18]). According to Example

1 of [1] the set of all twistor spinors on R? is given by

1
\IJ(Z) :\IJ()*?Z‘\I’l

with Ug, ¥; € Ay. From Theorem 2, we obtain that (¢, ¥ v) is a Dirac-harmonic map
from R? into CP™ where

Yo v = Lot - ¥ @ duleq)
where €, (o = 1, 2) is a local orthonormal basis of M. Furthermore, ¢ is non-conformal if
Z;L:o r; u? £ 0.

Example 2 (Dirac-harmonic sequence) For each p = 0, ---, n, let ¢, : S — CP™ be
given by
¢p[20; 21] = [fp,O(ZO/Zl)v T fp,n(ZO/Zl)}

where [29, 21] € CP! = $2, and for r =0, - -+, n, f, »(2) is given by
— p' nT— k ~r n—r/.=\k
fo,r(2) = m Crz pg(*l) Cp—kck (22)
where

nn—1)--(n—r+1)
7!

cr =

T

Then ¢, is a conformal minimal immersion (therefore it is a harmonic map) with induced

metric )
gs2 = WD)
P (1+22)?

10



According to Theorem 7 of [1] the twistor spinors on (S2, dsf)) are given by

Yo+ 20y
N V14 2zz

where Wy, ¥y € As are constants and where we identify the new and old spin bundles as

v(z)

in [1]. Thus we obtain a Dirac-harmonic sequence (¢, 1y, w) from S? into CP™ (cf. [7])

where
Vg, v = Vata - ¥ & dpu(€a).

5 Dirac-harmonic maps from Riemannian manifolds

In this section, we are going to construct Dirac-harmonic maps (¢, ¥) for which ¢ is not
harmonic.

Let (N, h) be a Riemannian manifold of dimension n’, (M, g) be an n-dimensional Rie-
mannian manifold with fixed spin structure, XM its spinor bundle, with induced Hermitian
metric (-, -). Let ¢ : M < N be an isometric immersion which means that the natural
induced Riemannian metric on M from the ambient space N coincides with the original one
on M. We identify M with its immersed image in N. For each z € M the tangent space
TN can be decomposed into a direct sum of 7,,M and its orthogonal complement T;- M.
Such a decomposition is differentiable. Thus, we have an orthogonal decomposition of the
tangent bundle TN along M

TNy =¢ TN =TM & T+ M.
For a global section R(¢, ¥) on ¢ TN (see Section 2), we have

R, ¥) =R (¢, ) + RN (¢, ¥)

where
RY(¢, ) e T(TM),  RN(¢, ¢) € (T M).

Similarly, for Dy € T'(SM ® ¢~ 'TN), we have
Py ="y +p"y

where
PyerEMeTM), PV eD(SM e THM).

The mean curvature vector of M in N is

H= %T(@ e (T+M)

11



where 7(¢) is the tension field of the map ¢. Hence we have the following:

Lemma 5.1 Let ¢ : M — N be an isometric immersion with the mean curvature vector
H andy € T(XM ®¢~YTN). Then (¢, 1) is a Dirac-harmonic map from M into N if and
only if

(i) RT(¢, ) = 0;

(i) RN (¢, ¥) = nH where n = dim M;

In this section we shall be using the following ranges of indices:
1<a, 83, -<n, n+1<s,t - <n, 1<4,4,---<n.

Choose a local frame field {¢;} of ¢7'TN such that {e,} lies in the tangent bundle 7'M
and {e,} in the normal bundle T+ M of M. By using (12) we have

Vel =) 6lea. (19)
a=1
Plugging (19) into (13) yields
R(6,) = 5 Rt (2) (05, co - 0h)ei (2 (20)

Choose a local orthonormal frame field {¢,} near x € M with V._eg|, = 0. By (11) we have

Dy = D)
= e Ve, (V' ®¢)
= € [(Ve,¥") © e+ 9" ® Ve, €] (21)
= (€ Ve ) @€ +ea [V @ Ve €5+ 10° @V, 6]
= ' Reitea PO Ve,6
at x.
Let A, be the shape operator and VJX the normal connection of M in N where X denotes

a tangent vector of M and v a normal vector to M. Then
Ve €5 = —Ac o+ V;es. (22)
Let B be the second fundamental form of M in N. Then B satisfies the Weingarten equation

<B(X7 Y)? V) = <AV(X)7 Y> (23)

12



where X, Y € I'(T'M). By using (22) and (23) we have
Ve, €s = —(Blea, €3), €s)€a + Vies. (24)
By plugging (24) into (21) we obtain

lmﬁ = aW &€ — <B(€a7 Eﬁ)v €s>5a "(/)s ® €3 + €q - ¢S & Viﬁs- (25)

Let (---)T and (- )"V denote the orthogonal projection into the tangent bundle XM ®T M
and the normal bundle M ® T+ M respectively.

Lemma 5.2 Let ©7 be defined by
wT = Zaea - ¥ ® (;b*(ea)

from an isometric immersion ¢ : M — N and a spinor ¥ € T'(XM) where €, is a local

orthonormal basis on M. Then
D' = — 2V, + €5 - DV + (Blew, €5), €5)ea - ¥°] ® e (26)

where YN = Y p° @ 5. In particular, if N = N(c) is a Riemannian manifold of constant

curvature ¢, then
RY (9, ¥) =0,
RN (¢, 1) = —2ncRe(y®, W)e,

where n = dimM .

Proof Choose a local orthonormal frame field {¢,} near z € M with V._eg|, = 0.

31/10‘ a(ea : \I])
= €5 V(e V)
= €3 [(Veﬁea) U+ e, -VEB\I/}

27
€5 €a " Veg ¥ @7)

= -V V- Zﬁia €a €5 Ve, ¥
= 2V, VU —¢, JV.

Substituting (27) into (25) and taking the tangent projection yield (26). Now we assume that
N := N(c) is of constant curvature c. Then the components of the Riemannian curvature
tensor of NV satisfy

Rijkl = c(éimﬂ — (5il(5jk).

13



From which together with (20) we obtain

R(p, ) = c(0'k6ar — 6"10ak)Re(V™, €q - Yl)e;
= C [R6<¢Za €a * 1/1a> - R‘f(?/’a, €a - Wﬂ €i
= 2cRe(y?, €4 - VY)e;.

It follows that
RT(¢, v)

2cRe(VP, €4 - VY )eg
2cRe(ep - ¥, €q - € - V)ep (28)
—2cRe(eg - U, ¥)eg =0

and
RY¥(d,¥) = 2cRe(y”, ea %)
= 2cRe(V® €4 - €4 - Ve
= —2cRe(y®, U)e,.
Here we have used
(€50, ¥) = ~(e5- 1, T).

We call a spinor ® harmonic if it satisfies the Dirac equation without potential [3],
d® =0

where @ is the usual Dirac operator [14].
In the rest of this section, we discuss hypersurfaces in a Riemannian manifold.

Lemma 5.3 Let ¢ : M — N be an isometric immersion with codimension 1 and i €

(XM ® ¢~ 'TN) defined by
Y =Ynta VR di(er) + PRV

where v is unit normal vector of M, U, ® € T'(ESM) and €, is a local orthonormal basis of
M. Then

(1)
D'y =0
if and only if for each 3
2e5 -V, ¥ — PV = \s® (29)

where Ag is the principal curvature of M in the direction eg;

14



(i)
Py =o0

if and only if ® is a harmonic spinor.
Proof It is easy to see that

(Blea, €3), v)€a - P @ €g
is globally defined. Choose an adapted orthonormal frame of M such that

(Bleas €5): 1) = Aabas
where A\, is the principal curvature of ¢. Plugging this into (26) yields

D= =2V, U+ e5- BT + Agep - D) ® €s.
It follow that lDTw = 0 if and only if
2V, U+ e5- QU = —Ageg - @ (30)

for each 8. From (10), we see that (30) holds if and only if (29) holds for each 5.

(ii) Note that M is a hypersurface. It follows that V'v = 0. Plugging this into (25)
yields
P Y=o 0v+e, - daVEr=gdav

which immediately implies (ii). O

Corollary 5.4 Let ¢ : M — N be an isometric immersion with codimension 1. If (¢, 1)

1s a Dirac-harmonic map then ® is a harmonic spinor where
Y =Ynta VR di(er) + PRV

where v is unit normal vector of M, U, ® € T'(XM) and €, is a local orthonormal basis of
M.

Proof of Theorem 1 (ii) For a totally umbilical hypersurface M, we can assume that

)\1:)\2:"‘:)\n:<H,I/> (31)

15



where ), is the principal curvature of M. Note that ¥ is a twistor spinor. Hence from |1,
page 23, Theorem 2| the spinor field X - Vx1 does not depend on the unit vector field X.
Together with (3), we obtain

1 H
VU= me VU= gy Vg
n n—2
where n = dimM. It follows that
2H H
2eﬂ-v5ﬁ\1/—a\1/=—< Ve MV g g e,

n—2 n—2
Now (ii) can be obtained from (31), Lemma 5.1, Lemma 5.2 and Lemma 5.3 immediately.

(i) For a minimal immersion ¢, we can assume that
A= =)o (32)

On the other hand,
261 . VEI\IJ — a‘l’ = —[262 . V€2\I/ — a\lf]

Together with (2) and (32) we get (29) for 5 =1, 2. Now (i) can be obtained from Lemma
5.1, Lemma 5.2 and Lemma 5.3 immediately. O

Example 3 We consider a totally umbilical hypersurface R™ in a hyperbolic space form
H"T!(—1) where n > 3. We recall the corresponding construction: For any two vectors X

and Y in R*"2, we set
n+1

g X, Y) = ZXiyi _ xnt2ynt2
i=1
We define
H" M (1) = {2 € R""? | 2,40 > 0,g(x, ) = —1}.

Then H"*1(—1) is a connected simply-connected hypersurface of R"*2 and the restriction
of g to the tangent space of H"t!(—1) yields a complete Riemannian metric of constant
curvature —1.

Consider the following small spheres [26]
R™ := {z € H"" (1) | Zpy2 = Tny1 + 1}.

Then the inclusion map ¢ : R™ — H"*1(—1) is a totally umbilical isometric immersion with
respect to the induced metric. Furthermore its sharp operator is A = Id [16], that is, its

principal curvatures satisfy that



It follows that H = v. We take a constant ® € A,, where
A, = c?* for n=2k, 2k+1

is the vector space of complex n spinors (cf. [14] ). Then ® is a harmonic spinor on R™. Let
us consider a twistor spinor ¥ : R — A, on R" satisfying
n

aqj:_n—Q(I)

where n > 3. Now we integrate the twistor equation
0 = Vx¥+1x.9v
= Vx¥-1X-(:250)
_ 1

along the line {sX |0 <s <1}, ie.

U(X) - ¥(0)

(W o a)(1) — (¥ 0 0)(0)
1 d(¥oo) ds
0 ds

= [[(VxW)ds

- 1 _ 1

where o(s) := sX and ¥(0) € A,, is constant (cf. [1]). It is easy to see that the solutions of
the equation ¥ = —-"-& are given by ¥(X) = ¥(0) + —L-X - & (cf.[1,P29, Example 1]).
Now we will find ¥ := ¥(0) such that (1) holds. Note that (&, X - ®) is purely imaginary.

Hence

(@, ) = (D, W+ L X D)

It is easy to see that (1) holds when ®, ¥y € A,, satisfy
_1
=5

Thus we obtain that (¢, 1) is a Dirac-harmonic map from R" into H"*!(—1) where

R6<(I), \I/(]> (33)

1
P(X) = €a- (\I’O‘FMX'(I’) Q Pu€a + PRV
and ®, Uy satisfy (33).
Remark It is easy to prove that if 7 = 3" €, - U ® ¢.(e,) and (¢, 1)) is Dirac-harmonic

then n = 2 implies that H = 0. Hence when dimM = 2, ® = 0, (1) automatically holds,
and (2) holds if and only if ¥ is a twistor spinor.

17



6 Hypersurfaces with constant principal curvatures in a

Riemannian manifold of constant curvature

In this section, we consider first the following example. Equipped with the pseudo-Riemannian
metric

ds* =dzi+ - +dal,, —dad .,
R™+2 becomes Minkowski space R72. We define (real) hyperbolic space
H""Y(R) = {z e R""?|q(z) = —R*, 242 > 0}

where ¢(z) := 23+ - +a2 ,—22_,. H""(R) is a connected, simply-connected hypersurface
of R?*2 and the restriction of ds? to tangent vectors yields a (positive-definite) complete
Riemannian metric in H"*(R) of constant sectional curvature ¢ = — 4. We now define a

family of product hypersurfaces
M:={ze H"" (R)|2} + - +aj =1’} = S(r) x H" *(\/R? +12) (34)

forr>0and k=1, ---,n— 1. The induced metric on M is

dS%k(r) + dsi]"*k(\/W) = TQdS%k(l) + (R2 + T2)d8§{n—k(1)n (35)
M has principal curvatures 7”%:}%”2 with multiplicity & and #\/ﬁ with multiplicity n — k
. erefore, the trace of the shape operator o in H™ is ERAnr’ - \We have

25|. Theref h f the sh f M in H™P(R) is 20w

the following;:

Lemma 6.1 Let M := S*(r) x H" *(/R? + 12) be a hypersurface in H"t1(R) C R?+2,
Then
(i) M is non-minimal, therefore, ¢ : M & H"T1(R) is not harmonic;

(11)) M has two constant principal curvatures, with constant multiplicities.

In order to getting new non-trivial Dirac-harmonic maps, we construct a spinor field
along a hypersurface with two constant principal curvatures in a Riemannian manifold of

constant curvature. We shall be using the following ranges of indices:

1§’Lv‘7,§k» k+]~§ra$7"'§na 1§a,6,~~<n.

Lemma 6.2 Let ¢ : M™ & N™"L(¢c) be a hypersurface with two principal curvatures \

and p in a Riemannian manifold of constant curvature ¢, where A has the multiplicity k and

18



w has the multiplicity n — k, and 1 € T(SM @ ¢~1TN) is defined by
rlzb = i€ \I/®¢*(Ez) + e ©®¢*(€r) +xQv

where v is the unit normal vector of M, ¥, ®, x € T'(XM) and e, is a local orthonormal

basis of M such that €; is the eigenvector of A\ and €, is the eigenvector of . Then
RY(6, ¢) = 2¢[Re(e; - @, W)e; — Re(e, - @, U)e,|; (36)
RN (¢, 1) = —2cRe(x, k¥ + (n — k)®)v; (37)
D= -2V U4 e-dU+Age; - X) @ & — 2V, @+ 6, - B + pge, - X) @ e (38)
By = (39)

Proof: Denote the distributions of the spaces of principal vectors corresponding to A

and pu by Dy and D,,, i.e.
Dy :={veTM]|Av = v}, D, ={veTM|Av = v}
where A is the shape operator of ¢. Then
€ € Dy, e €D, (40)

and 1 is well-defined. Note that the multiplicities of the two principal curvatures are con-
stant. Thus Dy and D, are completely integrable [24]. In particular, we may choose a local
orthonormal frame field {¢;, €.} near  with V. _eg|, = 0 and satisfying (40).
Denote 47 by
wT =9 Q® Qb*(ea)'
Then
d = )
= €5 V(e )
= €3 [(Ve[,ei) W€ - Veﬁ\ll]

41
€5 € Ve, ¥ (41)
= VU =356 € Ve,V
= 2V, VU —¢ - @VU.
Similarly we have
a¢r = _2Ve,‘q> — € (?‘I’ (42)
By using (25), we have
$¢=a¢a®6a+(@x)®V_<B(€m 6ﬂ)7 1/>604'X®65' (43)
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Here we have used Vv = 0. Plugging (41) and (42) into (43) and using the Weingarten

equation yield

Dy = —[2V. VU +¢€- PV + Blea, €), V)ea - X] @€
—[2Ve, @ + € - §P + Blea, €), vV)ea - x| @ & + (Px) @ v
= —(2V U +¢ - Jv + Ag€i - X) ® €
—(2Ve, @+ € - PP + pger - x) @ € + (IX) O v

Thus we obtain (38) and (39).
Note that N"*1(c) has constant sectional curvature c. Consider ¢,, v as a local orthonor-

mal frame field of ¢~'T'N. By simple calculations, we have
RT(¢7 1/J> = 20R6<¢6a €a - ¢a>65? (44)

RN(p, 1) = 2cRe(x, €4 - V)0 (45)

By using the skew-symmetry relation of the Clifford product and the property of Hermitian

metric we have

Re(', € -7y = Rele; - VU, ¢; - ¢j - V) = —Rele; - ¥, ¥) =0, (46)
Re<¢i, €r - ¢T> = _Re<€i : \Ilv ¢>
= Re(V,¢; - D) (47)

= Rele; - ®, U) = Rele; - ®, U).

Similarly, we have
R€<’ll)r, €; - W> = 7R6<€7“ : (P, \Ij>7 (48)

Re(y", €5 - ¢°) = 0. (49)

Substituting (46), (47), (48) and (49) into (44) yields

RT(¢7 1/’) = 26R€<wia €5 - ¢J>€z + 2CR6<11}Z.7 [ 1/}T>67:
+2cRe(y", € - i) e, + 2cRe(Y, €4 - V%€,
= 2c(Re(e; - @, U)e; — Rele, - @, U)e,).

Finally, using (10) and (45) we obtain (37). O

7 Dirac-harmonic maps from surfaces 11

In this section, we give first a useful criterion for a class of maps from surfaces into a three-

dimensional Riemannian manifold of constant curvature to be Dirac-harmonic. By using
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this criterion we manufacture Dirac-harmonic maps (¢, 1) from surfaces for which ¢ is not

harmonic.

Theorem 7.1 Let ¢ : M? & N3(c) be a surface with two principal curvatures X and p in
a Riemannian manifold of constant curvature c, where X # p, and let ¢ € T(EM ®@ ¢ 1TN)
be defined by
1/1261"1’®¢*(61)—§€2'\I’®¢*(€2)+X®V

where v is unit normal vector of M, ¥, x € T'(XM) and {e1, €2} is a local orthonormal basis
of M such that €, is the eigenvector of A and ey is the eigenvector of p. Then (¢, V) is a
Dirac-harmonic map from M into N if and only if

(i) x is a harmonic spinor;

(ii) c(§ — 1)Re(x, V)v = H;

(11i) €1 - Ve, U — €3 - Ve, ¥ = Ax.

Proof Take ® = —£W. Substituting this into (36) we get

RE(p, ) = 2c[Re(er- (—4V), U)er — Re(ex - (—5 V), U)es]
= 20% [R6<62 . \IJ, \If>€2 - R6<61 . \I’, \I/>€1] =0.

Let us assume that (i) (ii) and (iii) hold. From (37) we have
N _ H _ oM _
RY (¢, ) = —2cRe(x, ¥ — X\I/>1/ = 2C(X —1)Re(x, Y)v = 2H.
By using (39) we obtain
By = (@) ev=0.

From (iii) we have

€ - VEQ(fgxp) —e vel(fgqf) = % €1 Ve, U — 6 Ve, U] = px.
Together with (38) and (iii) we have

lﬁTw = —(2V U +e-JU+Ae-x) @6

— (2V62(—§\I/) + €9 - a(—§\11) + peg - X) ® €
€1- (261 -V, U — @0 — \x) ® 1
+éo - (262V62(—§\I!) — (?(—%\Il) — ux) ® €
= e -(1- V¥ —€e- -V, ,U—Ax)®e
+€9 - (62 Ve (=5¥) —€e1 - Ve, (=5¥) — ux) ® €9
(€1:0) @€+ 5(e2-0) ®ex =0.

From Lemma 5.1 we see that (¢, ¢) is a Dirac-harmonic map.
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Conversely, if (¢, 1) is a Dirac-harmonic map, then it is easy to see from Lemma 5.1
that (i) (ii) and (iii) hold. O

Remark In fact ¢ : S*(r) x H'(VR? 4+ r2) — H3(R) has two constant principal cur-
vatures A and p, where A\ # u ( see proof of Theorem 3 below).

Proof of Theorem 3 Let
M = SY(r)x H' (VR2 +12) = {(21, y1; T2, y2) | 2 +y; =r?, 23—y3 = —(R*+r?), yo > 0}
be parameterized as

M = (R/27rZ) x R =

{(rcosg, rsin ¢, VR2 +r2sinh ——t— V/R2 + 12 cosh ——L—) | (6, t) € [0, 277) x R} .

v VRZ+r2’ VRZ {2
(50)
The induced metric on M is the flat metric
do* + dt*. (51)
Since 2[*%*] = 2, we use "two-component" spinors. We identify the "untwisted" spinor

bundle on M with [(R/27rZ) x R] x C?, that is to say, the spinor on M is a single periodic
spinor on R? [1, 21]. Let ¢; = % and e = %. Then €; and €3 acting on spinor fields can

be identified by multiplication with matrices [9, 10]

0'1:<0 1), 0‘2:<9 i), Z:\/jl (52)
-1 0 1 0

Since the metric (51) is flat, V = d is the Levi-Civita connection on 1-forms. Hence we have

Ve, = €a (53)

€a

on XM [17, 22].

We take a constant xy = < ) € C2?2. Then x is a harmonic spinor on M. Let us

a
b

consider a spinor

U= ( ! ) : (R/277rZ) x R — C? (54)
g
on M satisfying
€1- Ve, U —e -V, U =M\y (55)

where A is a real constant. By using (52) and (53), (55) is equivalent to

o .0
(69 - Zat) g = Aa, (56)
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(aao—Ha)f Ab. (57)

For arbitrary m € {0, 1, - - -}, we consider g : (R/27rZ) x R — C defined by

n=Y ). (58)
k=—m
From (56) and (58) we have
99 ity i N~ ite /
da= 38— il - TZke olt) =1 30 0 =1 3 ¢ ko) —rai).

Hence we take g satisfying
—ig,(t) = Aa for k=0 (59)
kgi(t) —rg,.(t) =0 for k#0

One can verify that

i\at + ¢ for k=0
gi(t) = { 0

cpert for k#0
satisfies (59). Plugging this into (58) yields

g(0,t) Z cwer T 4 iat. (60)
k=—m

Similarly, the following function
f:(R/2rrZ) xR — C

defined by
106, 1) Z dye ™ THHO) 4 \bt (61)

k=—m

satisfies (57). Plugging (60) and (61) into (54) yields

dpe= !
\Il:z')\t( >+Ze (k )
k=—m Ck;eT

Consider ¢ : M = Sl( ) x HY(VR? +712) — H3(R). Then H3(R) has constant sectional

curvature ¢ = — 5. The principal curvatures of ¢ are (cf. Section 6)
oV RZ + 2 B r
R T RURE 2
and therefore the mean curvature of ¢ is
- R? +2r?
2RrvVR2 + 12
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By a straightforward computation one obtains

(o) e e

Now we will find ¢ and dj, such that (ii) in Theorem 7.1 holds.

(x; \I/}:a(i)\bt—i— > dke?”“f’)) +b<i)\at+ > cw“”“”) =)+ (1)

k=—m k=—m

where

(I) = ai\bt + bidat = —i(ab + ba)\ = —2)\iRe(ab),

(Il =a Y deertH0 45 " gper (40,

k=—m k=—m

Note that (I) is purely imaginary. Hence

Re(x, ¥) Re(I)

= Xl Re |adie T L Re békef(t—i‘g)}
= NIl Re |ode T[4 5T Re bE_ke*%(tﬂ'e)]
= Ype_n Re acike_iée_kb@ikei%e} okt

= Ykt Re |(ady —&-Bc_k)e—i?@} ekt

It follows that the sufficient conditions on ¢ and dj, for (ii) in Theorem 7.1 to hold are

o VRZ +r2(R? + 22
Re(ady + bey) = (R 2r)
2rR
and
acik+50_k =0
for k ==+1,.--,&+m. O
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