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Abstract

We construct explicit examples of Dirac-harmonic maps (φ, ψ) between Rieman-

nian manifolds (M, g) and (N, g′) which are non-trivial in the sense that φ is not

harmonic. When dimM = 2, we also produce examples where φ is harmonic, but

not conformal, and ψ is non-trivial.
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1 Introduction

A Dirac-harmonic map is a pair that couples a map between Riemannian manifolds with a

nonlinear spinor field along that map [10]. Dirac-harmonic maps arise from the supersym-

metric nonlinear sigma model of quantum field theory [12]. They are a generalization and

combination of harmonic maps and harmonic spinors while preserving the essential proper-

ties of the former.

Both harmonic maps and harmonic spinors have been extensively studied. See, for instance

[13, 15]. In particular, many non-trivial examples of harmonic maps and harmonic spinors

∗Supported by the National Natural Science Foundation of China 10771004
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are known [2, 3, 4, 13]. A harmonic map and a vanishing spinor, or conversely a constant map

and a harmonic spinor constitute an example of a Dirac-harmonic map. A natural question

then is whether there exist other examples that couple a map and a spinor in a non-trivial

manner. The purpose of this paper therefore is to manufacture non-trivial examples of

Dirac-harmonic maps between Riemannian manifolds. For hypersurfaces in a Riemannian

manifold of constant sectional curvature, we prove the following:

Theorem 1 Let M be an n-dimensional manifold which is immersed in an (n + 1)-

dimensional Riemannian manifold N(c) of constant sectional curvature c. Assume Φ is a

harmonic spinor on M , and Ψ ∈ Γ(ΣM) satisfies

−2cRe〈Φ, Ψ〉ν = H. (1)

where H is the mean curvature vector field of φ, ν is the unit normal field of φ and ΣM is

the spinor bundle of M . We define a spinor field ψ along the immersion φ by

ψ = Σαǫα · Ψ ⊗ φ∗(ǫα) + Φ ⊗ ν

where ǫα is a local orthonormal basis of M .

(i) If n = 2, φ is minimal and Ψ satisfies

ǫ1 · ∇ǫ1Ψ − ǫ2 · ∇ǫ2Ψ = λ1Φ (2)

where λ1 is the principal curvature in the principal direction ǫ1, then (φ, ψ) is Dirac-

harmonic.

(ii) If n ≥ 3, φ is totally umbilical and Ψ is a twistor spinor satisfying

/∂Ψ = −n〈H, ν〉
n − 2

Φ (3)

then (φ, ψ) is Dirac-harmonic.

Using Theorem 1, we can construct many Dirac-harmonic maps (φ, ψ) from R
n into

H
n+1(−1) where n ≥ 3 and φ : R

n → H
n+1(−1) is not harmonic (see Section 5, Example

3).

Finding explicit non-trivial explicit solutions of (2) and (3) turns out to be difficult.

However in some special cases, we are able to get the non-trivial solutions, as in Example 3.

Let us take a look at the following special case of (i) of Theorem 1: when Φ = 0, then

(φ, ψ) is Dirac-harmonic if φ : M → N(c) is minimal and Ψ is a twistor spinor. In fact, in

the general case, we have the following:
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Theorem 2 Let M be a Riemann surface and N a Riemannian manifold. Assume

φ : M → N is a harmonic map and Ψ ∈ Γ(ΣM) is a twistor spinor. We define a spinor

field ψφ, Ψ along map φ by

ψφ, Ψ := Σαǫα · Ψ ⊗ φ∗(ǫα) (4)

where ǫα (α = 1, 2) is a local orthonormal basis of M . Then (φ, ψφ, Ψ) is a Dirac-harmonic

map.

By using Theorem 2, we can manufacture Dirac-harmonic maps (φ, ψφ, Ψ) from a surface

for a (not necessarily conformal) map φ (see Section 4). Theorem 2 generalizes the result

of [10] that was derived for the special case when both source and target manifolds are

two-dimensional spheres.

Finally, by investigating spinor fields along a hypersurface with two constant principal

curvatures in a Riemannian manifold of constant curvature, we get Dirac-harmonic maps

(φ, ψ) from surfaces for which φ is not harmonic (see Section 6 and Section 7).

Let us describe our construction. Let M := S1(r)×H1(
√

R2 + r2) be a hyperbolic surface

of revolution (see Section 6 for definitions). Let a and b be arbitrary complex constants and

m be an arbitrary non-negative integer. For each k ∈ {0, ±1 · · · ,±m}, let ck and dk be

complex constants satisfying

Re(ad̄0 + b̄c0) =

√
R2 + r2(R2 + 2r2)

2rR
(5)

and

ad̄k + b̄c−k = 0. (6)

We obtain the following result (see Section 7):

Theorem 3 Let φ : M →֒ H3(R) be an isometric immersion from M into a hyperbolic

space and ψ ∈ Γ(ΣM ⊗ φ−1TH3(R)) defined by

ψ = ǫ1 · Ψ ⊗ φ∗(ǫ1) −
r2

R2 + r2
ǫ2 · Ψ ⊗ φ∗(ǫ2) + χ ⊗ ν

where

ν(θ, t) = −
(√

R2 + r2

R
cos

θ

r
,

√
R2 + r2

R
sin

θ

r
,

r

R
sinh

t√
R2 + r2

,
r

R
cosh

t√
R2 + r2

)

is a unit normal vector of M , and χ =

(

a

b

)

Ψ(θ, t) = i

√
R2 + r2

rR
t

(

b

a

)

+

m
∑

k=−m

ei k
r

θ

(

dke−
k
r

t

cke
k
r

t

)
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are the spinors on M with respect to the "untwisted" spinor bundle on M satisfying (5) and

(6). {ǫ1, ǫ2} is a local orthonormal basis of M such that

ǫ1(θ, t) =

(

− sin
θ

r
, cos

θ

r
, 0, 0

)

is a principal curvature
√

R2+r2

rR
direction and

ǫ2(θ, t) =

(

0, 0, cosh
t√

R2 + r2
, sinh

t√
R2 + r2

)

is a principal curvature r

R
√

R2+r2
direction. Then (φ, ψ) is a Dirac-harmonic map from M

into H3(R) for which φ is not harmonic.

The proofs of our results are essentially of an algebraic nature. They carefully match the

algebraic structure of the curvature term in the Dirac-harmonic map equation, as displayed

in the next section, with the special properties of twistor spinors or those of particular sub-

manifolds defined in terms of ambient curvature properties in spaces of constant curvature.

2 Dirac-harmonic maps

Let (N, h) be a Riemannian manifold of dimension n′, (M, g) be an n-dimensional Rie-

mannian manifold with fixed spin structure, ΣM its spinor bundle, on which we have a

Hermitian metric 〈·, ·〉 induced by the Riemannian metric g(·, ·) of M . Let φ be a smooth

map from (M, g) to (N, h) and φ−1TN the pull-back bundle of TN by φ. On the twisted

bundle ΣM ⊗ φ−1TN there is a metric (still denoted by 〈·, ·〉) induced from the metrics

on ΣM and φ−1TN . There is also a natural connection ∇̃ on ΣM ⊗ φ−1TN induced from

those on ΣM and φ−1TN (which in turn come from the Levi-Civita connections of (M, g)

and (N, h), resp.).

For X ∈ Γ(TM), ξ ∈ Γ(ΣM), denote by X · ξ their Clifford product, which satisfies the

skew-symmetry relation

〈X · ξ, η〉 = −〈ξ, X · η〉 (7)

as well as the Clifford relations

X · Y · ψ + Y · X · ψ = −2g(X, Y )ψ

for X, Y ∈ Γ(TM), ξ, η ∈ Γ(ΣM).

Let ψ be a section of the bundle ΣM ⊗ φ−1TN . The Dirac operator along the map φ is

defined as

/Dψ := ǫα · ∇̃ǫα
ψ
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where ǫα is a local orthonormal basis of M . For more details about the spin bundle and

Dirac operator, we refer to [17, 21].

Set

χ := {(φ, ψ) | φ ∈ C∞(M, N) and ψ ∈ C∞(ΣM ⊗ φ−1TN)}.

On χ, we consider the following functional

L(φ, ψ) :=
1

2

∫

M

[

|dφ|2 + 〈ψ, /Dψ〉
] ∗1M .

This functional couples the two fields φ and ψ because the operator /D depends on the map

φ. The Euler-Lagrange equations of L(φ, ψ) then also couple the two fields; they are:

τ(φ) = R(φ, ψ) (8)

and

/Dψ = 0 (9)

where τ(φ) := trace∇dφ is the tension field of the map φ and R(φ, ψ) is defined by

R(φ, ψ) =
1

2
Ri

jkl〈ψk, ∇φj · ψl〉 ∂

∂yi
,

where

ψ = ψi ⊗ ∂

∂yi
,

(dφ)♯ = ∇φi ⊗ ∂

∂yi
,

Rφ−1TN

(

∂

∂yk
,

∂

∂yl

)

∂

∂yj
= Ri

jkl

∂

∂yi

where ♯ : T ∗M ⊗φ−1TN → TM ⊗φ−1TN is the standard (“musical”) isomorphism obtained

from the Riemannian metric g.

Solutions (φ, ψ) to (8) and (9) are called Dirac-harmonic maps from M into N [9].

We now start with some differential geometric identities: Let ǫα be a local orthonormal

basis of M . By using the Clifford relations we have

ǫα · ǫβ · ψ = (−1)δαβ+1ǫβ · ǫα · ψ =

{

−ψ, α = β

−ǫβ · ǫα · ψ, α 6= β
(10)

for ψ ∈ Γ(ΣM).

Lemma 2.1R(φ, ψ) ∈ Γ(φ−1TN); in particular, it is real.
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Proof For any (not necessarily orthonormal) frame {ǫi} on φ−1TN , we put

ψ = ψa ⊗ ǫa, (11)

(dφ)♯ = ∇φa ⊗ ǫa, (12)

Rφ−1TN (ǫa, ǫb)ǫc = Rd
abcǫd

where ♯ : T ∗M ⊗ φ−1TN → TM ⊗ φ−1TN is the musical isomorphism as before. Take

ǫa = ui
a

∂

∂yi
,

then

ψi = ui
aψa, ∇φi = ui

a∇φa, uj
auk

bal
cR

i
jkl = Rd

abcu
i
d.

A simple calculation gives following

Ri
jkl〈ψk, ∇φj · ψl〉 ∂

∂yi
= Ra

bcd (φ(x)) 〈ψc, ∇φb · ψd〉ǫa (φ(x)) . (13)

It follows that the definition of R(φ, ψ) is independent of the choice of frame. Moreover,

from the skew-symmetry of Ri
jkl with respect to the induces k and l, we have

1
2Ri

jkl〈ψk, ∇φj · ψl〉 = 1
2Ri

jkl〈∇φj · ψl, ψk〉
= 1

2Ri
jlk〈∇φj · ψk, ψl〉

= − 1
2Ri

jkl〈∇φj · ψk, ψl〉 = 1
2Ri

jkl〈ψk, ∇φj · ψl〉.

It follows that R(φ, ψ) is well-defined vector field on φ−1TN , i.e., R(φ, ψ) ∈ Γ(φ−1TN). ¤

A spinor (field) Ψ ∈ Γ(ΣM) is called a twistor spinor if Ψ belongs to the kernel of the

twistor operator, equivalently,

∇XΨ +
1

n
X · /∂Ψ = 0 ∀X ∈ Γ(TM)

where n is the dimension of Riemannian manifold M , ΣM is the associated spinor bundle

of M and /∂ is the usual Dirac operator (cf. [1, 14, 20, 23]).

In fact the concept of a twistor spinor (in particular, a Killing spinor) is motivated by

theories from physics, like general relativity, 11-dimensional (resp. 10-dimensional) super-

gravity theory, supersymmetry (see, for example [5, 8, 11]).

3 Dirac-harmonic maps from surfaces I

In this section, we consider two-dimensional Riemannian manifolds (M, g). Since a metric

on a two-dimensional Riemannian manifold defines a conformal structure, we then also have
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the structure of a Riemann surface. In fact, since the functional L and its critical points, the

Dirac-harmonic maps are conformally invariant (see [10]), in our subsequent considerations,

we only need the conformal structure in place of the full Riemannian metric g.

Lemma 3.1 Let Ψ be a section of ΣM . Then 〈ǫα ·Ψ, ǫβ · ǫγ ·Ψ〉 is purely imaginary for

any α, β, γ where ǫα (α = 1, 2) is a local orthonormal basis of M .

Proof: For the Hermitian product 〈·, ·〉 on the spinor bundle ΣM , we have

〈ǫα · Ψ, ǫβ · ǫγ · Ψ〉 = 〈ǫβ · ǫγ · Ψ, ǫα · Ψ〉
= −〈ǫγ · Ψ, ǫβ · ǫα · Ψ〉
= −(−1)δαβ+1〈ǫγ · Ψ, ǫα · ǫβ · Ψ〉
= (−1)δαβ+1〈ǫα · ǫγ · Ψ, ǫβ · Ψ〉
= (−1)δαβ+1(−1)δγα+1〈ǫγ · ǫα · Ψ, ǫβ · Ψ〉
= (−1)δαβ+δγα〈ǫγ · ǫα · Ψ, ǫβ · Ψ〉
= −(−1)δαβ+δγα〈ǫα · Ψ, ǫγ · ǫβ · Ψ〉
= −(−1)δβγ+1(−1)δαβ+δγα〈ǫα · Ψ, ǫβ · ǫγ · Ψ〉
= (−1)δαβ+δβγ+δγα〈ǫα · Ψ, ǫβ · ǫγ · Ψ〉 = −〈ǫα · Ψ, ǫβ · ǫγ · Ψ〉

where we have used (10) and (7). It follows that

Re〈ǫα · Ψ, ǫβ · ǫγ · Ψ〉 = 0.

¤

Proposition 3.2 For a map φ : (M, g) → (N, h) and a spinor Ψ ∈ Γ(ΣM), we define

a spinor field ψφ, Ψ along the map by (4). Then

(i)R(φ, ψφ, Ψ) ≡ 0;

(ii) /Dψφ, Ψ = −Ψ ⊗ τ(φ) − 2(∇ǫα
Ψ + 1

2ǫα · /∂Ψ) ⊗ φ∗(ǫα) where ǫα (α = 1, 2), as always,

is a local orthonormal basis of M .

Remark (a) The Dirac-harmonicity of (φ, ψφ, Ψ) implies the harmonicity of φ by (i)

and (8).

(b) (∇ǫα
Ψ + 1

2ǫα · /∂Ψ) ⊗ φ∗(ǫα) is globally defined.

Proof of Proposition 3.2: (i) Define local vector fields ∇φi on M by

∇φi := (dφ)♯(dyi)
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where {dyi} is the natural local dual basis on N . By using (4), we have

ψi := ψφ, Ψ(dyi) = ∇φi · Ψ

Set dφ = φi
αθα ⊗ ∂

∂yi where θα is the dual basis for ǫα. Then ∇φi =
∑

φi
αǫα and

〈ψk, ∇φj · ψl〉 = φk
αφj

βφl
γ〈ǫα · Ψ, ǫβ · ǫγ · Ψ〉.

Together with Lemma 3.1, we conclude that Ri
jkl〈ψk, ∇φj ·ψl〉 is purely imaginary. On the

other hand, from the proof of Lemma 2.1, Ri
jkl〈ψk, ∇φj · ψl〉 must be real, and hence

R(φ, ψφ, Ψ) ≡ 1

2
Ri

jkl〈ψk, ∇φj · ψl〉 ∂

∂yi
≡ 0.

(ii) By using (10) we have

∇ǫα
Ψ+

1

2
ǫα·/∂Ψ = ∇ǫα

Ψ+
1

2
ǫα·

[

Σǫβ · ∇ǫβ
Ψ

]

=

{

1
2 (∇ǫ1Ψ + ǫ1 · ǫ2 · ∇ǫ2Ψ), α = 1
1
2 (∇ǫ2Ψ − ǫ1 · ǫ2 · ∇ǫ1Ψ), α = 2

. (14)

We choose a local orthonormal frame field ǫα such that ∇ǫα
ǫβ = 0 at x ∈ M . Then

/Dψφ, Ψ = ǫβ · ∇̃ǫβ
ψφ, Ψ

= ǫβ · ∇̃ǫβ
(ǫα · Ψ ⊗ φ∗(ǫα))

= ǫβ ·
[

∇ǫβ
(ǫα · Ψ) ⊗ φ∗(ǫα) + ǫα · Ψ ⊗∇ǫβ

(φ∗(ǫα))
]

= ǫβ ·
[

((∇ǫβ
(ǫα) · Ψ + ǫα · ∇ǫβ

Ψ) ⊗ φ∗(ǫα) + ǫα · Ψ ⊗∇ǫβ
(φ∗(ǫα))

]

= ǫβ · ǫα ·
{

∇ǫβ
Ψ ⊗ φ∗(ǫα) + Ψ ⊗∇ǫβ

(φ∗(ǫα))
}

= (Σα=β + Σα 6=β)ǫβ · ǫα ·
{

∇ǫβ
Ψ ⊗ φ∗(ǫα) + Ψ ⊗∇ǫβ

(φ∗(ǫα))
}

= (I) + (II).

(15)

where
(I) = ǫα · ǫα · {∇ǫα

Ψ ⊗ φ∗(ǫα) + Ψ ⊗∇ǫα
(φ∗(ǫα))}

= −{∇ǫα
Ψ ⊗ φ∗(ǫα) + Ψ ⊗ [∇ǫα

(φ∗(ǫα)) − φ∗(∇ǫα
(φ∗(ǫα))]}

= −{∇ǫα
Ψ ⊗ φ∗(ǫα) + Ψ ⊗ τ(φ)}

(16)

and

(II) = ǫ1 · ǫ2 · {∇ǫ1Ψ ⊗ φ∗(ǫ2) + Ψ ⊗∇ǫ1(φ∗(ǫ2))}
+ǫ2 · ǫ1 · {∇ǫ2Ψ ⊗ φ∗(ǫ1) + Ψ ⊗∇ǫ2(φ∗(ǫ1))}

= ǫ1 · ǫ2 · {∇ǫ1Ψ ⊗ φ∗(ǫ2) −∇ǫ2Ψ ⊗ φ∗(ǫ1) + Ψ ⊗∇ǫ1(φ∗(ǫ2)) − Ψ ⊗∇ǫ2(φ∗(ǫ1)}
= ǫ1 · ǫ2 · {∇ǫ1Ψ ⊗ φ∗(ǫ2) −∇ǫ2Ψ ⊗ φ∗(ǫ1)}

(17)

here we have used the following

∇ǫ1(φ∗(ǫ2)) = (∇ǫ1φ∗)(ǫ2) = (∇ǫ2φ∗)(ǫ1) = ∇ǫ2(φ∗(ǫ1))
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Substituting (16) and (17) into (15) yields

/Dψφ, Ψ = −{∇ǫα
Ψ ⊗ φ∗(ǫα) + Ψ ⊗ τ(φ)} + ǫ1 · ǫ2 · {∇ǫ1Ψ ⊗ φ∗(ǫ2) −∇ǫ2Ψ ⊗ φ∗(ǫ1)}

= −Ψ ⊗ τ(φ) − (∇ǫ1Ψ + ǫ1 · ǫ2 · ∇ǫ2Ψ) ⊗ φ∗(ǫ1)

+(ǫ1 · ǫ2 · ∇ǫ1Ψ −∇ǫ2Ψ) ⊗ φ∗(ǫ2)

(18)

Plugging (14) into (18) yields (ii). ¤

4 Proof of Theorem 2 and Examples

Proof of Theorem 2 By using (i) of Proposition 3.2 and the harmonicity of φ we have

R(φ, ψφ, Ψ) ≡ 0 ≡ τ(φ).

Thus, (φ, ψφ, Ψ) satisfies (8). On the other hand, since Ψ is a twistor spinor and n = 2 we

get

∇ǫα
Ψ +

1

2
ǫα · /∂Ψ = 0.

Plugging this into the equation in (ii) of Proposition 3.2 yields /Dψφ, Ψ = 0. It follows that

(φ, ψφ, Ψ) satisfies (9), and hence (φ, ψφ, Ψ) is a Dirac-harmonic map. ¤

Corollary 4.1 Let ψφ, Ψ be defined by (4) from a branched minimal conformal immersion

φ : M →֒ N and a twistor spinor Ψ ∈ Γ(ΣM). Then (φ, ψφ, Ψ) is a Dirac-harmonic map.

This corollary comes from the fact that a conformal map from a Riemann surface is

harmonic if and only if it is a branched minimal immersion [6]. Say that an almost Hermitian

manifold (N, h, J) is (1, 2)-symplectic if

∇N
Z̄

W ∈ Γ(T 1, 0N) for every Z, W ∈ Γ(T 1, 0N).

Lichnerowicz proved in [22] that any holomorphic map from a cosymplectic manifold to

a (1, 2)-symplectic manifold is harmonic. Since a Riemann surface is automatically cosym-

plectic, we have the following:

Corollary 4.2 Let ψφ, Ψ be defined by (4) from a holomorphic map φ : M → N and a

twistor spinor Ψ ∈ Γ(ΣM) where N is a (1, 2)-symplectic manifold. Then (φ, ψφ, Ψ) is a

Dirac-harmonic map.

9



Example 1 (non-conformal Dirac-harmonic maps) Suppose that R
2 is given the metric

ds2 = 2dzdz̄, where z = x + iy is the standard complex coordinate, and let e0, · · · , en be a

unitary basis of C
n+1. Define φ : R

2 → CPn by

φ(z) =





n
∑

j=0

rj exp(µjz − µjz)ej





where r0, · · · , rn are strictly positive real numbers and µ0, · · · , µn are complex numbers of

unit modulus satisfying
n

∑

j=0

r2
j = 1,

n
∑

j=0

rjµj = 0.

Then φ is a harmonic map [6, 19]. In particular, φ is totally real, and it is conformal if and

only if
n

∑

j=0

rjµ
2
j = 0.

Let us consider a twistor spinor Ψ : R
2 → ∆2 = C

2 on R
2 (cf [18]). According to Example

1 of [1] the set of all twistor spinors on R
2 is given by

Ψ(z) = Ψ0 −
1

2
z · Ψ1

with Ψ0, Ψ1 ∈ ∆2. From Theorem 2, we obtain that (φ, ψφ, Ψ) is a Dirac-harmonic map

from R
2 into CPn where

ψφ, Ψ := Σαǫα · Ψ ⊗ φ∗(ǫα)

where ǫα (α = 1, 2) is a local orthonormal basis of M . Furthermore, φ is non-conformal if
∑n

j=0 rjµ
2
j 6= 0.

Example 2 (Dirac-harmonic sequence) For each p = 0, · · · , n, let φp : S2 → CPn be

given by

φp[z0, z1] = [fp, 0(z0/z1), · · · , fp, n(z0/z1)]

where [z0, z1] ∈ CP1 = S2, and for r = 0, · · · , n, fp, r(z) is given by

fp, r(z) =
p !

(1 + zz̄)p

√

Cn
r zr−p

∑

k

(−1)kCr
p−kCn−r

k (zz̄)k

where

Cn
r =

n(n − 1) · · · (n − r + 1)

r!
.

Then φp is a conformal minimal immersion (therefore it is a harmonic map) with induced

metric

ds2
p =

n + 2p(n − p)

(1 + zz̄)2
dzdz̄.
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According to Theorem 7 of [1] the twistor spinors on (S2, ds2
p) are given by

Ψ(z) =
Ψ0 + z · Ψ1√

1 + zz̄

where Ψ0, Ψ1 ∈ ∆2 are constants and where we identify the new and old spin bundles as

in [1]. Thus we obtain a Dirac-harmonic sequence (φp, ψφp, Ψ) from S2 into CPn (cf. [7])

where

ψφp, Ψ := Σαǫα · Ψ ⊗ φp∗(ǫα).

5 Dirac-harmonic maps from Riemannian manifolds

In this section, we are going to construct Dirac-harmonic maps (φ, ψ) for which φ is not

harmonic.

Let (N, h) be a Riemannian manifold of dimension n′, (M, g) be an n-dimensional Rie-

mannian manifold with fixed spin structure, ΣM its spinor bundle, with induced Hermitian

metric 〈·, ·〉. Let φ : M →֒ N be an isometric immersion which means that the natural

induced Riemannian metric on M from the ambient space N coincides with the original one

on M . We identify M with its immersed image in N . For each x ∈ M the tangent space

TxN can be decomposed into a direct sum of TxM and its orthogonal complement T⊥
x M .

Such a decomposition is differentiable. Thus, we have an orthogonal decomposition of the

tangent bundle TN along M

TN |M = φ−1TN = TM ⊕ T⊥M.

For a global section R(φ, ψ) on φ−1TN (see Section 2), we have

R(φ, ψ) = RT (φ, ψ) + RN (φ, ψ)

where

RT (φ, ψ) ∈ Γ(TM), RN (φ, ψ) ∈ Γ(T⊥M).

Similarly, for /Dψ ∈ Γ(ΣM ⊗ φ−1TN), we have

/Dψ = /D
T
ψ + /D

N
ψ

where

/D
T
ψ ∈ Γ(ΣM ⊗ TM), /D

N
ψ ∈ Γ(ΣM ⊗ T⊥M).

The mean curvature vector of M in N is

H =
1

n
τ(φ) ∈ Γ(T⊥M)

11



where τ(φ) is the tension field of the map φ. Hence we have the following:

Lemma 5.1Let φ : M →֒ N be an isometric immersion with the mean curvature vector

H and ψ ∈ Γ(ΣM ⊗φ−1TN). Then (φ, ψ) is a Dirac-harmonic map from M into N if and

only if

(i) RT (φ, ψ) = 0;

(ii) RN (φ, ψ) = nH where n = dim M ;

(iii) /D
T
ψ = 0;

(iv) /D
N

ψ = 0.

In this section we shall be using the following ranges of indices:

1 ≤ α, β, · · · ≤ n, n + 1 ≤ s, t, · · · ≤ n′, 1 ≤ i, j, · · · ≤ n′.

Choose a local frame field {ǫi} of φ−1TN such that {ǫα} lies in the tangent bundle TM

and {ǫs} in the normal bundle T⊥M of M . By using (12) we have

∇φj =

n
∑

α=1

δj
αǫα. (19)

Plugging (19) into (13) yields

R(φ, ψ) =
1

2
Ri

αkl (x) 〈ψk, ǫα · ψl〉ǫi (x) . (20)

Choose a local orthonormal frame field {ǫα} near x ∈ M with ∇ǫα
ǫβ |x = 0. By (11) we have

/Dψ = /D(ψi ⊗ ǫi)

= ǫα · ∇̃ǫα
(ψi ⊗ ǫi)

= ǫα ·
[

(∇ǫα
ψi) ⊗ ǫi + ψi ⊗∇ǫα

ǫi

]

= (ǫα · ∇ǫα
ψi) ⊗ ǫi + ǫα ·

[

ψβ ⊗∇ǫα
ǫβ + ψs ⊗∇ǫα

ǫs

]

= /∂ψi ⊗ ǫi + ǫα · ψs ⊗∇ǫα
ǫs

(21)

at x.

Let Aν be the shape operator and ∇⊥
X the normal connection of M in N where X denotes

a tangent vector of M and ν a normal vector to M . Then

∇ǫα
ǫs = −Aǫs

ǫα + ∇⊥
ǫα

ǫs. (22)

Let B be the second fundamental form of M in N . Then B satisfies the Weingarten equation

〈B(X, Y ), ν〉 = 〈Aν(X), Y 〉 (23)

12



where X, Y ∈ Γ(TM). By using (22) and (23) we have

∇ǫα
ǫs = −〈B(ǫα, ǫβ), ǫs〉ǫβ + ∇⊥

ǫα
ǫs. (24)

By plugging (24) into (21) we obtain

/Dψ = /∂ψi ⊗ ǫi − 〈B(ǫα, ǫβ), ǫs〉ǫα · ψs ⊗ ǫβ + ǫα · ψs ⊗∇⊥
ǫα

ǫs. (25)

Let (· · ·)T and (· · ·)N denote the orthogonal projection into the tangent bundle ΣM⊗TM

and the normal bundle ΣM ⊗ T⊥M respectively.

Lemma 5.2 Let ψT be defined by

ψT = Σαǫα · Ψ ⊗ φ∗(ǫα)

from an isometric immersion φ : M →֒ N and a spinor Ψ ∈ Γ(ΣM) where ǫα is a local

orthonormal basis on M . Then

/D
T
ψ = −

[

2∇ǫβ
Ψ + ǫβ · /∂Ψ + 〈B(ǫα, ǫβ), ǫs〉ǫα · ψs

]

⊗ ǫβ (26)

where ψN = Σsψ
s ⊗ ǫs. In particular, if N = N(c) is a Riemannian manifold of constant

curvature c, then

RT (φ, ψ) = 0,

RN (φ, ψ) = −2ncRe〈ψs, Ψ〉ǫs

where n = dimM .

Proof Choose a local orthonormal frame field {ǫα} near x ∈ M with ∇ǫα
ǫβ |x = 0.

/∂ψα = /∂(ǫα · Ψ)

= ǫβ · ∇ǫβ
(ǫα · Ψ)

= ǫβ

[

(∇ǫβ
ǫα) · Ψ + ǫα · ∇ǫβ

Ψ
]

= ǫβ · ǫα · ∇ǫβ
Ψ

= −∇ǫα
Ψ −

∑

β 6=α ǫα · ǫβ · ∇ǫβ
Ψ

= −2∇ǫα
Ψ − ǫα · /∂Ψ.

(27)

Substituting (27) into (25) and taking the tangent projection yield (26). Now we assume that

N := N(c) is of constant curvature c. Then the components of the Riemannian curvature

tensor of N satisfy

Ri
jkl = c(δi

kδjl − δi
lδjk).

13



From which together with (20) we obtain

R(φ, ψ) = c(δi
kδαl − δi

lδαk)Re〈ψk, ǫα · ψl〉ǫi

= c
[

Re〈ψi, ǫα · ψα〉 − Re〈ψα, ǫα · ψi〉
]

ǫi

= 2cRe〈ψi, ǫα · ψα〉ǫi.

It follows that
RT (φ, ψ) = 2cRe〈ψβ , ǫα · ψα〉ǫβ

= 2cRe〈ǫβ · Ψ, ǫα · ǫα · Ψ〉ǫβ

= −2cRe〈ǫβ · Ψ, Ψ〉ǫβ = 0

(28)

and
RN (φ, ψ) = 2cRe〈ψs, ǫα · ψα〉ǫs

= 2cRe〈ψs, ǫα · ǫα · Ψ〉ǫs

= −2cRe〈ψs, Ψ〉ǫs.

Here we have used

〈ǫβ · Ψ, Ψ〉 = −〈ǫβ · Ψ, Ψ〉.

¤

We call a spinor Φ harmonic if it satisfies the Dirac equation without potential [3],

/∂Φ = 0

where /∂ is the usual Dirac operator [14].

In the rest of this section, we discuss hypersurfaces in a Riemannian manifold.

Lemma 5.3 Let φ : M →֒ N be an isometric immersion with codimension 1 and ψ ∈
Γ(ΣM ⊗ φ−1TN) defined by

ψ = Σαǫα · Ψ ⊗ φ∗(ǫα) + Φ ⊗ ν

where ν is unit normal vector of M , Ψ, Φ ∈ Γ(ΣM) and ǫα is a local orthonormal basis of

M . Then

(i)

/D
T
ψ = 0

if and only if for each β

2ǫβ · ∇ǫβ
Ψ − /∂Ψ = λβΦ (29)

where λβ is the principal curvature of M in the direction ǫβ;

14



(ii)

/D
N

ψ = 0

if and only if Φ is a harmonic spinor.

Proof It is easy to see that

〈B(ǫα, ǫβ), ν〉ǫα · Φ ⊗ ǫβ

is globally defined. Choose an adapted orthonormal frame of M such that

〈B(ǫα, ǫβ), ν〉 = λαδαβ

where λα is the principal curvature of φ. Plugging this into (26) yields

/D
T
ψ = −(2∇ǫβ

Ψ + ǫβ · /∂Ψ + λβǫβ · Φ) ⊗ ǫβ .

It follow that /D
T
ψ = 0 if and only if

2∇ǫβ
Ψ + ǫβ · /∂Ψ = −λβǫβ · Φ (30)

for each β. From (10), we see that (30) holds if and only if (29) holds for each β.

(ii) Note that M is a hypersurface. It follows that ∇⊥ν = 0. Plugging this into (25)

yields

/D
N

ψ = /∂Φ ⊗ ν + ǫα · Φ ⊗∇⊥
ǫα

ν = /∂Φ ⊗ ν

which immediately implies (ii). ¤

Corollary 5.4 Let φ : M →֒ N be an isometric immersion with codimension 1. If (φ, ψ)

is a Dirac-harmonic map then Φ is a harmonic spinor where

ψ = Σαǫα · Ψ ⊗ φ∗(ǫα) + Φ ⊗ ν

where ν is unit normal vector of M , Ψ, Φ ∈ Γ(ΣM) and ǫα is a local orthonormal basis of

M .

Proof of Theorem 1 (ii) For a totally umbilical hypersurface M , we can assume that

λ1 = λ2 = · · · = λn = 〈H, ν〉 (31)

15



where λα is the principal curvature of M . Note that Ψ is a twistor spinor. Hence from [1,

page 23, Theorem 2] the spinor field X · ∇Xψ does not depend on the unit vector field X.

Together with (3), we obtain

ǫ1 · ∇ǫ1Ψ = · · · = ǫn · ∇ǫn
Ψ =

1

n
/∂Ψ = −〈H, ν〉

n − 2
Φ

where n = dimM . It follows that

2ǫβ · ∇ǫβ
Ψ − /∂Ψ = −2〈H, ν〉

n − 2
Φ +

n〈H, ν〉
n − 2

Φ = 〈H, ν〉Φ.

Now (ii) can be obtained from (31), Lemma 5.1, Lemma 5.2 and Lemma 5.3 immediately.

(i) For a minimal immersion φ, we can assume that

λ1 = −λ2. (32)

On the other hand,

2ǫ1 · ∇ǫ1Ψ − /∂Ψ = −[2ǫ2 · ∇ǫ2Ψ − /∂Ψ].

Together with (2) and (32) we get (29) for β = 1, 2. Now (i) can be obtained from Lemma

5.1, Lemma 5.2 and Lemma 5.3 immediately. ¤

Example 3 We consider a totally umbilical hypersurface R
n in a hyperbolic space form

H
n+1(−1) where n ≥ 3. We recall the corresponding construction: For any two vectors X

and Y in R
n+2, we set

g(X, Y ) =

n+1
∑

i=1

XiY i − Xn+2Y n+2.

We define

H
n+1(−1) = {x ∈ R

n+2 | xn+2 > 0, g(x, x) = −1}.

Then H
n+1(−1) is a connected simply-connected hypersurface of R

n+2 and the restriction

of g to the tangent space of H
n+1(−1) yields a complete Riemannian metric of constant

curvature −1.

Consider the following small spheres [26]

R
n := {x ∈ H

n+1(−1) | xn+2 = xn+1 + 1}.

Then the inclusion map φ : R
n →֒ H

n+1(−1) is a totally umbilical isometric immersion with

respect to the induced metric. Furthermore its sharp operator is A = Id [16], that is, its

principal curvatures satisfy that

λ1 = · · · = λn = 1.
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It follows that H = ν. We take a constant Φ ∈ ∆n where

∆n = C
2k

for n = 2k, 2k + 1

is the vector space of complex n spinors (cf. [14] ). Then Φ is a harmonic spinor on R
n. Let

us consider a twistor spinor Ψ : R
n → ∆n on R

n satisfying

/∂Ψ = − n

n − 2
Φ

where n ≥ 3. Now we integrate the twistor equation

0 = ∇XΨ + 1
n
X · /∂Ψ

= ∇XΨ − 1
n
X ·

(

n
n−2Φ

)

= ∇XΨ + 1
2−n

X · Φ

along the line {sX | 0 ≤ s ≤ 1}, i.e.

Ψ(X) − Ψ(0) = (Ψ ◦ σ)(1) − (Ψ ◦ σ)(0)

=
∫ 1

0
d(Ψ◦σ)

ds
ds

=
∫ 1

0
(∇XΨ)ds

=
∫ 1

0
1

n−2X · Φds = 1
n−2X · Φ

where σ(s) := sX and Ψ(0) ∈ ∆n is constant (cf. [1]). It is easy to see that the solutions of

the equation /∂Ψ = − n
n−2Φ are given by Ψ(X) = Ψ(0) + 1

n−2X · Φ (cf.[1,P29, Example 1]).

Now we will find Ψ0 := Ψ(0) such that (1) holds. Note that 〈Φ, X · Φ〉 is purely imaginary.

Hence

〈Φ, Ψ〉 = 〈Φ, Ψ0 + 1
n−2X · Φ〉

= 〈Φ, Ψ0〉 + 1
n−2 〈Φ, X · Φ〉 = 〈Φ, Ψ0〉 + 1

n−2Im〈Φ, X · Φ〉.

It is easy to see that (1) holds when Φ, Ψ0 ∈ ∆n satisfy

Re〈Φ, Ψ0〉 =
1

2
. (33)

Thus we obtain that (φ, ψ) is a Dirac-harmonic map from R
n into H

n+1(−1) where

ψ(X) = ǫα ·
(

Ψ0 +
1

n − 2
X · Φ

)

⊗ φ∗ǫα + Φ ⊗ ν

and Φ, Ψ0 satisfy (33).

Remark It is easy to prove that if ψT =
∑

ǫα ·Ψ⊗φ∗(ǫα) and (φ, ψ) is Dirac-harmonic

then n = 2 implies that H = 0. Hence when dimM = 2, Φ = 0, (1) automatically holds,

and (2) holds if and only if Ψ is a twistor spinor.
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6 Hypersurfaces with constant principal curvatures in a

Riemannian manifold of constant curvature

In this section, we consider first the following example. Equipped with the pseudo-Riemannian

metric

ds2 = dx2
1 + · · · + dx2

n+1 − dx2
n+2,

R
n+2 becomes Minkowski space R

n+2
1 . We define (real) hyperbolic space

Hn+1(R) :=
{

x ∈ R
n+2 | q(x) = −R2, xn+2 > 0

}

where q(x) := x2
1+· · ·+x2

n+1−x2
n+2. Hn+1(R) is a connected, simply-connected hypersurface

of R
n+2
1 and the restriction of ds2 to tangent vectors yields a (positive-definite) complete

Riemannian metric in Hn+1(R) of constant sectional curvature c = − 1
R2 . We now define a

family of product hypersurfaces

M :=
{

x ∈ Hn+1(R) |x2
1 + · · · + x2

k+1 = r2
}

= Sk(r) × Hn−k(
√

R2 + r2) (34)

for r > 0 and k = 1, · · · , n − 1. The induced metric on M is

ds2
Sk(r) + ds2

Hn−k(
√

R2+r2)
= r2ds2

Sk(1) + (R2 + r2)ds2
Hn−k(1). (35)

M has principal curvatures
√

R2+r2

rR
with multiplicity k and r

R
√

R2+r2
with multiplicity n−k

[25]. Therefore, the trace of the shape operator of M in Hn+1(R) is kR2+nr2

Rr
√

R2+r2
. We have

the following:

Lemma 6.1 Let M := Sk(r)×Hn−k(
√

R2 + r2) be a hypersurface in Hn+1(R) ⊂ R
n+2
1 .

Then

(i) M is non-minimal, therefore, φ : M # Hn+1(R) is not harmonic;

(ii) M has two constant principal curvatures, with constant multiplicities.

In order to getting new non-trivial Dirac-harmonic maps, we construct a spinor field

along a hypersurface with two constant principal curvatures in a Riemannian manifold of

constant curvature. We shall be using the following ranges of indices:

1 ≤ i, j, · · · ≤ k, k + 1 ≤ r, s, · · · ≤ n, 1 ≤ α, β, · · · ≤ n.

Lemma 6.2 Let φ : Mn # Nn+1(c) be a hypersurface with two principal curvatures λ

and µ in a Riemannian manifold of constant curvature c, where λ has the multiplicity k and
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µ has the multiplicity n − k, and ψ ∈ Γ(ΣM ⊗ φ−1TN) is defined by

ψ = Σiǫi · Ψ ⊗ φ∗(ǫi) + Σrǫr · Φ ⊗ φ∗(ǫr) + χ ⊗ ν

where ν is the unit normal vector of M , Ψ, Φ, χ ∈ Γ(ΣM) and ǫα is a local orthonormal

basis of M such that ǫi is the eigenvector of λ and ǫr is the eigenvector of µ. Then

RT (φ, ψ) = 2c [Re〈ǫi · Φ, Ψ〉ǫi − Re〈ǫr · Φ, Ψ〉ǫr] ; (36)

RN (φ, ψ) = −2cRe〈χ, kΨ + (n − k)Φ〉ν; (37)

/D
T
ψ = −(2∇ǫi

Ψ + ǫi · /∂Ψ + λβǫi · χ) ⊗ ǫi − (2∇ǫr
Φ + ǫr · /∂Φ + µβǫr · χ) ⊗ ǫr; (38)

/D
N

ψ = (/∂χ) ⊗ ν. (39)

Proof: Denote the distributions of the spaces of principal vectors corresponding to λ

and µ by Dλ and Dµ, i.e.

Dλ := {v ∈ TM |Av = λv} , Dµ := {v ∈ TM |Av = µv}

where A is the shape operator of φ. Then

ǫi ∈ Dλ, ǫr ∈ Dµ (40)

and ψ is well-defined. Note that the multiplicities of the two principal curvatures are con-

stant. Thus Dλ and Dµ are completely integrable [24]. In particular, we may choose a local

orthonormal frame field {ǫi, ǫr} near x with ∇ǫα
ǫβ |x = 0 and satisfying (40).

Denote ψT by

ψT = ψα ⊗ φ∗(ǫα).

Then
/∂ψi = /∂(ǫi · Ψ)

= ǫβ · ∇ǫβ
(ǫi · Ψ)

= ǫβ

[

(∇ǫβ
ǫi) · Ψ + ǫi · ∇ǫβ

Ψ
]

= ǫβ · ǫi · ∇ǫβ
Ψ

= −∇ǫi
Ψ − ∑

β 6=i ǫi · ǫβ · ∇ǫβ
Ψ

= −2∇ǫi
Ψ − ǫi · /∂Ψ.

(41)

Similarly we have

/∂ψr = −2∇ǫr
Φ − ǫr · /∂Φ. (42)

By using (25), we have

/Dψ = /∂ψα ⊗ ǫα + (/∂χ) ⊗ ν − 〈B(ǫα, ǫβ), ν〉ǫα · χ ⊗ ǫβ . (43)
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Here we have used ∇⊥ν = 0. Plugging (41) and (42) into (43) and using the Weingarten

equation yield

/Dψ = −
[

2∇ǫi
Ψ + ǫi · /∂Ψ + B(ǫα, ǫi), ν〉ǫα · χ

]

⊗ ǫi

−
[

2∇ǫr
Φ + ǫr · /∂Φ + B(ǫα, ǫr), ν〉ǫα · χ

]

⊗ ǫr + (/∂χ) ⊗ ν

= −(2∇ǫi
Ψ + ǫi · /∂Ψ + λβǫi · χ) ⊗ ǫi

−(2∇ǫr
Φ + ǫr · /∂Φ + µβǫr · χ) ⊗ ǫr + (/∂χ) ⊗ ν.

Thus we obtain (38) and (39).

Note that Nn+1(c) has constant sectional curvature c. Consider ǫα, ν as a local orthonor-

mal frame field of φ−1TN . By simple calculations, we have

RT (φ, ψ) = 2cRe〈ψβ , ǫα · ψα〉ǫβ , (44)

RN (φ, ψ) = 2cRe〈χ, ǫα · ψα〉ν. (45)

By using the skew-symmetry relation of the Clifford product and the property of Hermitian

metric we have

Re〈ψi, ǫj · ψj〉 = Re〈ǫi · Ψ, ǫj · ǫj · Ψ〉 = −Re〈ǫi · Ψ, Ψ〉 = 0, (46)

Re〈ψi, ǫr · ψr〉 = −Re〈ǫi · Ψ, Φ〉
= Re〈Ψ, ǫi · Φ〉
= Re〈ǫi · Φ, Ψ〉 = Re〈ǫi · Φ, Ψ〉.

(47)

Similarly, we have

Re〈ψr, ǫi · ψi〉 = −Re〈ǫr · Φ, Ψ〉, (48)

Re〈ψr, ǫs · ψs〉 = 0. (49)

Substituting (46), (47), (48) and (49) into (44) yields

RT (φ, ψ) = 2cRe〈ψi, ǫj · ψj〉ǫi + 2cRe〈ψi, ǫr · ψr〉ǫi

+2cRe〈ψr, ǫi · ψi〉ǫr + 2cRe〈ψr, ǫs · ψs〉ǫr

= 2c (Re〈ǫi · Φ, Ψ〉ǫi − Re〈ǫr · Φ, Ψ〉ǫr) .

Finally, using (10) and (45) we obtain (37). ¤

7 Dirac-harmonic maps from surfaces II

In this section, we give first a useful criterion for a class of maps from surfaces into a three-

dimensional Riemannian manifold of constant curvature to be Dirac-harmonic. By using
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this criterion we manufacture Dirac-harmonic maps (φ, ψ) from surfaces for which φ is not

harmonic.

Theorem 7.1Let φ : M2 # N3(c) be a surface with two principal curvatures λ and µ in

a Riemannian manifold of constant curvature c, where λ 6= µ, and let ψ ∈ Γ(ΣM ⊗φ−1TN)

be defined by

ψ = ǫ1 · Ψ ⊗ φ∗(ǫ1) −
µ

λ
ǫ2 · Ψ ⊗ φ∗(ǫ2) + χ ⊗ ν

where ν is unit normal vector of M , Ψ, χ ∈ Γ(ΣM) and {ǫ1, ǫ2} is a local orthonormal basis

of M such that ǫ1 is the eigenvector of λ and ǫ2 is the eigenvector of µ. Then (φ, ψ) is a

Dirac-harmonic map from M into N if and only if

(i) χ is a harmonic spinor;

(ii) c(µ
λ
− 1)Re〈χ, Ψ〉ν = H;

(iii) ǫ1 · ∇ǫ1Ψ − ǫ2 · ∇ǫ2Ψ = λχ.

Proof Take Φ = −µ
λ
Ψ. Substituting this into (36) we get

RT (φ, ψ) = 2c
[

Re〈ǫ1 · (−µ
λ
Ψ), Ψ〉ǫ1 − Re〈ǫ2 · (−µ

λ
Ψ), Ψ〉ǫ2

]

= 2cµ
λ

[Re〈ǫ2 · Ψ, Ψ〉ǫ2 − Re〈ǫ1 · Ψ, Ψ〉ǫ1] = 0.

Let us assume that (i) (ii) and (iii) hold. From (37) we have

RN (φ, ψ) = −2cRe〈χ, Ψ − µ

λ
Ψ〉ν = 2c(

µ

λ
− 1)Re〈χ, Ψ〉ν = 2H.

By using (39) we obtain

/D
N

ψ = (/∂χ) ⊗ ν = 0.

From (iii) we have

ǫ2 · ∇ǫ2(−
µ

λ
Ψ) − ǫ1 · ∇ǫ1(−

µ

λ
Ψ) =

µ

λ
[ǫ1 · ∇ǫ1Ψ − ǫ2 · ∇ǫ2Ψ] = µχ.

Together with (38) and (iii) we have

/D
T
ψ = −(2∇ǫ1Ψ + ǫ1 · /∂Ψ + λǫ1 · χ) ⊗ ǫ1

−
(

2∇ǫ2(−µ
λ
Ψ) + ǫ2 · /∂(−µ

λ
Ψ) + µǫ2 · χ

)

⊗ ǫ2

= ǫ1 · (2ǫ1 · ∇ǫ1Ψ − /∂Ψ − λχ) ⊗ ǫ1

+ǫ2 ·
(

2ǫ2∇ǫ2(−µ
λ
Ψ) − /∂(−µ

λ
Ψ) − µχ

)

⊗ ǫ2

= ǫ1 · (ǫ1 · ∇ǫ1Ψ − ǫ2 · ∇ǫ2Ψ − λχ) ⊗ ǫ1

+ǫ2 ·
(

ǫ2 · ∇ǫ2(−µ
λ
Ψ) − ǫ1 · ∇ǫ1(−µ

λ
Ψ) − µχ

)

⊗ ǫ2

= (ǫ1 · 0) ⊗ ǫ1 + µ
λ
(ǫ2 · 0) ⊗ ǫ2 = 0.

From Lemma 5.1 we see that (φ, ψ) is a Dirac-harmonic map.
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Conversely, if (φ, ψ) is a Dirac-harmonic map, then it is easy to see from Lemma 5.1

that (i) (ii) and (iii) hold. ¤

Remark In fact φ : S1(r) × H1(
√

R2 + r2) →֒ H3(R) has two constant principal cur-

vatures λ and µ, where λ 6= µ ( see proof of Theorem 3 below).

Proof of Theorem 3 Let

M := S1(r)×H1(
√

R2 + r2) = {(x1, y1; x2, y2) |x2
1+y2

1 = r2, x2
2−y2

2 = −(R2+r2), y2 > 0}

be parameterized as

M = (R/2πrZ) × R =
{

(r cos θ
r
, r sin θ

r
,
√

R2 + r2 sinh t√
R2+r2

,
√

R2 + r2 cosh t√
R2+r2

) | (θ, t) ∈ [0, 2πr) × R

}

.

(50)

The induced metric on M is the flat metric

dθ2 + dt2. (51)

Since 2[ dimM
2

] = 2, we use "two-component" spinors. We identify the "untwisted" spinor

bundle on M with [(R/2πrZ) × R]×C
2, that is to say, the spinor on M is a single periodic

spinor on R
2 [1, 21]. Let ǫ1 = ∂

∂θ
and ǫ2 = ∂

∂t
. Then ǫ1 and ǫ2 acting on spinor fields can

be identified by multiplication with matrices [9, 10]

σ1 =

(

0 1

−1 0

)

, σ2 =

(

0 i

i 0

)

, i =
√
−1. (52)

Since the metric (51) is flat, ∇ = d is the Levi-Civita connection on 1-forms. Hence we have

∇ǫα
= ǫα (53)

on ΣM [17, 22].

We take a constant χ =

(

a

b

)

∈ C
2. Then χ is a harmonic spinor on M . Let us

consider a spinor

Ψ =

(

f

g

)

: (R/2πrZ) × R → C
2 (54)

on M satisfying

ǫ1 · ∇ǫ1Ψ − ǫ2 · ∇ǫ2Ψ = λχ (55)

where λ is a real constant. By using (52) and (53), (55) is equivalent to
(

∂

∂θ
− i

∂

∂t

)

g = λa, (56)
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−
(

∂

∂θ
+ i

∂

∂t

)

f = λb. (57)

For arbitrary m ∈ {0, 1, · · ·}, we consider g : (R/2πrZ) × R → C defined by

g(θ, t) =

m
∑

k=−m

ei k
r

θgk(t). (58)

From (56) and (58) we have

λa =
∂g

∂θ
− i

∂g

∂t
=

i

r

m
∑

k=−m

kei k
r

θgk(t) − i

m
∑

k=−m

ei k
r

θg′k(t) =
i

r

m
∑

k=−m

ei k
r

θ [kgk(t) − rg′k(t)] .

Hence we take gk satisfying
{

−ig′k(t) = λa for k = 0

kgk(t) − rg′k(t) = 0 for k 6= 0
. (59)

One can verify that

gk(t) :=

{

iλat + c0 for k = 0

cke
k
r

t for k 6= 0

satisfies (59). Plugging this into (58) yields

g(θ, t) =

m
∑

k=−m

cke
k
r
(t+iθ) + iλat. (60)

Similarly, the following function

f : (R/2πrZ) × R → C

defined by

f(θ, t) =

m
∑

k=−m

dke
k
r
(−t+iθ) + iλbt (61)

satisfies (57). Plugging (60) and (61) into (54) yields

Ψ = iλt

(

b

a

)

+

m
∑

k=−m

ei k
r

θ

(

dke−
k
r

t

cke
k
r

t

)

.

Consider φ : M = S1(r) × H1(
√

R2 + r2) →֒ H3(R). Then H3(R) has constant sectional

curvature c = − 1
R2 . The principal curvatures of φ are (cf. Section 6)

λ =

√
R2 + r2

rR
, µ =

r

R
√

R2 + r2

and therefore the mean curvature of φ is

ξ =
R2 + 2r2

2Rr
√

R2 + r2
.
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By a straightforward computation one obtains

[

c

(

λ

µ
− 1

)]−1

ξ =

√
R2 + r2(R2 + 2r2)

2rR
.

Now we will find ck and dk such that (ii) in Theorem 7.1 holds.

〈χ, Ψ〉 = a

(

iλbt +

m
∑

k=−m

dke
k
r
(−t+iθ)

)

+ b

(

iλat +

m
∑

k=−m

cke
k
r
(t+iθ)

)

= (I) + (II)

where

(I) = aiλbt + biλat = −i(ab̄ + bā)λ = −2λiRe(ab̄),

(II) = a

m
∑

k=−m

dke
k
r
(−t+iθ) + b

m
∑

k=−m

cke
k
r
(t+iθ).

Note that (I) is purely imaginary. Hence

Re〈χ, Ψ〉 = Re(II)

=
∑m

k=−m Re
[

ad̄ke−
k
r
(t+iθ)

]

+
∑m

k=−m Re
[

bc̄ke
k
r
(t−iθ)

]

=
∑m

k=−m Re
[

ad̄ke−
k
r
(t+iθ)

]

+
∑m

k=−m Re
[

bc̄−ke−
k
r
(t−iθ)

]

=
∑m

k=−m Re
[

ad̄ke−i k
r

θ + bc̄−kei k
r

θ
]

e−
k
r

t

=
∑m

k=−m Re
[

(ad̄k + b̄c−k)e−i k
r

θ
]

e−
k
r

t.

It follows that the sufficient conditions on ck and dk for (ii) in Theorem 7.1 to hold are

Re(ad̄0 + b̄c0) =

√
R2 + r2(R2 + 2r2)

2rR

and

ad̄k + b̄c−k = 0

for k = ±1, · · · ,±m. ¤
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