
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Variational Calculus with Sums of Elementary

Tensors of Fixed Rank

by

Mike Espig, Wolfgang Hackbusch, Thorsten Rohwedder, and

Reinhold Schneider

Preprint no.: 52 2009

Variational Calculus with Sums of Elementary

Tensors of Fixed Rank

Mike Espig ∗ Wolfgang Hackbusch ∗

Thorsten Rohwedder † Reinhold Schneider †

August 28, 2009

Abstract

In this article we introduce a calculus of variations for sums of elemen-

tary tensors and apply it to functionals of practical interest. The survey pro-

vides all necessary ingredients for applying minimization methods in a gen-

eral setting. The important cases of target functionals which are linear and

quadratic with respect to the tensor product are discussed, and combinations

of these functionals are presented in detail. As an example, we consider the

solution of a linear system in structured tensor format. Moreover, we dis-

cuss the solution of an eigenvalue problem with sums of elementary tensors.

This example can be viewed as a prototype of a constrained minimization

problem. For the numerical treatment, we suggest a method which has the

same order of complexity as the popular alternating least square algorithm

and demonstrate the rate of convergence in numerical tests.

Keywords: Low tensor rank, sums of elementary tensors, variational calculus in

tensor format.

∗Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
†Technical University Berlin, Germany

1

1 Introduction

Approximation of solutions of high dimensional partial differential or integral

equations by low rank tensors has yielded promising results, see e.g. [1, 2, 11, 12,

14, 15]. A tensor u ∈ R
nd

of order d requires in general a storage complexity of

nd. If u can be approximated by a low rank tensor

u ≈
r

∑

j=1

d
⊗

µ=1

uj,µ,

the memory requirement reduces to drn, and the complexity of algebraic oper-

ations grows only linearily with respect to the order d. However, when using

iterative methods for computing a low-rank tensor, one usually has to face the

problem that the involved algebraic operations increase the tensor rank in each

iteration step. To overcome this issue, efficient recompression methods have been

developed in [1, 2, 5, 8, 9] to approximate a given sum of elementary tensors by

low rank tensors. Moreover, the convergence of such approximate iterations is

known, see [16] for an analysis. The subject of this article is in contrast to this

approach. We will show that the representation of a tensor in low rank format

allows in many cases of practical interest a direct optimization procedure on the

manifold of tensors of a fixed rank r. Thus, we will solve the original problem

directly in the low tensor rank format instead of solving a high dimensional prob-

lem indirectly by the use of approximative iterative schemes. This approach has

some advantages: We can be sure that the solution is at least locally optimal with

respect to the problem dependent functional, and we circumvent numerical prob-

lems that may arise during the compression step of approximate iterations even if

the original task lacks this kind of approximation problems. An example where

such problems may occur is the second numerical experiment discussed in this

article, an eigenvalue problem for which we know a priori that there exists a low

rank solution. If we would apply the indirect iterative methods discussed above,

we have to approximate all iterands during the iterative process, while it is unclear

that an iterand can be well approximated by low rank tensors.

The article is structured as follows: In the next section, we introduce notations

and problems to be treated by our calculus. In the following part, we compute

the derivatives of a general functional formulated on the set of rank r-tensors.

Moreover, we will also discuss special parts of concrete target functionals. We

specialize the treatment to functionals of particular practical interest in Section 4.

2

The next part deals with the numerical treatment of the optimization process by a

suitable cg algorithm. Finally, we present numerical results for the two examples

from Section 4.

2 Setting, notations and problem formulation

Let d ∈ N. For ν ∈ {1 . . . , d}, let Ων ⊆ R
n, Hν := L2(Ων) and Vν ⊆ Hν

reflexive Banach spaces, where each Vν is dense in and continuously embedded

into Hν ; for example, one might consider Vν = Hs
0(Ων). In this paper, we will be

concerned with the tensor product space
⊗d

ν=1 Vν , cf. [13, 19]. To keep notations

simple, we will restrict our treatment to the case that H1 = . . . = Hn =: H is a

real Hilbert space, and will also suppose V1 = . . . = Vn =: V , although the above

general case may be treated analogeously with the neccessary modifications. We

denote by

V := Vd :=
d

⊗

ν=1

V

the d-fold tensor product space over V . In the following, we will fix the parameter

d and drop the suffix d in most cases to keep notations simple.

The norms on H,H =
⊗d

ν=1 H and V will be denoted by ||.||H , ||.||H and ||.||V ,

respectively. For a convenient formulation of the problems we have in mind, we

will use duality pairings of the following form,

〈g, u〉 := g(u), u ∈ V, g ∈ V ′; 〈G, U〉 := G(U), U ∈ V , G ∈ V ′.

Note that if we have g ∈ H ′ ⊆ V ′ in the above situation, 〈g, u〉 may be identified

with the inner product 〈g, u〉H on H; an analogeous statement holds for G ∈ H′ ⊆
V ′.

An elementary tensor W ∈ V is a tensor of the form W =
⊗d

ν=1 wν ∈ V ,

wν ∈ V . A tensor U ∈ V is called a tensor of rank r if it can be written as a sum

of r elementary tensors,

U =
r

∑

i=1

d
⊗

ν=1

ui,ν .

The set of all tensors U ∈ V of rank r will be denoted by Kr. Note that Kr is a

cone, i.e. U ∈ Kr implies αU ∈ Kr, for all α ∈ R, but Kr is not a vector space,

3

and not even convex since for W1,W2 ∈ Kr, there only holds W1 + W2 ∈ K2r,

but in general we have W1 + W2 6∈ Kr.

Notation 2.1. Let X a vector space, Y ⊂ X and f : Y → R. We will use in

the short notation M(f, Y) for the set of minimizers of the induced minimization

problem, i.e.

M(f, Y) := {y ∈ Y : f(y) = inf f(Y)}. (1)

Problem 2.2. Given a functional F : V → R and an admissible set M ⊂ V ,

we are searching for a minimizer of the modified optimization problem where the

original admissible set M is confined to tensors of rank at most r, i.e. we are

searching for

U ∈ M(F,M∩Kr). (2)

Let us mention a few basic examples which are important in several practical

applications in high dimensions.

(i) The low rank approximation F (W) = ‖U − W‖2
H , W ∈ Kr for given

U ∈ V .

(ii) The solution of equations AU = B or g(U) = 0 where A, g : V → V ′.

Here we have F (W) = ‖AW − B‖V ′ resp. ‖g(W)‖V ′ .

(iii) If A : V → V ′ is bounded, symmetric and coercive with respect to ||.||V
and B ∈ V ′ given, we may instead of the first functional in (ii) focus on

F (W) := 1
2
〈AW,W 〉 − 〈B,W 〉.

Note that in the case that B = AU for fixed U ∈ V , this task means finding

a low rank approximation of U with respect to the energy norm induced by

A (equivalent to the V -norm) instead of the Hilbert space norm H used in

example (i).

(iv) Computation of the lowest eigenvalue of a symmetric operator A : V → V ′

by minimizing the Rayleigh quotient: F (W) := 〈AW,W 〉/〈W,W 〉 over

M = V\{0}, This problem is equivalent to the constraint minimization

problem

U = M
(

F, {W ∈ V : ||W ||H = 1}
)

.

In the first three examples we have M∩Kr = Kr, while in the last example we

have an additional constraint, namely M = {W ∈ V : 〈W,W 〉 = 1}. Note that

in this case, M∩Kr 6= ∅ due to the cone property of Kr.

4

Solving the optimization problem (2) means finding a system of representants

(

ui,ν

)r

i=1

d

ν=1
:=

{

ui,ν ∈ V : i ∈ N≤r, ν ∈ N≤d

}

,

where N≤k := {n ∈ N : n ≤ k}, such that the minimizer U is representable

by U =
∑r

i=1

⊗d

ν=1 ui,ν . Let us cast the unknown functions (resp. vectors) ui,ν ,
i = 1, . . . , r , ν = 1, . . . , d, into a vector (resp. matrix),

u :=
(

ui,ν

)r

i=1

d

ν=1
∈ V r×d.

If V is finite dimensional, which after discretization is always the case in practice,

the required number of degrees of freedom is dimV d×r = drdimV , i.e. it grows

only linearly with respect to the dimension d. This fact makes the representation

of tensors by sums of elementary tensors an attractive option in particular in high

dimensions.

In order to find u ∈ V r×d for representation of the minimizer U ∈ V , we introduce

the (multilinear) mapping

U : V r×d → V =
d

⊗

ν=1

V ,u 7→ U(u) :=
r

∑

i=1

d
⊗

ν=1

ui,ν .

Then our original optimization problem (2) takes the form

Find u ∈ M(J, V r×d),

where we set J := F ◦ U : V r×d → R.

Since the representation u ∈ V r×d of U(u) ∈ Kr is neither unique nor stable, the

above optimization problem inherits additional difficulties and redundance, which

should be removed in advance. In particular, the border rank problem [4] can be

abolished by bounding the norm of the single elementary tensors. If V is densely

embedded in a Hilbert space H (e.g. H = L2(Ω) or H = ℓ2(N)), it is often

numerically advantageous to impose the following constraint conditions on the

H-norm of the vectors ui,ν :

〈ui,ν , ui,ν〉 = ‖ui,ν‖
2
H = 1 for 1 ≤ ν ≤ d − 1, 1 ≤ i ≤ r, (3)

‖ui,d‖
2
H ≤ C for 1 ≤ i ≤ r. (4)

Note that this implies that the norm of the corresponding elementary tensors Ui

constituting u is bounded, ||Ui||H = || ⊗d
ν=1 ui,ν ||H ≤ Ci for all i ∈ N≤r. The set

5

of all u ∈ V r×d, where the vectors ui,ν satisfy conditions (3) and (4) is denoted

by M ⊂ V r×d.

Alternatively, the redundancy in an elementary tensor may be reduced by bound-

ing and equilibrating the norms of the elementary tensors Ui, see [5]:

‖ui,ν‖H ≤ C for all 1 ≤ ν ≤ d, 1 ≤ i ≤ r, (5)

‖ui,ν‖H = ‖ui,µ‖H for 1 ≤ ν, µ ≤ d, 1 ≤ i ≤ r. (6)

We will impose these constraint conditions either by introducing penalty terms in

the functional or by treating them explicitly. Therefore, we have arrived at the

following optimization problem, which is from now on the basic problem under

consideration.

Problem 2.3.

Find u ∈ M(J,M). (7)

Remark 2.4. M is a closed and bounded subset of V r×d and U : V r×d → V is a

continuous mapping.

If V is finite dimensional, if F : V → R is continuous and if M = V or at least

M∩U(M) 6= ∅ is closed, then J : M → R is continuous. Under these premises,

there exists a solution of the above problem (7). If V is infinite dimensional, the

situation is more challenging due to the lack of compactness; note though that for

V = H , i.e. in the Hilbert space case, the existence of a best rank r-approximation

(cf. Problem (i) above) has recently been proven [7, 18].

3 Computation of the Derivatives

We would like to find a local minimizer by local first and second order methods,

i.e. by means of differential calculus. We start by computing the derivatives for

U(u) = U
(

(

ui,ν

)r

i=1

d

ν=1

)

=
r

∑

i=1

Ui(u) :=
r

∑

i=1

d
⊗

ν=1

ui,ν . (8)

6

The Fréchet derivative U ′(u) of U at u ∈ V r×d is a linear mapping from V d×r to

V . Due to the multilinearity of U , it may be expressed by the partial derivatives of

U in direction uk,α ∈ V which we will denote by (U ′(u))(k,α) := dU(u)/duk,α ∈
L(V,V). These map v ∈ V to

(U ′(u))(k,α)(v) = lim
h→0

1

h

[

α−1
⊗

ν=1

uk,ν ⊗ (uk,α + hv) ⊗
d

⊗

ν=α+1

uk,ν −
d

⊗

ν=1

uk,α

]

=
α−1
⊗

ν=1

uk,ν ⊗ v ⊗
d

⊗

ν=α+1

uk,ν .

We note that (U ′(u))(k,α)(v) ∈ V may alternatively be obtained by evaluating the

Fréchet derivative U ′(u) at (0, . . . , 0, v, 0, . . . , 0) = v ⊗ ek,α =: vek,α ∈ V r×d,

where ek,α denotes the unit row vector (δk,α)i,µ ∈ R
1,r×d. If u is fixed, we will

denote the partial derivatives at u by

Uα
k (v) := U ′(u)(vek,α) = (U ′(u))(k,α)(v).

in the following to keep notations simpler.

Corollary 3.1. The directional first order derivative of the functional J := F ◦U :
V r×d → R from (7) at point u ∈ V d×r in direction vek,α is given by

J ′
u
(vek,α) = F ′

U(u)(U
α
k (v)) = 〈F ′

U(u), U
α
k (v)〉 (9)

For second order schemes, and possibly for preconditioning, we also need second

order derivatives.

For vek,α, weℓ,β ∈ V d×r, we obtain in the case that k = ℓ, α < β, that

U (2)
u

(vek,α, weℓ,β) =
α−1
⊗

ν=1

uk,ν ⊗ v ⊗

β−1
⊗

ν=α+1

uk,ν ⊗ w ⊗
d

⊗

ν=β+1

uk,ν (10)

The case k = ℓ, α > β follows from (10) by symmetry, while U
(2)
u (vek,α, weℓ,β) =

0 if k 6= ℓ or α = β.

In analogy to the first order derivatives, we define for fixed u

Uα,β
k,ℓ (v, w) := U (2)

u
(vek,α, weℓ,β) = (U (2)

u
)(k,α),(ℓ,β)(v, w). (11)

7

Corollary 3.2. For the second derivative of the functional J there holds

J (2)
u

(vek,α, weℓ,β) = F
(2)
U(u)(U

α
k (v), Uβ

ℓ (w)) + 〈F ′
U(u), U

α,β
k,ℓ (v, w)〉 . (12)

Proof. Obviously, we have

J (2)
u

(vek,α, weℓ,β) = F
(2)
U(u)(U

′
u
(vek,α), U ′

u
(weℓ,β)) + F ′

U(u)(U
2
u
(vek,α, weℓ,β))

= F
(2)
U(u)(U

α
k (v), Uβ

ℓ (w)) + F ′
U(u)(U

α,β
k,ℓ (v, w))

= F
(2)
U(u)(U

α
k (v), Uβ

ℓ (w)) + 〈F ′
U(u), U

α,β
k,ℓ (v, w)〉 .

¥

For practical applications, let us take a closer look at the treatment of functionals

which are linear or at most quadratic. First, for U ∈ V ,W ∈ V ′, let us consider

a linear functional of the form U 7→ 〈W,U〉, which induces a functional b : u 7→
b(u) := 〈W,U(u)〉 on V r×d.

Corollary 3.3. The directional derivative of b at point u with respect to vek,α is

given by

b′
u
(vek,α) = 〈W,Uk,α(v)〉.

If W is an elementary tensor, i.e. W =
⊗d

ν=1 wν , there holds for the above

directional derivatives that

〈W,Uk,α(v)〉 = 〈W,Uk〉α :=
(

∏

ν∈N≤d\{α}

〈wν , uk,ν〉
)

wα ∈ V ′.

If W is a finite rank tensor, i.e. W =
∑R

j=1

⊗d

ν=1 wj,ν =:
∑R

j=1 Wj, there holds

(b′
u
)(k,α) =

R
∑

j=1

〈Wj, Uk(u)〉α

with Uk(u) from (8).

In a more explicit form we have

(b′
u
)k,α =

R
∑

j=1

(

∏

ν∈N≤d\{α}

〈wj,ν , uk,ν〉
)

wj,α =
R

∑

j=1

bj,α,kwj,α, (13)

where we let bj,α,k :=
∏

ν∈N≤d\{α}
〈wj,ν , uk,ν〉 for brevity.

8

Lemma 3.4. If V = R
n, the complexity for the computation of the directional

derivative of b : V r×d → R is O(dRrn).

Proof. Let α ∈ N≤d, j ∈ N≤R and k ∈ N≤r. Similar to [6, Remark 21], the

values bj,α,k can be computed in O(dRrn). In addition we have to compute

(b′
u
)k,α =

R
∑

j=1

∏

ν∈N≤d\{α}

〈wj,ν , uk,ν〉wj,α =
R

∑

j=1

bj,α,kwj,α.

This needs 2n(R− 1
2
) operations for every α and k. Hence, the overall complexity

is O(dRrn). ¥

Remark 3.5. Let W ∈ C(Ωd) ⊆ ⊗d
i=1H = L2(Ωd) and z ∈ Ωd. Then we define

in analogy to (3)

〈W,Ui〉ν(z) := 〈W,Ui,ν(δz)〉,

where 〈f, δz〉 := δz(f) := f(z) denotes the Dirac distribution at the point z ∈
Ωd. Note that if W is not available as a low rank tensor, the computation of

〈W,Ui〉ν(z) for this general case requires high-dimensional integration over Ων ⊆
R

d−1.

Apart from linear functionals, we now compute the derivatives of the functional

u 7→ G(U(u)) = 1
2
〈AU(u), U(u)〉 with a symmetric operator A : V → V , which

is quadratic with respect to U(u) ∈ V .

Corollary 3.6. The derivative G′
u

can be written as

(G′
u
)(k,α) =

r
∑

j=1

〈AUj(u), Uk(u)〉α. (14)

Remark 3.7. If a linear operator A : V → V ′ can be decomposed into a finite

sum of elementary tensors,

A =
s

∑

j=1

Aj =
s

∑

j=1

d
⊗

ν=1

Aj,ν , Aj,ν : V → V ′,

then 〈AUj(u), Uk(u)〉α ∈ V ′ is computable within polynomial cost, provided that

the individual terms 〈Aj,νui,ν , uk,ν〉 are computable. In this case the derivative

9

G′
u

is expressed by

(G′
u
)(k,α) =

r
∑

i=1

s
∑

j=1

〈AjUi(u), Uk(u)〉α (15)

=
r

∑

i=1

s
∑

j=1

(

∏

ν∈N≤d\{α}

〈Aj,νui,ν , uk,ν〉
)

Aj,αui,α. (16)

In short-hand notation we can write for the derivatives of the quadratic functional

G and the linear functional b, respectively,

G′
u

= Auu, b′
u

= bu.

It is worth mentioning that the matrix Au and the vector bu have a nice tensor

structure, namely

Au =
d

∑

α=1

s
∑

j=1

Eα ⊗ Gj,α(u) ⊗ Aj,α, bu =
d

∑

α=1

R
∑

j=1

e(d)
α ⊗ bj,α(u) ⊗ wj,α (17)

where Eα ∈ R
d×d, Gj,α ∈ R

r×r, e
(d)
α ∈ R

d and bj,α ∈ R
r with

(Gj,α(u))r
k,i=1 :=

∏

ν∈N≤d\{α}

〈Aj,νui,ν , uk,ν〉 , (bj,α,(u))r
k=1 :=

∏

ν∈N≤d\{α}

〈wj,ν , uk,ν〉

and (Eα)d
ν,ν′=1 := δα,νδα,ν′ , (e

(d)
α)d

ν=1 := δα,ν .

Lemma 3.8. If V = R
n, the complexity for the computation of the directional

derivative of G : V r×d → R is O(dsr2n2). If the components Aj,ν of A are sparse

in the sense that matrix-vector products can be evaluated in O(n), the complexity

reduces to O(dsr2n).

Proof. The proof is similar to Lemma 3.4. ¥

4 Model Examples

We will present two basic examples. At first, we consider the minimization of

the functional F (U) := 1
2
〈AU,U〉 − 〈B,U〉 prepared in the last section, where

10

A : V → V ′ is a symmetric linear operator, B and a linear functional B ∈ V ′, and

both can be represented in the respective tensor formats

A =
R

∑

j=1

d
⊗

µ=1

Aj,µ , Aj,µ : V → V ′ , B =
s

∑

j=1

d
⊗

µ=1

bj,µ , bj,µ ∈ V ′ .

This kind of quadratic minimization problem can be easily extended to those

quadratic minimization problems which are constrained by a set of linear side

conditions. Formulating the corresponding minimization problem on the cone of

rank r tensors Kr as in Section 2 yields the functional

J(u) :=
1

2
〈AU(u), U(u)〉 − 〈B,U(u)〉 =

1

2
G(u) − b(u) .

Usually we invoke the soft constraint conditions as described in Section 1, see (3)

and (4). For sake of simplicity, let us neglect these weak constraints for a first

view at the equations. The first order optimality condition is J ′
u
(wek,α) = 0 for

all w ∈ V , k ∈ N≤r, α ∈ N≤d. With the results of the previous section, these

conditions can be rewritten as the following nonlinear equations:

J ′
u

= Auu − bu = 0 ∈ (V ′)r×d. (18)

Herein, for fixed u ∈ V r×d, we have Au : V r×d → (V r×d)′ and bu ∈ (V r×d)′.
With this notation at hand, we may propose an iteration of the form

A
u(n)u(n+1) − b

u(n) = 0.

Alternatively, we may use an iteration of steepest descent type for minimization

the functional J(u) = 1
2
G(u)−b(u) by using the gradient from (18). Note that the

components of A
u(n) : V r×d → (V r×d)′ map the space V into its dual space V ′.

If V 6= H = L2, a gradient type algorithm often requires further preconditioning

using a simply invertible operator B : V → V ′ with 〈Bu, u〉 ∼ ‖u‖2
V . We may

for example use a preconditioned gradient type algorithm that uses (A
u(n))−1 as a

preconditioner, i.e. as an approximate inverse of the Hessian. This explains how

operator equations defined on Sobolev spaces, which are not of the simple product

form, may be preconditioned in the present setting.

Next, let us turn to the side conditions (3) and (4) from Section 2. Condition (3)

may be enforced by usage of the functional

h1(u) :=
1

2

r
∑

j=1

d−1
∑

µ=1

(〈uj,µ, uj,µ〉 − 1),

11

for which the derivative is easy to compute:

h1
′
u
(ek,αw) = 〈uk,α, w〉.

The second side condition is treated like in the recent works [2, 5, 8, 9]. In this

context, the function

h2(u) :=
1

2

r
∑

j=1

d
∏

µ=1

‖uj,µ‖
2

is important. The derivative of the penalty term is

h2
′
u
(ek,αw) =

d
∏

µ=1,µ 6=α

‖uk,µ‖
2〈uk,α, w〉.

As a second basic example, let us consider a quadratic minimization problem with

quadratic constraints, namely Problem (iv) from Section 2, i.e. the computation

of the eigenvector belonging to the lowest eigenvalue of a symmetric operator

A : V → V ′. The corresponding functional is given by

F (U) :=
1

2
〈AU,U〉 with the constraint 〈U,U〉 = 1. (19)

The corresponding optimization problem in tensor format thus reads

Find min{J(u) :=
1

2
〈AU(u), U(u)〉 : 〈U(u), U(u)〉 = 1}.

The present calculus yields for the corresponding Lagrange functional

L(u, λ) =
1

2
〈AU(u), U(u)〉 − λh(u), (20)

h(u) :=
1

2

(

〈U(u), U(u)〉 − 1
)

,

the first order optimality conditions

(Au − λMu)u = 0 ∈ (V ′)r×d, (21)

that is, a nonlinear generalized eigenvalue problem, where for given u ∈ V r×d,

Au and Mu map V r×d into (V r×d)′. Here, Au is the same as in (17), and

Mu =
d

∑

µ=1

Eµ ⊗ Hµ(u) ⊗ IdV (22)

12

with

(Eµ)d
ν,ν′=1 := (δµ,νδµ,ν′)d

ν,ν′=1 ∈ R
d×d, (Hµ(u))r

k,i=1 :=
∏

ν∈N≤d\{µ}

〈ui,ν , uk,ν〉 ∈ R
r×r.

Problem (21) is similar to the Hartree Fock and Kohn Sham equations or orbital

minimization in multi-configuration methods used in quantum chemistry. Note

that (18) also has a similar structure.

5 Conjugate Gradient Method for Minimization

So far we have developed all ingredients for applying steepest decent type algo-

rithms. The most popular choice of minimization methods with sums of elemen-

tary tensors is a relaxation type method: For given ν, all ui,µ with µ 6= ν are kept

fixed in this approach, and only the vectors ui,ν , i = 1, . . . , r are optimized. This

minimization step is then repeatedly alternated over all directions ν ∈ N≤d, re-

sulting in the well known alternating least square (ALS) algorithm, see e.g. [1, 2].

Although it is known that the convergence behaviour of the ALS method is not

optimal, the ALS method has some important advantages. It is fairly convenient

to implement and the complexity of a single iteration step is small. In [5, 8, 6]

a modified Newton method is used to solve minimization problems with sums

of elementary tensors. Compared to the ALS algorithm the modified Newton

method has a better rate of convergence but a single iteration step is more ex-

pensive. Moreover, we have to use special properties of the functional to make

the modified Newton method efficient and spend more effort while implementing

the algorithm. In order to overcome these problems, a conjugate gradient (CG)

method is introduced in [9] which converges globally to a stationary point with

a complexity similar to the ALS method. We will also use the CG method and

describe it briefly in the following. For a detailed analysis we refer to [9].

The crucial part of the CG algorithm is the computation of the exact line search

parameter αk ∈ R≥0. Given a direction dk, we have to find a solution of the

one-dimensional nonlinear equation

p(αk) =
〈

J ′(uk + αdk),dk
〉

= 0.

Normally we avoid the exact line search and use an Armijo type inexact line

search. In our applications though, equations (13) and (16) show that the func-

tion p is a polynomial of degree at most 2d− 1. Hence we will apply a third order

13

Algorithm 1 Conjugate Gradient (CG) Method

1: Choose initial u0 ∈ V r×d and parameter ε ∈ R>0. Define k := 0, g0 :=
J ′(u0) and d0 := −g0.

2: while ‖gk‖ > ε do

3: Compute αk := min
{

α ∈ R≥0 : p(α) :=
〈

J ′(uk + αdk),dk
〉

= 0
}

.

4: uk+1 := uk + αkd
k.

5: gk+1 := J ′(uk+1).

6: βk :=
〈gk+1−g

k,gk+1〉
‖gk‖2 , γk := max{0, βk}.

7: dk+1 := −gk+1 + γkd
k.

8: k 7→ k + 1.

9: end while

derivative-free procedure (3-PG) for finding zeros of a function, as described in

[17]. The 3-PG method is globally R-order convergent for f ∈ C2[a, b], where

a, b ∈ R with f(a)f(b) < 0. The order of convergence is defined by the real root

of the polynomial t 7→ t3 − t2 − t− 1 (≈ 1.8393). Moreover, the 3-PG method is

equivalent to the Newton method for polynomials of degree three. An algorithmic

description of the 3-PG method is presented below.

A typical decay of |p(α)| with respect to the number of 3-PG iterations is shown

in Figure 1. It is remarkable that only function evaluations of the function p are

necessary for the favorable rate of convergence.

Remark 5.1. According to Lemma 3.4 and Lemma 3.8, the complexity of the

computation of the gradient J ′ is O(drn(srn+R)) (O(drn(sr+R) in the sparse

case). Since the most expensive part in the CG method is the calculation of the

gradient, the complexity of the CG method is

kmaxO(drn(srn + R)) (23)

(kmaxO(drn(sr + R)) in the sparse case), where kmax denotes the maximal num-

ber of iterations in Algorithm 1.

14

Algorithm 2 3-PG Algorithm

1: Choose initial a, b ∈ R with p(a)p(b) < 0 and parameter ε ∈ R>0, C,D ∈
(

1
2
, 1

)

. Define R := a, pa := p(a), pb = p(b) and compute

p[b, a] :=
pb − pa

b − a
, α = b −

pb

p[b, a]
, pα = p(α).

2: while |pα| > ε do

3: if pαpb < 0 then

4: R := b.

5: end if

6: Compute p[α, b] := pα−pb

α−b
, p[α, a] := pα−pa

α−a
and

Q(a, b, α) :=
(α − a)p[α, b] + (b − α)p[α, a]

b − a
.

7: if Q(a, b, α) = 0 then

8: y := R+α
2

.

9: else

10: y := α − pα

Q(a,b,α)
.

11: end if

12: if (y − α)(y − R) > 0 or [|y − R| > C|α − R| and |pα| > D|pb|] then

13: y := R+α
2

.

14: end if

15: a = b, pa = pb, b = α, pb = pα, α = y, pα = p(α).
16: end while

6 Numerical Experiments

6.1 Unconstrained Minimization Problem

The first numerical test is the Poisson equation in d dimensions with Dirichlet

boundary condition. We consider

−∆u = f in Ω := [0, 1]d

u = 0 on ∂Ω,

15

1.0e-012

1.0e-010

1.0e-008

1.0e-006

1.0e-004

1.0e-002

1.0e+000

 0 1 2 3 4

|p
(.

)|

3-PG Iteration

3-PG Method

Figure 1: Decay of |p(α)|.

with a separable right-hand side f(x1, . . . , xd) :=
∑R

i=1

∏d

µ=1 fi,µ(xµ). A stan-

dard finite difference discretization on uniform grids leads to a linear system

AU(u) = b with

A = T ⊗ Id ⊗ . . . ⊗ Id + · · · + Id ⊗ . . . ⊗ Id ⊗ T, b =
R

∑

i=1

d
⊗

µ=1

bi,µ,

where the matrix T is a discretized version of the second derivative, e.g.

T =
1

h2















2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2















.

For simplicity, the vectors bi,µ are initialized with uniformly distributed pseudo-

random numbers, where we set ‖b‖2 = 1. All plots display the convergence of

the relative residual ‖AU(u) − b‖2 with respect to the separation rank of U(u).
The results of CG method applied to the function J(u) = 1

2
〈AU(u), U(u)〉 −

〈B, U(u)〉 = 1
2
G(u) − b(u) are shown in Figures 2 and 3 for n = 100 and

n = 1000 respectively. The computation is done for various dimensions d ∈

16

{25, 50, 100}. We observe that in all numerical experiments the value of the rela-

tive approximation error is less than 10−6 for separation ranks about 15. In order

to compare our results, we set rank(b) = R := 1 and also compute a separable

approximation of the inverse of A with the use of exponential sums, see [3]. In

[3], Braess and Hackbusch analyse the best approximation of the inverse function
1
·

: [1, c] → R by exponential sums with respect to the maximum norm. More-

over, an upper bound of the approximation error is given there:

Lemma 6.1. Let k ∈ N, sk(τ) :=
∑k

l=1 ωl exp(−αlτ) with αl, ωl ∈ R>0. With

the optimal choice of the parameter αl and ωl we have

sup
τ∈[1,c]

∣

∣

∣

∣

1

τ
− sk(τ)

∣

∣

∣

∣

≤ 16 exp

(

−kπ2

log(8c)

)

.

The parameters αl and ωl are precomputed for different k and c. The values are

available at the web page [10]. From this approximation, it follows that for the

optimal choice of αl and ωl,

‖A−1 − sk(A)‖2 ≤
16

λmin(A)
exp

(

−kπ2

log(8κ(A))

)

,

where sk(A) =
∑k

l=1 ωl ⊗
d
µ=1 exp(−αlT). As mentioned above, we observe that

the value of the relative approximation residual is less than 10−6 for ranks around

15. We set k := 15 and use coefficients αl, ωl from the web page to compute the

relative residual of the approximation with exponential sums, i.e. we compute

ρ := ‖Aue − d‖2, ue := s15(A)b =
15

∑

l=1

ωl

(

⊗d
µ=1 exp(−αlT)bµ

)

.

For n = 100 and n = 1000 the value of the relative residual ρ is 1.52 × 10−3 and

4.56 × 10−2 respectively.

6.2 Constrained Minimization Problem

Our second example is the eigenvalue problem (19), which may serve as an ex-

ample for a constrained minimization problem. For our numerical illustration,

we only use a penalty method to enforce the side condition 〈U(u), U(u)〉 = 1.

17

1.0e-007

1.0e-006

1.0e-005

1.0e-004

1.0e-003

1.0e-002

1.0e-001

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

re
la

tiv
e

re
si

du
al

separation rank

d=25
d=50

d=100

Figure 2: Relative residual error of the optimal low tensor rank approximation for

the Poisson equation with Dirichlet boundary conditions and n := 100.

Herein, the constrained optimization problem (19) is replaced by a series of un-

constrained problems the solutions of which converge to the solution of the origi-

nal constrained problem. These unconstrained problems are formulated by adding

a penalty term to the target function, and then solved by using the CG method as

in the previous example, see Algorithm 1. This choice for the treatment of the side

conditions may be taken as the CG algorithm is a first order method, while a sec-

ond order approach like a modified Newton method would lead to ill-conditioned

system matrices. In the following we will describe the penalty algorithm, using

L(u, λ) and h(u) as defined in equation (20).

One interesting application for an eigenvalue problem is the computation of the

maximum norm. A straightforward approach gives a complexity linear in the

number of entries in the tensor, i.e. the complexity is O(nd). This fact makes the

computation of the maximum norm especially in high dimensions nontrivial. In

[5], it was shown that for a given sum of elementary tensors u :=
∑r

j=1 ⊗
d
µ=1ujµ ∈

⊗d

µ=1 R
n, the computation of the maximum norm, i.e.

‖u‖∞ := max
i:=(i1,...,id)∈Nd

≤n

|ui| = max
i:=(i1,...,id)∈Nd

≤n

∣

∣

∣

∣

∣

r
∑

j=1

d
∏

µ=1

(ujµ)
iµ

∣

∣

∣

∣

∣

,

18

1.0e-007

1.0e-006

1.0e-005

1.0e-004

1.0e-003

1.0e-002

1.0e-001

1.0e+000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

re
la

tiv
e

re
si

du
al

separation rank

d=25
d=50

d=100

Figure 3: Relative residual error of the optimal low tensor rank approximation for

the Poisson equation with Dirichlet boundary conditions and n := 1000.

is equivalent to the solution of a suitable eigenvalue problem. Let i∗ := (i∗1, . . . , i
∗
d)

the multiindex where the maximum norm will appear, i.e. |ui∗ | = ‖u‖∞, and de-

fine

D(u) :=
r

∑

j=1

d
⊗

µ=1

diag ((uj,µ)i)
n
i=1, Ei∗ :=

d
⊗

µ=1

e∗iµ ,

where eiµ is the canonical unit vector from R
n, with 1 in the iµ-th entry and 0

elsewhere. We have

D(u)Ei∗ =
r

∑

j=1

d
⊗

µ=1

diag ((uj,µ)i)
n
i=1ei∗µ

=
r

∑

j=1

d
⊗

µ=1

(uj,µ)i∗µ
ei∗µ

=
r

∑

j=1

d
∏

µ=1

(uj,µ)i∗µ

d
⊗

µ=1

ei∗µ
= ui∗Ei∗ .

We have thus arrived at an eigenvalue problem D(u)Ei∗ = ui∗Ei∗ for the given

matrix D(u), where we are looking for the eigenvalue ui∗ and corresponding

eigenvector Ei∗ . It is remarkable that the tensor rank of the eigenvector is ex-

actly one. Moreover, the tensor structure is significant, since Ei∗ is a Kronecker

product of canonical unit vectors. For the numerical test, we create a tensor ũ

19

Algorithm 3 Penalty Method

1: Choose initial u0 ∈ V r×d, λo ∈ R>0 and parameter ε ∈ R>0, k := 0.

2: repeat

3: Compute the solution uk+1 of the unconstrained minimization problem

min
u∈V r×d

L(u, λk)

by using the CG method and uk as an initial guess, see algorithm 1.

4: Choose λk+1 > λk, k 7→ k + 1.

5: until |h(uk+1)| < ε

with separation rank 5 where all entries are initialized with uniformly distributed

pseudo-random numbers in the interval [−2, 0]. In addition, we create a tensor

v := −(4 + ũi∗)Ei∗ where the multi-index i∗ is also randomly generated. With

the definition u := ũ + v we make sure that |u∗
i | = ‖u‖∞ = 4 and −4 is the

smallest eigenvalue of D(u) with the corresponding eigenvector Ei∗ . Hence the

computation of the maximum norm is a good application for our second model

example. In Table 1 the results of our numerical experiments are presented for

d ∈ {25, 50, 100} and n := 250. Since the penalty method uses the CG algorithm

several times we count the total number of iterations in the CG method. In all cal-

culations, we observe a moderate number of iterations and a good approximation

of the solution of the eigenvalue problem. A typical decay of the gradient of the

functional with respect to the number of CG iteration is presented in Figure 4.

d
|4+〈D(u)Ei∗ ,Ei∗〉|

4
‖J ′ (Ei∗) ‖ Overall CG iterations Time [Sec.]

25 2.42×10−7 2.49×10−11 79 0.94

50 1.53×10−7 6.22×10−11 54 1.46

100 2.88×10−7 2.91×10−11 61 3.26

Table 1: Computation of the maximum norm of u for different d and n=250.

20

1.0e-012

1.0e-010

1.0e-008

1.0e-006

1.0e-004

1.0e-002

1.0e+000

1.0e+002

 0 5 10 15 20 25 30

||J
’||

CG Iteration

Rayleigh CG-Method

Figure 4: The decay of the gradient ‖J ′(uk)‖2 for d := 50, λ0 = 10 (first call of

the CG algorithm in the penalty method) and n := 250.

References

[1] G. Beylkin and M. J. Mohlenkamp. Numerical operator calculus in higher di-

mensions. Proceedings of the National Academy of Sciences, 99(16):10246–

10251, 2002.

[2] G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in

high dimensions. SIAM Journal on Scientific Computing, 26(6):2133–2159,

2005.

[3] D. Braess and W. Hackbusch. Approximation of 1/x by Exponential Sums

in [1,∞). IMA Numer. Anal., 25:685–697, 2005.

[4] V. de Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best

low-rank approximation problem. Technical Report SCCM-06-06, Stanford

University, 2006.

[5] M. Espig. Effiziente Bestapproximation mittels Summen von Elementarten-

soren in hohen Dimensionen. PhD thesis, Universität Leipzig, 2008.

[6] M. Espig, L. Grasedyck, and W. Hackbusch. Black box low tensor rank

approximation using fibre-crosses. Constructive approximation, 2009.

21

[7] M. Espig and W. Hackbusch. Characteristics and existence of best approxi-

mations with sums of elementary tensors. in preparation, 2009.

[8] M. Espig and W. Hackbusch. A new modified newtons method for the effi-

cient low tensor rank approximation with sums of elementary tensors in high

dimensions. in preparation, 2009.

[9] M. Espig and W. Hackbusch. A preconditioned conjugate gradient method

for the efficient low tensor rank approximation with sums of elementary ten-

sors in high dimensions. in preparation, 2009.

[10] Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig.

http://www.mis.mpg.de/scicomp/exp sum.

[11] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij. Hierarchical

tensor-product approximation to the inverse and related operators for high-

dimensional elliptic problems. Computing, 74(2):131–157, 2005.

[12] L. Grasedyck. Existence and computation of low Kronecker-rank approx-

imations for large linear systems of tensor product structure. Computing,

72:247–265, 2004.

[13] W. H. Greub. Multilinear Algebra. Springer, 1967.

[14] W. Hackbusch and B. N. Khoromskij. Low-rank Kronecker-product approx-

imation to multi-dimensional nonlocal operators. part I. Separable approxi-

mation of multi-variate functions. Computing, 76(3/4):177–202, 2006.

[15] W. Hackbusch and B. N. Khoromskij. Low-rank Kronecker-product approx-

imation to multi-dimensional nonlocal operators. part II. HKT representation

of certain operators. Computing, 76(3/4):203–225, 2006.

[16] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov. Approximate

iterations for structured matrices. Numerische Mathematik, 109(3):365–383,

2008.

[17] P. Kosmol. A new class of derivative-free procedures for finding zeros of a

function. Computing, 1993.

[18] A. Uschmajew. Convex maximization problems on non-compact stiefel

manifolds with application to orthogonal tensor approximations. submitted

to Num. Math., 2009.

22

[19] T. Yokonuma. Tensor Spaces and Exterior Algebra. American Mathematical

Society, 1991.

23

