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Abstract

In the present paper, we discuss the novel concept of super-compressed tensor-structured
data formats in high dimensional applications. We describe the multi-folding or quantics based
tensor approximation method of O(d log N)-complexity (logarithmic scaling in the volume size),
applied to the discrete functions over the product index set {1, ..., N}⊗d, or briefly N -d tensors
of size Nd, and to the respective discretised differential-integral operators in Rd. As the ba-
sic approximation result, we prove that complex exponential sampled on equispaced grid has
quantics rank 1. Moreover, the Chebyshev polynomial sampled over Chebyshev Gauss-Lobatto
grid, has separation rank 2 in quantics tensor format, while for the polynomial of degree m
the respective quantics rank is at most m + 1. For N -d tensors generated by certain analytic
functions, we give the constructive proof on the O(d log N log ε−1)-complexity bound for their
approximation by low rank 2-(d logN) quantics tensors up to the accuracy ε > 0. In the case
ε = O(N−α), α > 0, our approach leads to the quantics tensor numerical method in dimension
d, with the nearly optimal asymptotic complexity O(d/α log2 ε−1). ¿From numerics presented,
we observe that the quantics tensor method has proved its value in application to various func-
tion related tensors/matrices arising in computational quantum chemistry and in the traditional
FEM/BEM—the tool apparently works.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: High-dimensional problems, quantics folding of vectors, rank structured tensor approx-
imation, matrix valued functions, FEM, material sciences, stochastic modeling.

1 Introduction

1.1 Evolution of tensor methods in the recent decade

In recent years, the idea of using the tensor-structured data formats was recognized as the basic
concept for breaking down the “curse of dimensionality” in multidimensional numerical simulations.
The guiding principle of tensor methods is an approximation of multivariate functions and opera-
tors relying on certain separation of variables. Modern applications include the high-dimensional
problems arising in material sciences, bio-science, stochastic modeling, DMRG and quantum com-
putations, signal processing, machine learning, financial mathematics.

The computational task is focused on the efficient low-complexity representation of higher order
tensors and the related linear operators. In the current discussion, a tensor of order d, or briefly
N -d tensor, is thought as the function on a product index set, A : I⊗d → R with d-fold product
I⊗d = I × · · · × I, and I = {1, ..., N}. The subsequent exponential scaling in the storage size, Nd,
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predisposes the severe computational difficulties when using the traditional numerical algorithms
that suffer from the “curse of dimension”.

Recent approaches, like the wavelet multiscale methods [7, 8] and the hyperbolic cross (sparse
grids) approximation [5, 41, 47] allow to relax the curse of dimension, and already make possible
to treat the moderate dimensional problems, e.g., with d ≤ 10.

Methods which allow the linear scaling in the dimension are distinctively linked with the idea of
tensor approximation via separation of variables (see survey papers [33, 27] and references therein).

Application of the orthogonal rank-(r1, ..., rd) Tucker tensor format (cf. [44, 9]) allows to relax
the curse of dimension dramatically because of the reduced storage complexity, O(rd + drN),
where, in practice, the sufficient maximal Tucker rank r = max

1≤ℓ≤d
rℓ, can be much smaller than

N , say, r = O(log N). The particular case of the Tucker representation, usually refereed as the
canonical model, can be specified by the diagonal Tucker core with rℓ = r, (ℓ = 1, ..., d) implying
the linear storage scaling in d, drN . In general, the best r-term nonlinear approximation indicates
the slow polynomial convergence in the rank parameter r, and it can be estimated by the simple
greedy-type incremental algorithms [43]. For the class of (physically relevant) analytic multivariate
functions and Green’s kernels the exponential convergence in the separation rank r can be proved
[14, 23, 25, 26], that leads to the asymptotically optimal bound on the canonical rank, r = O(log N).

Since the well-known limitations in approximation via canonical model [11], the mixed (two-
level) orthogonal Tucker-canonical representation via imposing the rank-R canonical core tensor
was introduced [23, 28]. It inherits the beneficial features of both models, orthogonality and linear
scaling in d. The multigrid accelerated version of the mixed Tucker-canonical format was shown
to be efficient in tensor computation of the 3D integral transforms in ab initio electronic structure
calculations [28, 29].

The SVD-based approximation in the Tucker format was introduced, see the HOSVD approxi-
mation of the full format tensors [10], and RHOSVD approximation applied to the canonical targets
[28]. These algorithms can be applied to moderate dimensions.

The rank-structured tensor formats that scale linear in the dimension d and, at the same time,
allow the direct SVD-based truncated multilinear operations can be constructed using the idea of
partial decoupling of dimensions. In computational molecular dynamics such methods are known
for longer time as hierarchical or binary cascadic multi-configuration tensor methods (see [1, 34]
for further details). Methods based on tensor product states representation (similar to TT/TC
factorization below) became popular in density matrix renormalization group (DMRG) theory since
[46], as well as in slightly entangled quantum computations [45]. The idea of dimension splitting
in the context of the canonical tensor approximation was addressed in [23, Lemma 2.2].

The beneficial feature of the binary cascadic dimension splitting and DMRG methods is due to
their linear scaling in d and N that can be realized by using the truncated SVD approximation or
the truncated Schmidt decomposition (SD) that is another notation for truncated SVD, commonly
used in physical literature. Recently, the tensor formats based on the tree-type or hierarchical
dimension splitting have attracted much attention in mathematical community (see [37, 18, 4]).
The non-hierarchical dimension splitting was introduced based on the so-called Three-dimensional
Tensors [35], or equivalently Tensor Train (TT) [37] format. The storage is estimated by O(dr2N),
where r is the maximal separation (splitting) rank. Furthermore, the quasi-optimal SVD-based
algorithms for the rank optimization in hierarchical/TT dimension splitting schemes have been
described in [37, 15].

In the present paper, we make use of the TT- and related formats in the framework of tensor-
truncated function/operator calculus. In §2.1 below, the generalised tensor chain (TC) representa-
tion is addressed characterized by the periodic-type dimensional splitting scheme. It is motivated
by the fact that from a physical point of view, periodic boundary conditions are normally highly
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preferable to the open ones (the latter correspond to TT format) [46]. In §2.2, we discuss the
two-level Tucker-TC model that is a combination of the orthogonal Tucker decomposition with the
TT/TC-representation of the Tucker core. The advantage is that it provides linear storage scaling
in the rank parameter due to the fact that both the maximal Tucker and TC ranks appear to be
much smaller than N , r ≪ N . The special case of above model is the two-level canonical-TT
format that is proved to be useful in the tensor-structured operator calculus [30, 27].

1.2 Why folding of a tensor may lead to log N-complexity

In high resolution molecular/electronic structure calculations, in FEM applications and in stochastic
PDEs the univariate grid size N specifying N -d tensors resolving multiple singularities may be
rather large, say, N ≈ 104, that addresses the question on whether a better than linear asymptotic
in N can be attained. The answer is yes, specifically, the asymptotic complexity O(d log N),
i.e. logarithmic in the volume size, is possible if we deal with the “well structured” data. For
example, it is known in signal processing, spectroscopy and higher-order statistics that the folding
of a sampling vector into a matrix or 3-tensor may reduce the number of essential parameters
(samplings) to reconstruct exactly the initial vector in R

N (cf. [42, 21, 39]). The relation to a
separable representation of polyadics was emphasized in [20, 6].

To illustrate why the folding of a vector/tensor to a high-dimensional data format might lead
to the compressed representation, we present the simple, but instructive example on the dyadic
folding of exponential vector. The next statement is the particular case of the more general Lemma
2.5 below on the q-adic folding of N -vectors.

Proposition 1.1 For a given N = 2L, with L ∈ N+, and c, z ∈ C, the single exponential vector
X := {xn := czn−1}N

n=1 ∈ C
N , can be reshaped by the successive dyadic folding to the rank-1

2 × 2 × ... × 2
︸ ︷︷ ︸

L

-tensor representation (shortly, to the rank-1, 2-L tensor),

X 7→ A = c ⊗L
p=1

[
1

z2p−1

]

, A : {1, 2}⊗L → C. (1.1)

The number of representation parameters is reduced dramatically from N to 2 + log2 N .

Proposition 1.1 implies that the exponential N -vector is exactly represented by the rank-1,
2-L quantics tensor of size 2 × 2 × ... × 2 represented by only 2 + log2 N parameters. The similar
folding strategy can be applied to matrices and N -d tensors (see §2.4). In the case of a gen-
eral vector/matrix/tensor, the resultant 2-dL folding tensor can be approximated in the low rank
TT/TC-format.

In the present paper, we make a step toward the almost grid-independent (or meshless) repre-
sentation of high order tensors. We show that the quantics-TT (QTT) approximation of q-logq N
tensors obtained by the q-adic (or simply quantics1 type) multidimensional folding, and applied to
a class of function related N -vectors, N × N -matrices or N -d tensors provides exponential con-
vergence in the canonical rank. In particular, we prove that the “exponential, trigonometric and
polynomial” vectors have fixed QTT-rank uniformly in the vector size N . This allows to understand
why the multifolding of vectors/tensors may lead to the d log N -computational complexity.

Notice that the terminology also mimics the representation via elementary information quantum
(“quant”) since the initial large vector is split into small fractions of size q = 2, 3 (quantics). This
“pin-point” resolution allows to find the separable structure at all levels including the elementary

1The terminology is borrowed from the methods of separable representation of polyadics, see [6].
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q-quants. Hence, the rank structured quantics approximation discovers the similarity patterns in
the input data up to the finest resolution level, providing the way for the best possible compression
rate within the chosen rank-structured dimensional splitting model posed in the auxiliary dimension
D = d logq N .

We introduce the semianalytic constructive scheme providing the low rank quantics-TT approx-
imation of function related tensors, that can be substantiated on the SVD-based rank reduction
algorithm in [35].

1.3 Toward asymptotically optimal grid-based numerical methods

Tensor-structured numerical methods of the linear scaling O(dN), are proved to be efficient for
representation of functions and operators in the Hartree-Fock and Kohn-Sham models in electronic
structure calculations [3, 28, 22]. Numerical method for solution of the Hartree-Fock equation by
tensor truncated iteration was recently presented in [29]. Other successful applications to high-
dimensional eigenvalue problems [19, 26] and to stochastic PDEs [32, 31] are reported. Using
separation of variables in machine learning is addressed in [2]. Numerical examples in [36] demon-
strated the highly compressed TT-approximation of 2L × 2L-matrices arising in FEM.

The QTT method developed in this paper has proved its value in tensor decomposition of large
multi-dimensional data sets arising in traditional FEM, stochastic PDEs, and in numerical quantum
chemistry—the tool apparently works. The particular numerical illustrations presented in Section
3.4 indicate surprisingly good compression rate O(d log N), of the QTT approximation applied
to certain matrix-valued functions and function related tensors. This includes solutions of model
boundary-value and eigenvalue problems in R

d, as well as some examples of electron densities and
Hartree potentials in electronic structure calculations. Moreover, DMRG calculations in [46, 45]
show that QTC/QTT-type “matrix product states” tensor formats are indispensable in moder
quantum computations.

1.4 Outline of the main results and future prospects

In the present paper we discuss the new prospects of tensor-structured data formats in high dimen-
sional applications based on the idea of quantics representations.

The quantics-based tensor approximation methods are described applied to the discrete func-
tions over the d-fold index set of size N × ...×N , or briefly N -d tensors, and to the related matrices
representing the discrete analogues of differential-integral operators. For some classes of function
related N -d tensors, we give the constructive proof on the O(d log N log ε−1)-complexity bound for
their approximation up to the accuracy ε > 0, in the set of low rank q-D quantics tensors in auxil-
iary dimension D = d logq N , with small base q = 2, 3, such that N = qL. In particular, we justify
the low-rank quantics tensor approximation for solutions of certain elliptic boundary value/spectral
problems in R

d.
The quantics approximation of log-log scaling, O(d log N log ε−1), opens the new perspectives

for developing reliable computational methods in higher dimensions that are free from the “curse
of dimensionality”, noticeable limitations on the grid-size (kind of the meshless method), and from
numerical instabilities. In the case of polynomially convergent FEM-FDM discretisations, i.e. for
ε = O(N−α), α > 0, we arrive at the QTT solution methods with the asymptotic complexity
O(d logβ ε−1), β ≥ 2, that seems to be the nearly optimal computational cost expected in the high
dimensional numerical modeling.

With impetus to real life applications, we mention that the QTT method can be employed
in the framework of truncated iteration or DMRG-type optimisation for solving classes of ellip-
tic/parabolic equations in higher dimensions with log-scaling in the volume size.
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The rest of the paper is organised as follows. Section 2 introduces the quantics (folding) tensor
approximation. We prove that the exponential and trigonometric tensors allow the exact rank-1
(resp. rank-2) quantics representation, while the Chebyshev polynomial sampled over Chebyshev
Gauss-Lobatto grid has separation rank 2 in quantics tensor format. Then we prove the approxima-
tion error estimate in terms of the canonical rank applied to the class of function related quantics
tensors. Section 3.4 presents various numerical examples on the O(D log ε−1)-approximation of N -d
tensors by the D-dimensional q-D quantics with the auxiliary (vertual) dimension D = d logq N .

2 Approximation in quantics tensor formats

2.1 Basic rank-structured tensor representations

Tensors of order d are defined as the elements of finite dimensional tensor-product Hilbert space
Wn ≡ Wn,d of the d-fold, N1 × ... × Nd

︸ ︷︷ ︸

d

real/complex-valued arrays, and equipped with the Eu-

clidean scalar product. Each tensor in Wn can be represented componentwise, A = [A(i1, ..., id)]
with iℓ ∈ Iℓ := {1, ..., Nℓ}, and n = (N1, ..., Nd), where for the ease of presentation, we mainly
consider the equal-size tensors, i.e., Iℓ = I = {1, ..., N} (ℓ = 1, ..., d). We call the elements of
Wn = R

I with I = I1 × ... × Id, as N -d tensors and use ceveral equivalent notations for the corre-
sponding d-dimensional arrays, A ≡ A(N,d) ≡ A(n,d) ∈ Wn. Dimension of the Hilbert space scales

exponentially in d, dim Wn,d = Nd.
The rank-(r1, . . . , rd) Tucker format [44, 9]) contains all tensors in Wn = R

I , that can be
presented in the form of a tensor-by-matrix contracted product over the product index set J :=
×d

ℓ=1Jℓ, with Jℓ = {1, ..., rℓ}, and r = (r1, ..., rd) ∈ N
d
+,

V = β ×1 T (1) ×2 T (2)... ×d T (d) ∈ Wn, (2.1)

and with certain (orthogonal) N × rℓ side matrices, T (ℓ) = [t1ℓ ...t
rℓ

ℓ ] ∈ R
I×Jℓ. The coefficients (core)

tensor β = [β(ν1, ..., νd)], νℓ ∈ Jℓ, is an element of a (dual) tensor space Br = R
J1×...×Jd. We denote

this tensor class by T r,n ⊂ Wn. The storage size is still exponential, O(rd +drN), since, in general,
the interdimensional connectivity tensor β is fully populated.

The rank-R canonical format is defined as the particular case of Tucker model (2.1) specified by
equal ℓ-mode ranks, rℓ = R (ℓ = 1, ..., d), and by the diagonal Tucker core β := diag{β1, ..., βR},
such that β(ν1, ..., νd) = 0 except when ν1 = ... = νd with β(ν, ..., ν) = βν . The orthogonality of T (ℓ)

is no longer required. We denote by CR,n the class of tensors in Wn whose rank does not exceed
R, rank(V) ≤ R. In spite of linear scaling in d, dRN , the inflexible and rather poor connectivity
pattern of this format, parallel with the lack of orthogonality, lead to the well known computational
difficulties with the canonical decomposition. Another possible drawback is the “rigid“ constraints
due to the equal rank distribution for all dimensions, rℓ = R, ℓ = 1, ..., d.

The rank-r tensor train (TT) format is defined in the spirit of Tucker model, but with essentially
reduced “connectivity” constraints (see [35, 37]). As in the case of canonical format it scales linearly
in both d and N . The generalisation of the TT-format to the case of “periodic” index chain is
given by the following definition.

Definition 2.1 (Tensor chain format). For the given rank parameter r = (r0, ..., rd), and the
respective index sets Jℓ = {1, ..., rℓ} (ℓ = 0, 1, ..., d), with the periodicity constraints J0 = Jd (i.e.,
r0 = rd), the rank-r tensor chain (TC) format contains all elements V in Wn = R

I that can
be represented as the chain of contracted products of 3-tensors over the d-fold product index set
J := ×d

ℓ=1Jℓ,

V = {×ℓ}d
ℓ=1G

(ℓ) with 3-tensors G
(ℓ) ∈ R

Jℓ−1×Iℓ×Jℓ, (2.2)
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or in the index notation,

V (i1, ..., id) =
∑

α1∈J1

· · ·
∑

αd∈Jd

G(1)(αd, i1, α1)G
(2)(α1, i2, α2) · · · G(d)(αd−1, id, αd).

Denote this set of tensors by TC[r, d]≡TC[r,n, d]⊂ Wn (d can be skept upon the context).
In the case J0 = Jd = {1} (disconnected chain), this construction coincides with the respective

definition of TT format in [35], thus implying TT[r, d] ⊂ TC[r, d].

The beneficial properties of the TC format are collected in the following lemma.

Lemma 2.2 (A) Storage requirement for the rank-r TC tensors in (2.2) is bounded by

d∑

ℓ=1

rℓ−1rℓ N ≤ dr2N with r = max
ℓ

rℓ.

(B) The rank-R canonical tensor belons to TC[r, d] with r = (R, ..., R). TC rank of a tensor is the
same in C and in R.
(C) Let W = Wn be the tensor product of lower dimensional tensor product Hilbert spaces,

W :=
⊗K

k=1
Wk with dimWk = dk,

and let us suppose that the set of TC[rk, dk]-tensors in Wk is given by

Vk = {×ℓ}dk

ℓ=1G
(ℓ)
k ∈ TC[rk, dk] ⊂ Wk, J (k) := ×dk

ℓ=1J
(k)
ℓ ,

satisfying the compatibility conditions J
(k)
dk

= J
(k+1)
dk+1

(k = 1, ...,K − 1). Then the tensor product of

Vk (k = 1, ...,K), is a D-dimensional tensor with D = d1 + ... + dK , such that

V =
⊗K

k=1
Vk ∈ TC[rD,D], with rD = (r1, ..., rK), JD = J (1) × ... × J (K).

In the case J
(k)
dk

= {1} (k = 1, ...,K − 1), the product index set J represents the union of disjoint
index chains.

Proof. In the case J0 = Jd = {1}, assertions (A) - (B) are proven in [35]. In the general case, items
(A) - (B) can be verified by the similar arguments.

To prove (C), we concatenate Vk (k = 1, ...,K), and check that the index set JD = J (1) ×
... × J (K) defines the d-fold index chain that satisfies Definition 2.1, with D = d1 + ... + dK , and
rD = (r1, ..., rK). In fact, this is true due to the compatibility conditions on the boarder indices in

J (k), J
(k)
dk

= J
(k+1)
dk+1

, and the periodicity property J
(k)
0 = J

(k)
dk

, imposed by Definition 2.1 applied to

each Vk ∈ TC[rk, dk] (k = 1, ...,K). The last statement is straightforward.
Applicability of the general TC format with J0 = Jd 6= {1}, can be motivated, in particular, by

the following computational tasks:
– DMRG computations of slightly entangled quantum systems [45, 46] with periodic boundary

conditions.
– Approximation of symmetric/antisymmetric tensors.
– Rank optimization in the case of highly nonuniform distribution of the ℓ-mode, TT-rank

parameters rℓ, ℓ = 1, ..., d.
Notice that approximation of the full, canonical or TT-tensors by using the low TT-rank ele-

ments can be fulfilled by the noniterative procedure based on SVD/QR decompositions [35]. In the
case of general TC tensors the rank reduction operations require certain modifications based on
the use of simple ALS type iteration applied in the cyclic ordering similar to that for the familiar
ALS iteration to compute the orthogonal Tucker approximation.
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2.2 Combining Tucker, canonical, and TC formats

The rank-R two-level (mixed) Tucker-canonical format denoted by T [CR,r], contains all Tucker
tensors in T r,n with the Tucker core in CR,r (see [23, 28]). This benefits from the linear storage
complexity, drN + dRr, orthogonality, and the opportunity for variable directional ranks, r =
(r1, ..., rd). Clearly, we have the imbedding T [CR,r] ⊂ CR,n.

Similar to the previous construction, we introduce the Tucker-TC format, T r[TC[r1]], contain-
ing all Tucker tensors in T r,n with the Tucker core in the rank-r1 TC format. Now the storage
complexity of representation scales linearly in r, O(drN + d r2

1 r), while the representation basis is
given explicitly by the “optimal” set of orthogonal Tucker vectors. This may be gainfully applied
in the framework of the Galerkin scheme. Notice that the rank-R, T [CR,r]-format is embedded
into the class T r[TT [r1]] with r1 = (R, ..., R) (cf. Lemma 2.2, (B)). Hence, the further TT-rank
optimisation of the initial element in T r[TT [r1]], can be accomplished with the SVD-based scheme
applied to the small size canonical core tensor in Cr1,r, (r ≪ N).

Another tensor format that might be useful in numerical multilinear algebra is specified as a set
of N -d tensors in CR,n with N = qL, where each canonical N -vector in rank-1 terms is represented
by the q-L tensor in the TC[r, L] format with L = logq N . We denote this canonical-TC format by
CR,n[TC[r, L]]. The particular representation looks like

V =

R∑

k=1

ckT
(1)
k ×2 T

(2)
k ... ×d T

(d)
k ∈ CR,n[TC[r, L]], (2.3)

where, for k = 1, ..., R, ν = 1, ..., d,

T
(ν)
k := {×ℓ}L

ℓ=1G
(ℓ)
k,ν ∈ TC[r, L] with small-size 3-tensors G

(ℓ)
k,ν ∈ R

rℓ−1×q×rℓ.

The storage complexity of respective representation scales logarithmically in N , O(Rr2d log N),
hence, it has advantages for large tensor size N .

Based on Lemma 2.2,(D), the tensors in CR,n[TC[r,q, L]] can be presented as the R-term sum
of elements in TC[rD,D], leaving in the higher dimensional space with D = dL, and with the d-fold
multiindex index rD = (r, ..., r).

2.3 Low rank quantics representation of vectors

In this Section, we prove the basic result saying that the class of discrete exponential (resp. trigono-
metric) N -vectors allows the rank-1 (resp. rank-2) q-folding representation with small q = 2, 3, ...,
that reduces the storage complexity from linear O(N) to the logarithmic one O(q logq N).

Given q = 2, 3, ..., we suppose that N = qL with some L = 1, 2, .... The folding (lifting) and
unfolding (reducing) transforms on N -d tensors can be interpreted as the dual reshaping operations
specified by the reordering scheme of the respective index sets. Next definition introduces the folding
of N -d tensors into the elements of auxiliary D-dimensional tensor space with D = d logq N .

Definition 2.3 Introduce the q-adic folding transform of degree 2 ≤ p ≤ L,

Fq,d,p : Wn,d → Wm,dp, m = (m1, ...,mℓ), mℓ = (mℓ,1, ...,mℓ,p),

with mℓ,1 = qL−p+1, and mℓ,ν = q for ν = 2, ..., p, (ℓ = 1, ..., d), that reshapes the initial n-d tensor
in Wn,d to the quantics space Wm,dp as follows:
(A) For d = 1 a vector X(N,1) = [X(i)]i∈I ∈ WN,1, is reshaped to the element of WqL−p+1,p by

Fq,1,p : X(N,1) → Y(m,p) = [Y (j)] := [X(i)], j = {j1, ..., jp},
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with j1 ∈ {1, ..., qL−p+1}, and jν ∈ {1, ..., q} for ν = 2, ..., p. For fixed i, jν = jν(i) is defined
by jν = 1 + CL−p−1+ν, (ν = 1, ..., p), where the CL−p−1+ν are found from the partial radix-q
representation of i − 1,

i − 1 = CL−p + CL−p+1q
L−p+1 + · · · + CL−1q

L−1.

(B) For d > 1 a tensor A(n,d) = [A(i1, ..., id)], iℓ ∈ Iℓ, ℓ = 1, ..., d, is reshaped by

Fq,d,p : A(n,d) → B(m,dp) = [B(j1, ..., jd)] := [A(i1, ..., id)], jℓ = {jℓ,1, ..., jℓ,p},

with jℓ,1 ∈ {1, ..., qL−p+1}, and jℓ,ν ∈ {1, ..., q}, for ν = 2, ..., p, and for all ℓ = 1, ..., d. Now the
univariate ℓ-mode index iℓ is reshaped into jℓ as in the case d = 1. For completeness, in the case
p = 1, we define Fq,d,1 as the identity mapping.

(C) For the maximal degree folding (p = L), the multiindex jℓ − 1 with jℓ,ν ∈ {1, ..., q}, is the
q-adic representation of iℓ − 1, iℓ ∈ Iℓ, in radix-q system, i.e.,

jℓ,ν = 1 + Cν , ν = 1, ..., L, where iℓ − 1 =
L∑

ν=1

Cνq
ν−1.

Definition 2.4 The set of tensors in Wm,dL, which can be represented in TT [r] (resp. TC[r])
format will be called as QTT [r] (resp. QTC[r]) tensors.

Example 1. Quantics folding of the exponential N -vector: X = [1 z z2 z3 z4 z5 z6 z7]T ∈ C
8, with

N = 23, L = 3, F2,3(X) ∈ C
2×2×2,

F2,3 : X 7→ A =

[
1
z

]

⊗
[

1
z2

]

⊗
[

1
z4

]

∈ QTT [1].

N

r1

r1
rr

2 2
r
3

d=6

r

N

N

3

r6

r
5

6

r5 r4

r r
4

d= log N = 3

F

N=2
3

Figure 2.1: TC-model for d = 6 (left); Quantics folding of a vector, L = 3 (right).

Example 2. For d = 1 and p = 2, 3, the reshaping map Fq,1,p folds an N -vector to a N/q × q-
matrix or to N/q2 × q × q, 3-tensor, respectively.

For the sake of higher compressibility, the maximal degree folding, Fq,d,L, has to be used.
The unfolding transform, e.g., tensor-to-matrix (matricization) or tensor-to-vector (vectoriza-

tion), may be viewed as the reverse to the folding, F−1
q,d,p, and it can be also defined in the conven-

tional way [33].
The folding transform Fq,d,p exhibits the following useful properties:

(F1) Fq,d,p is the linear isometry between WN,d and WqL−p+1,dp that has the inverse transform

(unfolding) F−1
q,d,p : WqL−p+1,dp → WN,d.
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(F2) The q-folding of a rank-1 tensor w = x1 × ... × xd ∈ WN,d, is given by the outer product of
componentwise reshaping transforms of canonical vectors,

Fq,d,pw = Fq,1,px1 ⊗ ... ⊗Fq,1,pxd.

(F3) Let d = 1, then for any p = 2, ..., L and X = [X(i)] ∈ C
N , we have the following bound on

the TT rank of the quantics image Fq,1,LX,

rp−1 ≤ rank(Xp),

where Xp is the reshaping of X to a N/qp−1 × qp−1 matrix.

Next two lemmas present the basic results on the rank-1 (resp. rank-2) q-folding representation
of the exponential (resp. trigonometric) vectors.

Lemma 2.5 For given N = qL, with q = 2, 3, ... and L ∈ N+, and for given ck, zk ∈ C, αk ∈ R

(k = 1, ..., R), we have (A) a sum of exponential N -vectors, X := {xn :=
R∑

k=1

ckz
n−1
k }N

n=1, can be

reshaped by the q-folding Fq,1,L, to the rank-R, q-L tensor in Wq,L,

Fq,1,L : X → A(q,L) =
R∑

k=1

ck ⊗L
p=1 [1 zqp−1

k ... z
(q−1)qp−1

k ]T ∈ CR,q[TT [1]]. (2.4)

(B) A sum of trigonometric N -vectors, X := {xn :=
R∑

k=1

ck sin(αk(n − 1))}N
n=1, can be reshaped to

the rank-2R, q-L tensor A(q,L), whose TT-rank do not exeed 2R,

Fq,1,L : X → A(q,L) =

R∑

k=1

Ak ∈ Wq,L, with Ak ∈ TT [2, L].

In both cases, the number of representation parameters is reduced from (N + 1)R to (qL + 1)R and
4qLR, respectively.

Proof. (A) First, we consider the case of single exponential, R = 1. The proof follows by induction.
For L = 2, i.e., N = q2, the rank-1 representation can be directly verified by applying the vector-
to-matrix folding,

Fq,1,2 : X(q2,1) → A(q,2) :=









1 zq · · · z(q−1)q

z
. . . · · · z(q−1)q+1

...
...

. . .
...

zq−1 z2q−1 · · · zq2−1









=








1
z
...

zq−1








[1 zq ... z(q−1)q ].

To prove the induction step from L to L+1, i.e., for N = q qL, we define the subvectors x1, ..., xq ∈
R

qL

of X(N,1) by xk(i) := X[i + (k − 1)qL, 1], (k = 1, ..., q, i = 1, ..., qL), and then represent the
result of a folding transform with p = 2, by the rank-1, N/q × q-matrix via rescaling of the first
subvector x1,

Fq,1,2 : X(N,1) → A(N/q,2) := c[x1x2...xq] = cx1 ⊗ y,
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where the vector of scaling coefficients is given by y := [1 zqL

... z(q−1)qL

]T . Now substitution of
each matrix column xk, k = 1, ..., q, of size N/q = qL by rank-1 tensor as in (2.4) leads to

A(q,L+1) =
[

⊗L
p=1[1 zqp−1

... z(q−1)qp−1

]T
]

⊗ [1 zqL

... z(q−1)qL

]T ,

completing the induction step.
(B) Again, we begin from the case R = 1. Using trigonometric identity sin z = eiz−e−iz

2i , and
applying item (A) with R = 1, we arrive at the required claim on tensor rank of A(q,L) over field C.
Now, the rank of each ℓ-mode unfolding matrix of the q-L tensor does not exceed 2, since the matrix
rank does not change if we extend the field R to C (cf. Lemma 2.2, (B)). Since the TT-ranks do
not exceed the ranks of respective directional unfolding matrices (cf. [37]), the maximal TT-rank
of the q-L tensor A(q,L) is bounded by 2R.

In the case of arbitrary rank parameter R > 1, the result is obtained by summation of rank-1
(resp. rank-2) terms. The complexity bounds then follow from Lemma 2.2,(A).

It turns out that the exponential-trigonometric product vector allows the 4 logq N complexity
quantics representation as proven by the following lemma.

Lemma 2.6 For given N = qL, with q = 2, 3, ..., L ∈ N+, and c, z ∈ C, α ∈ R, the exponential-
trigonometric vector X := {xn := czn−1 sin(α(n− 1))}N

n=1, can be reshaped to a q-L tensor, Fq,1,L :
X → A(q,L) ∈ TT [2], whose both canonical and TT-ranks do not exceed 2.

Proof. The properties of the folding transform Fq,1,L imply that the q-L tensor A(q,L) is obtained
by the Hadamard product of the rank-1 quantics representation for a single exponential and rank-2
quantics of the trigonometric vector (cf. Lemma 2.5). Now, the statement follows from the fact
that the Hadamard product with rank-1 tensor does not enlarge the TT-rank of the second factor
that is exactly 2. Hence, the TT-rank of the resultant q-L tensor A(q,L) does not exceed 2.

Clearly, a R-term sum of exponential-trigonometric vectors with N = qL, can be reshaped to
the q-L tensor of complexity O(Rq logq N) that follows by combining Lemma 2.5, and 2.6.

Remark 2.7 The minimization of the parametric function fx(q) := q logq x for the large value of
x ∈ R+, leads to the optimal folding base q∗ ∈ [2, 3]. This means that for large vector-size N ,
the choice q = 2, 3 leads to the best compression rate. In the case q = 2, we have binary coding
representation for the quantics index j(i) ∈ {1, 2}⊗L, i = 1, ..., N (cf. Def. 2.3, (C)).

Next statement characterises the QTT rank bound for “polynomial” vectors.

Proposition 2.8 Property (F3) of the quantics folding ensures that the QTT rank of the quantics
image of any N -vector obtained by the equidistant sampling of a polynomial does not exceed m + 1,
where m is the polynomial degree. In fact, the column space of the reshaped matrix is spaned by at
most m + 1 polynomial vectors generated by monomials 1, x, ..., xm.

Simple extension to the case of piecewise polynomial N -vectors is straightforward. In particular,
quantics format applies to piecewise polynomial wavelet basis functions. For example, we can easily
prove that the QTT rank of Haar wavelet does not exceed 2, implying that the asymptotic QTT
compression properties are at least as good as for the Haar wavelets. “Mexican hat” wavelets
generated by Gaussian-times-polynomials can be shown to have low QTT rank as well (see Remark
2.10).

Notice that the rank bound for hierarchical-Tucker tensors applied to the quantics image of a
polynomial vector on equidistant grids is shown to be bounded by O(m), where m is the polynomial
degree, see [16].
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It is worth to mention that using equidistant sampling points is non mandatory. In some
cases the separation rank in the quantics tensorization may be reduced by using special grading of
sampling points. In the next statements, we give some results on the rank bound in the case of
polynomial vectors at N + 1 Chebyshev Gauss-Lobatto nodes xj = cos πj

N ∈ [−1, 1], j = 0, ..., N ,
and for Gaussian type function with quadratic mesh grading.

Lemma 2.9 (A) For any n = 0, 1, ..., the Chebyshev polynomial Tn(x), |x| ≤ 1, sampled over
N + 1 Chebyshev nodes xj ∈ [−1, 1], can be represented in the quantics space of 2-log N tensors
with both C-rank and QTT-rank ≤ 2, uniformly in N .
(B) Any polynomial of degree m sampled over N+1 = 2L Chebyshev nodes at [−1, 1] has a quantics-
TC separation rank bounded by 2m + 1.

Proof. (A) First we note that the Chebyshev polynomial Tn(x) = cos(n arccos x), sampled at
Chebyshev nodes coinsides with the cos-trigonometric vector sampled over uniformly graded points
in variable θj = arccos xj, j = 0, ..., N . Then the result follows by Lemma 2.5.

(B) Any polynomial of degree m can be represented in the orthogonal basis of Chebyshev
polynomials by at most m + 1 terms with T0 = 1. Hence (B) follows from item (A).

Lemma 2.9 may be applied to the case of polynomial interpolation over Chebyshev nodes, which
are usually more prefarable compared with equispaced nodes. In fact, this prevents the well-known
instability appearing in those interpolation process based on equidistant grids.

Remark 2.10 The TT-rank of the q-folded discrete Gaussian type function sampled over the uni-
form grid, {e−α(n−1)2}N

n=1, appears to be greater than 2, but numerical tests show that it remains
to be almost uniformly bounded in the vector size N (see Table 3.1 below). Lemma 2.5 implies
the rank-1 quantics representation in the case of quadratic mesh grading toward the origin, i.e., by
sampling the Gaussian e−αt2 over tn =

√

h(n − 1), (n = 1, ..., N , h > 0).

Conjecture 2.11 Based on our extensive numerical tests, we further assume that the Gaussian-,
polynomial- and sinc-vectors obtained via the uniform sampling, allow the quantics approximation
by the q-folding, whose TT-rank remains bounded by a small constant (say, 4) uniformly in the
vector size N (see Table 3.1).

To complete this section, we notice that the previous results can be applied to R-term sums of
exponential/trigonometric vectors in d dimensions, i.e., to the respective N -d tensors,

A(n,d) := {xn :=
R∑

k=1

ck

d∏

ℓ=1

znℓ−1
k,ℓ }n∈I⊗d , I = {1, ..., N}, (2.5)

A(n,d) := {xn :=

R∑

k=1

ck

d∏

ℓ=1

sin(αk,ℓ(nℓ − 1))}n∈I⊗d , I = {1, ..., N}. (2.6)

These tensors can be reshaped to the quantics formats CR,q[TT [1, dL]] (complexity dqR logq N)
and CR,q[TT [2, dL]] (complexity 4dqR logq N), respectively.

2.4 Analytic quantics approximation of function related tensors

In the following, we generalize the quantics representation of exponential-trigonometric N -vectors
to the case of more general class of multidimensional N -d tensors. To describe the analytic tensor
approximation, let us consider the class of function related tensors generated by certain analytic
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functions f that allow the efficient approximation in the set of exponential sums on [a, b] ⊂ R+. In
particular, such approximations can be based on the sinc method.

Now we prove the error bound for the semianalytic quantics approximation of function related
tensors.

Lemma 2.12 Suppose that for given continuous function f : [a, b] → R, and given ε > 0, there is
an approximation by exponential sum, such that

max
x∈[a,b]

|f(x) −
M∑

k=1

cke
−tkx| ≤ ε. (2.7)

Then for any N = qL, with some q = 2, 3, ..., and L ∈ N+, we have:
(A) The function related N -d tensor F = [Fi], defined by the entries

Fi = f(hi1 + hi2 + ... + hid), i ∈ I⊗d, h > 0, where a ≤ dh ≤ b/N,

and discretising the multivariate function g = f(
∑d

ℓ=1 xℓ) over the uniform grid imbedded into the

region a ≤ ∑d
ℓ=1 xℓ ≤ b, can be represented by the rank-M , q-dL tensor up to the tolerance ε in the

max-norm.
(B) Under the condition a ≤ dh ≤ b/N , the function related N -d tensor G = [Gi], with the

entries

Gi = f(

d∑

ℓ=1

x2
ℓ,iℓ

), xℓ,iℓ =
√

hiℓ, i ∈ I⊗d,

discretising the multivariate function g = f(
∑d

ℓ=1 x2
ℓ) on the polynomially graded grid {xℓ,iℓ}, imbed-

ded into the region a ≤ ∑d
ℓ=1 x2

ℓ ≤ b, can be represented by the rank-M , q-dL tensor with the
tolerance ε in the max-norm.

In both cases, the number of representation parameters is bounded by O(dqM logq N).
(C) Let Conjuncture 2.11 be valid, the approximation properties by Gaussian sums via the uni-

form sampling, i.e., for xℓ,iℓ = hiℓ, (ℓ = 1, ..., d), remain essentially the same except that the
rank-M , q-dL tensor should be substituted by M -term sum of low-rank TT approximands repre-
senting each individual Gaussian vector.

Proof. Items (A), (B) directly follow from (2.5) and (2.6). Item (C) is justified by combining (2.5),
(2.6), Remark 2.10 and Conjuncture 2.11 related to representation by Gaussian sums.

Lemma 2.12 allows us to derive the accurate O(d log N)-approximations to the wide class of
function related tensors in high dimension. For a class of analytic functions the basic approxima-
bility assumption (2.7) can be verified with

ε = O(e−αM/ log M ), α > 0,

by applying the sinc-approximation [17, 23, 25]. Notice that the semianalytic quantics approxima-
tions via Lemma 2.12 can be further optimised by applying the rank-r, r < M , TC approximation.

Quantics representations similar to those in Lemma 2.12 can be derived based on the product-
polynomial or product-trigonometric, exponentially convergent approximations, analogues to (2.7).
To this end, see also Conjuncture 2.11.
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3 O(d log N)-solution of elliptic/parabolic problems

In this section, we show how the QTT approximation method can be applied in the framework of
truncated iteration for solving certain elliptic/parabolic equations in higher dimensions, providing
log-scaling in the volume size Nd. Numerical illustrations are provided.

We shall frequently use the finite difference negative d-Laplacian, that allows the Kronecker
rank-d representation,

∆d = A ⊗ IN ⊗ ... ⊗ IN + IN ⊗ A ⊗ IN ... ⊗ IN + ... + IN ⊗ IN ... ⊗ A ∈ R
I⊗d×I⊗d

, (3.1)

with A = ∆1 = tridiag{1,−2, 1} ∈ R
N×N , and IN being the N × N identity.

Notice that the TT-rank of ∆d is equal to 2 for any dimension (cf. [37]), while its QTT rank
can be shown to be bounded by 4.

3.1 Representing model equations in low rank QTT format

Examples below demonstrate that some classes of boundary-value/eigenvalue problems may have
solutions that are well approximated in the quantics formats.

Example 3. In the case of Schrödinger equation for hydrogen atom,

(−1

2
∆ − 1

‖x‖)u = λu, x ∈ R
3, u ∈ H1(R3),

the physically relevant eigenpair with minimal eigenvalue is given by u1(x) = e−‖x‖, λ1 = −0.5,
hence both the solution e−‖x‖, and the potential 1

‖x‖ , can be proven to provide accurate approxima-
tion in the low rank binary folding format, due to Lemma 2.12, and applying the sinc-quadrature
approximation in [23, 25] (see Tables 3.2 and 3.3 for numerical illustrations).

Example 4. The eigenvectors Ui, i ∈ I⊗d, of the algebraic eigenvalue problem

∆dU = λU, U ∈ R
Nd×Nd

,

are exactly in the rank-2 quantics tensor format with the oscillating trigonometric canonical vectors,

Ui =
d⊗

ℓ=1

sin(iℓxℓ). Representation (2.6) allows us to verify that this tensor is in the rank-2, q-

quantics format for any q = 2, 3, ....
Example 5. The solution of the discrete Poisson equation in R

d,

∆dU = F with rank-1 r.h.s. F = ⊗d
ℓ=1fℓ, fℓ ∈ R

N , (3.2)

is (approximately) represented in the rank-(2M + 1), tensor format,

U = ∆−1
d F ≃ UM :=

M∑

k=−M

ck

d⊗

ℓ=1

exp(−tk∆1) fℓ, (3.3)

tk = ekh, ck = htk, h = π/
√

M, ∆1 ∈ R
N×N ,

providing the exponential convergence rate in the rank parameter, [14],

∥
∥∆−1

d F − UM

∥
∥ ≤ Ce−π

√
M‖F‖.

Hence, the low-rank approximability of the univariate vectors fℓ in the QTT format implies the
desired property for the solution UM .
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3.2 Quantics representation of matrices on N-d tensors

Matrices acting on TC[r,d] tensors can be determined by their componentwise matrix-vector prod-
ucts with the univariate representation vectors of the test rank-1 tensors.

Definition 3.1 We say that a matrix A acting on TC[r,I, d] tensors belongs to the class of Kro-
necker rank-m matrices, TC[m,K × I, d], if for each rank-1 element V ∈TC[1,I, d], the resultant
matrix-vector product is a d-tensor on the index set K, AV ∈ TC[m,K, d], where m = (M0, ...,Md),
M0 = Md. Using the Kronecker product notation,

A =
d⊗

ℓ=1

A(ℓ), A(ℓ) : R
Iℓ → R

Mℓ−1×Kℓ×Mℓ ,

the explicit representation in the case of rank-1 input vector V = v1 × ... × vd, is given by

AV =
d⊗

ℓ=1

A(ℓ)vℓ, where A(ℓ)vℓ ∈ R
Mℓ−1×Kℓ×Mℓ.

The action of A on the general tensor in TC[r,I, d] is defined as an element of the TC[p,K, d]
format specified by the componentwise product P := J⊙M of index sets J = J(r) and M = M(m),
with the respective Hadamard-product rank parameter, p = m⊙ r.

Next lemma shows that the diagonal matrices generated by the exponential and trigonometric
vectors can be proven to have fixed quantics Kronecker rank.

Lemma 3.2 Quantics Kronecker-TT rank of the diagonal matrices generated by the exponential
and trigonometric vectors of size N = qL, equals 1 and 2, respectively.

Proof. Notice that the matrix-vector product with the diagonal matrix is represented as the
Hadamard product with the diagonal vector, then using Definition 3.1, the result follows from
the respective bounds on the QTT-rank of the folded exponential/trigonometric vectors.

The analysis of the low QTT-rank approximations of elliptic operator inverse is based on certain
assumptions on the QTT-rank of the matrix exponential family for d = 1.

Conjecture 3.3 For any given ε > 0, and for fixed a, b > 0, let us assume that the family of matrix
exponentials, {exp(−tk∆1)}, tk > 0, k = −M, ...,M , allows the rank-r∆, QTT ε-approximation,
with r being uniformly bounded in the grid size N and scaling factors tk ∈ [a, b] ⊂ R>0 (see Table
3.4 for numerical justification).

With the previous assumption on the QTT-rank of the family of “univariate” matrix exponen-
tials, {exp(−tk∆1)}, tk > 0, we prove the following Lemma.

Lemma 3.4 Under conditions of Conjecture 3.3 the representation (3.3) approximates the exact
solution U up to the relative tolerance ε > 0, and it has the complexity O(dr∆ log2 ε log N), that
scales logarithmically in both N and ε. Moreover, the matrix

BM :=

M∑

k=−M

ck

d⊗

ℓ=1

exp(−tkaℓ∆1), aℓ > 0, ℓ = 1, ..., d, (3.4)

possesses the rank-O(log2 ε), QTT quantics ε-approximation (or preconditioner if M is small) to
the anisotropic d-Laplacian inverse ∆−1

d,α, where

∆d,α :=

d∑

ℓ=1

aℓ

d⊗

k=1

∆
δℓ,k

1 , δℓ,k is the Kronecker symbol. (3.5)

14



3.3 QTT-truncated iteration for elliptic/parabolic equations

QTT format can be utilized in the concept of approximate (truncated) iterations based on use of the
rank structured formats to represent matrix-vector operations in the framework of preconditioned
iterative solvers (cf. [25, 19, 26]). In our applications, we choose the manifold S = Sr of rank-r,
QTT tensors, and then perform the truncated iteration over this nonlinear manifold by “projection”
the current iterand onto Sr. This action is fulfilled by using the tensor truncation operator TS :
Wq,dL → S defined by

A0 ∈ Wq,dL : TSA0 = argminT∈S ‖A0 − T‖Wq
. (3.6)

The replacement of A0 by its approximation in S is called the tensor truncation to S and denoted
by TSA0. In computational practice we apply the quasioptimal tensor truncation operator. Since
the approximation procedure in the QTT-format is performed by SVD-based algorithm, we arrive
at the following conclusion.

Proposition 3.5 (Tensor truncation). (a) The operator TS : Wq,dL → S := TT [r, dL] is well
defined. (b) For given A0 ∈ TT [r0, dL] ⊂ Wq,dL, and r < r0, the quasioptimal approximation TSA0

can be computed by QR/SVD based algorithm in O(qdLr3
0) operations.

3.4 Numerics: QTT tensor calculus, solving equations in Rd

The following numerics illustrates the behavior of approximation error vs. the TT-rank of the dyadic
folding approximation (q = 2) applied to different classes of function related vectors/tensors. We
apply the MATLAB subroutines in [36] implementing the binary folding of vectors and the low
rank TT approximation.

Recall that for any q = 2, 3, ..., the QTT-rank (or more precisely, QTTq-rank) of the expo-
nential and trigonometric vectors equals 1 and 2, respectively. Moreover, it can be proven that
the Kronecker-TT rank of the diagonal matrices generated by the exponential and trigonometric
vectors equals 1 and 2, respectively (see Lemma 3.2). Furthermore, the product of exponential
and sin-functions in arbitrary frequency range has the QTT-rank equals to 2, as for the single
sin-function.

N \ r e−αx2

, α = 0.1, 1, 10, 102 sin(αx)
x , α = 1, 10, 102 1/x e−x/x x, x10, x1/10

210 3.2/2.8/2.8/2.2 4.0/4.7/5.5 4 3.5 1.9/2.7/3.9

212 3.1/2.9/2.9/2.6 3.8/4.8/5.6 4.2 3.8 1.9/2.6/3.9

214 2.9/2.8/2.8/2.8 3.6/4.7/5.5 4.2 3.8 1.9/2.5/3.9

216 2.8/2.7/2.8/2.8 (0.03) 3.6/4.5/5.4 (0.048) 4.2 (0.05) 5.3 (0.04) 1.9/2.4/3.9

Table 3.1: QTT2-ranks of functional N -vectors on large grids, N = 2p.

Tables 3.1 and 3.2, present numerical results on the binary (i.e., q = 2) quantics ε-approximation
with ε = 10−6, of the function related vectors/tensors corresponding to monomials and fractional
power of x, as well as to the functions

1

x1 + ... + xd
,

1

‖x‖ ,
e−α‖x‖

‖x‖ , e−α‖x‖,
sin(α‖x‖)

‖x‖ x ∈ R
d.

For the following discussion, the average separation rank of the QTT-model, r, is defined by

r2 :=
1

d

d∑

ℓ=1

rℓ−1rℓ,
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providing the complexity bound ≤ 2dr2 log N on the binary QTT approximation. The CPU time
(sec.) corresponding to the finest grid is given in the brackets (see Table 3.1). It scales linearly in the
input vector size, N . Notice for comparison that the FFT(N) on finest grid requires tFFT (216) ≈
0.006 sec., indicating that the low rank QTT2 vector-transform to higher dimension D = log N , is
almost as fast as the FFT on the same vector size.

Table 3.2 represents the QTT2-ranks of the functional N × N -matrices generated by sampling
over large equidistant grids on [0, 1]2, approximated up to the tolerance ε = 10−6. Here ∆d denotes
the d-Laplacian as in (3.1). The matrix notation diag(e−x2

) means the diagonal matrix built by
the N -vector generated by e−x2

on the uniform grid. Approximation properties are similar in the
case d ≥ 3. The above numerical illustrations lead to the following promising observations.

N \ r 1/(x1 + x2) e−‖x‖ e−‖x‖2

diag(e−x2

) ∆−1
2 1, ε = 10−6, 10−7, 10−8

29 5.0 9.4 7.8 3.8 3.6/3.6/3.6

210 5.1 9.4 7.7 3.9 3.6/3.6/3.6

211 5.2 9.3 7.5 3.9 3.7/3.7/3.7

Table 3.2: QTT2-ranks of functional N × N -matrices on large grids, N = 2p.

• The QTT-rank remains almost independent on the vector/matrix size, hence being specified
only by analytic properties of generating function.

• The QTT-rank of the discrete Gaussians and monomials is very small (≤ 3), that means that
any M -term exponential or polynomial expansion on large N -grid can be represented within
the storage O(M log N).

• Vectors generated by singular functions like 1/x, e−x/x, sin (αx)/x, and xα, (α > 0) exhibit
almost the same QTT-rank as smooth (analytic) functions, uniformly in the grid size N .

The last examples given in Table 3.3 illustrates the low TT-rank quantics approximability of
the Newton potential 1/‖x‖, in R

3, the electron density ρ(x), x ∈ R
3, and the Hartree potential,

VH := 1/‖x‖ ∗ ρ, of CH4 molecule discretised over large N × N × N spatial grid, and computed
in [28] by the multigrid Tucker-canonical decomposition. In all cases the approximation accuracy
ε = 10−6 in the QTT-format is achieved. In Table 3.3, Hart(S) and Hart(F) correspond to the
middle N × N matrix slice and to the full N × N × N -array representing the discrete Hartree
potential, respectively.

N 1/‖x‖ ρ(x) Hart(S) Hart(F)

128 13.8 32.0 13.7 32.1

256 16.0 40.0 14.2 34.9

512 17.5 45.8 14.2 20.2

1024 18.0 48.6 13.9 28.2

N V3 V1 × V2 × V3

128 2.8 2.8

256 3.0 3.0

512 3.3 3.3

1024 3.5 3.5

Table 3.3: QTT2-ranks of 1/‖x‖, the Hartree potential, and electron density of CH4 (left); QTT2-
ranks for the canonical vectors of electron density of CH4 (right).

We conclude that QTT-ranks of the Newton and Hartree potentials are rather small and remain
almost uniformly bounded in N (O(log N) scaling). In turn, the QTT rank of the electron density
ρ, has the tendency to approach the canonical rank of the respective discrete density N × N × N -
tensor.
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For comparison, Table 3.3 gives typical QTT ranks of the canonical-TT representation in
CR,n[TT [r, log N ]]. Here Vk, (k = 1, 2, 3) denote the canonical vectors of the leading term in the
rank-R canonical representation of the electron density of CH4 molecule. Table 3.3 (right) indicates
that in the case of electron density tensor of CH4 molecule (the canonical ε-rank is about R ≈ 50
for ε = 10−6), the two-level CR,n[TT [r, log N ]]-representation provides some better compression
rate than those for the complete QTT approximation (cf. Table 3.3).

Table 3.4 represents the average QTT-ranks in approximation of certain function related ma-
trices up to fixed tolerance ε = 10−5. Among others, it includs the important example of matrix
exponential (cf. Conjecture 3.3). In all cases, one can observe that rank parameters are small, and
depend very mildly on the grid size.

N \ r e−α∆1 , α = 0.1, 1, 10, 102 ∆−1
1 diag(1/x2) diag(e−x2

)

29 6.2/6.8/9.7/11.2 6.2 5.1 4.0

210 6.3/6.8/9.5/10.8 6.3 5.3 4.0

211 6.4/6.8/9.0/10.4 6.2 5.5 4.1

Table 3.4: QTT2-matrix-ranks of N × N -matrices for large N = 2p.

In Table 3.5, we present the average QTT2-ranks of the finite difference solution of the Poisson
equation in the unite cube in R

d, up to the tolerance ε = 10−5,

∆dU = F ∈ R
N×...×N , on large N × ... × N uniform d-dimensional grid

with N = 2p, and for d = 25, 50, 100, 200. We consider the case F = 1, that corresponds to the
nonseparable solution with weak singularities at the adge and corner points, requiring large spacial
grids to provide higher resolution. The CPU time (sec.) is presented, that does not count the
(problem independent) preprocessing cost required to compute the QTT2 representation of 1D
matrix exponentials, {exp(−tk∆1)}, tk > 0, k = −M, ...,M , of size N × N (the latter can be
precomputed once and stored).

N \ d 25 50 100 200
r time r time r time r time

27 10.0 0.0124 8.0 0.023 7.8 0.047 5.2 0.089

28 10.1 0.015 8.2 0.026 6.4 0.05 5.1 0.1

29 10.2 0.016 8.2 0.03 6.4 0.06 5.1 0.12

210 10.2 0.0177 8.4 0.03 6.4 0.061 5.0 0.127

Table 3.5: QTT2-ranks for solution of the Poisson equation in R
d on large grids, N = 2p.

One observes the systematic decay of the average rank parameter r, in the growing dimension
d, with stabilization to the small value about several ones. It is worth to note that the CPU
computing time increases only logarithmically in the grid size N and linearly in d, as predicted by
the theory: The total numerical cost is estimated by O(d log ε−1 log N).

For the loading vector F , corresponding to the R-term sum of trigonometric functions the QTT-
rank is estimated by r ≤ R, again leading to the log-log computational cost O(dR log ε−1 log N).
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4 Conclusions

We present the O(d log N)-complexity quantics approximation method applied to high-order N -d
tensors arising as the grid representation of physically relevant functions and operators in R

d. The
quantics method is based on the folding of initial N -d tensor to the auxiliary higher dimensional
space of q-D tensors with D = d logq N and q = 2, 3. The rigorous analysis on the low-rank
quantics tensor approximation in the classes of function related N -d arrays, indicates the log-log
scaling, O(d log ε−1 log N), in both the grid size and numerical precision ε > 0. In particular, we
prove the uniform canonical and QTT rank estimates for exponential, trigonometric and polynomial
sampling representations, with implication to wavelet besis functions. Using the so-called QTT (or
more generally, QTC) format, the nonlinear quantics tensor approximation can be implemented on
the base of stable, noniterative QR/SVD algebraic decompositions with controlled accuracy ε > 0.

The QTT approximation method can be applied in the framework of truncated iteration for
solving certain classes of elliptic/parabolic equations in higher dimensions with log-scaling in the
basic discretisation parameters2. Extensive numerical tests in §3.4 illustrate the high compres-
sion rate provided by the quantics method applied to data arrays arising in the traditional FEM
calculations and in computational quantum chemistry (see also [30, 31]).

We hope that the quantics-TC numerical method opens new perspectives for developing
reliable computational schemes in higher dimensions that are free of the “curse of dimensionality”,
noticeable limitations on the univariate grid-size, and from numerical instabilities.

Acknowledgments. The author greatfully acknowledges Dr. Ivan Oseledets (INM RAS,
Moscow) for productive collaboration on the QTT-tensor approximation.
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