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Abstract

We consider complete synchronization of identical maps coupled through a gen-
eral interaction function and in a general network topology where the edges may be
directed and may carry both positive and negative weights. We define mixed trans-
verse exponents and derive sufficient conditions for local complete synchronization.
The general non-diffusive coupling scheme can lead to new synchronous behavior, in
networks of identical units, that cannot be produced by single units in isolation. In
particular, we show that synchronous chaos can emerge in networks of simple units.
Conversely, in networks of chaotic units simple synchronous dynamics can emerge;
that is, chaos can be suppressed through synchrony.
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1 Introduction

Synchronization in complex networks has been studied extensively by many scientists in
the past years (for recent reviews see [1, 2, 3]). Specific application areas include social
networks (opinion formation, finance, and world trade web), biological networks (genetic
networks, cardiac rhythms, and neural networks), and technological networks (wireless
communication networks and power-grids); see [1] and the references therein. Synchro-
nization is one particular collective behavior in complex networks that emerges through
the interaction of the constituent units. Complex systems are generally characterized by
the richness of emergent behavior arising from the interaction of many elements or agents,
which themselves are typically rather simple and often interact only locally or with only
a few other ones. How dynamically rich behavior can emerge in a network of simple units
is an important general question in complexity. In this article, we study the relation of
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the concept of emergence to synchronization1, in the setting of coupled identical map
networks.

Coupled map networks introduced by Kaneko [4] have become one of the standard
models in synchronization studies. Particularly, chaotic synchronization can be investi-
gated already in simple one-dimensional maps, which, as is well-known, would require at
least three dimensions in the continuous-time case. On the one hand, a chaotic system’s
sensitive dependence to initial conditions would tend to lead the coupled system away
from synchrony in the presence of ever-so-small perturbations. On the other hand, a
diffusive coupling 2 between the units tends to equalize the states of neighboring units by
providing a driving force that grows with the difference of the states, thereby driving the
system towards synchrony. In the interplay between these two effects, it has indeed been
discovered that diffusively coupled chaotic systems can exhibit robust synchronization for
an appropriate range of parameters. Synchronization in diffusively-coupled map networks
with positive weights is now well understood: One finds that the synchronizability of the
network depends on the underlying network topology (given by the eigenvalues of the
coupling matrix) and the dynamical behavior of the individual units (given by the largest
Lyapunov exponent) [5, 6].

A notable aspect of diffusively coupled systems of identical units is that, while diffusive
coupling tends to drive the network towards synchrony, the synchronized network shows
exactly the same dynamical behavior as a single isolated unit. This is a simple consequence
of the fact that the coupling term vanishes at the synchronized state. Hence, normally
no new behavior arises through synchronization of diffusively-coupled systems. A notable
exception is in the presence of time delays: It has been discovered that networks with
time delays not only are able to synchronize (in fact sometimes better than undelayed
networks), but also can exhibit a very rich range of new synchronized behavior [7, 8].

However, new synchronized behavior can not only be observed in diffusively coupled
networks, when time-delays are present. In this work we show that also in non-diffusively
coupled networks new synchronized behavior is emerging. The focus of this work is to
understand, in detail, the impact of non-diffusive coupling schemes on the synchronized
behavior. The synchronized behavior of a non-diffusively coupled network can be very
different from the individual dynamics of its components (units). In contrast to diffusively-
coupled networks, the overall coupling strength does not only determine the robustness
of the synchronous state but also the emerging synchronous dynamics, i.e. by changing
the overall coupling strength, different synchronous dynamics can be exhibited by the
same system. In particular we shall see the following two extreme cases. Synchronized
chaos can emerge in networks of simple units and chaos can be suppressed in a network
of chaotic units.

2 General pairwise coupling

We consider a network of identical units that interact with each other. The coupling
topology will affect the resulting dynamics in such a network. In many real world appli-
cations the connection structure is not bidirectional. Furthermore the influence of other
units can be excitatory or inhibitory. These phenomena can, for example, be observed

1There exits several notions of synchronization [3]. In this work we study complete synchronization,
where the differences between the states of coupled units tend to zero.

2Diffusive coupling refers to a coupling function that vanishes whenever its arguments are the same,
see (2).
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in neural networks, where there exists excitatory and inhibitory synapses and only the
pre-synaptic neuron influences the post-synaptic one but not vice versa. Examples of syn-
chronization in simple models of neural networks are investigated in [9]. Since different
networks interact through different interaction functions, we want to keep our coupling
function sufficiently general. Taking all these requirements into account, we study the
following network model.

Let Γ be a non-trivial, weighted, directed graph on n vertices. The weight of the
connection from vertex j to vertex i is denoted by wij , which could be positive, negative
or zero. Positive and negative weights could model, for instance, excitatory and inhibitory
connections, respectively. We assume that the network has no self-loops, that is, wii = 0
for all i. The in-degree of vertex i is denoted by di =

∑n

j=1 wij . Even if a vertex
is not isolated, it is possible that the in-degree of this vertex is equal to zero because
of cancellations between positive and negative weights. These vertices are called quasi-
isolated vertices, because their properties are very similar to isolated vertices [10]. Note
that by definition every isolated vertex is quasi-isolated. In the following we will identify
each unit with a vertex of a graph. This correspondence allows us to make use of graph
theoretical methods.

The activity at vertex or unit i at time t + 1 is given by:

xi(t + 1) = f(xi(t)) + ǫσi

n∑

j=1

wijg(xi(t), xj(t)) i = 1, ..., n, (1)

where

σi =

{
1
di

if di 6= 0

0 if di = 0,

f : R → R and g : R
2 → R are differentiable functions, and ǫ ∈ R is the overall coupling

strength. In the following we assume that the derivatives of f and g are bounded along
synchronous solutions s(t) of system (1), where all units exhibit the same behavior for all
time i.e.,

xi(t) = s(t) ∀ i, t.

The function f describes the dynamical behavior of the individual units whereas g char-
acterizes the interactions between different pairs of units.

We say that the interaction is diffusive if the coupling function g satisfies the general
diffusion condition

g(x, x) = 0 ∀x ∈ R. (2)

A synchronous solution always exists if the interaction function g satisfies (2). Under
this assumption the dynamical behavior of the whole network is exactly the same as the
dynamical behavior of the isolated units, that is,

s(t + 1) = f(s(t)). (3)

However, if (2) is not satisfied then a synchronous solution may not always exist. Indeed,
if s(t) is a synchronous solution such that g(s(t), s(t)) 6= 0 for some t, then (1) implies
that either σi = 0 for all i, or σi 6= 0 for all i. In other words, a synchronized solution
exists only if all vertices are quasi-isolated or none of them are. The first case is trivial
as there is no interaction. Therefore, for the study of emergent dynamics when (2) is not
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satisfied, we shall later on restrict ourselves to the second case, i.e., to networks without
quasi-isolated vertices. For such networks synchronous solutions exist and satisfy

s(t + 1) = f(s(t)) + ǫg(s(t), s(t)). (4)

Eq. (4) already shows that the synchronous behavior of the network is different from the
behavior of isolated units. However, at this point it is not clear whether a synchronized
state is robust against perturbations. We will study this issue in some detail in the
following sections.

It is important to note that the interactions between the different units in Eq. (1) are
“normalized” by the factor σi. Otherwise a synchronous solution would only exist, in the
non-diffusive case, under the assumption that all vertices have the same vertex in-degree.
Consequently a synchronous solution would only exist for regular graphs.

3 The coupling matrix

For diffusively coupled networks, the graph Laplacian is the natural coupling matrix. For
a directed, weighted graph without loops, the (normalized) graph Laplacian L is defined
as,

(L)ij :=







1 if i = j and di 6= 0.
−

wij

di
if there is a directed edge from j to i and di 6= 0.

0 otherwise.

Here in the more general coupling case, the natural coupling matrix is given by K, where
K for a directed, weighted network without loops, is defined as

(K)ij :=







1 if i = j and di = 0.
wij

di
if there is a directed edge from j to i and di 6= 0.

0 otherwise.

Let the eigenvalues of K and L be labeled as λ1, ..., λn and λ′
1, ..., λ

′
n, respectively. Since

the row sums of K are equal to 1, K has always an eigenvalue equal to 1, which corresponds
to the eigenvector e = (1, ..., 1)⊤.

We briefly discuss the relationship between the coupling matrix K and the graph
Laplacian L for directed weighted graphs. The graph Laplacian L and the coupling
matrix K are related to each other by

L = I − K,

where I is the n × n identity matrix. Thus we have

λ′
i = 1 − λi, ∀ i. (5)

Hence the multiplicity of the zero eigenvalue of L is equal to the multiplicity of the
eigenvalue λ = 1 of K.

The spectral properties of L and K for directed graphs with mixed signs are inves-
tigated systematically in [10]. The presence of directed edges or mixed signs leads to
some interesting differences in the spectrum of L compared to the case of undirected
edges and nonnegative weights. For convenience of the reader, we mention here some of
these differences. For undirected graphs with nonnegative weights it is well-known that
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all eigenvalues of L are real [11]. However, this is not true anymore if one studies directed
graphs or mixed signs. Furthermore, while in the case of only nonnegative weights the
absolute values of the eigenvalues are bounded by 2 [11], this is no longer true for the case
of mixed signs. Indeed, using Gershgorin’s Theorem [12] we have the following estimate.

Lemma 1. Let D(c, r) denote the disk in the complex plane centered at c and having
radius r. Assume that there is at least one non quasi-isolated vertex (otherwise L is equal
to the zero matrix). Then all eigenvalues of the graph Laplacian L are contained in the
disk D(1, r), where

r := max
i

∑n

j=1 |wij |
∣
∣
∣
∑n

j=1 wij

∣
∣
∣

= max
i

∑n

j=1 |wij |

|di|
, (6)

with the convention |di|
−1

= 0 if di = 0.

Note that the radius r in Eq. (6) can be written in the form

r = max
i

∣
∣
∣
∣

d+
i + d−

i

d+
i − d−

i

∣
∣
∣
∣
,

where d+
i :=

∑

j:wij≥0 wij is the positive in-degree and d−i :=
∑

j:wij≤0 |wij | the negative

in-degree. So, for fixed sum d+
i + d−i , the closer d+

i and d−i are, the larger is the radius
r. Clearly, r = 1 when the weights are nonnegative, but r can be much larger in the case
of signed weights. The radius r will play an important role in Chapter 6 where we derive
sufficient conditions for synchronization.

Since we deal with a graph Γ with both positive and negative weights, we should make
some notions precise. Let the weighted adjacency matrix of Γ be given by W = [wij ].
Define the corresponding (usual) graph Γ′ with adjacency matrix A = [aij ] such that
aij = 1 if wij 6= 0 and aij = 0 otherwise. Then we say that Γ is strongly connected (resp.
has a spanning tree) if Γ′ is strongly connected (resp. has a spanning tree). In the general
setting of directed edges and mixed signs, a non-complete graph refers to a graph where
there exists at least one pair of distinct vertices with no link between them.

The multiplicity of the zero eigenvalue of L can be bounded from below by the following
two graph properties:

Lemma 2. Let m0 be the multiplicity of the zero eigenvalue of L.

1. If n1 denotes the number of quasi-isolated vertices, then

n1 ≤ m0.

2. If n2 denotes the minimum number of trees needed to span the graph, then

n2 ≤ m0.

Proof. 1. Assume that there exists n1 quasi-isolated vertices in the graph. Then, there
exists n1 rows of L that consist entirely of zeros. Consequently, L has at least n1 eigen-
values equal to zero.

2. Assume that one needs at least n2 trees to span the whole graph. Let L be given
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in Frobenius normal form [13], i.e. after possibly relabeling the vertices, L is given in the
form

L =








L1 L12 ... L1p

0 L2 ... L2p

...
...

. . .
...

0 0 ... Lp








, (7)

where the block diagonal matrices Li correspond to the strongly connected components
of the graph. The spectrum of L then satisfies

spec(L) =

p
⋃

i=1

spec(Li). (8)

Since one needs n2 trees to span the whole graph, there exist n2 block matrices Li such
that Lij is the zero matrix for i < j ≤ p. Thus, these n2 block matrices Li have zero row
sums because L has zero row sums. The result now follows from (8).

4 Synchronization

We want to study synchronous solutions of Eq. (1) and whether the synchronous state is
robust to perturbations. We say the system (1) (locally) synchronizes if

lim
t→∞

|xi(t) − xj(t)| = 0 ∀ i, j,

whenever the initial conditions belong to some appropriate open set3. In this article the
term synchronization always refers to this definition.

4.1 General pairwise coupling and only quasi-isolated vertices

This case is not very insightful, as Eq. (1) implies that there are no interactions between
the different units. The time evolution of each unit is given by Eq. (3). Thus the network
only synchronizes if nearby orbits of the function f converge, i.e. the Lyapunov exponent

µf := limT→∞

1

T

t̄+T−1∑

s=t̄

log |f ′(s(t))|, (9)

of f is negative. Here t̄ is chosen such that f ′(s(t)) 6= 0 for all t > t̄. A negative
Lyapunov exponent implies that the trajectory s(t) is already attracting for f , and hence,
no emergence of new dynamics. Hence chaotic synchronization is not possible as chaos
requires a positive Lyapunov exponent µf .

4.2 General pairwise coupling without quasi-isolated vertices

To characterize this case we start with the following definition.

3If one considers chaotic synchronization, i.e. f + ǫg is chaotic, then there exists subtleties concerning
this open set and the exact notion of attraction. These issues are carefully studied in [14]. For the
purposes of this article, these subtleties are not important.
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Definition 3. The k-th mixed transverse exponent χk is defined for 2 ≤ k ≤ n as:

χk := limT→∞

1

T

t̄+T−1∑

s=t̄

log |hk(s(t))|, (10)

where
hk(s(t)) = f ′(s(t)) + ǫ∂1g(s(t), s(t)) + ǫ∂2g(s(t), s(t))λk

and t̄ is chosen such that h(s(t)) 6= 0 for all t > t̄. If no such t̄ exists we set χk = −∞.

These exponents combine the dynamical behavior of the functions f and g with the
network topology. Furthermore we define the maximal mixed transverse exponent χ as

χ := max
k≥2

χk.

The next theorem shows that the maximal mixed transverse exponent governs the syn-
chronizability of the network.

Theorem 4. System (1) synchronizes if the maximal mixed transverse exponent is neg-
ative.

Before we prove this theorem we prove the following theorem that also holds for time-
dependent functions.

Theorem 5. Consider the system of equations

vi(t + 1) =

{
k1(t)vi(t), i = 1,
k1(t)vi(t) + k2(t)vi−1(t), i = 2, . . . , m,

(11)

where vi ∈ R and k1 and k2 are bounded functions on R. Suppose there exists t̄ ∈ R such
that

k1(t) 6= 0 for t ≥ t̄. (12)

Suppose further that

η := limT→∞

1

T
sup
t0≥t̄

t0+T−1∑

s=t0

log |k1(s)| < 0. (13)

Then for any ε ∈ (0,−η) there exists Kε ≥ 0 such that all solutions of (11) satisfy

‖(v1(t), . . . , vm(t))‖ ≤ Kεe
(η+ε)(t−t0)‖(v1(t0), . . . , vm(t0))‖ (14)

for all t ≥ t0 ≥ t̄. On the other hand, if there is no such t̄ satisfying (12), then

‖(v1(t), . . . , vm(t))‖ = 0 for all large t. (15)

Proof. The homogeneous equation

v1(t + 1) = k1(t)v1(t) (16)
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has the solution v1(t) = Φ(t, t0)v1(t0), where the state transition function Φ is given by

Φ(t, t0) =
∏t−1

s=t0
k1(s), t > t0, and Φ(t, t) = 1 for ∀t. In the following, t0 ≥ t̄. By (13), for

any ε ∈ (0,−η) there exists T ′ such that

sup
t0≥t̄

1

T

t0+T−1∑

s=t0

log |k1(s)| < η +
ε

m
< 0, for all T > T ′.

Thus,
t−1∏

s=t0

|k1(s)| ≤ e(η+ 1

m
ε)(t−t0), if t > t0 + T ′,

whereas
t−1∏

s=t0

|k1(s)| ≤ M (t−t0) ≤ MT ′

, if t0 < t ≤ t0 + T ′

where M = supt∈R
|k1(t)|. Thus,

t−1∏

s=t0

|k1(s)| ≤ Cε
1e(η+ 1

m
ε)(t−t0), ∀t > t0 ≥ t̄

where the constant Cε
1 ≥ max{MT ′

e−(η+ 1

m
ε)T ′

, 1} is independent of t0. Consequently,

|Φ(t, t0)| ≤ Cε
1e(t−t0)(η+ 1

m
ε), ∀t > t0 ≥ t̄, (17)

and the solution of the first equation in (11) satisfies

|v1(t)| ≤ Cε
1e(η+ 1

m
ε)(t−t0)|v1(t0)|. (18)

Now the solution to (11) for i = 2, . . . ,m is

vi(t) = Φ(t, t0)vi(t0) +

t−1∑

s=t0

Φ(t, s + 1)k2(s)vi−1(s). (19)

Using (17) and (18) we estimate,

|v2(t)| ≤ Cε
1e(η+ 1

m
ε)(t−t0)|v2(t0)| + Cε

1k2

∑t−1
s=t0

e(η+ 1

m
ε)(t−s−1)e(η+ 1

m
ε)(s−t0)|v1(t0)|

= Cε
1e(η+ 1

m
ε)(t−t0)|v2(t0)| + Cε

1k2e
(η+ 1

m
ε)(t−t0)e−(η+ 1

m
ε)(t − t0)|v1(t0)|,

where k2 = supt |k2(t)|. Adding to (18) yields

|v2(t)| + |v1(t)| ≤ Cε
1e(η+ 1

m
ε)(t−t0)|v2(t0)| + Cε

1e(η+ 1

m
ε)(t−t0)(k2e

−(η+ 1

m
ε)(t − t0) + 1)|v1(t0)|.

Since there exists some constant C2 (we drop the dependence on ε for ease of notation)
such that

Cε
1e(η+ 1

m
ε)(t−t0)(k2e

−(η+ 1

m
ε)(t − t0) + 1) ≤ C2e

(η+ 2

m
ε)(t−t0), ∀t > t0,

we have

|v1(t)| + |v2(t)| ≤ C2e
(η+ 2

m
ε)(t−t0)(|v1(t0)| + |v2(t0)|), ∀t > t0 ≥ t̄. (20)
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For i = 3, the argument is similar with some slight modifications: We use the estimate
from (17) as

|Φ(t, t0)| ≤ C1e
(t−t0)(η+ 1

m
ε) ≤ C1e

(t−t0)(η+ 2

m
ε)

in (19), while bounding |v2(t)| by the right hand side of (20). Thus,

|v3(t)| ≤ C1e
(η+ 2

m
ε)(t−t0)|v3(t0)|+C2

t−1∑

s=t0

e(η+ 2

m
ε)(t−s−1)k2e

(η+ 2

m
ε)(s−t0)(|v1(t0)|+|v2(t0)|).

Adding to (20) gives

3∑

i=1

|vi(t)| ≤ C3e
(η+ 3

m
ε)(t−t0)

3∑

i=1

|vi(t0)|

for some constant C3. Repeating for i = 4, . . . , m, we finally obtain

m∑

i=1

|vi(t)| ≤ Cme(η+ m
m

ε)(t−t0)
m∑

i=1

|vi(t0)|

which establishes (14) for the ℓ1-norm, and thus for all norms in R
m for an appropriate

constant Kε.
To prove the last statement of the theorem, notice that if (12) fails for all t, then there

exist an infinite sequence t1 < t2 < · · · of zeros of k1. In this case, the equations (11)
imply that vi(t) = 0 for all t ≥ ti + 1, yielding (15). This completes the proof.

Now we prove Theorem 4.

Proof of Theorem 4. For general pairwise coupling and networks without quasi-isolated
vertices, Eq. (1) can be written in the following form using the coupling matrix K

xi(t + 1) = f(xi(t)) + ǫ (Kg(xi(t),x(t)))i , (21)

where the vector g(xi,x) ∈ R
n is defined as g(xi,x) := (g(xi, x1), ..., g(xi, xn))⊤ and

(Kg(xi(t),x(t)))i is the ith component of the vector Kg(xi(t),x(t)).
Let x(t) = (x1(t), . . . , xn(t)) and s(t) = (s(t), . . . , s(t)). Small perturbations u(t) =

x(t) − s(t) of the synchronous state are governed by the variational equation

u(t + 1) = [f ′(s(t)) + ǫ∂1g(s(t), s(t))]u(t) + ǫ∂2g(s(t), s(t))Ku(t), (22)

where ∂ig denotes the ith partial derivative of g.
In the sequel we study the coupling matrix K in Jordan form. There exists a non-

singular matrix P such that K = PJP−1 and J is of the form

J =








J1

J2

. . .

Jm








. (23)
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Each Jordan block Jl is of the form

Jl =








λl 1
. . .

. . .

1
λl








∈ R
ml×ml , (24)

where ml is the block size of the Jordan block Jl. Without loss of generality we assume
that J1 corresponds to the eigenvalue λ1 = 1 with eigenvector e := (1, ..., 1)⊤. After the
coordinate transformation, u(t) → P−1u(t) =: v(t), Eq. (22) becomes:

v(t + 1) = [f ′(s(t)) + ǫ∂1g(s(t), s(t))]v(t) + ǫ∂2g(s(t), s(t))Jv(t). (25)

For each Jordan-block Jl this reads in component form:

vi(t + 1) =

{
hl(s(t))vi(t) + ǫ∂2g(s(t), s(t))vi+1(t) i = 1, ...,ml − 1
hl(s(t))vi(t) i = ml

(26)

This is exactly of the form (11) with k1 = hl and k2 = ǫ∂2g. We now apply theorem
5, noting that the time dependance in (26) arises from a trajectory of a time-invariant
system, so choices of initial times are arbitrary. Thus, the perturbations decay for all
Jordan blocks Ji, i = 2, ..., m. For the Jordan block J1 the situation is different because
we do not assume that the mixed longitudinal exponent χ1 (similarly defined as the mixed
transverse exponents χk in (10) for the eigenvalue λ1 = 1) is negative. Thus, v1(t) does
not have to decay. However, we are mainly interested in the behavior of the original
perturbations u(t) = Pv(t). Since λ1 = 1 corresponds to the eigenvector e := (1, ..., 1)⊤

it is possible to choose P such that

P =








1 p12 . . . p1n

1 p22 . . . p2n

...
...

...
1 pn2 . . . pnn








. (27)

Thus, u(t) = Pv(t) is given by

u(t) = v1(t)e +






∑n

j=2 p1jvj(t)
...

∑n
j=2 pnjvj(t)




 .

Since all the vi(t), i = 2, ..., n are decaying we conclude that

lim
t→∞

|xi(t) − xj(t)| = lim
t→∞

|s(t) + ui(t) − (s(t) + uj(t))|

= lim
t→∞

∣
∣
∣
∣
∣
s(t) + v1(t) +

n∑

k=2

pikvk(t) −

(

s(t) + v1(t) +

n∑

k=2

pjkvk(t)

)∣
∣
∣
∣
∣

= lim
t→∞

∣
∣
∣
∣
∣

n∑

k=2

pikvk(t) −

n∑

k=2

pjkvk(t)

∣
∣
∣
∣
∣
= 0 ∀ i, j .
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Remarks 6.

• If in addition χ1 < 0 then v1(t) is also decaying. Thus the synchronous solution is
attracting. Examples of attracting synchronous solutions are studied in Chapter 6.

• Theorem 4 can also be formulated in terms of the eigenvalues of the graph Laplacian
L. In this case one only has to replace λk by 1 − λ′

k, according to equation (5).

In the following we study some special cases of coupling functions that appear com-
monly in applications.

4.3 Diffusive coupling with both quasi-isolated and non quasi-

isolated vertices

For diffusive coupling a synchronous solution always exists. So, here we may permit the
coexistence of both non-quasi-isolated and quasi-isolated vertices in the network. The
general diffusion condition (2) implies that ∂1g(s(t), s(t)) = −∂2g(s(t), s(t)). Because
this leads to a cancellation of the artificially introduced term in the coupling matrix K

(1 when i = j and di = 0), it follows that, even when there are non-quasi-isolated and
quasi-isolated vertices in the graph, small perturbations u(t) = x(t) − s(t) are governed
again by the variational equation (22), and the same arguments apply as in section 4.2.
In this case the k-th mixed transverse exponent for diffusively coupled units is given by

χdiff
k := limT→∞

1

T

t̄+T−1∑

s=t̄

log |hdiff
k (s(t))| (28)

where
hdiff

k (s(t)) = f ′(s(t))) + ǫ∂2g(s(t), s(t))(λk − 1)

and t̄ is chosen such that h(s(t)) 6= 0 for all t > t̄. If no such t̄ exists we set χdiff
k = −∞.

For diffusive coupling, Theorem 4 implies that system (1) synchronizes if the maximal
transverse exponent satisfies

χdiff := max
k≥2

χdiff
k < 0. (29)

Proposition 7. Assume that the function f is chaotic, i.e. has a positive Lyapunov-
exponent µf . If

• there exists more than one quasi-isolated vertex

or

• the network does not possess a spanning tree

then the maximal mixed transverse exponent is positive.

Proof. If one of these conditions if fulfilled then by Lemma 2 the multiplicity of the zero
eigenvalue satisfies m0(L) ≥ 2 and hence the multiplicity of the eigenvalue 1 of K satisfies

m1(K) ≥ 2. Consequently, χdiff
k = µf > 0 for k = 2, ...,m0.

11



In fact, it is intuitively clear that the presence of more than one quasi-isolated vertex
or the absence of a spanning tree will in general make chaotic synchronization impossible,
because in those situations, there will exist pairs of vertices none of which can dynamically
influence the other. Note, however, that Proposition 7 does not exclude the so-called
Master-Slave configurations.

A particular coupling function that arises in coupled map lattice models [15] is

g(xi, xj) = b(f(xj) − f(xi)) (30)

where b is some real constant. In this case it is possible to separate the effects of the
synchronous dynamics f and the network topology:

Corollary 8. System (1) with the coupling function (30) synchronizes if

µf + max
k≥2

log |1 + ǫb(λk − 1)| < 0. (31)

This result was already obtained in undirected [5] and directed [6] networks, in both
cases with nonnegative weights.

Assume that the synchronous solution f is chaotic, i.e. µf > 0. Then the network
topology term in (31) has to be sufficiently negative to compensate the positive Lyapunov
exponent µf . This in turn requires that the eigenvalues λk for k ≥ 2 be bounded away
from one, and the coupling strength ǫ lie in an appropriate interval.

4.4 Direct coupling and only non-quasi-isolated vertices

Another important special case of the general coupling function g(x, x) is the so-called
direct coupling4, where the interactions depend only on the state of the neighboring units,
i.e.

g(xi, xj) = ĝ(xj) (32)

for some ĝ : R → R. Thus ∂1g(s(t), s(t)) = 0, and the k-th mixed transverse exponent for
directly coupled units is given by

χdirect
k := limT→∞

1

T

t̄+T−1∑

s=t̄

log |hdirect
k (s(t))| (33)

where
hdirect

k (s(t)) = f ′(s(t))) + ǫĝ′(s(t))λk.

and t̄ is chosen such that h(s(t)) 6= 0 for all t > t̄. If no such t̄ exists we set χdiff
k = −∞.

For direct coupling, Theorem 4 implies that system (1) synchronizes if the maximal mixed
transverse exponent satisfies

χdirect := max
k≥2

χdirect
k < 0. (34)

Proposition 9. Assume that f + ǫĝ is chaotic, i.e has a positive Lyapunov-exponent
µ(f+ǫg). If the network does not possess a spanning tree then maximal mixed transverse

exponent χdirect is positive.

4We borrow this term from [16].
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Proof. Similar to the proof of Proposition 7.

If in addition ĝ(x) = bf(x), it is again possible to separate the effects of the resulting
synchronized dynamics (1 + ǫb)f and the network topology.

Corollary 10. Suppose that ĝ(x) = bf(x). System (1) synchronizes if

max
k≥2

log

∣
∣
∣
∣

1 + ǫbλk

1 + ǫb

∣
∣
∣
∣
+ µ(1+ǫb)f < 0. (35)

Similar to the case of diffusively coupled units, if the resulting synchronous solution
(1 + ǫb)f is chaotic, then the eigenvalues λk should be bounded away from one, and the
coupling strength ǫ lie in an appropriate interval.

5 Emergence of synchronized chaos in directly coupled

networks

As mentioned in the introduction, in diffusively-coupled units, the synchronized network
behaves exactly as a single unit would do in isolation. Hence, no new collective behavior
is gained from synchronization: Either the units are dynamically complex, then so is
the whole network, - or the units are dynamically simple then the behavior of the whole
network will remain simple.

Eq. (4) shows that the requirement for new emerging collective behavior is that the
general diffusion condition Eq. (2) is not satisfied. In this way, the network can display
new behavior that the single isolated units are not capable to show. In particular we shall
see in this section that synchronous chaos can emerge in a network of simple units.

One task in showing that simple units can exhibit synchronized chaos is to rigorously
show that the synchronized solution is indeed chaotic. To this end, we consider S-unimodal
maps.

5.1 A full family of S-unimodal maps

In general it is hard to prove that a function is chaotic. However there is one well-
understood class of chaotic functions, namely the so-called full families of S-unimodal
maps [17]. For convenience, we recall the notion of a full family of S-unimodal maps in
the Appendix A.

Properties of full families of S-unimodal maps:

It is well-known that a full family of S-unimodal maps undergoes a sequence of period
doubling bifurcations as µ varies from µ0 to µ1 and finally becomes chaotic [17, 18].

As the main result of this section, we present a full family of S-unimodal maps.

Theorem 11. Consider the family fµ of maps

fµ(x) =

(
1 − e−µ

1 + e−µ
x + 1 −

2

1 + e−µx

)

Θ, (36)

where Θ < 0. This family is a full family of S-unimodal maps on [0,1] with µ ∈ [µ0 = 0, µ1]
where we choose µ1 such that fµ1

(c) = 1.
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Figure 1: Bifurcation diagram for Eq. (36) with parameter values Θ = −1.3041 and
µ = 20.

The proof is given in Appendix B.

We can use the full family of S-unimodal maps (36) to demonstrate that synchronous
chaotic behavior can emerge in a network of simple units. Let the individual dynamics be

given by f(x) =
(

1−e−µ

1+e−µ x + 1
)

Θ and the interaction between units by ĝ(x) = − 2Θ
1+e−µx .

Clearly, the individual dynamics are very simple, as f(x) has one single attracting fixed
point. The resulting synchronous solution is

s(t + 1) =

(
1 − e−µ

1 + e−µ
s(t) + 1

)

Θ −
2ǫΘ

1 + e−µs(t)
. (37)

If ǫ = 1 and Θ < 0 this is exactly of the form (36). Fig. 5.1 supports our finding in
Theorem 11 and shows that Eq. (37) is chaotic for a wide range of ǫ-values.

For Θ > 0 the family of maps (36) is not a full family of S-unimodal maps. However,
computer simulations indicate that even in this case the Lyapunov exponent of (36) can
be positive depending on the parameter values of Θ, µ and ǫ. For positive values of Θ,
Eq. (36) can be used to model neural networks [9].

Another example of a full family of S-unimodal maps is given by the familiar logistic
maps. In the next section we study in detail the emergent synchronous chaotic dynamics
in networks of coupled logistic maps.

5.2 Coupled logistic maps

It is well-known that the logistic map

ℓρ(x) = ρx(1 − x), ρ ∈ [0, 4] and x ∈ [0, 1]

is a full family of S-unimodal maps. The logistic map is probably the best analyzed
chaotic map; still not everything is understood rigorously. For convenience we briefly
recall some properties. For ρ = 2 the dynamics of the logistic map are very simple, with
the fixed point x = 1/2 attracting all points in the open interval (0, 1). The logistic map

14



ℓρ undergoes a period doubling route to chaos [17]. At ρ = 3 the first period-doubling
occurs, followed by further period-doubling bifurcations with increasing values of ρ, which
accumulate at ρ ≈ 3.57. For ρ > 3.57 the logistic map can be chaotic but there are also so-
called periodic windows in the parameter interval ρ ∈ (3.57, 4]. For ρ = 4 it is maximally
chaotic with a Lyapunov exponent µℓ4 = ln 2.

We consider a network of coupled logistic maps. Let f(x) = a1x(1 − x), ĝ(x) =
a2x(1 − x) and

ǫ =
ρ − a1

a2
. (38)

Assume that a1, a2 ∈ (0, 4) and x(0) ∈ [0, 1]. Then the dynamics of the synchronized
solution is given by

s(t + 1) = ℓρ(s(t)) = ρs(t)(1 − s(t)). (39)

For given a1 and a2 the coupling constant ǫ can be used to control the dynamics of
the synchronous solution, i.e. ǫ can be used as bifurcation parameter. In particular,
synchronous chaotic behavior can emerge in the whole network, even if the individual
dynamics are very simple.

By an application of Corollary 10, the directly coupled network of logistic maps syn-
chronizes if

max
k≥2

log

∣
∣
∣
∣
1 −

(

1 −
a1

ρ

)

λ′
k

∣
∣
∣
∣
+ µℓρ

< 0. (40)

For illustration we consider some concrete examples.

Example 12. Let f(x) = ĝ(x) = ℓ2(x). Choosing ǫ = 1 yields ρ = 4, and the synchronous
solution s(t) = ℓ4(t) becomes maximally chaotic. Thus, the whole network displays com-
plicated dynamics although each unit of the network itself is dynamically simple.

Eq. (40) implies that the network synchronizes if all eigenvalues of the graph Laplacian
(except λ′

1 = 0) are contained in D(2, 1). Within the class of undirected graphs with
nonnegative weights, the latter condition can only be satisfied for complete graphs [11].
However, for directed graphs or in the case of mixed signs there exist also non-complete
graphs satisfying this condition [19].

In the next example we choose different functions f and ĝ that lead to the same
synchronous solution. Interestingly, the condition on the eigenvalues is this time different
than in the case of Example 12.

Example 13. Let f(x) = ℓ1(x) and ĝ = ℓ3(x). Choosing ǫ = 1 implies that the syn-
chronous solution is the same as in Example 12, i.e. s(t) = ℓ4(x).

The network synchronizes if all eigenvalues (except λ′
1 = 0) of the graph Laplacian are

contained in D( 4
3 , 2

3 ). In contrast to Example 12, there also exists non-complete undirected
graphs with positive weights that satisfy the latter condition.

Comparing Example 12 and Example 13 shows one interesting point. In both Exam-
ples the synchronous solution s(t) and the overall coupling strengths are identical. How-
ever, in Example 12 the network synchronizes if all eigenvalues are contained in D(2, 1)
whereas the same is true for Example 13 if all eigenvalues are contained in D( 4

3 , 2
3 ). Thus,

in contrast to diffusively coupled units, the synchronizability of a directly coupled net-
work is not completely determined by the synchronous solution s(t), the overall coupling
strength ǫ and the network topology (i.e. the eigenvalues of the coupling matrix), but
depends also on the special choices of f and ĝ. Clearly, this can already be seen from the

definition of χdirect
k .
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6 Suppression of chaos

Besides the emergence of chaos in a network of simple units, the opposite is also pos-
sible. In this section we show that non-diffusive coupling can also be used to suppress
chaos. Chaos suppression in single systems is a well-established field; for an overview see
[20] and the references therein. In our setting, suppression arises in networks through
synchronization of the states of the units.

As a first example, we consider a network of directly coupled chaotic logistic maps.

Example 14. Let f(x) = ĝ(x) = ℓ4(x) be given and choose ǫ =
(

2.1
4 − 1

)
. This choice

implies that the synchronous behavior is given by s(t) = ℓ2.1(t) and is non-chaotic. Corol-
lary 10 implies that the network synchronizes if all eigenvalues of the graph Laplacian are
contained in D(−1.11, 10.99).

Example 14 shows that the network synchronizes for a wide range of eigenvalues λ′
k.

Compared to synchronous chaotic behavior, studied in Example 12 and 13, the radius of
the disk D is much larger for simple synchronous behavior. The reason can be seen from
condition (35): A smaller Lyapunov exponent for the synchronous behavior implies less
restrictions on the allowable values of λ′

k.
Lemma 1 implies that all eigenvalues of L are contained in the disk D(1, r). For suffi-

ciently small r the latter disk is contained in D(−1.11, 10.99). So, instead of calculating
all eigenvalues of the coupling matrix, the knowledge of the radius r can be sufficient to
determine whether the network synchronizes. Hence, the quantity r already gives some
insights concerning the robustness of the synchronous state.

Motivated by the above example, we will give in the next section sufficient conditions
for synchronization in terms of r. In fact, these conditions will not depend on the eigen-
values of the coupling matrix. Again, we want to point out that this is only possible if
the synchronous behavior is not chaotic.

6.1 Direct coupling

We restrict ourselves to the case of direct coupling where ĝ(x) = bf(x). It follows from
Corollary 10 and Lemma 1 that the network synchronizes if

µ(1+ǫb)f < log

∣
∣
∣
∣

1 + ǫb

1 + |ǫb|r

∣
∣
∣
∣
. (41)

Again, we see that a simpler synchronous behavior in the sense of a smaller Lyapunov
exponent implies that the network synchronizes for a large class of network topologies.

Example 15. Let f(x) = ĝ(x) = ℓ4(x) and choose ǫ =
(

ρ
4 − 1

)
. This choice implies that

s(t) = ℓρ(t). By Eq. (41), the network synchronizes if

µℓρ
+ log

∣
∣
∣
∣

4

ρ
+

(
4

ρ
− 1

)

r

∣
∣
∣
∣
< 0. (42)

The left-hand-side of (42) is plotted in Figure 2.

• For ρ = 2, x∗ = 1/2 is an attracting fixed point of s(t) = ℓ2(t) that attracts all
points in the open interval (0, 1). For x(t = 0) = x0 ∈ (0, 1) we have

x(t) = 1/2[1 − (1 − 2x0)
2t].
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Figure 2: Plot of µℓρ
+ log

∣
∣
∣
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ρ

+
(

4
ρ
− 1

)

r
∣
∣
∣ as a function of r. The dot-dashed line corre-

sponds to the parameter value ρ = 3.25, the dashed line to ρ = 2.5 and the solid line to
ρ = 2.1.

Because of this fast convergence to 1
2 , the fact that ℓ′2(

1
2 ) = 0 implies that µℓ2 =

−∞.5 Thus the network synchronizes for all network topologies.

• For ρ = 2.1 and ρ = 3.25 the solid and dot-dashed line in Fig. 2 show that the net-
work synchronizes for all network topologies that satisfy r < 8 or r < 12 respectively.
In comparison to Example 14 here we only use the information given by r instead
of using all eigenvalues of the coupling matrix.

• For ρ = 2.5 the dashed line in Fig. 2 shows that the function µℓ2.5
+log

∣
∣ 4
2.5 +

(
4

2.5 − 1
)
r
∣
∣

is never negative. Hence estimates based on r are too crude to obtain synchroniza-
tion information, however in such a case we can use Corollary 10 to conclude that
the network synchronizes if all eigenvalues λ′

k of L (except λ′
1 = 0) are contained in

a disk centered at −5/3 with a radius 10/3.

Finally, we give an example of synchronization independent of network topology when
all the weights have the same sign.

Example 16. Let ĝ(x) = bf(x) be arbitrarily maps. Assume that all weights in the
network are either nonnegative or nonpositive, i.e. r = 1. If ǫb ≥ 0 then condition (41)
is satisfied if

µ((1+ǫb)f) < log 1 = 0.

If ǫb < 0 then condition (41) is satisfied if

µ((1+ǫb)f) < log

∣
∣
∣
∣

1 + ǫb

1 − ǫb

∣
∣
∣
∣
.

5Because of this property, some authors call the fixed point 1

2
superstable. [21].

17



7 Conclusion and discussion

In this work we studied complete synchronization in coupled map networks of identical
units. We have generalized synchronization analysis to directed networks with both posi-
tive and negative weights and general pairwise coupling functions. This generalization is
especially important for analyzing real-world networks. For example, in neural networks
the coupling function is non-diffusive. Excitation and inhibition are modeled by positive
and negative weights, respectively, and only the pre-synaptic neuron influences the post-
synaptic one but not vice versa. Thus, directed networks with signed weights are needed
to model neural networks in an appropriate way.

We have derived sufficient conditions for local synchronization, which are expressed
in terms of the maximal mixed transverse exponent. We have shown that, in contrast to
diffusively coupled units, non-diffusively coupled networks can display new synchronized
behavior that the individual unit is not able to show. The new synchronous behavior is
influenced by the overall coupling strength that plays the role of a bifurcation parameter.
Again, this is important in neural networks. Changing the coupling strength in a learning
process allows the network to learn new, possibly much richer behavior than before.
In particular, synchronized chaotic behavior can arise in networks of non-chaotic units
with non-chaotic interactions functions. Conversely, chaos can be suppressed through
synchronization in networks of chaotic units. This may have practical implications in
the field of chaos control. Often chaos is controlled by applying time-delayed external
feedback. In our approach chaos can be controlled by changing an internal parameter of
the system.

There exists natural extensions of this work. One direction is to generalize the synchro-
nization analysis to networks of non-identical units. Here the problem is more challenging,
since complete synchronization is usually not possible, and one must look for other suitable
types of solutions and investigate their stability. Other directions for extension include
higher-dimensional and/or continuous-time systems. In all cases, the possibility of the
emergence of new dynamics via synchronization offers a helpful perspective in our efforts
to understand complex systems.

A Definition of a full family of S-unimodal maps

Definition 17 (Unimodal Map). Let f : I = [0, 1] → I = [0, 1]. The map is unimodal if

1. f(0) = f(1) = 0

2. f has a unique critical point c (i.e. f ′(c) = 0) with 0 < c < 1.

Definition 18 (Schwarzian Derivative). The Schwarzian derivative of a function f at x
is

Sf(x) =
f ′′′(x)

f ′(x)
−

3

2

(
f ′′(x)

f ′(x)

)2

.

The important role of a negative Schwarzian derivative was discovered by Singer [22].
A negative Schwarzian derivative restricts the number of stable periodic orbits. Singer
showed that a unimodal map whose Schwarzian derivative is negative has at most one
stable periodic orbit. Furthermore, if the critical point is not attracted to a stable periodic
orbit then the map has no stable orbit at all.
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Definition 19 (Itinerary). Let x ∈ I. The itinerary of x under f is the infinite sequence
S(x) = (s0s1s2, ...) where

sj =







0 if f j(x) < c
1 if f j(x) > c
C if f j(x) = c.

The idea of kneading sequences goes back to Milnor and Thurston [23].

Definition 20 (Kneading Sequence). The kneading sequence K(f) of f(x) is the itinerary
of f(c), i.e., K(f) = S(f(c)).

Definition 21 (Full family of S-unimodal maps). Let fµ be a family of unimodal maps
with µ0 ≤ µ ≤ µ1. fµ is called a full family of S-unimodal maps if

1. fµ0
(x) ≡ 0 for all x ∈ I.

2. When µ = µ1, K(fµ) = (1000...).

3. Sfµ(x) < 0 for all µ > µ0 and x ∈ I.

B Proof of Theorem 11

Proof. It is straightforward to show that fµ is unimodal for all µ. The first two points in
Definition 21 obviously hold because f2

µ1
(c) = 0 and 0 is a fixed point. So we only have

to prove that Sfµ(x) < 0 for all µ > µ0 = 0. We calculate the following derivatives.

f ′
µ(x) =

1 − e−µ

1 + e−µ
Θ −

2µΘe−µx

(1 + e−µx)2

f ′′
µ (x) = 2µ2Θe−µx

[
1

(1 + e−µx)2
−

2e−µx

(1 + e−µx)3

]

f ′′′
µ (x) = 2µ3Θe−µx

[

−
1

(1 + e−µx)2
+

6e−µx

(1 + e−µx)3
−

6e−2µx

(1 + e−µx)4

]

.

Putting a := 1−e−µ

1+e−µ and b := a(1 + e−µx)2 − 2µe−µx, we have:

f ′′′

µ (x)

f ′

µ(x) =

1
b2

[
−2aµ3e−µx(1 + e−µx)2 + 4µ4e−2µx + 12aµ3e−2µx(1 + e−µx)

− 24µ4e−3µx

1+e−µx − 12aµ3e−3µx + 24µ4e−4µx

(1+e−µx)2

]

− 3
2

(
f ′′

µ (x)

f ′

µ(x)

)2

=
1

b2

[

−6µ4e−2µx +
24µ4e−3µx

1 + e−µx
−

24µ4e−4µx

(1 + e−µx)2

]

Thus, the Schwarzian derivative

Sfµ(x) =
f ′′′

µ (x)

f ′
µ(x)

−
3

2

(
f ′′

µ (x)

f ′
µ(x)

)2

=
−2aµ3e−µx

b2
︸ ︷︷ ︸

<0

[

1 + e−2µx +
(µ

a
− 4

)

e−µx
]

︸ ︷︷ ︸

=:gµ(x)
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is negative if gµ(x) > 0. The critical point of gµ(x) is given by

c =
ln

(
2 − µ

2a

)

−µ
.

It is easy to verify that this critical point c is actually a minimum of the function gµ(x).
First, we assume that c ∈ (0, 1). This leads to

e−µ < 2 −
µ

2a
< 1. (43)

Inserting the critical point yields:

gµ(c) = 1 +
(

2 −
µ

2a

)2

+
(µ

a
− 4

)(

2 −
µ

2a

)

= −3 + 2
µ

a
−

( µ

2a

)2

= 1 −
(

2 −
µ

2a

)2

︸ ︷︷ ︸

< 1

> 0

So we only have to check that gµ(x) > 0 at the boundary. First we consider the case
x = 0.

gµ(0) = −2 +
µ

a
= −2 +

1 + e−µ

1 − e−µ
µ

Calculating the minimum of gµ(0) with respect to µ yields:

dgµ(0)

dµ
=

1 + (1 − µ)e−µ

1 − e−µ
−

µe−µ(1 + e−µ)

(1 − e−µ)2
!
= 0

⇒ 1 − 2µe−µ − e−2µ = 0

Hence, we see that µ = 0 is the minimum. Using l’Hospital’s rule we obtain:

lim
µց0

gµ(0) = −2 + lim
µց0

µ(1 + e−µ)

1 − e−µ
= −2 + lim

µց0

1 + e−µ − µe−µ

e−µ
ց 0

This shows that g(0) > 0 if µ > 0. The case x = 1 is treated in the same way. Thus the
family (36) is a full family of S-unimodal maps.
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