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On the e�ient onvolution with the Newton potentialW. Hakbush∗ , K.K. Naraparaju∗ and J. Shneider∗
∗Max-Plank-Institute for Mathematis in the SienesInselstrasse 22-26, D-04103 Leipzig, Germany.AbstratThe onvolution ∫

Rd

1

‖x−y‖f(y)dy, where f is smooth, exept for some loal singularities,arises for example in eletroni struture alulations. An e�ient onvolution with theNewton potential in d dimensions has been proposed in [3℄. The onvolution is approximatedon a re�ned grid and additional approximations are introdued for e�ient evaluation. Thispaper studies the performane of the method and a preise error analysis of the method isdisussed.Key Words: Convolution, Re�ned grid, Tensor produt representation, Pointwise smoothness,2-miroloal spaes1 IntrodutionConsider f ∈ L2(Rd). The integral
u(x) = (Kf)(x) =

∫

Rd

1

‖x− y‖f(y)dy for x ∈ Rd (1)represents the onvolution of the Newton potential 1/ ‖.‖ with f. For d = 3, the kernel 1
4π‖x−y‖is the fundamental solution of the Laplae operator △ in R3. Hene, up to a fator, u from (1) isthe solution of the Poisson equation −△u = f in R3.Assume that the given funtion f is smooth exept for some loal singularities and f is assumedto have a bounded support. This models the eletron density of a many-partile (whih is rathersmooth exept in the neighbourhood of the atom entres) in eletron struture alulations. Themost e�ient representation of suh a funtion f is an hp approah using loal re�nements aswell as high polynomial degrees.An e�ient onvolution with the Newton potential has been proposed by W. Hakbush in [3℄.The funtion is approximated in S, the spae generated by pieewise orthonormal basis funtions

Φl
i,α (have the smallest possible support) de�ned on a loally re�ned grid ombining the regulargrids of size hl = 2−l (l < 0) in the re�nement zones

Bl = [−2hl1, 2hl1) = {x ∈ Rd : −2hl ≤ xj ≤ 2hl for 1 ≤ j ≤ d} ⊆ Bl−1.Instead of omputing the integral (1) exatly, u is approximated on the same kind of mesh (projet
u orthogonally onto S). In the projetion, the oe�ients

∫

Rd

∫

Rd

Φl′

i,αΦl
j,β

‖x− y‖ dxdyneed to be omputed (the basis funtions Φl
i,α are from di�erent levels l and l′). Further dis-retization errors are introdued in order to get a fast evaluation of the above integrals. This1



approximation is justi�ed under restritive assumptions on the regularity of the given funtion,see Example 3.3 in [3℄.The preise analysis of the approximation is the subjet of this artile, where our work anbe onsidered as a ontinuation of [3℄. Sine the given funtion f has singular behaviour inthe neighbourhood of a point x0 (only one singular point is onsidered for simpliity), the maindi�ulty is the formulation of the pointwise smoothness of the funtion. 2-miroloal spaes
Cs,s′

x0
, where s, s′ > 0 are the natural hoie to desribe pointwise smoothness of suh funtions[7, 8℄. The advantage of the 2-miroloal setting is that it provides a haraterization in terms ofwavelet oe�ients. The additional approximation in the method is justi�ed in the framework of2-miroloal spaes and also a pointwise error estimate for the approximation of the onvolutionis obtained.The ontents of this paper are organized as follows. The representation of the given funtion

f is desribed in Setion 2. In Setion 3, the approximation of u is desribed. Error analysisof the added approximation is disussed in Setion 4. In Setion 5, omputational results areprovided.2 Representation of fThe given funtion f is smooth exept for some loal singularities. We approximate the givenfuntion f e�iently by pieewise polynomials de�ned on the loally re�ned grid (�ne mesh nearthe singularities and the oarser mesh in the regular part of the support of f). The generation ofthe re�ned grid and the representation of the funtion f is desribed below. For onveniene ofthe reader we follow the same notation as in [3℄.Uniform grids in RdLet hl = 2−l for l ∈ Z be the step sizes orresponding to the l th level (l < 0 assoiated with alarge step size). De�ne multidimensional intervals (ubes) by
Il
v = [vhl, (v + 1)hl) = I l

v1
× I l

v2
× ...× I l

vd
for v ∈ Zd, l ∈ Z,where the position v = (v1, v2, .., vd) is used as a multi-index. This de�nes the mesh Ml ={

Il
v : v ∈ Zd

} for l ∈ Z.Let Pαδ
(x) be the Legendre polynomial of degree αδ de�ned in [−1, 1]. Then the basis funtions

Φl
v,α of degree α = (α1, α2, .., αd) are de�ned as tensor produts of univariate basis funtions:

Φl
v,α(x1, x2, ..xd) =

d∏

δ=1

Φl
vδ ,αδ

(xδ) (v ∈ Zd, l ∈ Z,0 ≤ α ≤ p1),where the univariate basis funtion Φl
vδ,αδ

(x) is de�ned as
Φl

vδ,αδ
(xδ) =

{ √
2vδ+1

hl
Pαδ

(−1 − 2vδ + 2xδ

hl
) if xδ ∈ [vδhl, (vδ + 1)hl),

0 otherwise.The basis funtions Φl
v,α have support in Il

v ∈Ml and satisfy ∥∥Φl
v,α

∥∥
L2

= 1. Then the spae
Sl = span{

Φl
v,α : v ∈ Zd,0 ≤ α ≤ p1

}forms an orthonormal system.The basis funtions Φl
v,α of subsequent levels satisfy the relation

Φl
v,η=

∑

0≤α≤η

∑

0≤i≤1

ξη,α,iΦ
l+1

2v+i,αwith ξη,α,i = (−1)<η+α,1−i>ξη,α, ξη,α =

d∏

δ=1

ξηδ,αδ
, (2)where the oe�ients ξηδ ,αδ

are independent of l and vδ and an easily be omputed, see [3℄.2



Loally re�ned mesh in RdAs usual we re�ne our mesh in the neighbourhood of eah singular point. Now we explain itsonstrution: Restrit the in�nitely many levels l ∈ Z to L ≤ l ≤ L and assoiate a sequene ofnested boxes (onsidered as entered in a singular point)
∅ 6= BL ⊂ .. ⊂ Bl+1 ⊂ Bl... ⊂ BL ⊂ Rd with Bl = [alhl,blhl),where al,bl ∈ 2Zd and [alhl,blhl) = [al,1hl, bl,1hl) × [al,2hl, bl,2hl) × ....× [al,dhl, bl,dhl).In order to avoid an immediate jump from a �ne step to a neighbouring oarse step size, werequire that the boxes Bl are properly nested. The preise ondition is: There is some m ∈ Nwith dist∞(∂Bl−1, ∂Bl) ≥ mhl−1.Approximate f in the re�ned mesh de�ned by

M = {Il
v ∈Ml : Il

v ⊂ Bl \Bl+1}.The re�ned mesh in two dimension is shown in Fig. 1. The orresponding funtion spae isgiven by
S = span{Φl

v,α : Il
v ∈M,0 ≤ α ≤ p1}.

Level l+2
Level l+1

Level lFigure 1: Re�ned mesh in two dimension for m = 1The basis funtions in S are orthonormal. Any funtion in S has a support ontained in BL.Approximation of fFrom the very beginning we onsider f as already approximated in S but keep the symbol ffor the approximated funtion. By the de�nition of S there are oe�ients f l
j,β of f ∈ S so that

f =
L∑

l=L

f l with f l =
∑

j,β

f l
j,βΦl

j,β ∈ Sl,where supp(f l) ⊂ Bl \Bl+1. The representation of f is unique.Remark 1: We an allow a representation
f =

L∑

l=L

f l with f l =
∑

j,β

f l
j,βΦl

j,β ∈ Sl where supp(f l) ⊂ Bl.In this ase the restrition f |Bl\Bl+1
may involve ontributions from all levels l, l − 1, .., L. Thisrepresentation is not unique. 3



3 Convolution with 1
‖x‖The onvolution with the Newton potential de�nes the operator

u(x) = (Kf)(x) =

∫

Rd

f(y)

‖x− y‖dy.As desribed above we use for the funtion f its representation in the spae S. Instead of om-puting the above integral exatly, we approximate u by projeting orthogonally on to S.Let P,Pl denote the L2 orthogonal projetion of the funtion onto S and Sl respetively.Then the Galerkin approximation of K is given by PKP. Therefore, for f ∈ S, the funtion
u = PKf ∈ S is to be determined.The oe�ients of u ∈ S are given by

u =
L∑

l′=L

∑

i ∈ Zd with
Il′

i ⊂ Bl \Bl+1

∑

0≤α≤p1

ul′

i,αΦl′

i,α with ul′

i,α =< Kf,Φl′

i,α > .Sine f ∈ S is a linear ombination of ertain Φl
j,β, the quantities

< KΦl
j,β,Φ

l′

i,α >=

∫

Rd

∫

Rd

Φl′

i,αΦl
j,β

‖x− y‖ dxdy (3)need to be omputed.Remark 2:(a). If l′ = l , the basis funtions in the above integral are at the same level.(b). If l′ 6= l , it an be redued to the ase l′ = l. Let l′ > l. Replae Φl
j,β by basis funtionsof level l+ 1, see formula (2). By repeating this proess (l′ − l) times, we get the ase l′ = l. Butthis proedure inreases the data size by 2l′−l.To overome the above disadvantage, an approximation of PKP whih requires (3) for onlyequal levels l = l′ has been introdued in [3℄. A brief desription of the approximation is givenbelow.Modi�ed approximationThe approximation to be de�ned is based on the smoothness property of the onvolution.Roughly speaking, the key idea is that the image Kφ is smoother than the funtion φ itself. Apreise analysis of this point is desribed in Setion 4.Consider f l ∈ Sl with support Bl. The image u = PKf l ∈ S is the exat Galerkin result. Fixa level λ and onsider the restrition uλ = u|Bλ\Bλ+1

. This funtion extended by zero outsidebelongs to Sλ. Hene uλ = PλKPlf
l holds. As mentioned before, the omputation of PλKPlf

lfor λ 6= l is possible, but expensive. Instead we replae now PλKPl by Pmin{λ,l}KPmin{λ,l}. Thenthe onstrution looks as follows:Represent f ∈ S in the form f =
∑

l

f l with f l ∈ Sl, supp(f l)⊂Bl. Then u =
∑

l

PKf l and weapproximate now eah term PKf l ∈ S by ul =

l∑

λ=L

uλ,l with
ul,l = (PlKPlf

l) |Bl
,

uλ,l = (PλKPλf
l) |Bλ\Bλ+1

, for L ≤ λ < l.4



Altogether the approximation of Kf is
u =

L∑

l=L

l∑

λ=L

uλ,l.The most aurate result is to be expeted for the representation of f with supp(f l) ⊂
Bl \Bl+1. Due to the approximation, the oe�ients (3) are now only needed for the ase l′ = l.The evaluation of the onvolution at level l is desribed below.Remark 3: Note that the replaement is only done for x ∈ Bλ with dist(x,Bl) ≥ hλ, seethe onstrution of Bl in setion 2 (or setion 3.3 in [3℄).Convolution at level lSine Φl

i,α(x) = Φl
0,α(x− ihl),

N l
i−j,α,β =

∫ ∫
Φl

i,α(x)Φl
j,β(y)

‖x− y‖ dxdy =

∫ ∫
Φl

i−j,α(x)Φl
0,β(y)

‖x− y‖ dxdydepends on the di�erene i− j.The L2 orthogonal projetion of F (x) =
∫ f l(y)

‖x−y‖dy onto Sl yields
PlF = PlKf l =

∑

i∈Zd

∑

0≤α,β≤p1




∑

j∈Zd

N l
i−j,α,βf

l
j,β



 Φl
i,α.Set

F l
i,α =

∑

0≤β≤p1

∑

j∈Zd

N l
i−j,α,βf

l
j,β.Besides β summation it is a disrete onvolution and an be obtained by fast Fourier Transform(FFT), provided the quantities N l

k,α,β are known. F l
i,α are the oe�ients of

PlF =
∑

i∈Zd

∑

0≤α≤p1

F l
i,αΦl

i,α.Let N = #{j : jhl ∈ Bl} be the data size. Applying fast Fourier transform, the above disreteonvolution requires O(NpdlogN) arithmetial operations.Computation of N l
i,α,βThe oe�ients N l
i,α,β =

∫ ∫ Φl
i,α

(x)Φl
0,β

(y)

‖x−y‖ dxdy an be determined exatly as desribed in [5℄at least for d ≤ 3. An e�ient approximation has been proposed in [3℄. First, we obtain the o-e�ients N l
i,α,β for ‖i‖∞ ≥ 2 (far �eld where the integrands are smooth) reursively. One N l

i,α,βare known for 2 ≤ ‖i‖∞ ≤ 3, the oe�ients N l
i,α,β for ‖i‖∞ ≤ 1 (near �eld where the integrandsare singular) an be omputed by simple algebrai operations without any quadrature error. In[3℄, it has been shown that the oe�ients N l

i,α,β an be determined e�iently and inexpensivelyfor a �xed range of indies i with 0 ≤ i1 ≤ i2 ≤ .. ≤ id and α ≤ β one for all.Tensor produt approximationSo far the approximation of the onvolution in Rd is disussed in the original form. In thisase, for d ≥ 3 the data size may beome large beause of the exponent d. The tensor produt5



approximation redues the data size and the omputational omplexity. A brief desription onthe tensor produt approximation is given below.If the funtion has the produt form
f(x) = f1(x1).f2(x2)....fd(xd),and the kernel funtion had the form
k(x) = k1(x1).k2(x2)....kd(xd),then the onvolution

(k ∗ f)(x) =

∫

Rd

k(x− y)f(y)dy

=

(∫

R

k(x1 − y1)f1(y)dy1

)
...

(∫

R

k(xd − yd)f1(y)dyd

)

= (k1 ∗ f1)(x1)....(kd ∗ fd)(xd)ould be redued to d one-dimensional onvolutions. For simpliity, here only one term is on-sidered in the tensor produt representations of f and k. In general they are represented by thesum of r suh terms (r is alled the rank). The data size and the omputational work inreaseonly proportionally to d if the spatial dimension inreases. The omplete details of the tensorprodut representation of the Newton potential 1
‖x−y‖ and the evaluation of the onvolution isgiven in [3℄. The details of tensor approximation for our numerial experiments are desribed insetion 5.4 Justi�ation of the approximationIn this Setion, we justify the approximation de�ned in Setion 2 and study the smoothness ofthe onvolution u.Error analysis.Remark 4: Although our numerial results (setion 5) are based on the polynomial approah,desribed in the previous setions, we will justify our approximation sheme in the wavelet set-ting, beause this somehow overs the polynomial ase. In fat, we an write f in (multi-) waveletsetting by splitting f l orthogonally into f l = Pl−1f

l + (I − Pl−1)f
l for L + 1 ≤ l ≤ L̄, then wehave

f =

L̄∑

l=L

f l with f l ∈ Sl and f l⊥Sλ for λ < l.In [3℄ (setion 3.3) the same argumentation is given in more details.As desribed in Setion 3, we have replaed PλKPl by Pmin{λ,l}KPmin{λ,l} (for λ < l and theondition from Remark 3). This replaement will now be justi�ed below. We assume that thesoure funtion f and the onvolution u are represented in the same grid system.For simpliity, we assume that f exhibits singular behaviour at only one point x0 in its boundedsupport. Away from x0 the funtion f is onsidered to be more regular. First, let us onsider theone dimensional ase.To formulate the variable smoothness of the funtion, we use the setting of the 2-miroloalspaes Cs,s′
x0

, whih were designed to model loal smoothness behaviour, see [7, 8℄ for details. Inthose spaes Cs,s′
x0

the parameter s re�ets the smoothness at the point x0 where its di�erene6



to the smoothness in the neighbourhood is given by s′. We are interested in the ase s, s′ > 0,where the funtions are at least ontinuous and x0 is a point of "bad" smoothness s ompared toits "better" surrounding with s+ s′. For those situations the spaes Cs,s′
x0

are the natural hoie.Even more, beause they provide a wavelet haraterization (see Proposition 1.4. in [7℄): Let usrepresent the funtion f as
f(x) =

∑

j,k∈Z

dj,k(f)ψj,k(x)in the wavelet system {ψj,k} with oe�ients dj,k(f), where we assume that the system is or-thonormal with su�ient regularity and | suppψj,k| ≤ 2−j | suppψ0| (ψ0 is the mother wavelet,see [1, 2℄). Then f belongs to Cs,s′
x0

if and only if
|dj,k(f)| ≤ C2−( 1

2
+s)j(1 + 2j |x0 − 2−jk|)−s′ . (4)For s′ > 0 this deay ondition is weaker at x0 than away from it, hene, it �ts well to what wesaid above.Now, onsider a point y in the support of the funtion f ∈ Cs,s′

x0
. The absolute error δfl =

f − Plf at the level l in the wavelet approximation of f at the point y is given by
|δfl(y)| =

∣∣∣∣∣∣

∞∑

j=l+1

N∑

i=1

dj,kj,i
ψj,kj,i

(y)

∣∣∣∣∣∣
,where the summation over i is due to the ontribution of the wavelet funtions at the point y,whih are de�ned on di�erent intervals whose index is denoted by kj,i, i = 1, . . . , N, at eah level(due to the overlapping of the wavelets). Using (4), we have

|δfl(y)| ≤ C
∞∑

j=l+1

N∑

i=1

h
( 1

2
+s)

j (1 + 2j
∣∣x0 − 2−jkj,i(y)

∣∣)−s′
∣∣ψj,kj,i

(y)
∣∣

≤ C ′
∞∑

j=l+1

N∑

i=1

h
( 1

2
+s)

j h
− 1

2

j (1 + 2j
∣∣x0 − 2−jkj,i(y)

∣∣)−s′

= C
′

∞∑

j=l+1

N∑

i=1

hs
j(1 + 2j |x0 − 2−jkj,i(y)|)−s′ . (5)Now we want to get rid of the sum over i. Beause N does not depend on j we an estimate

N∑

i=1

hs
j(1 + 2j

∣∣x0 − 2−jkj,i(y)
∣∣)−s′ ≤ Nhs

j(1 + 2j
∣∣x0 − 2−jk∗j (y)

∣∣)−s′ , (6)where 2−jk∗j (y) is the nearest point to x0 among 2−jkj,i(y), i = 1, . . . , N. Notie that in ase
s′ > 0 we have (

1 + 2j |a− b|
)−s′ ≤

(
1 + 2j |a− c|

)−s′ (
1 + 2j |b− c|

)s′for all a, b, c ∈ R. Combining this with (5) and (6) we an write
|δfl(y)| ≤ C

′′

∞∑

j=l+1

hs
j(1 + 2j |x0 − y|)−s′(1 + 2j |y − 2−jk∗j (y)|)s

′

≤ C
′′′

∞∑

j=l+1

hs
j(1 + 2j |x0 − y|)−s′ ,sine |y − 2−jk∗j (y)| ≤ c̃2−j by the support property of the ψj 's.7



As j → ∞, the value (1 + 2j |x0 − y|)−s′ is bounded by (1 + 2l+1 |x0 − y|)−s′ and we estimatefurther
|δfl(y)| . (1 + 2l+1 |x0 − y|)−s′

∞∑

j=l+1

hs
j

. hs
l+1(1 + 2l+1 |x0 − y|)−s′

. hs
l (1 + 2l|x0 − y|)−s′ .Now we apply our kernel k(x, y) = ‖x − y‖−1, whih is smooth o� the diagonal and ertainlysatis�es there also

0 < ĉ ≤
∣∣∣∣
∂

∂y
k(x, y)

∣∣∣∣ ≤ Ĉ,for all y ∈ I l
v. Therefore, we have

∣∣∣∣∣

∫

Il
v

k(x, y)δfl(y)dy

∣∣∣∣∣ =

∣∣∣∣∣

∫

Il
v

[k(x, y) − k(x, y′)]δfl(y)dy

∣∣∣∣∣ (sine ∫

Il
v

δfl(y)dy = 0)

. hs
l

∫

Il
v

∣∣k(x, y) − k(x, y′)
∣∣ (1 + 2l|x0 − y|)−s′dy

. hs+1
l

∫

Il
v

∣∣∣∣
∂

∂y
k(x, ỹ)

∣∣∣∣ (1 + 2l|x0 − y|)−s′dy (by meanvalue theorem)

. hs+1
l

∫

Il
v

∣∣∣∣
∂

∂y
k(x, y)

∣∣∣∣ (1 + 2l|x0 − y|)−s′dy (7)Now onsider the three dimensional ase. Let y be a point in Il
v, then similar arguments as aboveshow

|δfl(y)| . hs
l (1 + 2l|x0 − y|)−s′and (7) reads as ∣∣∣∣∣

∫

Il
v

δfl(y)

‖x− y‖dy
∣∣∣∣∣ . hs+1

l

∫

Il
v

(1 + 2l|x0 − y|)−s′

‖x− y‖2 dy. (8)Finally, let's study the e�et of the replaement of PλKPl by PλKPλ on the approximation ofthe onvolution funtion. The re�nement is done suh that hs
l (1 + 2l|x0 − x|)−s′ ≤ ε at eahpoint x in the support of the funtion f . Therefore, an error of u = Kf of the size ∫

Bl

ǫ
‖x−y‖dyis aeptable.Let x ∈ Bλ�Bλ+1 and y ∈ Bl, where l > λ. Replaing PλKPl by PλKPλ means to replae

δfl in Bl by δfλ. Using (8), δfλ leads to the error ontribution
hs+1

λ

∫

Bl

(1 + 2λ|x0 − y|)−s′

‖x− y‖2 dy (9)from Bl.Sine the replaement of PλKPl by PλKPλ is only made if ‖x− y‖ ≥ hλ,
h1+s

λ

‖x−y‖2 ≤ hs
λ

‖x−y‖holds. Furthermore, there exists a onstant C̃ suh that
(1 + 2λ|x0 − y|)−s′ ≤ C̃(1 + 2λ|x0 − x|)−s′ ,Using the last two inequalities to estimate the error in (9), it follows by our re�nement strategy,that the error ontribution from Bl is of aeptable size:

hs+1
λ

∫

Bl

(1 + 2λ|x0 − x|)−s′

‖x− y‖2 dy .

∫

Bl

εdy

‖x− y‖ .8



Smoothness of the onvolution funtion uNow, we test the behaviour of the onvolution funtion u(x) in the integral
u(x) = (Kf)(x) =

∫

R3

1

‖x− y‖f(y)dy for x ∈ R3.The onvolution funtion is the solution of the Poisson equation −△u = f up to a fator. Asdesribed above, let us assume that f ∈ Cs,s′
x0 . Here s, s′ > 0.Sine f belongs to the two-miroloal spae Cs,s′

x0
, by Theorem 4 in [8℄, u(x) belongs to Cs+2,s′

x0
.The onvolution u is smoother than f. The oe�ients dj,k in the wavelet expansion of u havethe following deay property [7℄

|dj,k| ≤ C2−( 3

2
+s+2)j(1 + 2j

∣∣x0 − 2−jk
∣∣)−s′ .One an easily show that the absolute error δul at the level l in the wavelet approximation of

u at the point y is given by
|δul(y)| ≤ C ′hs+2

l (1 + 2l |x0 − y|)−s′ .The proof of the above estimate easily follows from the estimates obtained before. This is theerror in the wavelet expansion of the onvolution of the funtion f with the Newton potential atlevel l.The above estimates shows that u does not need a more re�ned grid. In general, u mayalso need another grid whih might be very di�erent from the f -grid and it may require a moreextended grid in the ase of a fast deaying funtion f beause u will deay less strongly than f.5 Numerial ResultsIn this Setion we provide the numerial results to show the e�ieny of the method. As explainedin Setion 3, to evaluate the disrete onvolution at a level l, we need to ompute the oe�ients
N l

i,α,β =
∫ ∫ Φl

i,α
(x)Φl

0,β
(y)

‖x−y‖ dxdy for a �xed range of the indies i, α, β. Instead of exat omputationan easy and good approximation has been proposed in [3℄.
i, α, β N0

i,α,β(1,1,1)(0,0,0)(0,0,0) 0.5787968780(1,1,1)(0,1,0)(0,0,1) -0.0171748095(1,1,1)(1,1,1)(1,1,1) -2.4206346E-3(0,1,1)(0,0,0)(0,0,0) 0.7084949688(0,1,1)(0,0,1)(0,0,1) -0.0192376213(0,1,1)(0,1,1)(0,0,0) 0.0437745422(0,0,1)(0,0,0)(0,0,0) 0.9808849307(0,0,1)(0,0,0)(0,0,1) 0.2506269809(0,0,1)(1,1,1)(1,1,1) -0.0280493477(0,0,0)(0,0,0)(0,0,0) 1.8823119346(0,0,0)(0,0,1)(0,0,1) 0.4388291645(0,0,0)(1,1,1)(1,1,1) 0.1369316507(0,0,0)(2,2,2)(2,2,2) 0.0486651243(0,0,0)(6,6,6)(6,6,6) 0.0071713666Table 1: N0
i,α,β for some values of i, α, β

Sine N l
i,α,β = 2l(1−d)N0

i,α,β (from the prop-erties of N l
i,α,β), it is su�ient to determine

N0
i,α,β only for the level l = 0.We evaluated the oe�ients N0

i,α,β (di-mension d = 3) e�iently for a �xed rangeof index i and for the polynomial degrees
1 ≤ αi, βi ≤ 6, i = 1, 2, 3 using the algo-rithm proposed in [3℄. The oe�ients N0

i,α,βfor some values of the indies i,α,β are shownin Table 1. The omplete data of the oef-�ients N0
i,α,β for a range of indies ‖i‖∞ ≤

3, 0 ≤ α, β ≤ p1(p = 6) and ‖i‖∞ ≤ 7, 0 ≤
α, β ≤ p1(p = 5) an be found in www.mis.mpg.de/siomp/Gaoe�. Now we on-sider a few numerial examples to hek theauray and e�ieny of the method in om-puting the onvolution. Although we justi�edthe method in a muh more general framework(2-miroloal spaes modelling funtions with 9



pointwise singularities), we basially restrit ourselves here to sums of Gaussians, whih in quan-tum hemistry usually model the eletron density.Example 1: Consider
f(x1, x2, x3) = e−(x2

1
+x2

2
+x2

3
)in the ube [−4, 4]3. Sine the funtion is deaying for ‖x‖ → ∞ with less regular behaviour at

x = 0 = (0, 0, 0), the simplest re�nement struture uses
Bl = 2hl[−1,1) = [−2hl, 2hl)

3.Consider 3 levels l = −1, 0, 1. Here, h−1 = 2;h0 = 1;h1 = 0.5. As mentioned in setion 3 thedata size N in eah level is equal to 43 = 64 in this re�nement strategy.For simpliity, we have �xed the polynomial degree p = 6 uniformly on the re�ned grid. Theonstrution of intervals at various levels in univariate diretion is shown in Fig. 2.
B

B 

B 

 −l

 0

 1

−4 −2 0 2 4

−2 2−1 0 1

−1 −0.5  0    0.5   1

−4                     −2          −1  −0.5 0   0.5   1          2                         4Figure 2: Mesh in univariate diretion
As desribed in Setion 3, the tensor prod-ut approximation of the given funtion f andkernel k(x, y) = 1

‖x−y‖ leads (1) to 3 one di-mensional onvolutions. It redues the ompu-tational omplexity of the method. The New-ton potential 1
‖x−y‖ is approximated by expo-nential sums [3℄

1

‖x− y‖ ≈
k∑

ν=1

ων

3∏

δ=1

exp (
−ϑν(xδ − yδ)

2
)
.In all of our numerial examples in this setion,we onsidered the rank k = 15. The oe�ients

ων and ϑν orresponding to k = 15 are given in [4℄. For ‖i‖∞ ≥ 2, the oe�ients N l
i,α,β areapproximated by El

i,α,β (tensor produt form) with su�iently small error. For ‖i‖∞ ≤ 1, anadditional orretion δN l
i,α,β = N l

i,α,β − El
i,α,β is neessary. A tensor representation of the error

δN l
i,α,β has been desribed in [3℄. In all of our numerial examples, we used rank 3 tensorrepresentation of δN l

i,α,β.An approximation solution is obtained on the re�ned grid and ompared with the exatsolution at some points of the ube. The exat value of the onvolution of the funtion f =
e−(x2

1
+x2

2
+x2

3
) with the Newton potential at a point ( 6= 0) is given by

π3/2

r
erf(r),where r is the Eulidean distane of the point from the origin 0 and erf is the error funtion [9℄.The exat value at the origin 0 is 2π. The exat values of u, approximated values and the errorat some points along the diagonal in B−1 \B0 are shown in Table 2.
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Point Exat Appr Error(4.000,4.000,4.000) 0.803718917001020 0.80371907694237 1.59940E-7(3.875,3.875,3.875) 0.829645333653398 0.82964505243810 2.81215E-7(3.750,3.750,3.750) 0.857300178134421 0.85729979718413 3.80950E-7(3.625,3.625,3.625) 0.886862253242505 0.88686193313274 3.20109E-7(3.500,3.500,3.500) 0.918535905116262 0.91853568199939 2.23116E-7(3.375,3.375,3.375) 0.952555753453901 0.95255560280310 1.50650E-7(3.250,3.250,2.250) 0.989192513202126 0.98919240826608 1.04493E-7(3.125,3.125,3.125) 1.028760213730193 1.02876015985222 5.38779E-8(3.000,3.000,3.000) 1.071625222635424 1.07162525002545 2.7390E-8(2.875,2.875,2.875) 1.118217623617682 1.11821773548813 1.11870E-7(2.750,2.750,2.750) 1.169045697401677 1.16904580232783 1.04926E-7(2.625,2.625,2.625) 1.224714539998645 1.22471443865771 1.01340E-7(2.500,2.500,2.500) 1.285950265987240 1.28594977802592 4.87961E-7(2.375,2.375,2.375) 1.353631852087357 1.35363108474215 7.67345E-7(2.250,2.250,2.250) 1.428833579301809 1.42883307013285 5.09168E-7(2.125,2.125,2.125) 1.512882374017987 1.51288246098072 8.69627E-8(2.000,2.000,2.000) 1.607436285416955 1.60743641481465 1.29397E-7Table 2: The exat, approximated values of u and the error at some points in B−1 \B0.The exat values, approximated values of u and the error at some points along the diagonalin B0 \B1 are shown in Table 3.Point Exat Appr Error(1.875,1.875,1.875) 1.714592857373497 1.71459233230972 5.25063E-7(1.750,1.750,1.750) 1.837038481562164 1.83703820250376 2.79058E-7(1.625,1.625,1.625) 1.978248926624814 1.9782485384616 3.88163E-7(1.500,1.500,1.500) 2.142739144042205 2.14273892170467 2.22337E-7(1.375,1.375,1.375) 2.336321405735543 2.33632152929874 1.23563E-7(1.250,1.250,1.250) 2.566243260873728 2.56624236681007 8.94063E-7(1.125,1.125,1.125) 2.840929620064991 2.84092885695697 7.63108E-7(1.000,1.000,1.000) 3.168884047416819 3.16887980044927 4.24696E-6Table 3: The exat, approximated values of u and the error at some points in B0 \B1.The exat, approximated values of u at some points along the diagonal in B1 are shown inTable 4. Point Exat Appr Error(0.875,0.875,0.875) 3.556245003230128 3.55624148246019 3.52076E-6(0.750,0.750,0.750) 4.002766338616063 4.00276342410935 2.91450E-6(0.625,0.625,0.625) 4.496780723171488 4.49677732355138 3.39962E-6(0.500,0.500,0.500) 5.010889351733840 5.01088837478121 9.76952E-7(0.375,0.375,0.375) 5.501068343437025 5.50106765407012 6.89366E-7(0.250,0.250,0.250) 5.911624296406164 5.91162280001335 1.49639E-6(0.125,0.125,0.125) 6.186375850544813 6.18637228005012 3.57049E-6(0.000,0.000,0.000) 6.283185307179586 6.28318664385373 1.33667E-6Table 4: The exat, approximated values of u and the error at some points in B1.The error obtained at arbitrary points in the given ube is shown in the Table 5.11



Point Exat Appr Error(4.000,3.000,3.000) 0.95496037306 0.95496056455 2.38418E-7(4.000,2.000,2.000) 1.13663019271 1.13663030122 1.19209E-7(4.000,3.000,2.000) 1.03401255045 1.03401285644 3.57627E-7(2.000,1.000,1.000) 2.27205099840 2.27205278819 1.66893E-6(1.850,2.000,1.250) 1.85761633774 1.85761613394 1.19209E-7(2.000,1.500,1.000) 2.06773524745 2.06773591752 7.15255E-7(0.000,0.100,0.100) 6.24154754038 6.24154852153 9.53674E-7(0.000,0.250,0.500) 5.68574447872 5.68574426967 2.09049E-7(0.000,0.750,1.000) 3.90063626630 3.90063630380 3.75071E-8(0.000,0.750,0.750) 4.28685532160 4.28685425270 1.06890E-6Table 5: The exat, approximated values of u and the error at some arbitrary points in the ube
[−4, 4]3.Run time denotes the sum of the user time and the pu time measured in seonds. It isobtained by the ommand �dtime� in the program (Fortran 90). In this example, the run time is235 seonds.Now, onsider two di�erent mesh re�nement strategies in the ube [−4, 4]3 (di�erent valuesof l). We look at the performane of these strategies in terms of loal auray and omputationtime. Sine the funtion has less regular behaviour in the neighbourhood of the origin (0, 0, 0),it is enough to hek their performane at the origin. We provide the error of the approximationat the origin in Table 6 (p = 6 is onsidered uniformly).Levels Error Run time

l = −1 6.03023E-4 100
l = −1, 0 4.91370E-5 142

l = −1, 0, 1 1.33667E-6 235Table 6: Error at the origin (0, 0, 0) for di�erent kinds of mesh.The method gives better auray with the re�ned grid with three levels l = −1, 0, 1. Theauray is onsiderably good also with two levels. A muh better auray an be expeted withhigher degree of approximation p ≥ 7.Now, we onsider the onvolution in [−8, 8]3. We use the simplest mesh re�nement struture
Bl = 2hl[−1,1) = [−2hl, 2hl)

3.with four levels l = −2,−1, 0, 1. Therefore h−2 = 4. Let us onsider the polynomial degree
p = 6 uniformly on the re�ned grid. The approximate solution is obtained and ompared withthe exat values. The exat, approximated values of u and the error at some points along thediagonal are given in the Table 7. The auray does not hange so muh at the points in theube [−4, 4]3 ompared to the values shown in the above Tables. Same rate of onvergene isobserved even when the onvolution is approximated on muh larger supports with little inreasein the omputational time.
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Point Exat Appr Error(8.0,8.0,8.0) 0.401859458488365 0.401859635473206 1.76984E-7(7.5,7.5,7.5) 0.428650089054255 0.428649781241130 3.07813E-7(7.0,7.0,7.0) 0.459267952558131 0.459267800885742 1.51672E-7(6.5,6.5,6.5) 0.494596256601064 0.494596298106986 4.15059E-8(6.0,6.0,6.0) 0.535812611317819 0.535812776761550 1.65443E-7(5.5,5.5,5.5) 0.584522848710348 0.584522987448119 1.38737E-7(5.0,5.0,5.0) 0.642975133581383 0.642974826590719 3.06990E-7(4.5,4.5,4.5) 0.714416815090426 0.714416410612729 4.04477E-7(4.0,4.0,4.0) 0.803718917001020 0.803718574662575 3.42338E-7(3.5,3.5,3.5) 0.918535905116262 0.918535722193669 1.82922E-7(3.0,3.0,3.0) 1.071625222635424 1.071625295155810 7.25203E-8(2.5,2.5,2.5) 1.285950265987240 1.285949828443110 4.37544E-7(2.0,2.0,2.0) 1.607436285416955 1.607436470086180 1.84669E-7(1.5,1.5,1.5) 2.142739144042205 2.142738980425410 1.63616E-7(1.0,1.0,1.0) 3.168884047416819 3.168879860829170 4.18658E-6(0.5,0.5,0.5) 5.010889351733840 5.010890915129430 1.56339E-6(0.0,0.0,0.0) 6.283185307179586 6.28318670497909 1.39779E-6Table 7: The exat, approximated values of u and the error at some points in the ube [−8, 8]3.In this ase, the run time is 288.25 seonds. Now, onsider the re�nement struture
Bl = 4hl[−1,1) = [−4hl, 4hl)

3.The same rate of onvergene is observed when three levels l ranging from -1 to 1 are onsideredwith the polynomial degree p = 5. In this re�nement struture N is equal to 83 = 512 in eahlevel. In this ase, the oe�ients N0
i,α,β are needed for a wide range of indies i (‖i‖∞ ≤ 7)for all (0 ≤ α, β ≤ p1). The run time is 1140 seonds, beause of the inreased data size in thisre�nement struture ompared to the previous one.Example 2: Consider the funtion

f(x1, x2, x3) =
10√
π
e−100(x2

1+x2
2+x2

3) +
20√
π
e−400(x2

1+x2
2+x2

3)in [−2, 2]3. This funtion deays faster as ‖x‖ → ∞ and has a peak at the origin (0, 0, 0). Considerthe simplest re�nement struture
Bl = 2hl[−1,1) = [−2hl, 2hl)

3.Sine the funtion f has a large peak at (0, 0, 0) and deays faster, a very �ne mesh is needed inthe neighbourhood of the origin. Consider the levels l ranging from 0 to 5 with uniform degreeof approximation p = 5. Here h5 = 2−5. The exat value of the onvolution is given by
π

100

1

r
erf(10r) +

π

400

1

r
erf(20r).The omparison of the approximate values with the exat values of the onvolution and the errorat some points along the diagonal in B0 \B1 is given in Table 8.
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Point Exat Appr Error(2.000,2.000,2.000) 0.011336246026464 0.01133614692086207 9.91056E-8(1.875,1.875,1.875) 0.012091995761561 0.01209189646097236 9.93005E-8(1.750,1.750,1.750) 0.012955709744530 0.01295559581911199 1.13925E-7(1.625,1.625,1.625) 0.013952302801801 0.01395219203020205 1.10771E-7(1.500,1.500,1.500) 0.015114994701951 0.01511488845364178 1.06248E-7(1.375,1.375,1.375) 0.016489085129402 0.01648895286927748 1.32260E-7(1.250,1.250,1.250) 0.018137993642342 0.01813782864846653 1.64993E-7(1.125,1.125,1.125) 0.020153326269269 0.02015314107994888 1.85189E-7(1.000,1.000,1.000) 0.022672492052927 0.02267247585593861 1.61969E-8Table 8: The exat, approximated values of u and the error at some points in B0 \B1.The error in the approximation of the onvolution at some points in B1\B2 is shown in Table 9.Point Exat Appr Error(0.950,0.950,0.950) 0.023865781108345 0.02386577710502395 4.00332E-9(0.900,0.900,0.900) 0.025191657836585 0.02519163811448026 1.97221E-8(0.850,0.850,0.850) 0.026673520062267 0.02667350415009453 1.59121E-8(0.800,0.800,0.800) 0.02834061506616 0.02834062992489371 1.48587E-8(0.750,0.750,0.750) 0.030229989403903 0.03023002947593631 4.00720E-8(0.700,0.700,0.700) 0.032389274361325 0.03238929853974601 2.41784E-8(0.650,0.650,0.650) 0.034880757004503 0.03488074234103890 1.46634E-8(0.600,0.600,0.600) 0.037787486754879 0.03778747025090653 1.65039E-8(0.550,0.550,0.550) 0.041222712823504 0.04122269003321277 2.27902E-8Table 9: The error in the approximation at some points in B1 \B2.In Tables 10 and 11 the exat, approximated values and error at some points in B2 \B3 and
B3 \B4 are tabulated respetively.Point Exat Appr Error(0.500,0.500,0.500) 0.045344984105855 0.0453449473771581 3.67286E-8(0.450,0.450,0.450) 0.050383315673171 0.0503832820387457 3.36344E-8(0.400.0.400,0.400) 0.056681230132319 0.0566812476774826 1.75451E-8(0.350,0.350,0.350) 0.06477854872265 0.0647785824092972 3.36866E-8(0.300,0.300,0.300) 0.075574973509746 0.0755749270255115 4.64842E-8(0.250,0.250,0.250) 0.090689968145388 0.090689862675230 1.05470E-7Table 10: The exat, approximate values at some points in B2 \B3.Point Exat Appr Error(0.225,0.225,0.225) 0.100766628475802 0.100766592404997 3.60708E-8(0.200,0.200,0.200) 0.113362372897823 0.113362382908686 1.00108E-8(0.175,0.175,0.175) 0.129555217076436 0.129555253984642 3.69082E-8(0.150,0.150,0.150) 0.151121099936769 0.151120992970801 1.06965E-7(0.125,0.125,0.125) 0.18106075891498 0.181059651708292 1.10720E-6Table 11: The exat, approximate values and error at some points in B3 \B4.
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Point Exat Appr Error(0.100,0.100,0.100) 0.224130077524767 0.224129683833875 3.93690E-7(0.075,0.075,0.075) 0.286277462628707 0.286277228187033 2.34441E-7(0.050,0.050,0.050) 0.372101726207017 0.372098593336344 3.13287E-6Table 12: The exat, approximate values and error at some points in B4 \B5.In Tables 12 and 13 the error at some points in B4 \B5 and B5 are tabulated respetively.Point Exat Appr Error(0.025,0.025,0.025) 0.474882263815941 0.474882040710773 2.23105E-7(0.000,0.000,0.000) 0.531736155271655 0.531730081079106 6.07419E-6Table 13: The exat, approximate values and error at some points in B5.The run time in this example is 182 seonds. More auray an be ahieved using thehigher degree of approximation p = 6. The same rate of onvergene is observed even when theonvolution is approximated on muh larger supports. We also studied the performane of variousre�nement strutures. But the above desribed re�nement struture gives better results in termsof both the auray and omputational time.Now we onsider a funtion whih exhibits singular behaviour at more than one point in itsbounded support.Example 3:Consider the funtion
f(x1, x2, x3) = f1(x1, x2, x3) + f2(x1, x2, x3) + f3(x1, x2, x3)

=
10√
π
e−100((x1−1)2+(x2−1)2+(x3−1)2) +

20√
π
e−400(x2

1
+x2

2
+x2

3
)

+
10√
π
e−100((x1+1)2+(x2+1)2+(x3+1)2)in [−2, 2]3. Fig. 3 shows the behaviour of the funtion in two dimension.
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Figure 3: Two dimensional representation of f

The funtion f(x1, x2, x3) has less regularbehaviour in the neighbourhood of the points
(−1,−1,−1), (0, 0, 0) and (1, 1, 1).We approx-imate the onvolution of the Newton potentialwith the funtion f2 in the ube [−2, 2]3 withre�ned mesh in the neighbourhood of the ori-gin (0, 0, 0) (level l ranging from 0 to 5), thefuntion f1 in the ube [−5, 3]3 with the re-�ned mesh in the neighbourhood of the point
(−1,−1,−1) (level l ranging from −1 to 5) andthe funtion f3 in the ube [−3, 5]3 with re-�ned mesh in the neighbourhood of the point
(1, 1, 1) (level l ranging from −1 to 5). Anuniform degree of approximation p = 5 is on-sidered. We used the simplest mesh re�nementstruture

Bl = 2hl[−1,1) = [−2hl, 2hl)
3.15



The approximate values of the onvolution at some points in the ube [−2, 2]3 are obtainedby adding the approximate values of the onvolution with the funtions f1, f2 and f3 respetively.The exat values of the onvolution, approximate values and the error at some points in theneighbourhood of the point (−1,−1,−1) ube [−2, 2]3 are shown in the Table 14.Point Exat Appro Error(-2.000,-2.000,-2.000) 0.026451240728416 0.026450893945291 3.46783E-7(-1.875,-1.875,-1.875) 0.029456402097419 0.029456032467360 3.69630E-7(-1.750,-1.750,-1.750) 0.033370767523790 0.03337042231798 3.45205E-7(-1.625,-1.625,-1.625) 0.038720962251857 0.038720540909295 4.21342E-7(-1.500,-1.500,-1.500) 0.046554183682012 0.046553722730530 4.60951E-7(-1.375,-1.375,-1.375) 0.059302850026797 0.059302433083371 4.16943E-7(-1.250,-1.250,-1.250) 0.084240903739223 0.084240303549805 6.00189E-7(-1.125,-1.125,-1.125) 0.157350963337238 0.157350431646816 5.31690E-7(-1.000,-1.000,-1.000) 0.368094265412860 0.368091560558460 2.70485E-6(-0.875,-0.875,-0.875) 0.159640652170520 0.159640698696725 4.65262E-8(-0.750,-0.750,-0.750) 0.088962540179452 0.088962448908805 9.12706E-8(-0.625,-0.625,-0.625) 0.066785022744624 0.066785067274290 4.45296E-8Table 14: The exat, approximate values of the onvolution and the error at some points in theneighbourhood of (−1.0,−1.0,−1.0).Table 15 shows the error at some points in the neighbourhood of (0, 0, 0). Due to the sym-metry we an observe the same rates of onvergene as shown in Table 14 at the points in theneighbourhood of the point (1.0, 1.0, 1.0). The run time in this example is 300 seonds. This is thesum of the run times of the approximation of the onvolution with the funtions f1 and f2 respe-tively. Sine the funtions f1 and f3 are equal, but loated at di�erent entres (−1.0,−1.0,−1.0)and (1.0, 1.0, 1.0), it is enough to �nd the approximated values of the onvolution with one of thefuntions f1 and f3. The approximated values of the onvolution with the other funtion an beeasily obtained by shifting the entre. In general, the run time will be the sum of run times ofthe individual problems.Point Exat Appro Error(-0.500,-0.500,-0.500) 0.057436979867417 0.05743695743465003 2.24327E-8(-0.375,-0.375,-0.375) 0.054304053692831 0.05430405659021483 2.89738E-9(-0.250,-0.250,-0.250) 0.056832380079339 0.05683238782970265 7.75036E-9(-0.125,-0.125,-0.125) 0.073127783858187 0.07312771330296847 7.05552E-8(0.000,0.000,0.000) 0.213521372375236 0.21352000244554086 1.36992E-6(0.125,0.125,0.125) 0.073127783858187 0.07312771330296847 7.05552E-8(0.250,0.250,0.250) 0.056832380079339 0.05683238782970265 7.75036E-9(0.375,0.375,0.375) 0.054304053692831 0.05430405659021482 2.89738E-9(0.500,0.500,0.500) 0.057436979867417 0.05743695743465003 2.24327E-8Table 15: The error at some points in the neighbourhood of (0, 0, 0).ConlusionsThe given funtion f (with singular behaviour in the neighbourhood of some points) is e�-iently approximated on the re�ned grid. The basis polynomials are of higher order and havethe support (smallest possible support) only on one ube. The onvolution is approximated onthe same grid and further disretizations are onsidered for an e�ient evaluation. The addedapproximation is justi�ed and pointwise smoothness of the onvolution is studied in the frame-work of 2-miroloal spaes. The smoothness of the onvolution is also studied. The numerial16



examples show the e�ieny of the method. Various re�nement strutures are onsidered. Thesimple re�nement struture
Bl = 2hl[−1,1) = [−2hl, 2hl)

3gives the better results in terms of both auray and omputation time. A uniform polynomialapproximation (for simpliity) is used in all our numerial examples. As a further improvementone an use variable degree of approximation, i.e., a lower order approximation in very �ne meshregions and the higher order approximation in oarser ones on the re�ned grid.Referenes[1℄ A. Cohen (2003): Numerial analysis of wavelet methods, Studies in Mathematis and itsAppliations, Elsevier.[2℄ I. Daubehies (1988): Orthonormal bases of ompatly supported wavelets, Comm. on pureand Appl. Math. 41.[3℄ W. Hakbush (2008): E�ient onvolution with the Newton potential in d dimensions. Nu-mer. Math. 110, 449-489.[4℄ W. Hakbush (2005): Entwiklungen nah Exponential summen, Tehnisher Beriht 4, Max-Plank-Institute fur Mathematik, Leipzig.[5℄ W. Hakbush (2002): Diret integration of the Newton potential over ubes, Computing, 68,193-216.[6℄ W. Hakbush (2006): Approximation of 1
‖x−y‖ by exponentials for wavelet appliations,Computing, 76:359-366.[7℄ S. Ja�ard and Y. Meyer (1996): Wavelet methods for pointwise regularity and loal osillationsof funtions, Memoirs of AMS, Number 587.[8℄ S.Ja�ard (1991): Pointwise smoothness, two-miroloalization and wavelet oe�ients, Pub-liations Mathematiques, Vol 35, 155-168.[9℄ T. Helgaker, P.R. Taylor (1995): Gaussian basis sets and moleular integrals: Modern ele-troni struture theory, part-II, D.R. Yarkony, Ed., World Sienti�, Singapore, p. 725.
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