
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

On a mesoscopic many-body Hamiltonian

describing elastic shears and dislocations

(revised version: April 2010)

by

Stephan Luckhaus, and Luca Mugnai

Preprint no.: 67 2009





ON A MESOSCOPIC MANY-BODY HAMILTONIAN
DESCRIBING ELASTIC SHEARS AND DISLOCATIONS

STEPHAN LUCKHAUS AND LUCA MUGNAI

Abstract. We define a “reference-free” many-body Hamiltonian acting on

finite systems of particles, and study some properties of “low-energy” states.
More precisely we show that “low-energy” states are locally well described (on

a mesoscale) by appropriate affine transformations of a ground state lattice.

Moreover we use such (local) description to define an “holonomy representation
map” and a consequent notion of topological defect.

1. Introduction

The purpose of this paper is to present a “mesoscopic” many-body interaction
potential acting on finite systems of particles (a Hamiltonian in the language of
statistical mechanics and of this paper) that is able to describe deformed crystals
with defects. In principle such a Hamiltonian should be derived from the ground
state energy of the electronic Schrödinger operator in the Born-Oppenheimer ap-
proximation. This is far too ambitious for this paper. Instead we start from the
assumption that low-energy states are given by approximately linear deformations
of a ground state lattice, and construct a Hamiltonian that, given a finite parti-
cle configuration, measures the shear and the deviations from the linearly sheared
lattice in a mesoscopic interaction range.

In order to describe the construction of the Hamiltonian we need to introduce
some notation. We assume that the ground state lattice is given by a simple Bravais
lattice LG := {Gz : z ∈ Zd}, where G belongs to the space GL+(d,R) of the
d × d matrices with positive determinant. With Ω we denote an open, connected,
bounded, subset of Rd (d ≤ 3), with X := {xi}i∈I ⊂ Ω we denote a finite subset
whose elements represent the positions of the particles of a given configuration and
with B(x,R) we denote the ball of center x and radius R > 0.

We define the Hamiltonian in two steps. In the first step we define an “energy
density” which depends on the point x ∈ Ω (in the Eulerian space), an auxiliary
variable represented by an affine deformation, and the particle configuration X in
a finite (range) neighborhood of x of size λ << L (L > 0 being the diameter of
Ω). In the second step we minimize the “energy-density” with respect to the affine
deformation, and integrate it over the Eulerian coordinate x ∈ Ω. As a result we
obtain a Hamiltonian which depends only on the particle configuration X and, in
our case, is invariant with respect to rigid motions and permutations acting on X .

Let us describe in more detail how the Hamiltonian is constructed. For a point
x ∈ Ω, an affine deformation (A, τ) ∈ GL+(d,R)×Rd and a finite particle configu-
ration X in Ω, the value of our “energy-density” hλ(x, (A, τ),X ) is given by the sum
of the “distance” of X ∩B(x, λ) from the Bravais lattice Lx(A, τ) := {A(z− τ)+x :
z ∈ Zd}, plus the (elastic) energy cost of a linear deformation transforming the
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ground state lattice L(G) into the lattice L(A) := {Az : z ∈ Zd}. More precisely
hλ(x, (A, τ),X ) is given by the sum of three terms:

(i) The first term is obtained assigning a value to the linearly deformed ground
state lattice L(A);

(ii) The second term is obtained assigning an excess-energy for each individual
particle xi ∈ X through a periodic potential, which has the periodicity of
the lattice Lx(A, τ), and which can be thought of as a one-particle potential
in an otherwise periodic lattice, multiplied with a cut-off function of finite
mass to ensure a finite interaction range;

(iii) The third and last term penalizes the presence in X ∩ B(x, λ) of (suitably
defined) “vacancies” with respect to Lx(A, τ) by measuring the difference
between the determinant of the inverse of A and the empirical density of X
in x.

The sum of the second and third term measures the “distance” of Lx(A, τ) from
X ∩B(x, λ). In fact, roughly speaking, term (ii) measures the “mean” deviation of
the xi ∈ X ∩ B(x, λ) from the lattice sites of Lx(A, τ). However this term alone
is not sufficient to estimate how “near” Lx(A, τ) is to X ∩ B(x, λ). Indeed term
(ii) assumes a small value also on those lattices Lx(A, τ) such that the points of
Lx(A, τ)∩B(x, λ) are many more than the elements of X∩B(x, λ), but these sit very
near to Lx(A, τ). For this reason we also have to add term (iii), which approximately
measures the difference between the number of points of Lx(A, τ)∩B(x, λ) divided
by the volume of B(x, λ) and the “empirical density of X in the point x”, that is
the number of elements of X ∩B(x, λ) divided by the volume of B(x, λ).

We now come to the second step of our construction and define the Hamiltonian

Hλ(X ,Ω) :=
∫

Ω

[
inf

A∈GL+(d,R)×Rd
hλ(x,A,X )

]
dx.

In view of the above description of hλ(x, (A, τ),X ), we can say that minimization
of hλ(x,A,X ) with respect to A is approximately the same as identifying the simple
Bravais lattice optimally fitted with X ∩ B(x, λ), and then calculating its elastic
energy plus the cost of the deviation of X ∩B(x, λ) from this lattice. We can thus
expect that a simple Bravais lattice (nearly) optimally fitted with X ∩B(x, λ) rep-
resents a good (local) description of X only when the value of the “energy-density”
is small. That is, only for “low-energy states” we can expect the Hamiltonian to
give a realistic picture.

In order to discuss the relation between measurable quantities and the Hamil-
tonian Hλ(X ,Ω), we need to introduce the mathematical definition of the terms
involved in its construction. The analytical expression of term (i) is given by a
function F ∈ C2(GL+(d,R)) such that

• F (A) ≥ 0 for every A ∈ GL+(d,R);
• F is frame-indifferent, that is F (RA) = F (A) for every rotation R of Rd;
• F is invaraint with respect to (positive) changes of the lattice-basis of L(A),

that is F (A) = F (AB) for every B ∈ Zd×d such that detB = 1;
• the function F takes its minimum on the ground state lattice LG, more

precisely we require that

F (M) = 0 ⇐⇒ L(M) = L(G).
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The analytical expression of the second term, the one described in (ii) above, is

1
λd

∑
xi∈I

[
W
(
xi, Lx(A, τ)

)
− ϑ0

]
ϕλ,x(xi),

where: for fixed x ∈ Ω and (A, τ) ∈ GL+(d,R) × Rd, the map W (·,Lx(A, τ)) ∈
C0(Rd) behaves similarly to the squared distance function from the lattice Lx(A, τ);
ϑ0 > 0 is a positive constant; and ϕλ,x(·) ∈ C∞(Rd, [0, 1]) is a cut-off function
supported in the ball of radius 2λ centered at x, with finite mass (independent of
x). The last term, the one corresponding to (iii), is given by

ϑ1

( 1
detA

− 1
Cϕ λd

∑
xi∈X

ϕλ,x(xi)
)
,

where ϑ1 > 0 is a constant, and Cϕ is a renormalizing factor depending on the mass
of the cut-off function ϕλ,x.

Finally we can define the energy density at a point x, depending still on the
auxiliary variable represented by the affine deformation A = (A, τ) ∈ GL+(d,R)×
Rd, by

hλ(x,A,X ) :=F (A) +
1
λd

∑
xi∈I

[
W
(
xi, Lx(A, τ)

)
− ϑ0

]
ϕλ,x(xi)

+ϑ1

( 1
detA

− 1
Cϕ λd

∑
xi∈X

ϕλ,x(xi)
)
.

As we already said W (·,Lx(A, τ)) has the period of the affinely deformed ground-
state lattice Lx(A, τ). We think of D2

yyW (0,Lx(A, τ)) as the quadratic-form de-
scribing independent deviations of particles from the lattice position. The meaning
of −ϑ0 is that of the energy per particle in the ground state, ϑ1 is the cost of a va-
cancy, and F (A) the energy-cost of a linear deformation of the ground state lattice.
Note that the third term can be incorporated in the first two, but its meaning is
that of measuring the presence in X ∩B(x, λ) of vacancies with respect to Lx(A, τ).

In this paper we consider low-energy configurations with an additional hard-core
constraint. The result we are able to present says that such configurations are
characterized by a large set of low energy-density whose connected components we
call “grains”. On each open, simply connected subset U of a grain we show the
existence of a family of maps {AB(·)}B = {(AB(·), τB(·))}B ∈ C1(U, GL+(d,R)×Rd),
indexed by B ∈ GL+(d,Z) × Zd (that is the set of affine maps mapping a simple
Bravais lattice onto itself), with the following properties. For every x ∈ U we have

Lx(AB(x)) = Lx(AB′(x)), ∀B, B ′ ∈ GL+(d,Z)× Zd, (1.1)

hλ(x,AB(x),X ) = inf
A∈GL+(d,R)×Rd

hλ(x,A,X ), (1.2)

that is Lx(AB(x)) is the unique simple Bravais lattice optimally fitted with X ∩
B(x, λ). Moreover for every B,B ′ ∈ GL+(d,Z)× Zd we have

[AB(·)]−1 ◦ AB′(·) = B̃ ∈ GL+(d,Z)× Zd (1.3)

and

λ‖∇AB(·)‖L∞(U) + ‖∇τB(·)−A−1
B (·)‖L∞(U) ≤

CB
∇
λ
, (1.4)
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where CB
∇ > 0 is a constant which is proportional to the “small” value of the

energy-density in U . We can think of the shift part of the affine deformation τB
as a transformation from Eulerian to Lagrangian coordinates, while we can think
of its inverse as the (local) deformation which is defined only up to the period of
the lattice (e.g. the flat torus). Moreover, by (1.4) we can think of AB(·) as an
approximation of ∇τ−1

B (·), that is the gradient of the local deformation.

Figure 1. A schematic picture of a low-energy configuration. Three
grains are separated by the shaded region, corresponding to the set
where the energy density is “high”. The particles in the grain on the
bottom left are arranged to form a defect free, linearly sheared ground
state lattice. The particles in the grain on the right correspond to a
(non-linear) elastically deformed ground state lattice. Here two point-
defects (a vacancy and an interstitial) are present. Finally the grain
on the top left side is not simply-connected and contains a dislocation,
whose core corresponds to the shaded disk in the grain.

In order to detect the presence of dislocations in a grain we also define an “ho-
lonomy representation map” which depends on the topology of the grain and the
behavior of {AB(·)}B on the whole of the grain. In fact in general a grain needs
not to be simply connected, and when this is the case it can happen that the maps
{AB(·)}B are not globally continuous on the whole of the grain. More precisely, let
γ ∈ C0([0, 1],Ω) be a, simple, closed loop whose support (γ) lies in the interior
of the grain, and it is nontrivial, that is γ is not homotopically equivalent (in the
grain) to a constant. We can construct a simply connected subset U of the grain
such that U ⊃ [(γ) \ {x0}] (where x0 := γ(0) = γ(1)) removing a disc-like surface
from a neighborhood of (γ). Hence, by the results discussed above we can prove
that {AB(γ(·))}B ⊂ C0((0, 1),Ω), that is every AB(·) is continuous on the support of
the loop γ once the point x0 is removed. Moreover we can also prove that, setting
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A−B = lims→0 AB(γ(s)), A+
B = lims→1 AB(γ(s)), both A−B and A+

B satisfy (1.1), (1.2)
with x = x0. Nevertheless we can have A−B 6= A+

B . If this is the case, it follows from
(1.3) and (1.1) that for every B ∈ GL+(d,Z)×Zd we can find a “transition element”
B̂B ∈ GL+(d,Z) × Zd such that [A−B ]−1 ◦ A+

B = B̂B . When the matrix component
of the transition element B̂B is the identity, the jump in the translation component
between A−B and A+

B defines a vector (independent of B) in the lattice Lx0(A+
B ).

This we call the Burgers vector associated with a dislocation. If one wants to be
more precise in algebraic terms in this theory a dislocation structure in a grain is
a homeomorphism from the homothopy group of the grain into GL+(d,Z) × Zd,
only it turns out that a nontrivial component in GL+(d, Z) is much more costly in
energy than one in Zd (the Burgers vector).

Note that much of the final description is very similar to the one given in a
rational mechanics context by Kondo [7] and Kröner [8] (see also [3, 4, 5] and
references therein). The point of this paper is to make the connection with a
Hamiltonian depending only on particle configurations. In the end this should be a
starting point for a non-equilibrium statistical mechanics theory. But that is work
for the future.

The plan of the paper is the following. In Section 2 we introduce some notation.
In Section 3 we study the behavior of Hλ(XL,ΩL), when ΩL is a family of sets of
diameter L invading Rd as λ → ∞ (L >> λ2), and XL is obtained via a smooth
deformation of a portion of the ground state. In Section 4 we collect the statements
of our main results. In Section 5 we prove the preliminary lemmata and propositions
we need in the proofs of the main results, which are presented in Sections 6-8. In
Section 9 we define an holonomy representation map and discuss how such map can
be used to describe dislocations in our setting. Finally in Appendix A we exihibit
a function W ∈ C0(Rd × Rd×d × Rd) fulfilling the assumptions we make in the
definition of our many-body Hamiltonian.

2. Notation

2.1. General Notation. Throughout the paper we adopt the following notation.
By Ω we denote an open, bounded, connected subset of Rd (d = 2, 3) with Lipschitz
boundary, and by X = {xi}i∈I ⊂ {y ∈ Rd : dist(y,Ω) ≤ 2λ} a finite subset of
points. However, with a small abuse of notation, we will often write X ⊂ Ω.
By B(x, r) we denote the Euclidean ball of radius r centered in y. By Zd we denote
the set of points of Rd with integer coordinates. Given zk ∈ Zd we set

Q(zk) := {zk + v : v ∈ [0, 1)d}.

For every y ∈ Rd we define

[y]Zd := zk ∈ Zd such that y ∈ Q(zk),

{y}Zd := y − [y]Zd ∈ Q(0).

Throughout the paper we consider the following spaces and sets

GL+(d,R) :=
{
M ∈ Rd×d : detM > 0

}
, Aff +(Rd) :=

{
M = (M,µ) ∈ GL+(d,R)× Rd

}
,

GL+(d,Z) :=
{
B ∈ Zd×d : detB = 1

}
, Aff +(Zd) :=

{
B = (B, b) ∈ GL+(d,Z)× Zd

}
.
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Given M = (mij)1≤i,j≤d ∈ Rd×d we define

|M | :=

√√√√ d∑
i=1

d∑
j=1

(mij)2,

‖M‖∗ := sup{|Mv| : v ∈ Rd, |v| = 1}.

We often equip the space Aff +(Rd) with the norm ‖ · ‖λ defined by

‖M ‖λ :=
√
‖M‖2∗λ2 + |µ|2, (2.1)

and we set

Bλ(M , r) := {N ∈ Aff +(Rd) : ‖N −M ‖λ < r}, r > 0. (2.2)

Given x ∈ Ω we define

Aff +
�(Rdx) := {(A, x−Aτ) : A ∈ GL+(d,R), τ ∈ Rd} ⊂ Aff +(Rd).

Let us remark that, for every fixed x ∈ Ω, Aff +
�(Rdx) is isomorphic to the semidirect

product GL+(d,R) � Rd.
With a small abuse of notation, when no confusion may arise we denote by
A = (A, τ) ∈ Aff +

�(Rdx) the element (A, x − Aτ) ∈ Aff +(Rd) and by Bλ(A, r) ⊂
Aff +

�(Rdx) we mean Bλ

(
(A, x−Aτ), r

)
⊂ Aff +(Rd).

2.2. Notation and Preliminaries on Simple Bravais Lattices. In the present
section we fix some notation and recall some terminology and results concerning
simple Bravais lattices in Rd (d = 2, 3).

Let M ∈ GL+(d,R). We define the Bravais lattice generated by M to be the
discrete subset L(M) of Rd defined by

L(M) := {y ∈ Rd : y = Mzk for some zk ∈ Zd}. (2.3)

Notice that L(M) = L(MB) for every B ∈ GL(d,Z). Moreover if L(M ′) = L(M)
for some M ′ ∈ GL+(d,R), then we can find B ∈ GL+(d,Z) such that MB = M ′.

Given a1, . . . , ad ∈ L(M), linearly independent vectors, we say that a1, . . . , ad
are a lattice basis for L(M) if and only if

L(M) =
{ d∑
j=1

ζjaj : ζj ∈ Z
}
.

In particular a basis for the lattice L(M) is given by the d raws of the matrix M .
Let {a1, . . . , ad} and {a′1, . . . , a′d} be two lattice bases of the same Bravais lat-

tice. Denote by M (respectively M ′) the matrix whose raws are given by the aj
(respectively the a′j), and let B ∈ GL(d,Z) be the unique matrix such that

M = M ′B. (2.4)

We say that the bases a1, . . . , ad and a′1, . . . , a
′
d have the same orientation if the

matrix B satisfying (2.4) is such that B ∈ GL+(d,Z), that is detB = 1. More-
over we say that a lattice basis a1, . . . , ad is positively oriented if it has the same
orientation as the lattice basis associated with the matrix M .

Next we recall a result concerning the existence of a particular basis for a given
lattice L(M) (see [6, Theorem 4.2, Theorem 4.3]).
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Theorem 2.1. Let L(M) be a simple Bravais lattice in Rd. The d shortest and
linearly independent lattice vectors form a lattice basis.

We call a lattice basis made of d shortest linearly independent vectors a reduced
lattice basis. As a consequence of the results in [6, Section 4.2, Section 4.3], we can
conclude the existence of a positively oriented reduced basis. More precisely we
have the following

Proposition 2.2. Let L(M) be a simple Bravais lattice in Rd. There exists a
positively oriented reduced lattice basis a1, . . . , ad such that

• if d = 2 then
2|〈a1, a2〉| ≤ |a1|2 ≤ |a2|2. (2.5)

• if d = 3 then

|a1|2 ≤ |a2|2 ≤ |a3|2,
2|〈ai, aj〉| ≤ |ai|2, for 1 ≤ i < j ≤ 3.

(2.6)

Remark 2.3. Since positively oriented lattice bases of L(M) are in one-to-one
correspondence with the elements of GL+(d,Z), by Proposition 2.2 we obtain the
existence of BM ∈ GL+(d,Z) such that MBM is the matrix associated with a
reduced positively oriented lattice basis satisfying (2.5) if d = 2 (respectively (2.6)
if d = 3). Moreover, since the elements of a reduced lattice basis are the d shortest
linearly independent lattice vectors, we can conclude that

|MBM | = min{|MB| : B ∈ GL+(d,Z)}. (2.7)

Let a1, . . . , ad be a reduced positively oriented lattice basis for the simple Bravais
lattice L(M), and suppose a1, . . . , ad satisfies (2.5) (respectively (2.6)) if d = 2
(respectively if d = 3). We define

m0(L(M)) := |a1|, m1(L(M)) := |ad|. (2.8)

By definition of reduced lattice basis we also have

m0(L(M)) = min{|M(zl)| : zl 6= 0, zl ∈ Zd}.
As a further consequence of (2.5), (2.6),denoting by αij the angle between ai

and aj , we have

|〈ai, aj〉| = |ai| |aj || cos(αij)| ≤
|ai|2

2
≤ |ai| |aj |

2
,

that is αij ∈ [− arccos(1/2), arccos(1/2)] for every 1 ≤ i 6= j ≤ d. This fact implies
the existence of a positive constant Cd depending only on the dimension such that,
denoting by BM ∈ GL+(d,Z) the matrix defined in Remark 2.3, we have

|MBMe1| . . . |MBMed| = |a1| . . . |ad| ≤ Cd detM, (2.9)

where the ei are the elements of the canonical basis of Rd.
For a given x ∈ Ω and A = (A, τ) ∈ Aff +

�(Rdx), by Lx(A) we denote the (simple)
Bravais lattice generated by the affine map associated to A, that is

Lx(A) := {y ∈ Rd : y = A(zk − τ) + x for some zk ∈ Zd}.
Hence Lx(A) = L(A)+(x−Aτ), where L(A) is the simple Bravais lattice generated
by A. We define 0 < m0(Lx(A)) := m0(L(A)) ≤ m1(Lx(A)) := m1(L(A)), where
m0(L(A)) and m1(L(A)) are as in (2.8). Eventually we remark that Lx(A) = Lx(Ã)
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if and only if there exists B := (B, b) ∈ Aff +(Zd) such that (Ã, x− Ãτ̃) = (AB, x−
AB(B−1τ + b)), and we define

JAKAff +(Zd) := {(AB, x−AB(B−1τ + b)) : (B, b) ∈ Aff +(Zd)} ⊂ Aff +
�(Rdx).

Let A = (A, τ) ∈ Aff +
�(Rdx), B ∈ Aff +(Zd) and τ0 ∈ Rd be such that

(i) A0 := AB is associated with a reduced, positively oriented lattice basis of
L(A) fulfilling Proposition 2.2;

(ii) τ0 := {B−1τ}Zd (so that |τ0| <
√
d).

Then

(A0, x−A0τ0) = (AB, x−AB(B−1τ − [B−1τ ]Zd)) ∈ JAKAff +(Zd),

and hence Lx(A) = Lx(A0). Whenever A0 = (A0, τ0) ∈ JAKAff +(Zd) satisfies condi-
tions (i)-(ii) above we call it a canonical representation for Lx(A). Let us notice
that canonical representations are not unique.

2.3. Further notation and definition of the Hamiltonian Hλ(X ,Ω). Next we
specify the notation we need to define our many-body Hamiltonian.

The ground state: We assume that a stress-, strain-, defect-free configuration
is given by a ground state lattice, that we suppose to be a simple Bravais lattice
L(G) ⊂ Rd, for some G ∈ GL+(d,R).

The cut-off function ϕ: We choose ϕ ∈ C∞(R, [0, 1]) such that ϕ(s) ≡ 0 if
s ≥ 2, ϕ(s) ≡ 1 if s ≤ 1 and ϕ′ ≤ 0 on R. We then define

ϕλ,x(y) := ϕ

(
|y − x|
λ

)
, ∀x, y ∈ Ω, Cϕ :=

∫
Rd
ϕ(|y|) dy. (2.10)

The hard-core potential V : By V : [0,+∞) → {0,+∞} we denote the
function

V (s) :=

{
0 if s ∈ (s0,+∞)
+∞ if s ∈ [0, s0]

, (2.11)

where s0
2 < m0(L(G))

2 .

The periodic potential W : By W ∈ C0(Rd×Aff +(Rd)) we denote a function
such that

(P1) there exist 0 < C
W,0 ≤ CW,1 such that, for every y ∈ Rd and M ∈ Aff +(Rd),

we have

C
W,0 dist2(y,L(M )) ≤W (y,M ) ≤ C

W,1 dist2(y,L(M )); (2.12)

(P2) for every v ∈ Rd and M = (M,µ) ∈ Aff +(Rd) we have

W (v, (M,µ)) = W (v, (MB,µ+Mb)), ∀B = (B, b) ∈ Aff +(Zd); (2.13)

W (v, (M,µ)) = W (v − µ, (M, 0)). (2.14)

(P3) there exists 0 < m0 < m1 verifying

s0

2
,
sd0(2Cϕ − 1)

2(d+1)(m1)(d−1)
∈ (m0,m1), (2.15)
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(s0 being the hard-core threshold defined above) such that W ∈ C2(Rd×E),
where

E := {M ∈ Aff +(Rd) : m0 < m0(L(M )) ≤ m1(L(M )) < m1},
and J(G, 0)KAff +(Zd) ⊂ E .

There exists β0 ∈ (0, s0/2) such that for every M ∈ E and y ∈ Rd
verifying dist(v,L(M )) < β0, we have∣∣∣DMW (y,M )

∣∣∣ ≤ CW,1DM dist2(y,M ),

C
W,0

2
D2

MM

 ∑
zk∈Zd

|v −M (zk)|2 χ
B(0,m0)(|v −M (zk)|)

 ≤ D2
MMW (v,M ).

Notice that by (P1) we have {y ∈ Rd : W (y,M ) = 0} = L(M ). From now on, with
a small abuse of notation, given x ∈ Ω and A ∈ Aff +

�(Rdx), we will set

W (·,Lx(A)) := W (·, (A, x−Aτ)) = W (· − x, (A,−Aτ)).

Such an abuse of notation is justified by assumption (P2), from which follows that
W (·,Lx(A)) = W (·,Lx(Ã)) whenever A, Ã ∈ Aff +

�(Rdx) verify Lx(Ã) = Lx(A).
Moreover, again thanks to (P2), we have

0 < W := ‖W (·, ·)‖
C2
(

Rd×(E∩{M∈Aff +(Rd): |M |<m1})
) < +∞. (2.16)

In Appendix A we exihibit an explicit example of a function W (·, ·) satisfying (P1)-
(P3).

Remark 2.4. Condition (2.15) is nothing but a technical assumption that simplifies
some of the statements and proofs.

The elastic potential F : By F ∈ C2
(
GL+(d,R)

)
we denote a function such

that the following relations hold for every M ∈ GL+(d,R)

F (M) ≥ 0, F (M) = 0⇐⇒ L(M) = L(G),

F (RM) = F (M), ∀R ∈ SOd(R),

F (MB) = F (M), ∀B ∈ GL+(d,Z).

Moreover we assume the existence of Tel, Cel > 0 verifying

{F (M) < Tel} ⊂ {(detM) < Cel}. (2.17)

Let us remind the reader that we think of F (M) as the excess energy associated
with the linear shear MG−1 applied to L(G).

We are now in a position to define the energy density hλ(·, ·).

Definition 2.5. Given X ⊂ Ω, x ∈ Ω and λ ∈ R+ we set

Jλ(x, ·,X ) : Aff +
�(Rdx)→ [0,+∞[,

A = (A, τ) 7→ λ−d
∑
xi∈X

(
W (xi,Lx(A))− θ0

)
ϕλ,x(xi)

(2.18)

Vλ(x, ·,X ) : Aff +
�(Rdx)→ [0,+∞[,

A = (A, τ) 7→ ϑ1

(
1

detA
− 1
λdCϕ

∑
xi∈X

ϕλ,x(xi)

)
,

(2.19)
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where Cϕ is as in (2.10). We define

hλ(x, ·,X ) : Aff +
�(Rdx) → [0,+∞), (2.20)

A 7→ Jλ(x,A,X ) + Vλ(x,A, λ) + F (A),

and eventually

hλ(·,X ) : Ω→ R, (2.21)

hλ(x,X ) := inf
A∈Aff +(Rd)

hλ(x,A,X ).

Remark 2.6. By the invariance assumptions made on W (x, ·) and F (·) we obtain
that hλ(x,A,X ) = hλ(x,AB , λ) for every A ∈ Aff +

�(Rdx) and every AB ∈ JAKAff +(Zd).

Remark 2.7. Throughout the paper we assume that the hard-core threshold s0

and the single vacancy cost constant ϑ1 satisfy

C
W,0

s2
0

4
− ϑ1

Cϕ
> 0, (2.22)

where C
W,0 denotes the positive constant appearing in the definition of W (·, ·).

Condition (2.22) is, roughly speaking, needed to ensure that, when X satisfies the
hard-core constrain

∑
i,j∈I, i6=j V (|xi− xj |) = 0, “interstitials” of X with respect to

Lx(A) have a positive cost in terms of Jλ(x,A,X ) + Vλ(x,A,X ).

3. Behavior of Hλ with respect to an elastically deformed lattice

In the present section we analyze the behavior of

lim
λ,L→+∞

Hλ(XL,ΩL)

under two assumptions: first we assume that XL ⊂ ΩL coincides with the image
through a smooth (elastic) deformation ΦL of some portion of the ground state
L(G) (for ease of exposition throughout this section we choose L(G) = Zd); second
we assume that L = diam(ΩL) and L/λ2 → +∞. (Relaxing the scaling ansatz
limL,λ→∞ diam(ΩL)/λ2 =∞ to limL,λ→∞ diam(ΩL)/λ =∞ would produce in the
limit a term that depends on the second and higher derivatives of ΦL).

More precisely we consider the following setting. Let {Ln}n∈N, {λn}n∈N ⊂ R+

be two sequences such that

lim
n→∞

Ln = lim
n→∞

λn = lim
n→∞

Ln
λ2
n

= +∞.

Let E ⊂ Rd be open, bounded connected and with smooth boundary. Let Φ ∈
C2(E,Rd) be a diffeomorphism of E onto Ω1 ⊂ Rd. For every n ∈ N we define

ΦLn : ELn := LnE → Rd, y 7→ LnΦ
(
y

Ln

)
,

and we consider
Xn := {xi = ΦLn(zi) : zi ∈ Zd ∩ ELn},
ΩLn := {y ∈ ΦLn(ELn) : dist(y, ∂ΦLn(ELn)) ≤ 2λ}.

(3.1)

In the following we prove that, assuming
∑
xi,xj∈Xn, xi 6=xj V (|xi−xj |) = 0 for every

n large enough and ‖F (∇Φ)‖L∞(E) sufficiently small, we have

lim
n→∞

1
Ldn

Hλn(Xn,ΩLn) =
∫
E

F (∇Φ(y)) det(∇Φ(y)) dy − Cϕϑ0|E|. (3.2)
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Remark 3.1. Let us notice that the assumption
∑
xi,xj∈Xn, xi 6=xj V (|xi − xj |) = 0

for n large ensures the existence of σ0 := σ0(d, s0) > 0 such that det
(
∇Φ
)
> σ0

everywhere on E.

Let yx,n := Φ−1
Ln

(x), and define An(x) := (∇ΦLn(yx,n), yx,n) ∈ Aff +
�(Rdx). As a

first step in order to get (3.2) we prove that

lim sup
n→∞

1
Ldn

Hλn(Xn,ΩLn) ≤ lim
n→∞

1
Ldn

∫
ΩLn

hλn(x,L(An(x)),Xn) dx

=
∫
E

F (∇Φ(y)) det(∇Φ(y))− Cϕϑ0 dy.

(3.3)

We begin showing that

lim
n→∞

sup
x∈ΩLn

|Vλn(x,∇ΦLn(yx,n),Xn)| = 0. (3.4)

Firstly we notice that∣∣∣∣∣∣
∑
zk∈Zd

ϕλn,x(ΦLn(zk))− λdn
det (∇ΦLn(yx,n))

∫
Rd
ϕ(|w|) dw

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
zk∈Zd

∫
Q(zk)

ϕλn,x(ΦLn(zk))− ϕ
(
|∇ΦLn(yx,n)(v − yx,n)|

λn

)
dv

∣∣∣∣∣∣ .
(3.5)

As Φ is a smooth map, we have∣∣∣∣ϕ( |ΦLn(zk)− x|
λn

)
− ϕ

(
|∇ΦLn(yx,n)(v − yx,n)|

λn

)∣∣∣∣
≤
‖ϕ′‖L∞(R)

λn

(
‖∇Φ‖L∞(E) +

‖∇2Φ‖L∞(E)

Ln
‖∇Φ−1‖2L∞(E)λ

2
n

)
.

Hence, by (3.5) we get

sup
x∈ΩLn

|Vλn(x,∇ΦLn(yx,n),Xn)| ' C
(

1
λn

+
λn
Ln

)
,

and (3.4) follows.
Next we estimate the term Jλn(x,An(x),Xn). By assumption (P1)-(P2) on W

we have∑
xi∈Xn

W (xi,Lx(An(x)))ϕλn,x(xi) ≤ CW,1
∑
zk∈Zd

dist2(ΦLn(zk),Lx(An(x)))ϕλn,x(zk).

We remark that

ΦLn(zk) =x+∇ΦLn(yx,n)(zk − yx,n) + (zk − yx,n)T∇2ΦLn(ξx,k)(zk − yx,n)

= [An(x)] (zk) + (zk − yx,n)T∇2ΦLn(ξx,k)(zk − yx,n),
(3.6)

where ξx,k belongs to the segment connecting yx,n and zk. Hence, by

∇2ΦLn(ξ) = L−1
n ∇2Φ(ξ/Ln),

m1(L(An(x)) ≤ min
B∈GL+(d,Z)

‖[∇ΦLn(x)
]
B‖∗ ≤ ‖∇Φ‖L∞(E),
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and (3.6), we obtain that for n ∈ N large enough (uniform with respect to x ∈ ΩLn)
we have

dist2(ΦLn(zk),Lx(An(x))) = min
ζ∈Lx(An(x))

|ΦLn(zk)− ζ|2

=
∣∣(zk − yx,n)T∇2ΦLn(yx,n)(zk − yx,n)

∣∣2 ≤ λ4
n

L2
n

‖∇2Φ‖L∞(E) ‖∇Φ−1‖L∞(E).

Hence, by (3.4), we conclude that

lim
n→∞

Jλn(x,An(x),Xn) = − ϑ0

det∇Φ(0)
, ∀x ∈ Rd, (3.7)

and

lim
n→∞

sup
x∈ΩLn

∣∣∣∣Jλn(x,An(x),Xn) +
ϑ0

det∇Φ(yx,n)

∣∣∣∣ = 0. (3.8)

Combining (3.4) and (3.8) we obtain (3.3).
We remark that in order to prove (3.3) we did not need any assumption on the

smallness of ‖F (∇Φ)‖L∞(E). However, such an assumption is crucial in order to
prove that

lim inf
n→∞

1
Ldn

HLn(Xn,ΩLn) ≥
∫
E

[
F (∇Φ(y)) det(∇Φ(y))− Cϕϑ0

]
dy, (3.9)

which is the missing step to conclude the proof of (3.2).
In order to get (3.9) we need the results stated in Proposition 3.2 and Proposition

3.3 (we postpone the proofs of these Propositions to end of the present section).
Fixed x ∈ Ω and A ∈ Aff +

�(Rdx), Proposition 3.2 provides us a (uniform with
respect to X ) lower bound for hλ(x,A,X ) in terms of m1(Lx(A)). Moreover, given
x ∈ Ω and X ⊂ Ω, Proposition 3.3 provides us a bound on m1(Lx(A)) in terms
of the value of Jλ(x,A,X ) + Vλ(x,A,X ) and of the “empirical density” ρλ(x,X ) =

1
Cϕλd

∑
xi∈X ϕλ,x(xi) of X ∩B(x, 2λ) with respect to x.

Proposition 3.2. Let x ∈ Ω. Let A = (A, τ) ∈ Aff +
�(Rdx). Then

min
X⊂Ω

[
1
λd

∑
xi∈X

(
W (xi,Lx(A))− ϑ1

Cϕ

)
ϕλ,x(xi) +

ϑ1

detA

]

≥ −
dϑ1 m1(Lx(A)) +

√
ϑ1/(CW,0Cϕ)

λ
.

Proposition 3.3. Let x ∈ Ω be such that dist(x, ∂Ω) > λ. Suppose X ⊂ Ω satisfies

ρλd ≤
∑
i,j∈I
i 6=j

V (|xi − xj |) +
∑
xi∈X

ϕλ,x(xi) < +∞, (3.10)

for some ρ > 0, and let η > 0 be such that(C
W,0s

2
0

4
− ϑ1

Cϕ

)
ρ > η. (3.11)

Then we can find Ĉ := Ĉ(d, V,W, ϑ1, ρ, η) and λm1 := λm1(d, V,W, ϑ1, ρ, η) such
that, if λ > λm1 , for every A = (A, τ) ∈ Aff +

�(Rdx) satisfying

C
W,0

λd

∑
xi∈X

dist2(xi,Lx(A))ϕλ,x(xi) + Vλ(x,A,X ) < η, (3.12)
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we have m1(Lx(A)) < Ĉ.

Let us show how to prove (3.9) by means of Proposition 3.2 and Proposition 3.3.
By (3.4) we deduce that, fixed n ∈ N large enough, we have

ρλd <
2λd

det∇ΦLn(x)
≤
∑
xi∈Xn

ϕλn,x(xi), ∀x ∈ ΩLn ,

where 0 < ρ := ‖ det∇Φ‖L∞(Ω). Hence (3.10) holds for every n ∈ N.
Now, fixed n ∈ N large and x ∈ ΩLn , we choose {Ãn,m(x)}m ∈ Aff +(Rdx) such

that

lim
m→∞

h
λn

(x, Ãn,m(x),Xn) = inf
A∈Aff +(Rd)

hλ(x,Lx(A),X ) = hλn(x,Xn),

and such that Ãn,m(x) is a canonical representation for Lx(Ãn,m(x)). Again by
(3.4) and (3.3) we obtain that for large enough m ∈ N we have

C
W,0

λdn

∑
xi∈Xn

dist2(xi,Lx(Ãn,m(x)))ϕλn,x(xi) + Vλn(x, Ãn,m(x),Xn)

≤ hλn(x, Ãn,m(x),Xn) +
ϑ0

λd

∑
xi∈X

ϕλ,x(xi) ≤ 2F (∇Φ(x/Ln)) +
c

λn
,

so that, if ‖F (∇Φ)‖L∞(E) is small enough, (3.12) holds. By Proposition 3.3 and the
choice of Ãn,m(x) in JÃn,m(x)KAff +(Zd), we can conclude that, up to the selection of
a subsequence, we have limm→∞ Ãn,m(x) = Ãn(x) ∈ Aff +

�(Rdx). Moreover, again by
Proposition 3.2 and Proposition 3.3, we obtain the existence of c > 0, independent
of n ∈ N, such that

Jλn(x, Ãn(x),Xn) + Vλn(x, Ãn(x),Xn) +
ϑ0

det(∇Φ(x/Ln))
≥ − c

λn
.

This estimate, together with (3.4) and (3.8), shows that the sequence An(x) =
(∇ΦLn(yx,n), yx,n) ∈ Aff +

�(Rdx), which is the same sequence we constructed to prove
(3.3), approaches the minimum of Jλn(x, ·,Xn)+Vλn(x, ·,Xn) as n→∞. However, if
we fix y ∈ E, set xn := Lny ∈ ΩLn , and suppose that dist(Ãn(xn), JAn(xn)KAff +(Zd))
does not go to zero as n→∞, by the periodicity of W (·, ·) and since det

(
∇Φ(y)

)
>

σ0 on E, we obtain

Jλn(xn, Ãn(x),Xn) + Vλn(xn, Ãn(x),Xn) +
ϑ0

det(∇Φ(y))
≥ C −O

(λ2
n

Ln

)
−O

( 1
λn

)
,

where C > 0 depends only on W, s0, d, ϑ1. Hence, assuming ‖F (∇Φ)‖L∞(E) smaller
than C, we obtain that (3.9) holds.

We conclude the present section with the proofs of Proposition 3.2 and Proposi-
tion 3.3.

In order to prove Proposition 3.2 we need to estimate the deviation of the “dis-
crete density” of the Bravais lattice Lx(A) n B(x, λ) from 1/ detA . This is the
purpose of the following
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Lemma 3.4. Let x ∈ Ω and A := (A, τ) ∈ Aff +
�(Rdx). For every R > 0, the

following hold

ωd(R− dm1(Lx(A)))d

detA
≤ ]{Lx(A) ∩B(x,R)} ≤ ωd(R+ dm1(Lx(A)))d

detA
, (3.13)∣∣∣ ∑

zk∈Zd
ϕR,x(A(zk))− CϕR

d

detA

∣∣∣ ≤ m1(Lx(A))C1

detA
ωdR

d−1, (3.14)

where C1 := 3ddωd‖ϕ′‖L∞(R) > 0.

Proof. We begin noticing that neither (3.13), nor (3.14), depend on the element in
JAKAff +(Zd) chosen to represent Lx(A). Therefore we will from now on assume that
the matrix A is associated with a reduced, positively oriented lattice basis of L(A).

We start proving (3.13). Let

∆A
− := {zk ∈ Zd : Q(zk) ⊂ A−1(B(x,R))}, Q(∆A

−) := ∪{Q(zk) : zk ∈ ∆A
−},

∆A
+ := {zk ∈ Zd : Q(zk) ∩ A−1(B(x,R)) 6= ∅}, Q(∆A

+) := ∪{Q(zk) : zk ∈ ∆A
+}.

Then we have

B(x,R− ‖A‖∗) ⊂ A(Q(∆A
−)) ⊂ B(x,R) ⊂ A(Q(∆A

+)) ⊂ B(x,R+ ‖A‖∗).

Equation (3.13) is a consequence of the following

]Lx(A) ∩B(x,R) ≥ ]{A(zk) : zk ∈ ∆A
−} =

∑
zk∈∆A

−

m(Q(zk)) =
∫
Q(∆A

−)

dv

=
∫

A(Q(∆A
−))

(detA)−1 dy ≥ (detA)−1

∫
B(x,R−‖A‖∗)

dy =
(R− ‖A‖∗)dωd

detA
.

Since A is associated with a positively oriented reduced lattice basis of Lx(A), we
obtain the first inequality in (3.13). A similar argument produces a proof of the
second inequality in (3.13).

We remark that, as a consequence of (3.13), we can conclude that the following
holds for every 0 < R0 < R1

][Lx(A−1) ∩ (B(x,R1) \B(x,R0))] (3.15)

≤ (R1 + dm1(Lx(A)))d − (R0 − dm1(Lx(A)))d

detA
ωd.

Next we prove (3.14). By

CϕR
d

detA
=
∫

Rd
(detA)−1ϕ

(
|y − x|
R

)
dy =

∫
Rd
ϕ

(
|A(v)− x|

R

)
dv

we deduce that

I :=
∣∣∣ ∑
zk∈Zd

ϕR,x(A(zk))− CϕR
d

detA

∣∣∣
=

∣∣∣∣∣∣
∑
zk∈Zd

∫
Q(zk)

[ϕR,x(A(zk))− ϕR,x(A(v))] dv

∣∣∣∣∣∣ .
(3.16)
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Expanding up to the first order ϕR,x(A(·)) in v around zk, we have

ϕR,x(A(v)) = ϕR,x(A(zk)) + 〈∇vϕ
(
|A(ξ)|
R

)
, (v − zk)〉

=ϕR,x(A(zk)) +
1
R
ϕ′
(
|A(ξ)|
R

)
〈 A(ξ)
|A(ξ)|

, A(v − zk)〉,
(3.17)

where ξ := ξ(v, zk) belongs to the line connecting v and zk. Hence, by (3.16),
(3.15),

I ≤
∑
zk∈Zd

∫
Q(zk)∩A(B(x,2R))

∣∣∣∣〈∇vϕ( |A(ξ(v, zk))|
R

)
, (v − zk)〉

∣∣∣∣ dv
≤
‖ϕ′‖L∞(R)‖A‖∗

R
]
(
Lx(A) ∩

(
B(x, 2R+ ‖A‖∗) \B(x,R− ‖A‖∗)

))
≤
‖ϕ′‖L∞(R)‖A‖∗

R
ωd

(3R)d

detA
,

(3.18)

and the thesis follows. �

We are now in a position to prove Proposition 3.2, Proposition 3.3.

Proof of Proposition 3.2. Let X ⊂ Ω. By the assumptions (P1)-(P2) on W we have

1
λd

∑
xi∈X

(
W (xi,Lx(A))− ϑ1

Cϕ

)
ϕλ,x(xi) +

ϑ1

detA

≥ 1
λd

∑
xi∈X

(
C
W,0 dist2(xi,Lx(A))− ϑ1

Cϕ

)
ϕλ,x(xi) +

ϑ1

detA

Moreover, setting

X + := {xi ∈ X : dist(xi,Lx(A)) >
√
ϑ1/(CW,0Cϕ) =: β̃}, X− := X \ X +,

L− := {zk ∈ Zd : dist(A(zk),X ) > β̃},

by (3.14) we have

1
λd

∑
xi∈X

(
C
W,0 dist2(xi,Lx(A))− ϑ1

Cϕ

)
ϕλ,x(xi) +

ϑ1

detA

=
1
λd

∑
xi∈X−

C
W,0 dist2(xi,Lx(A))ϕλ,x(xi) +

1
λd

∑
xi∈X+

(
C
W,0 dist2(xi,Lx(A))− ϑ1

Cϕ

)
ϕλ,x(xi)

+ϑ1

 1
detA

− 1
Cϕλd

∑
xi∈X−

ϕλ,x(xi)


≥ ϑ1

( 1
detA

− 1
Cϕλd

( ∑
xi∈X−

ϕλ,x(xi) +
∑

zk∈L−
ϕλ,x(A(zk))

))

≥ −
3dωd‖ϕ′‖L∞(R)(ϑ1 m1(Lx(A)) + β̃)

λ
,

which is our thesis. �
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Proof of Proposition 3.3. Since (3.12) is invariant with respect to the change of
lattice-bases, we can suppose without loss of generality that A is a canonical rep-
resentation for Lx(A) and m1(Lx(A)) = |Aed|. Let Π be the unique hyperplane
containing A(em) for every 1 ≤ m < d, and let ν be a unit vector orthogonal to Π.
By Remark 2.3 we can find C := C(s0, d) > 0 such that if m1(Lx(A)) > C

{y ∈ B(x, 2λ) : dist(y,Lx(A)) < s0/4} ⊂ G,
where

G :=
⋃

{l∈Z: |lAed−Aτ |<2λ}

([
Π× (−s0

4
,
s0

4
)ν
]

+ (x−Aτ) + lAed

)
,

and ([
Π× (−s0

4
,
s0

4
)ν
]

+ lAed

)⋂([
Π× (−s0

4
,
s0

4
)ν
]

+mAed

)
) = ∅,

for every l 6= m. However, using the assumption |τ | ≤
√
d, we have

|lAed −Aτ | < 2λ =⇒ l ≤ 2λ
m1(Lx(A))

+ d2.

Hence, setting

X +,s0/2 := {xi ∈ X ∩B(x, 2λ) : dist(xi,Lx(A)) < s0/2},
by (3.10), we obtain

]X +,s0/2 ≤ |Lx(A) ∩ G ∩B(x, 2λ))|
sd0

≤ (2λ)d−1

2sd−1
0

( 2λ
m1(Lx(A))

+ d2
)
. (3.19)

By (3.19), we conclude that

η >
C
W,0

λd

∑
xi∈X

dist2(xi,Lx(A))ϕλ,x(xi) + V(x,A,X )

≥ 1
λd

∑
xi /∈X+,s0/2

(
C
W,0 dist2(xi,Lx(A))− ϑ1

Cϕ

)
ϕλ,x(xi) + ϑ1

( 1
detA

− 1
Cϕλd

∑
xi∈X+,s0/2

ϕλ,x(xi)
)

≥
(
C
W,0

s2
0

4
− ϑ1

Cϕ

)(
ρ−

( 1
m1(Lx(A))

+
d

2sd−1
0 λ

))
− ϑ1

Cϕ

( 1
m1(Lx(A))

+
d2

2sd−1
0 λ

)
=
(
C
W,0

s2
0

4
− ϑ1

Cϕ

)
ρ−

C
W,0s

2
0

4

( 1
m1(Lx(A))

+
d2

2sd−1
0 λ

)
,

and eventually, by (3.11) we deduce the existence of λm1 such that for λ > λm1 we
have

0 <
(
C
W,0

s2
0

4
− ϑ1

Cϕ

)
ρ− η −

C
W,0s

2
0

4
d2

2sd−1
0 λ

<
C
W,0s

2
0

4
1

m1(Lx(A))
,

from which the thesis follows. �

Remark 3.5. If we replace (3.11) with(C
W,0s

2
0

4
− ϑ1

Cϕ

)ρ
2
> η,

it follows from the proof of Proposition 3.3, that we can choose Ĉ and λm1 inde-
pendent of η.



ON A MESOSCOPIC MANY-BODY HAMILTONIAN 17

Remark 3.6. We notice that when ρ takes value in a certain interval we can
conclude that Ĉ < m1.

4. Main results and outline of the proofs

As already stated in the Introduction, the purpose of the present paper is that
of deriving a qualitative description of “low energy” configurations fulfilling a hard-
core constraint, that is finite systems of particles X ⊂ Ω verifying

|Ω|−1(Hλ(X ,Ω) + ϑ0

∫
Ω

ρλ(x,X ) dx+
∑
i,j∈I
i 6=j

V (|xi − xj |)) << 1,

where ρλ(x,X ) = λ−d
∑
xi∈X ϕλ,x(xi) is the “empirical density” of X in B(x, λ).

The main result we obtain says that on a “large” subset of Ω a low-energy config-
uration X is (locally) similar to an elastically deformed ground state (that this a
configuration like those considered in the previous section) plus, possibly, a small
percentage of “point-defects”. In fact, as already stated in the introduction, we
show that for “low energy” configurations we can single out from Ω a subset Ω̃d
such that:

• for every x ∈ Ω̃d there exists an unique Bravais lattice Lx(A0,x) such that
hλ(x,X ) = hλ(x,A,X ) if and only if A ∈ JA0,xKAff +(Zd);
• X∩B(x, 2λ) is described “with good approximation” by Lx(A0,x)∩B(x, 2λ);
• we can use the map x 7→ A0,x to define “approximated local Lagrangian

coordinates” for X ;
• the measure of Ω\Ω̃d is proportional to |Ω|−1(Hλ(X ,Ω)+ϑ0

∫
Ω
ρλ(x,X ) dx).

Let us remark that in general we expect X ∩ B(x, λ) to deviate from the optimal
fitted lattice Lx(A0(x)). This is due to several reasons. A first reason is well ex-
emplified by the case, studied in Section 3, of configurations obtained via a smooth
elastic deformation of the ground state lattice. In fact in this case it turns out that,
roughly speaking, A0,x represents a first order approximation (on scale λ) of the
elastic deformation. Hence it is reasonable to expect X ∩ B(x, λ) to coincide with
the Bravais lattice L(A0,x) only up to errors due to second (and higher) derivatives
of the deformation. However, even if X coincides with a simple Bravais lattice, that
is X = L(A) ∩ Ω for some A ∈ GL+(d,R), in general minimizers of hλ(x, ·,X ) fall
in a ‖ · ‖λ-ball of an element of J(A, 0)KAff +(Zd), but do not belong to such set. This
is due to the fact that the optimally fitted lattice L(A0,x) is chosen only looking at
X ∩B(x, λ). For example, if A0 = (A0, 0) ∈ Aff +

�(Rdx) is such that |A0−A| < δ/λ, it
can happen that the error (of order O(δ2)) produced by the term involving the peri-
odic potential W (·, ·), gets compensated by a gain in the term penalizing vacancies
and in the term measuring the shear, so that

hλ(x,A0,X ∩ Ω) < hλ(x, (A, 0),X ∩ Ω).

A last reason to expect a discrepancy between the optimally fitted lattice and
X ∩ B(x, λ) is due to the fact that X ∩ B(x, 2λ) may contain “point defects” even
when hλ(x,X ) is very small.

In order to state our main results we proceed as follows. We firstly introduce
a subset Ω̃d of Ω (see Definition 4.1) for each element x of which there exists at
least one Ax ∈ Aff +

�(Rdx) such that, roughly speaking, each of the three terms
defining hλ(x,Ax,X ) is “small”. We then state two of our main results in terms
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of the elements of Ω̃d (Theorem 4.4, Theorem 4.5). Eventually we show that if
X ⊂ Ω is a “low -energy” configuration such that ρλ(x,X ) is bounded from below
by a positive constant independent of x ∈ Ω, then Ω̃d contains a set of the form
{x ∈ Ω : hλ(x,X ) + ϑ0ρλ(x,X ) < η}, and we estimate the measure of Ω \ {x ∈
Ω : hλ(x,X ) + ϑ0ρλ(x,X ) < η} in terms of the “low-energy” of the configuration
(see Corollary 4.6).

Let us now give the following

Definition 4.1. Let K > 0, εv < 1/2 and β < s0/2 (where s0 is defined in (2.11)).
We define the set Ω̃(K,β, εJ , εv, λ) ⊂ Ω×Aff +(Rd) as the set of (x,A = (A, τ)) ∈
Ω×Aff +

�(Rdx) such that
(O1) m1(Lx(A)) < K;
(O2)

∑
xi∈X W (xi,Lx(A))ϕλ,x(xi) < εJβ

2λd

detA ;

(O3)
∑
xi∈X ϕλ,x(xi) >

(Cϕ−εv)λd

detA ;
(O4)

∑
i,j∈I,i6=j V (|xi − xj |)ϕλ,x(xi)ϕλ,x(xj) < +∞

From now on we will sometimes write Ω̃ as a shorthand for Ω̃(K,β, εJ , εv, λ),
when no ambiguity may arise. Moreover

• we denote by Ω̃d the projection πd(Ω̃) of Ω̃ ⊂ Ω×Aff(Rd) on Ω;
• we denote by Ω̃x the set of A ∈ Aff(Rdx) such that (x,A) ∈ Ω̃.

Let us briefly comment on the definition of the set Ω̃(K,β, εJ , ε, λ). Assumption
(O4) prevents concentration of X in B(x, 2λ), while assumption (O3), roughly
speaking, says that the number of elements of X ∩ B(x, 2λ) is larger than the
number of elements of Lx(A) in B(x, 2λ) minus εv, up to an error of order 1/λ
(see Lemma 3.4). Eventually, by assumption (P1) on W (·, ·), we expect that (O2)
implies that, up to an εJ fraction of X ∩ B(x, λ), “most” of the elements of X are
in a β-neighborhood of Lx(A).

Remark 4.2. By the continuity of W , ϕ and the determinant, we can conclude
that the set Ω̃ is an open subset of Rd × Aff +(Rd). Moreover, by assumption
(P2) on W (·, ·), if A ∈ Ω̃x we have JAKAff +(Zd) ⊂ Ω̃x. Eventually we observe that
Ω̃(K,β, εJ , εv, λ) ⊆ Ω̃(K ′, β′, ε′J , ε

′
v, λ), whenever K ≤ K ′, β ≤ β′, ε′J ≤ εJ , ε

′
v ≤

εv, and that Ω̃(K,β, sεJ , εv, λ) = Ω̃(K,
√
sβ, εJ , εv, λ), for every s > 0.

Remark 4.3. Let (x,A) ∈ Ω̃x(K,β, εJ , εv, λ). By (O1) we can trivially conclude
that

detA < Kd.

Moreover, using only Definition 4.1- (O3), (O4) (and the assumption εv ∈ (0, 1/2))
we can deduce that

(detA)−1 ≤ 2d

sd0(Cϕ − εv)
≤ 2d+1

sd0(2Cϕ − 1)
:= C0. (4.1)

Let A0 = (A0, τ0) ∈ Ω̃x(K,β, εJ , εv, λ) be a canonical representation for Lx(A0).
By (4.1) and (O1), we obtain an upper bound for ‖A−1

0 ‖∗ and a lower bound for
m0(Lx(A)) in terms of K and εv only. More precisely we have

‖A−1
0 ‖∗ < C0K

(d−1)
√
d, ‖A0‖∗ ≥ C−1/d

0 , m0(Lx(A)) ≥ 1
C0Kd−1

. (4.2)
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In particular by (2.15) we have Ω̃(K,β, εJ , εv, λ) ⊂ E for K ∈ ( 1

C
1/d
0

,m1), where m1

and E are as in the definition of the periodic potential W .
Finally we remark that if εv, εJβ2 are such that (3.10), (3.11) hold, thanks to
Proposition 3.3, we can remove Definition 4.1-(O1).

Our first main result is the following

Theorem 4.4. Let K, K/2 ∈ ( 1

C
1/d
0

,m1) be given. We can find β := β(K) >

0 small, εJ , εv small (depending on (K,β)), such that if λ is bigger than λ :=
λ(K,β, εJ , εv) the following hold.

(A) For every (x0,A) ∈ Ω̃(K,β, εJ , εv, λ) we have∑
xi∈X

ϕλ,x(xi) ≤

[
Cϕ +

3dωd‖ϕ′‖L∞(R)(K + β)
λ

+
εJ
C
W,0

]
λd

detA
, (4.3)

∑
xj∈RβA (x0)

ϕ

(
|xj − x0|

λ

)
≥
[
Cϕωd −

(
εv +

εJ
C
W,0

)] λd

detA
, (4.4)

where RβA(x0) = {xi ∈ X : ](B(xi, β) ∩ Lx0(A)) = 1}.
(B) If Ω̃x0(K2 , β,

8
9εJ ,

εv
2 , λ) is non-void, there exists an unique simple Bravais

lattice Lx0(A0,x0), with A0,x0 ∈ Ω̃x0( 2
3K,β,

9
10εJ ,

2
3εv, λ) a canonical repre-

sentation for Lx0(A0,x0), such that JA0,x0KAff +(Zd) are all the critical points
of hλ(x0, ·,X ) in Ω̃(K,β, εJ , εv, λ), and these are all local minimizers.

(C) There exists δ0 > 0 such that if A ∈ Ω̃x0(K,β, εJ , εv, λ), then we can find
AB ∈ JAKAff +(Zd) satisfying AB ∈ Bλ(A0, δ0), where A0,x0 is as above.

Theorem 4.4 says that, given K > 0, we can tune the parameters β, εJ , εv in
such a way that, for large enough λ, we have: for every A ∈ Ω̃x0(K,β, εJ , εv, λ)
a large percentage of the elements of X ∩ B(x0, λ) are β-near to one and only one
lattice site of the Bravais lattice Lx0(A); there exists an unique simple Bravais lattice
Lx0(A0,x0) “best fitted” with X ∩ B(x0, λ); as λ grows if A ∈ Ω̃x0(K,β, εJ , εv, λ)
then min{dist(A,A0,x0B) : B ∈ GL+(d,Z)} decays as 1/λ.

In the statement of next theorem we assume that we tuned the parameters
(K,β, εJ , εv, λ) in such a way that Theorem 4.4 holds.

Theorem 4.5. Let ArgmineΩ : Ω̃d(K2 , β,
8
9εJ ,

εv
2 , λ) → Ω̃(K,β, εJ , εv, λ) be the

multi-valued map defined by

ArgmineΩ(x) := {(x,AB) : AB ∈ JA0,xKAff +(Zd)}, (4.5)

where JA0,xKAff +(Zd) are the local minima of hλ(x, ·,X ) in Ω̃x(K,β, εJ , εv, λ). Fix
(x0,AB,x0) ∈ ArgmineΩ(x0), and let U ⊂⊂ Ω̃d(K2 , β,

8
9εJ ,

εv
2 , λ) ⊂ Ω be an open,

simply connected neighborhood of x0. There exists an open neighborhood V ⊂
∪x∈U Ω̃x(K,β, εJ , εv, λ) of AB,x0 and a (single-valued) map AB(·) ∈ C1(U, V ) such
that

AB(x0) = AB,x0 , (x,AB(x)) ∈ ArgmineΩ(x),∀x ∈ U. (4.6)

Moreover, there exists CB
∇ := CB

∇(s0,W, ϕ,K, β, εJ) > 0 such that

λ‖∇AB(·)‖L∞(U)+‖∇τB(·)−A−1
B (·)‖L∞(U) ≤

CB
∇
λ
, (4.7)
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and CB
∇ → 0, as εJβ2 → 0.

Eventually, letting (x0,AbB,x0
) ∈ ArgmineΩ(x0), and denoting by AbB(·) ∈ C2(Û , V̂ )

the smooth map satisfying (4.6) obtained starting from (x0,AbB,x0
) and Û , for every

U ′ ⊂⊂ U ∩ Û connected, we have

[AB(x)]−1 ◦ AbB(x) = [AB,x0 ]−1 ◦ AbB,x0
=
(

(B−1B̂), B−1(b− b̂)
)
∈ Aff +(Zd), (4.8)

for every x ∈ U ′.

Let U and ΦB(·) := τ−1
B (·) be as in Theorem 4.5. For fixed (big enough) λ,

we can think of ΦB(·) as local approximate Lagrangian coordinates for X ∩ U .
In fact from (4.7) (4.4) and (4.3) follows that for most of the zk ∈ Zd we have
ΦB(zk) ∈ B(xi(k), Cβ) for an unique xi(k) ∈ X and a constant C > 0 depending
on m1, m0. Moreover, we can think of (4.8) as the relation describing the change
of local coordinates in terms of an element of the isotropy group of L(G). We
also notice that we can cover the set Ω̃d(K2 , β,

8
9εJ ,

εv
2 , λ) with a one parameter

family of open simply connected subsets {Uα}α∈A and think of {(Uα, τBα)}α∈A as
a meso-scale system of (approximate) local inverse deformations in the sense of [3].

The last main result of the paper is stated in Corollary 4.6, where we show
the existence of a positive threshold η > 0, which depends on the empirical den-
sity of ρλ(x,X ) := λ−d

∑
xi∈X ϕλ,x(xi), such that {hλ(·,X ) + ϑ0ρλ(x,X ) < η} ⊂

Ω̃d(K,β, εJ , εv, λ) and the infimum defining hλ(x0,X ) is achieved by the lattice
Lx(Ax0,0) (A0,x0 ∈ Ω̃x(K,β, εJ , εv, λ)) obtained in Theorem 4.4-(B) . Eventually,
assuming that X ⊂ Ω satisfies an uniform lower bound on the “discrete den-
sity” and has “small energy”, we produce a (rough) estimate of the measure of
Ω̃d(K,β, εJ , εv, λ) ⊆ Ω.

Corollary 4.6. Let x0 ∈ Ω. Suppose X ⊂ Ω verifies (3.10) for some ρ > 0.
We can find η := η(d, V,W, ρ) > 0 such that, for λ large enough (depending on
d, V,W, ρ, η), from hλ(x0,X ) < η we can deduce the existence of K,β, εJ , εv such
that Ω̃x0(K2 , β,

8
9εJ ,

εv
2 , λ) 6= ∅ and (K,β, εJ , εv, λ) verify the hypotheses of Theorem

4.4. Moreover (keeping the notation of Theorem 4.4) we have

hλ(x0,X ) = hλ(x0,A0,x0 ,X ). (4.9)

Finally, if there exists ρ > 0 such that X satisfies (3.10) for every x ∈ Ω, and

|Ω|−1

[
Hλ(X ,Ω) +

∫
Ω

ϑ0ρλ(x,X ) dx
]
< η′, (4.10)

for some η′ ∈ (0, η) (η being as above), we have

|Ω \ Ω̃d|
|Ω|

≤ η′

η
+
dϑ1Ĉ +

√
ϑ1/(CW,0cϕ)
λη

.

4.1. Outline of the Proofs. We begin introducing the following notion of gener-
alized interstitial and generalized vacancy : Fixed β > 0 small and A ∈ Aff +

�(Rdx),
we say that xi ∈ X ∩ B(x, λ) is a generalized interstitial (with respect to β and
A) if ](B(xi, β) ∩ Lx(A)) = ∅. In a similar way we call generalized vacancies those
A(z) ∈ Lx(A)∩B(x, 2λ) such that B(A(z), β)∩X = ∅. In other words, we look at a
generalized lattice Lx(A, β) obtained replacing A(z) with B(A(z), β) (z ∈ Zd), and
define interstitials and vacancies with respect to Lx(A, β). The purpose of general-
ized interstitials and vacancies is that of furnishing a way to identify point-defects,
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once we assumed that second (and higher) derivatives of the local deformation pro-
duce on xi ∈ X ∩B(x, 2λ) a deviation of order at most β from the sites of Lx(A).

τ

x

]

Figure 2. The black dots in the picture represent the elements of
X ∩B(x, λ), where X is a low-energy configuration obtained adding two
point defects (an interstitial and a vacancy) to an elastically deformed
ground state lattice. The grey balls have radius β and are centered on
the sites of a squared lattice Lx((Id, τ)) (nearly optimally fitted with
X ∩B(x, λ)). Particles falling in grey balls are β-regular points with re-
spect to Lx((Id, τ)). The particle in the complementary of Lx((Id, τ), β)
represents a β-interstitial with respect to Lx((Id, τ)), while the empty
grey ball corresponds to a β-vacancy with respect to Lx((Id, τ)).

Given A ∈ Ω̃x(K,β, εJ , εv, λ) we produce estimates on the number of reg-
ular points, generalized interstials and vacancies in terms of the values of
Jλ(x,A,X ) + ϑ0ρλ(x,X ) and Vλ(x,A,X ) (see Proposition 5.6). Using such esti-
mates, we find, for a given K > 0, thresholds for β, εJ , εv such that for ev-
ery A1,A2 ∈ Ω̃x(K,β, εJ , εv, λ) the maps A1A−1

2 and A2A−1
1 transform most of

the elements of Zd ∩ B(0, λ) in points belonging to a β-neighborhood of Zd.
This enables us to find an unique element B = (B, b) ∈ Aff +(Zd) such that
A1,B := (A1B, x−AB−1(Bτ + b)) belongs to a ‖ · ‖λ-ball of radius proportional to
β centered in A2. This step is achieved in Lemma 5.12.

In Section 5.3 we compute the second derivatives D2
AAhλ(x,A,X ) of hλ(x,A,X )

with respect to A, and show that, for an appropriate choice of the parameters
β, εJ , εv, λ, we have D2

AAhλ(x,A,X ) > 0 for every A ∈ Ω̃x(K,β, εJ , εv, λ). To obtain
this result we use again the estimates on generalized point-defects and the uniform
convexity of W (·, (A, x−Aτ)) in {y ∈ Rd : dist(y,Lx(A)) ≤ β} when β < β0.
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The proof of Theorem 4.4 is then concluded as follows. Fixed A0 ∈
Ω̃x(K,β, εJ , εv, λ) the continuity of hλ(x, ·,X ) ensures the existence of δ > 0
such that for every A ∈ Bλ(A0, δ) we have D2

AAhλ(x,A,X ) > 0; for every
A1,A2 ∈ Bλ(A0, δ) Lemma 5.12 holds; there exists Ax ∈ Bλ(A0, δ) such that

hλ(x,Ax,X ) = min
A∈Bλ(A0,δ)

hλ(x,A,X ).

We then show that we can choose our parameters in such way that if the minimizer
Ax would belong to ∂Bλ(A0, δ) we would get a contradiction by Lemma 5.12.
Finally we obtain the uniqueness of the minimum in Bλ(A0, δ) as a consequence of
the strict convexity of hλ(x, ·,X ) in Bλ(A0, δ)

Again by the strict convexity of hλ(·, ·,X ) on Ω̃(K,β, εJ , εv, λ) and Theorem 4.4,
we can apply the Implicit Function Theorem to the 0-level set of DAhλ(·, ·,X ) and
obtain the existence of the map A(·) ∈ C1(U, V ) satisfying (4.6) and (4.8). By a
careful estimate, again based on the Implicit Function Theorem, we obtain (4.7),
and this concludes the proof of Theorem 4.5.

Eventually the proof of Corollary 4.6 is obtained by the combination of the
previous results and Proposition 3.3.

5. Preliminary Lemmata

5.1. Generalized β-point-defects. In the present section, given x ∈ Ω, X ⊂ Ω,
A ∈ Aff +

�(Rdx) and β ∈ [0, s0/2), we define the β-interstitials and β-vacancies of
X with respect to the lattice Lx(A) (see Figure 2). Such definitions depend on the
parameter β and coincide with the usual notion of self-interstial and vacancy for the
lattice Lx(A) when β = 0. This section’s main result is Proposition 5.6 where, for
A ∈ Ω̃x(K,β, εJ , εv, λ), we estimate the number of β-point defects of X in B(x, 2λ)
with respect to Lx(A) in terms of the parameters K,β, εJ , εv, λ, and we derive an
estimate from above on the cardinality of X ∩B(x, 2λ) by means of the number of
lattice points of Lx(A) in B(x, 2λ) and the number of β-interstitials (with respect
Lx(A)).

Definition 5.1. Let β ∈ [0, s0/2). Let xj ∈ X and A ∈ Aff +
�(Rdx). We say that

xj belongs to the set of the β-regular points of X with respect to Lx(A), denoted by
RβA(x), if there exists zk(j) ∈ Zd such that

{xj} = B(A(zk(j)), β) ∩ X .

Moreover if xj ∈ X \ RβA(x) we say that xj belongs to the set IβA (x) of the β-
interstitials of X with respect to Lx(A).

Definition 5.2. Let β ∈ [0, s02 ) and A ∈ Aff +
�(Rdx). We define the set of the

β-vacancies of X with respect to Lx(A) as

VβA (x) := {A(zl) ∈ Lx(A) : B(A(zl), β) ∩ X = ∅} (5.1)

We notice that, for a given X , the setsRβA(x), IβA (x),VβA (x) depend only on Lx(A).
That is if Lx(A) = Lx(Â) the corresponding sets of β-regular points, -interstitials,
-vacancies of X are the same.

Remark 5.3. If 2β < C−1
0 K1−d (C0 being as in (4.1)) and A ∈ Ω̃x(K,β, εJ , εv, λ),

(4.2) we have
|A(zk)− A(zh)| ≥ m0(Lx(A)) > 2β,



ON A MESOSCOPIC MANY-BODY HAMILTONIAN 23

for every zk 6= zh, zk, zh ∈ A−1(B(x, 2λ)). Therefore, by Definition 4.1-(O4), for
every xi ∈ X such that dist(xi,A(Zd)) ≤ β there exists a unique zk(i) ∈ Zd such
that xi ∈ B(A(zk(i)), β), so that

RβA(x) = {xi ∈ X : ]
(
B(xi, β) ∩ Lx(A)

)
= 1}.

Remark 5.4. By Definition 5.1 we have IβA (x) = DβA (x) ∪ SβA (x), where

DβA (x) :=
{
xj ∈ X : dist(xj ,A(Zd)) ≥ β

}
, (5.2)

SβA (x) :=
{
xj ∈ X : ∃ zl(j) ∈ Zd such that ]

(
B(A(zl(j)), β) ∩ X

)
≥ 2
}
. (5.3)

However, since β < s0
2 , whenever A ∈ Ω̃(K,β, εJ , εv, λ) we have SβA = ∅ by Defini-

tion 4.1-(O4).

Remark 5.5. As a direct consequence of (5.1) we have

]VβA (x) =]Lx(A) \ {zk ∈ Zd : dist(A(zk),X ) ≤ β}

≤]Lx(A) \ RβA(x)

=]Lx(A) \ (X \ IβA (x))

We are now in a position to prove the following

Proposition 5.6. Let (x,A) =
(
x, (A, τ)

)
∈ Ω̃(K,β, εJ , εv, λ). Then

∑
xi∈IβA (x)

ϕλ,x(xi) ≤
εJ
C
W,0

λd

detA
, (5.4)

∑
xj∈RβA (x)

ϕλ,x(xj) ≥
[
(Cϕωd − εv)−

εJ
C
W,0

] λd

detA
, (5.5)

∑
zk∈VβA (x)

ϕλ,x(A(zk)) ≤
(

(m1(Lx(A)) + β)C1

λ
+ εv +

εJ
C
W,0

)
λd

detA
, (5.6)

∑
xi∈X

ϕλ,x(xi) ≤
[
Cϕ +

(m1(L(A)) + β)C1

λ
+

εJ
C
W,0

]
λd

detA
. (5.7)

Proof. By Definition 4.1-(O2) we obtain

C
W,0 β

2
∑

xi∈{xj∈X : dist(xj ,Lx(A))>β}

ϕλ,x(xi) ≤ CW,0
∑
xi∈X

dist2(xi,Lx(A))ϕλ,x(xi)

≤
∑
xi∈X

W (xi,Lx(A))ϕλ,x(xi) ≤ εJβ2 λd

detA
,

hence (5.4) holds. By Definition 5.1 and Definition 4.1-(O3) we deduce∑
xj∈RβA (x)

ϕλ,x(xj) ≥
[
(Cϕ − εv)−

εJ
C
W,0

] λd

detA
,

which is (5.5).
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Given xj ∈ RβA(x) we denote by zk(j) an element of Zd satisfying xj ∈
B(A(zk(j)), β). By (5.5), Remark 5.5, (3.18) and (3.15) we obtain∑

zk∈VβA (x)

ϕλ,x(A(zk)) ≤
∑
zk∈Zd

ϕλ,x(A(zk))−
∑

xj∈RβA (x)

ϕλ,x(xj)

+
∑

xj∈RβA (x)

(
ϕλ,x(xj)− ϕλ,x(A(zk(j))

)

≤
(

3ddωd‖ϕ′‖L∞(R)‖A‖∗
λ

ωd + εv +
εJ
C
W,0

)
λd

detA

+
‖ϕ′‖L∞(R)β

λ
]
(
Lx(A) ∩

(
B(x, 2λ+ β) \B(x, λ− β)

))
≤
(

3ddωd‖ϕ′‖L∞(R)‖A‖∗
λ

ωd + εv +
εJ
C
W,0

)
λd

detA

+
3ddωd‖ϕ′‖L∞(R)β

λ

λd

detA
,

where by ξj we denoted a point on the segment joining xj and A(zk(j)), and we

used (3.15) to estimate Lx(A) ∩
(
B(x, 2λ+ β) \B(x, λ− β)

)
.

Given xi ∈ RβA(x) we denote by zk(i) an element of Zd satisfying xi ∈
B(A(zk(i)), β). By∑

xi∈X

ϕλ,x(xi) ≤
∑

xi∈RβA (x)

(
ϕλ,x(xi)− ϕλ,x(A(zk(i))

)
+

∑
xi∈IβA (x)

ϕλ,x(xi)

+
∑
zk∈Zd

ϕλ,x(A(zk)),

developing up to first order ϕλ,x(·) around the elements of RβA(x), we obtain (5.7)
by (5.4), (3.18), (3.15). �

Remark 5.7. Let X be given and let A ∈ Ω̃x(K,β, εJ , εv, λ). For a fixed r ∈ [1, 2],
as a consequence of Definition 4.1-(O4) and (5.4), we have

](IβA (x) ∩B(x, 2λ)) ≤
∑

xi∈IβA (x)∩B(x,rλ)

ϕλ,x(xi)
ϕ(r)

+ ](X ∩ (B(x, 2λ) \B(x, rλ)))

≤ εJ
C
W,0ϕ(r)

λd

detA
+
ωd(2d − rd)

sd0
λd.

5.2. Further estimates on Ω̃(K,β, εJ , εv, λ). The main results of the present
section is Lemma 5.8, where we show that a ‖ · ‖λ- ball of radius δ centered in an
element of Ω̃x(K,β, εJ , εv, λ) is contained in Ω̃x(2K,β,C2(K)(εJ + δ), 2εv, λ), for
every x ∈ Ω̃d(K,β, εJ , εv, λ).

Lemma 5.8. Let (x,A0) ∈ Ω̃(K,β, εJ , εv, λ) be such that A0 is a canonical rep-
resentation for Lx(A0). There exists λ := λ(d,K), such that if λ > λ and δ < 2
then

Bλ(A0, δ) ⊂ Ω̃x(2K,β,
3C

W,1

C
W,0

(εJ +
δ2C2(K)

β2
), 2εv, λ).
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Proof. We fix λ > 2 and δ ∈ (0, 2). By the continuity of the determinant and the
norm of the inverse restrcited to GL+(d,R), for every A ∈ Bλ(A0, δ) ∩ Aff +

�(Rdx)
we obtain

max
{
|A−A0|,

∣∣∣detA0

detA
− 1
∣∣∣, ∣∣∣ 1

detA0
− 1

detA

∣∣∣} < O′(K,
1
λ
, δ), (5.8)

where, for any fixed K > 0, we have O′(K, s, t) → 0 as s → 0 and/or t → 0. In
particular, for large enough λ (depending on d, K), we can conclude that

m1(Lx(A)) ≤ K + O′(K,
1
λ
, δ).

Denoting by zk(i) the projection of xi on Lx(A0), we obtain∑
xi∈X

W (xi,Lx(A))ϕλ,x(xi) ≤ CW,1
∑
xi∈X

dist2(xi,Lx(A))ϕλ,x(xi)

≤2C
W,1

∑
xi∈X

[
|xi − A0(zk(i))|2 + |A0(zk(i))− A(zk(i))|2

]
ϕλ,x(xi)

≤2C
W,1

∑
xi∈X

[
|xi − A0(zk(i))|2 + 2(‖A0 −A‖2∗|zk(i)|2 + |Aτ −A0τ0|2)

]
ϕλ,x(xi)

≤2
C
W,1

C
W,0

∑
x∈X

W (xi,Lx(A0))ϕλ,x(xi) + 5C
W,1δ

2‖A−1
0 ‖2∗

∑
xi∈X

ϕλ,x(xi)

≤2
C
W,1

C
W,0

(
εJβ

2 +
5δ2C0K

(d−1)/d

2
C
W,0

(
Cϕ +

(K + β)C1

λ
+

εJ
C
W,0

)) detA
detA0

λd

detA
,

where we used assumption (P1) on W , and in the last inequality we estimated∑
xi∈X ϕλ,x(xi) by means of (5.7). Eventually, from the latter estimate, we get the

thesis choosing λ big enough to fulfill detA/ detA0 < 3/2 for every A ∈ Bλ(A0, δ)
(again this is possible by (5.8)), and setting

C2(K) :=
5C0K

(d−1)/dC
W,0

2

(
Cϕ +

(K + β)C1

λ
+

εJ
C
W,0

)
. (5.9)

�

5.3. Strict-convexity of hλ(x, ·,X ) on Ω̃(K,β, εJ , εv, λ). In this section we show
that, for an opportune choice of the parameters (K,β, εJ , εv, λ), we can conclude
that Ω̃(K,β, εJ , εv, λ) ⊆ {D2

AAhλ(·, ·,X ) > 0} (see Corollary 5.11).
We begin establishing a lower bound for the Hessian of Jλ(x,A,X ) when X ∩

B(x, 2λ) = Lx(A) ∩B(x, 2λ), and A ∈ E .

Proposition 5.9. Let x ∈ Ω. Let A = (A, τ) ∈ Aff +
�(Rdx) be such that (A, x −

Aτ) ∈ E ⊂ Aff +(Rd), so that W (·, ·) is C2-smooth in a neighborhood of (x,A).
Suppose that A is associated with a reduced, positively oriented basis of L(A) and
X ∩ B(x, 2λ) = Lx(A) ∩ B(x, 2λ). There exists λc := λc(K, d,W, s0) > 0 such that
if λ > λc, then, for every M = (M,µ) ∈ Rd×d × Rd, we have

M T
(
D2

AA

∑
xi∈X

W (xi, (A, x−Aτ))ϕλ,x(xi)
)

M (5.10)

≥ C
W,0

∑
zk∈Zd

|M(zk − τ)−Aµ|2ϕλ,x(A(zk)) ≥ Cconv(‖MA−1‖2∗λ2 + |Aµ|2)
λd

detA
,
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where Cconv := Cconv(W,ϕ, s0) > 0.

Proof. By the assumtpions (P1), (P2) on W we obtain

M T
(
D2

AA

∑
xi∈X

W (xi, (A, x−Aτ))ϕλ,x(xi)
)

M

≥C
W,0M T

( ∑
xi∈X

(
D2

AA |(xi − x)−A(zk(i) − τ)|2
)
ϕλ,x(xi)

)
M

=C
W,0

∑
zk∈Zd

|M(zk − τ)−Aµ|2ϕλ,x(A(zk)).

Next we observe that∑
zk∈Zd

|M(zk − τ)−Aµ|2ϕλ,x(A(zk)) =
∫

Rd

∣∣∣(MA−1(A(v)− x)−Aµ
∣∣∣2ϕλ,x(A(v)) dv

+
∑
zk∈Zd

∫
Q(zk)

[
|M(zk − τ)−Aµ|2 − |M(v − τ)−Aµ|2

]
ϕλ,x(A(zk)) dv

+
∑
zk∈Zd

∫
Q(zk)

|M(v − τ)−Aµ|2 [ϕλ,x(A(zk))− ϕλ,x(A(v))] dv.

By a change of variable in the first integral on the right hand side of the previous
estimate, and expanding ϕλ,x up to the first order, we obtain∑
zk∈Zd

|M(zk − τ)−Aµ|2ϕλ,x(A(zk))

=
λd

detA

∫
Rd
|λ(MA−1)y −Aµ|2ϕ(|y|) dv (5.11)

−
∑
zk∈Zd

∫
Q(zk)

(
|M(zk − τ)−Aµ|2 − |M(v − τ)−Aµ|2

)
ϕλ,x(A(zk)) dv

+
∑
zk∈Zd

∫
Q(zk)

|M(v − τ)−Aµ|2
[
ϕ′

λ

(
|A(ξ(zk, v)− τ)|

λ

)
〈 A(ξ(zk, v)− τ)
|A(ξ(zk, v)− τ)|

, A(v − zk)〉
]
dv,

where ξzk,v denotes a suitable point on the segments joining zk and v.
Passing to polar coordinates we get∫

Rd
|λ(MA−1)y −Aµ|2ϕ(|y|) dy =

∫
Rd

(λ2|(MA−1)y|2 + |Aµ|2)ϕ(|y|) dy

≥ 2C̃ϕ(λ2|MA−1|2 + |Aµ|2) ≥ 2C̃ϕ
d

(
‖MA−1‖2∗λ2 + |Aµ|2

)
.

Now we notice that for every zk ∈ Zd such that Q(zk)∩A−1(B(0, 2λ)) 6= ∅, we have∣∣∣|M(zk − τ)−Aµ|2 − |M(v − τ)−Aµ|2
∣∣∣

=|〈M(zk − v),M(zk − τ) +M(v − τ)− 2Aµ〉|

≤‖A‖∗‖MA−1‖∗
(
‖MA−1‖∗(2λ) + ‖MA−1‖∗(2λ+

√
d) + 2|Aµ|

)
(5.12)

≤‖A‖∗(5‖MA−1‖2∗λ+ 2‖MA−1‖∗|Aµ|) =
‖A‖∗
λ

(5‖MA−1‖2∗λ2 + 2(‖MA−1‖∗λ)|Aµ|)

≤‖A‖∗
λ

(6‖MA−1‖2∗λ2 + |Aµ|) ≤ 6‖A‖∗
λ

(‖MA−1‖2∗λ2 + |Aµ|2).
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Hence we can use (5.12) to estimate the last two terms in (5.11), and obtain∑
zk∈Zd

|M(zk − τ)−Aµ|2ϕλ,x(A(zk))

≥ λd ‖MA−1‖2∗λ2 + |Aµ|2

detA

(
2C̃ϕ
d
− 6‖A‖∗

λ
(Cϕ +

C1‖A‖∗
λ

)− 2dC1‖A‖∗
3dλ

)

hence the thesis follows from the assumption that A is associated with a positively
oriented basis of Lx(A). �

Next we show that, for a given K and large enough λ, there exists a suitable
choice of the parameters β, εJ , εv such that if (x,A) ∈ Ω̃(K,β, εJ , εv, λ) and A is
associated to a reduced positive basis of L(A), then A belongs to the subset of
Aff +

�(Rdx) where hλ(x, ·,X ) is strictly convex.

Proposition 5.10. Let K ∈ ( 1

C
1/d
0

, 1
(C0m0)1/(d−1) ) be given. Suppose β ∈ (0, β0),

and εJ , εv > 0 satisfy

8
(
εv +

εJ
C
W,0

(1 +W))
)
<
Cconv

3
, (5.13)

where W is as in (2.16). There exists λ̂C := λ̂C(K) such that for every λ > λ̂C ,
if (x,A) ∈ Ω̃(K,β, εJ , εv, λ) and A is associated with a reduced, positively oriented
basis of L(A) then, for every M := (M,µ) ∈ Rd×d × Rd we have

M T : D2
AAJλ(x,A0,X ) : M >

Cconv,K

2
‖M ‖2λ, (5.14)

where Cconv,K := CconvK
−d(min{K−1, sd0/(2

d+1Kd−1)}
)2.

Proof. By (5.13), since β0 < m0 < 1/(C0K
(d−1)), we can apply by Remark 5.3, and

deduce that for every xi ∈ RβA(x) there exists an unique element of Lx(A), denoted
by zk(i), such that |A(zk(i)) + x− xi| < β. Hence

M T

[∑
xi∈X

D2
AAW (xi, (A, x−Aτ))ϕλ,x(xi)

]
M

≥
C
W,0

2
M T

[ ∑
xi∈X\IβA (x)

D2
A,A |xi −A(zk(i) − τ)− x|2ϕλ,x(xi)

]
M

−W
∑

xi∈IβA (x)

|M (A(xi))|2ϕλ,x(xi) ≥
C
W,0

2

∑
zk∈A(B(x,2λ))\VβA (x)

|M(zk − τ)−Aµ|2ϕλ,x(A(zk))

−
C
W,0

2

∑
zk∈A(B(x,2λ))\VβA (x)

|M(zk − τ)−Aµ|2
∣∣ϕλ,x(A(zk) + x)− ϕλ,x(xi(k))

∣∣
+
C
W,0

2

∑
xj∈X\IβA (x)

(
(xi − x)−A(zk − τ)

)T
Mµϕλ,x(xi)−W

∑
xi∈IβA (x)

|M ((A(xi))|2ϕλ,x(xi).
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By definition of IβA we get

M T
[
D2

AA

∑
xi∈X

W (xi, (A, x−Aτ), )ϕλ,x(xi)
]

M

≥
C
W,0

2

∑
zk∈A(B(x,2λ))\VβA (x)

|M(zk − τ)−Aµ|2ϕλ,x(A(zk))

−C
W,0‖ϕ′‖L∞(R)

β

2λ

∑
zk∈A(B(x,2λ))\VβA (x)

|M(zk − τ)−Aµ|2

−C
W,0

√
dβ‖MA−1‖∗|Aµ|

∑
xj∈X\IβA (x)

ϕλ,x(xi)−W
∑

xi∈IβA (x)

|M (A(xi))|2ϕλ,x(xj)

=
C
W,0

2

∑
zk∈Zd

|M(zk − τ)−Aµ|2ϕλ,0(A(zk))−
C
W,0

2

∑
zk∈VβA (x)

|M(zk − τ)−Aµ|2ϕλ,0(A(zk))

−
C
W,0‖ϕ′‖L∞(R)

√
dβ(‖MA−1‖2∗λ2 + |Aµ|2)

λ
]{zk ∈ A(B(x, 2λ)) \ VβA (x)}

−
C
W,0β
√
d(‖MA−1‖2∗λ2 + |Aµ|2)

2λ

∑
xj∈RβA (x)

ϕλ,x(xi)−W
∑

xi∈IβA (x)

|M (A(xi))|2ϕλ,x(xi).

By (5.10), (5.4), (5.5), (5.6), (5.7) and by

|M (zk − τ)−Aµ|2 ≤ 4d(‖MA−1‖2∗λ2 + |Aµ|2),

we have
1
λd

M T
( ∑
xi∈X

D2
AAW (xi − x,A)

)
M

≥
[(
Cconv − 8

(
εv +

εJ
C
W,0

(1 +W)
))
− c ‖A‖∗

λ

]
‖MA−1‖2∗λ2 + |Aµ|2

detA
,

where c := c(d,Cϕ, ‖ϕ′‖L∞(R)) > 0. Eventually the thesis follows by ‖A‖∗ <
√
dK

and (4.2) �

Next we show that with same choice of the parameters, and a possibly larger λ,
every A ∈ Ω̃x(K,β, εJ , εv, λ) belongs to a subset of Aff +(Rdx) where hλ(x, ·,X ) is
striclty convex.

Corollary 5.11. Let K be given and suppose (β, εJ , εv) satisfy (5.13). There exists
λC > 0 such that for every λ > λC we have

Ω̃x(K,β, εJ , εv, λ) ⊂ {A ∈ Aff +
�(Rdx) : D2

AAhλ(x,A,X ) > 0}.

More prescisely if A ∈ Ω̃x(K,β, εJ , εv, λ), A is associated with a reduced positively
oriented basis of L(A) and B ∈ GL+(d,Z), we have

M TDAAhλ(x, (AB, τ),X )M ≥ CB
conv,K

‖M ‖2λ, ∀M ∈ Rd×d × Rd, (5.15)

where 0 < CB
conv,K

:= min{‖B‖−2
∗ ,‖B−1‖−2

∗ }
4 Cconv,K , and Cconv,K > 0 is as in (5.14).

Proof. We have

D2
AAhλ(x,A,X ) = D2

AAJλ(x,A,X ) + ϑ1D
2
AA

1
detA

+D2
AAF (A).
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Let B ∈ GL+(d,Z). For every M ∈ Aff +(Rd), by (5.14), we have

M TD2
AAhλ(x, (AB, τ),X )M =

(
MB−1

Bτ

)T
D2

AAhλ(x, (A,B−1τ),X )
(
MB−1

Bτ

)
≥
(Cconv,K

2
−
(
ϑ1|D2

AA

1
detA

|+ |D2
AAF (A)|

)
λ−2

)
(‖MB−1‖2λ + |Bτ |2),

which gives (5.15) as soon as λ > λC , where λC is such that

ϑ1

∥∥∥D2
AA

1
det(·)

∥∥∥
L∞({‖A‖∗≤K}∩{detA>C0})

+
∥∥∥D2

AAF (·)
∥∥∥
L∞({‖A‖∗≤K})

=
λ2
CCconv,K

4
.

�

5.4. Estimates on the distance between lattices in Ω̃(K,β, εJ , εv, λ). In the
present section we show that for a given K > 0 we can choose the parame-
ters (β, εJ , εv, λ) in such a way that, if A, Ã ∈ Ω̃x(K,β, εJ , εv, λ) and A, Ã are
associated with a positive reduced basis respectively of L(A) and L(Ã), then
A−1 ◦ Ã ∈ Bλ(B, Cβ), for some B ∈ Aff +(Zd) and a positive constant C > 0
(see Lemma 5.12). The proof of this statement is based on a more general estimate
on the distance of a matrix from GL+(d,Z) which is proved in Section 5.4.1.

Lemma 5.12. Let A := (A, τ), Ã := (Ã, τ̃) ∈ Ω̃x(K,β, εJ , εv, λ), and define k :=
max{‖A‖∗, ‖Ã‖∗}. Suppose(C1(K + β)

λ
+ εv +

2εJ
C
W,0

)
<

1
3C0K d

, (5.16)

β < min
{ 1

18
√
dC0k (d−1)

,
1

2C1/d
0

}
. (5.17)

There exists B := (B, b) ∈ Zd×d × Zd such that

‖A−1Ã−B‖∗ ≤ Ck
link

β

λ
, (5.18)

|τ − (A−1Ãτ̃ + b)| ≤ Ck
link
β, (5.19)

where Ck
link

:= Cd2
√
dC0k (d−2) and Cd is as in Theorem 5.15.

Moreover if λ > λZ, where λZ := λZ(d, k , s0), we can conclude that B ∈
GL+(d,Z) and that it is unique.

Proof. We have

min
|v|=1

|A−1v| = 1
‖A‖∗

≥ 1
k

and therefore

τ + [− λ

2k
,
λ

2k
]d =: Qτλ

k
⊂ B((τi,

λ

k
) ⊂ A−1(B(x, λ)). (5.20)

The same relation holds for Ã.
Given zk ∈ (Qτλ

k
\VβA (x)), by xi(k) we denote the unique element of X ∩B(x, λ) such

that |A(zk) − xi(k)| ≤ β (uniqueness follows by (5.17) and Remark 5.3). Next we
notice that setting

S := {zk ∈ Qτλ
k
\ VβA (x) : xi(k) /∈ IβeA }, (5.21)
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by (5.4), (5.5), (5.6) and (4.1) we get

]S ≥ ]
(
Qτλ

k
∩ Zd \ VβA (x)

)
− ]IβeA (x)

≥
(
λ

k

)d
−

(
3dωd‖ϕ′‖L∞(R)(K + β)

λ
ωd + εv +

2εJ
C
W,0

)
λd

detA

≥

(
1−

(3dωd‖ϕ′‖L∞(R)(K + β)
λ

+ εv +
2εJ
C
W,0

)
C0

)(
λ

k

)d
≥2

3

(
λ

k

)d
.

Let zk ∈ S and let zl(k) ∈ Zd ∩ Ã−1(B(x, λ)) be such that |Ã(zl(k)) − xi(k)| < β.
We have

|Ã−1(A(zk))− zl(k)| ≤|Ã−1(A(zk))− Ã−1(xi(k))|+ |Ã−1(xi(k))− zl(k)|

=|Ã−1
(

A(zk)− xi(k)

)
|+ |Ã−1(xi(k))− Ã−1Ã(zl(k)))|

≤‖Ã−1‖∗β + |Ã−1
(
xi(k) − Ã(zl(k))

)
|

≤2‖Ã−1‖∗β < 2
√
dk (d−1)C0β.

Since by (5.17) we have β := 2
√
dC0k (d−1)β < 1/9, we are in a position to apply

Theorem 5.15 with repsect to R = λ/k and β, and so we obtain the existence of
B = (B, b) ∈ Zd×d × Zd such that

‖Ã−1A−B21‖∗ ≤ Ck
link

β

λ
, (5.22)

|τ̃ − (Ã−1Aτ + b)| ≤ Ck
link

β, (5.23)

where Ck
link

:= Cd2
√
dC0k (d−2). Applying the same argument to A−1 ◦ Ã we obtain

B ′ = (B′, b′) ∈ Zd×d × Zd such that

‖A−1Ã−B′‖∗ ≤ Ck
link

β

λ
, (5.24)

|τ − (A−1Ãτ̃ + b)| ≤ Ck
link
β. (5.25)

Next we show that, for big enough λ, we have we show that B′B = BB′ = Id, that
is B,B′ ∈ GL(d,Z).

By (5.22)-(5.25) and hypothesis (O1) in Definiton 4.1 we get

‖B′B − Idd‖∗ ≤‖B′
(
B − Ã−1A

)
‖∗ + ‖B′Ã−1A−A−1ÃÃ−1A‖∗

≤‖B12‖∗‖B21 −A2A
−1
1 ‖∗ + ‖B12 −A1A

−1
2 ‖∗‖A2A

−1
1 ‖∗

≤
(
‖B′‖∗ + ‖Ã−1A‖∗

)
Ck

link

β

λ

≤
(
‖A−1Ã‖∗ + ‖Ã−1A‖∗ + 2Ck

link

β

λ

)
Ck

link

β

λ

≤2
(2k )d

sd0(1− εv)
Ck

link

β

λ
+ 2

(
Ck

link

β

λ

)2

.

(5.26)
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Hence, as we assumed β < s0/2 and εv < 1/2, we can find λ′ := λ′(d, k , s0) such
that, for λ > λ′, we have

2
(2k )d

sd0(1− εv)
Ck

link

β

λ
+ 2

(
Ck

link

β

λ

)2

≤ 2
(2k )d+1

sd0
Ck

link

s0

λ′
+ 2

(
Ck

link

s0

λ′

)2

<
1
2
.

This latter relation together with the discreteness of Zd×d implies that B′B = I.
Repeating the same argument for BB′ we eventually get B′, B ∈ GL(d,Z). Since
by (4.1) we have that detA−1Ã > k −dsd0/2

d+1, we can find λZ := λZ(d, k , s0) such
that for λ > λZ we have detB′ > 0, that is B′, B ∈ GL+(d,Z). �

Remark 5.13. Let us notice that if A, Ã are respectively associated with reduced
positively oriented basis of L(A) and L(Ã), from (5.18) and (5.19) we deduce that

A−1 ◦ Ã ∈ Bλ(B, 2CK
link
β).

5.4.1. Estimates on the distance from GL+(d,Z) for matrices. We begin with an
easy Lemma that we will need in order to prove the main result of the present
section, namely Theorem 5.15.

Lemma 5.14. Let m,N ∈ N be such that l < (2N + 1)/3 and let ej be an element
of the canonical basis of Rd. If S ⊂ [−N,N ]d ∩ Zd verifies

zk ∈ K =⇒ {zk + lej , zk − lej} ∩ S = ∅, (5.27)

then

]S ≤
(

1
2

+
l

2N + 1

)
(2N + 1)d (5.28)

Proof. Let us suppose for simplicity that j = 1.
Firstly we notice that due to (5.27) we maximize ]S if for every ẑk ∈ {0} ×

[−N,N ]d−1 we maximize ]S1(ẑk), where

S1(ẑk) := S ∩ [−N,N ]× {ẑk}.
We are thus reduced to study the problem in one dimension.

Since l < (2N + 1)/3 we have (2N + 1) = k(2l) + n, where k, n ∈ N and
0 ≤ n < 2l. Let ẑk ∈ {0} × [−N,N ]d−1. If zh ∈ S1(ẑk) with 〈zh, e1〉 ≤ (N + 1)− l
then zh + le1 ∈ [−N,N ]× {ẑk} \ S1(ẑk). Now If 0 ≤ n < l then ]S1(ẑk) ≤ kl + n,
if l ≤ n < 2l then ]S1(ẑk) ≤ (k + 1)l. Hence we can conlcude that

]S1(ẑk) ≤ (2N + 1) + l

2
,

and eventually that

]S =
∑

bzk∈{0}×[−N,N ]d−1

]S1(ẑk) ≤ (
2N + 1

2
+
l

2
)(2N + 1)d−1

�

Theorem 5.15. Let (M,µ) ∈ GL+(d,R) × Rd. Suppose that for some β < 1/9
and R > 27 there exists

S ⊆ Zd ∩QR, ]S ≥ 2
3

(2R+ 1)d, (5.29)

such that
dist(Mz + µ,Zd) ≤ β, ∀z ∈ Zd ∩ S. (5.30)
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Then there exist B ∈ Zd×d, b ∈ Zd such that

|M −B| ≤ Cd
β

R
, (5.31)

|µ− b| ≤ Cdβ, (5.32)

where Cd > 0 is a constant depending only on the dimension d.

Proof. Since R/[R] ≤ 3/2 it is sufficient to prove the thesis for R ∈ N.
We split the proof in several steps.

Step 1. Let ej be an element of the canonical basis of Rd and let l ∈ N such that
1 ≤ l ≤ R/3.

We claim that there exists zk ∈ S such that either (zk+lej) ∈ S or (zk−lej) ∈ S.
We will proceed by contradiction, supposing that for every zk ∈ S nor zk + lej ∈

S, nor zk − lej ∈ S. Then, by Lemma 5.14, we would have

S ∩ [−R,R]d ≤
(

2R+ 1
2

+
l

2

)
(2R+ 1)d−1

≤
(

2R+ 1
2

+
2R+ 1

6

)
(2R+ 1)d−1 =

2
3

(2R+ 1)d,

which is in contrast with (5.29).

Step 2. In this step we prove that for every element of the canonical basis ej
(j = 1, . . . , d) and every l ∈ N with 1 ≤ l ≤ R/3, we have

dist(M(lej), Zd) < 2β. (5.33)

Let zk ∈ S satisfy the statement of Step 1 and suppose that zk+lej ∈ S. By zh(k)

(resp. zh(k,j,l)) we denote the element of Zd such that dist(Mzk+µ,Zd) = |zk−zh(k)|
(resp. such that dist(M(zk + lej) + µ,Zd) = |(zk + lej)− zh(k,j,l)|). Hence

dist(M(lej),Zd) ≤|M(lej)− (zh(k,j,l) − zl(k))|
=|(M(zk + lej) + µ− zh(k,jl))− (Mzk + µ− zh(k))| ≤ 2β.

Step 3. By (5.33) we get that for every mij and l ∈ {1, 2, . . . , (2R + 1)/3},
denoting by ẑih(l,j) ∈ Z the i-th component of the (unique) projection ẑh(l,j) of
M(lej) on Zd, we get

dist(lmij ,Z) ≤ |lmij − ẑih(l,j)| ≤ |M(lej)− ẑh(l,j)| = dist(M(lej2),Zd) < 2β.

We can thus conclude that

dist(mij ,Z) ≤ 3β
R
. (5.34)

Setting B = (bij) ∈ Zd×d, where bij ∈ Z is a projection of mij on Z, we get

‖M −B‖∗ ≤
√
d

√√√√ d∑
i,j=1

(mij − bij)2 ≤ (3d3/2)
β

R
,

which implies (5.31).
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Next we prove (5.32). Let zk ∈ S and denote by zh(k) the element of Zd such
that (5.30) holds. We have

dist(µ,Zd) ≤|µ− (zh(k) −Bzk)|
≤|(Mzk + µ)− zh(k)|+ |(M −B)zk|

≤β + ‖M −B‖∗|zk| ≤ β(1 + 3d3/2),

which implies (5.32). �

6. Proof of Theorem 4.4

Let us recall that, assuming β < β0, Theorem 4.4 (A) follows from Remark 5.3,
(5.5) and (5.7). Hence it remains to prove Theorem 4.4 (B)-(C). To this aim firstly
we introduce, in Definition 6.1, a criterion to choose the parameters (K,β, εJ , εv, λ).
Then, in Theorem 6.3, we prove Theorem 4.4 (B)-(C).

Definition 6.1. Given K ∈ ( 1

C
1/d
0

,m1) we say that (K,β, εJ , εv, λ) are proper if:

(i) β ∈ (0, β0), verifies (5.17);
(ii) εJ , εv satisfy (5.13);

(iii) λ is big enough with respect to K,β, εJ , εv to satisfy

λ > max{λ, λC , λZd}, (6.1)

where λ, λC , λZd are respectively defined in Lemma 5.8, Corollary 5.11,
Lemma 5.12;

(iv) (K,β, εJ , εv, λ) satisfy (5.16)

By Proposition 5.10 and Lemma 5.12 we have the following

Lemma 6.2. If (K,β, εJ , εv, λ) are proper, then:

Ω̃x(K,β, εJ , εv, λ) ⊂ {A ∈ Aff +
�(Rdx) : D2

AAhλ(x,A,X ) > 0}. (6.2)

Moreover, if A0, Â0 ∈ Ω̃x(K,β, εJ , εv, λ), and A0, Â0 are canonical representations
respectively of Lx(A0), Lx(Â0), then there exists an unique B ∈ Aff +(Zd) such that

A−1
0 ◦ Â0 ∈ Bλ(B, 2CK

link
β), (Â0)−1 ◦ A0 ∈ Bλ(B−1, 2CK

link
β). (6.3)

We are now in a position to prove Theorem 4.4 (B)-(C).

Theorem 6.3. Let P0 := (x0, Ã0) ∈ Ω̃(K,β, εJ , εv, λ), Ã0 being a canonical repre-
sentation for Lx0(Ã0). We assume that there exists εJ > 0 such that

9
8
εJ < εJ ,

√
εJ <

εJ

3KC2(K)
√

2CK
link
d
, (6.4)

where C2(K), CK
link

are defined in Lemma 5.8 and Lemma 5.12 respectively. More-

over we suppose that (2K,β, 9
C
W,1

C
W,0

εJ , 2εv, λ) are proper. Under such assumptions
setting

δ2
0 :=

εJβ
2

2C2(K)
, (6.5)

we can find Λ := Λ(K,β, εJ , εv) > 0, such that, if λ > Λ, the problem

min{hλ(x0,A,X ) : A ∈ Bλ(A0, δ0)}, (6.6)
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admits an unique solution A0,x0 ∈ Bλ(A0, δ0) ∩ Ω̃x0( 3
2K,β,

10
9 εJ ,

3
2εv, λ).

Moreover the elements of JA0,x0KAff +(Zd) are the unique stationary points of
hλ(x0, ·,X ) in Ω̃x0(2K,β, 9

8εJ , 2εv, λ).

Proof. The existence of a solution to (6.6) trivially follows from the compactness
of Bλ(Ã0, δ0) and the continuity of hλ(x0, ·,X ) with respect to A ∈ Aff +

�(Rdx).
Let AP0 := (AP0 , τP0) be a solution of (6.6). By Lemma 5.8, the choice of

δ0 and the assumption that (2K,β,
9C

W,1
C
W,0

εJ , 2εv, λ) are proper, we have A
P0
∈

Bλ(Ã0, δ0) ⊂ Ω̃(2K,β,
9C

W,1
C
W,0

εJ , 2εv, λ) and

A
P0
∈ H := {‖A‖∗ < 2K} ∩ {‖A−1‖∗ ≤

2d+2Kd−1

sd0
}.

By the uniform continuity of the functions 1/ detA and F (A) on H we can
deduce the existence of λ′ = λ′(K,β, εJ , εv) such that for λ > λ′ we have

1
λd

∑
xi∈X

W
(
xi,Lx0(A

P0
)
)
ϕλ,x0(xi)

≤ 1
λd

∑
xi∈X

W
(
xi,Lx0(Ã0)

)
ϕλ,x0(xi) + ϑ1

( 1

det Ã0

− 1
detA

P0

)
+
[
F
(
Ã0

)
− F

(
AP0

)]
<

10
9

εJβ
2

det
(
A
P0

) < εJ(3β
√
εJ/8εJ)2

det
(
A
P0

) .

and A
P0
, Ã0 ∈ Ω̃( 3K

2 ,
√

10
3

√
εJ
εJ
β, εJ ,

3
2εv, λ) ⊆ Ω̃(K, 3

2
√

2

√
εJ
εJ
β, εJ , 2εv, λ). Since by

(6.4) we have 3
2
√

2

√
εJ
εJ
β < β and (K,β, εJ , 2εv, λ) are proper, we can apply Lemma

5.12 and deduce by (6.4), (6.5) that

‖Ã0 − A
P0
‖λ <CKlink

3
√
εJ/εJ

2
√

2
β
√
d‖Ã0‖∗

≤CK
link

3
√
εJ/εJ√

2
β
√
dK < δ0.

(6.7)

The uniqueness of a solution to (6.6) is then a consequence of (6.2) which implies
the strict convexity of hλ(x, ·,X ) on Bλ(A0, δ0).

In order to prove that JA
P0

KAff +(Zd) are the unique stationary points for
hλ(x0, ·, λ) in Ω̃(2K,β, 9

8εJ , 2εv, λ) we proceed by contradiction. Suppose that
there exists Â0 ∈ Ω̃(2K,β, 9

8εJ , 2εv, λ) /∈ JA
P0

KAff +(Zd) which is a stationary point
of hλ(x0, ·,X ). By Remark 2.6 we can suppose that Â0 is a canonical representation
for Lx0(Â0). Repeating the same argument we used to deduce (6.7), we obtain the
existence of Â0,B ∈ JÂ0KAff +(Zd) such that Â0,B ∈ Bλ(A

P0
, δ0). By the choice of δ0

and Lemma 5.8 we obtain

Bλ(A
P0
, δ0) ⊂ Ω̃x0(2K,β, 9

C
W,1

C
W,0

εJ , 2εv, λ),

hence, by the assumption on the properness of (2K,β, 9
C
W,1

C
W,0

εJ , 2εv, λ), we obtain

the strict convexity of hλ(x0, ·,X ) on Bλ(A
P0
, δ0), and hence the contradiction. �



ON A MESOSCOPIC MANY-BODY HAMILTONIAN 35

7. Proof of Theorem 4.5

In the present Section we will always assume that the set Ω̃(K,β, εJ , εv, λ)
satisfies the hypothesis of Theorem 6.3. Moreover for ease of notation we set
ω̃d := Ω̃d(K2 , β,

9
8εJ ,

εv
2 , λ) and Ω̃ := Ω̃(K,β, εJ , εv, λ). We begin proving a local

version of Theorem 4.5, and then complete its proof by an easy argument.

Proposition 7.1. Let ArgmineΩ : ω̃d → Ω̃ be the multi-valued map defined in (4.5).
Let x0 ∈ ω̃d and AB ∈ JA0,x0KAff +(d,Z), where A0,x0 is a canonical representation for
Lx0(A0,x0). There exist open neighborhoods U ⊂⊂ ω̃d of x0, V ⊂ Ω̃x of AB,x0 and a
smooth (single-valued) map AB(·) ∈ C1(U, V ) such that (4.6) is satisfied. Moreover
there exists C∇ := C∇(Ω̃) > 0, such that (4.7) holds.

Proof. We consider the map

DAhλ(·, ·,X ) :
⋃
x∈eωd
{x} × Ω̃x → Aff (Rd),

(x,A) 7→ DAhλ(x,A,X ).

By Theorem 6.3 we have

ArgmineΩ(ω̃d) = {DAhλ(·, ·,X ) = 0} ∩ {D2
AAhλ(·, ·,X ) > 0} ∩

⋃
x∈eωd
{x} × Ω̃x.

The existence of the neighborhoods U of x0 and V of AB,x0 and of a map
AB ∈ C1(U, V ) verifying (4.6) is then a direct consequence of the Implicit Function
Theorem. For ease of notation in the rest of the proof we set AB(x) = (A(x), τ(x)).
Again by the Implicit Function Theorem, we have(

∇xA(x)
∇xτ(x)

)
= −

[
D2

AAhλ(x,A(x),X )
]−1

[∇xDAhλ(x,A(x),X )] . (7.1)

Next we notice that

∇xDAhλ(x,A,X )

= − 1
λd

∑
xi∈X

DAW (xi, (A, x−Aτ))⊗∇xϕλ,x(xi)−D2
AAhλ(x,A,X )

(
0

A−1

)
+

1
λd

(
Dτ

∑
xi∈X

W (xi, (A, x−Aτ))ϕλ,x(xi)
)T

(A−1)2.

Since by A(x) ∈ ArgmineΩ(ω̃d) we have

Dτ

∑
xi∈X

W (xi, (A(x), x−A(x)τ(x)))ϕλ,x(xi) = 0,

we conclude that

D2
AAhλ(x,A(x),X )

(
∇xA(x)

∇xτ(x)−A−1(x)

)
= − 1

λd

∑
xi∈X

DAW
(
xi,
(
A(x), x−A(x)τ(x)

))
⊗∇xϕλ,x(xi).

We set(
∂x(k)A(x)

∂x(k)τ(x)− (a−1)·,k

)
:=

( (
∂x(k)(a(x))pq

)
α(p,q)(

∂x(k)τ (l)(x)− (a−1(x))l,k
)
d2+l

)
∈ Rd

2+d,
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and
1
λd

[ ∑
xi∈X

(
DAW

(
xi,
(
A(x), x−A(x)τ(x)

)))T
∂x(k)ϕλ,x(xi)

]( ∂x(k)A(x)
∂x(k)τ(x)− (a−1(x))·,k

)
(7.2)

=:
〈(
L(p, q, k)

)
α(p,q)

, ∂x(k)A(x)
〉

+
〈(
R(m, k)

)
m
, (∂x(k)τ(x)− (a−1(x))·,k)

〉
.

Next, we notice that if xi ∈ RA
β(x) ∩ B(x, 2λ) then, by assumption (P2) on

W (·, ·), we have∣∣∣∂apqW (xi, (A, x−Aτ))
∣∣∣ ≤2C

W,1

∣∣∣x(p)
i − x

(p) −
d∑
l=1

apl(z
(l)
k(i) − τ

(l)))
∣∣∣ |z(q)

k(i) − τ
(q)|

≤2βC
W,1

√
d‖A−1‖∗

∣∣∣(A(zk(i) − τ)
)(q)∣∣∣ ≤ 4β

√
d‖A−1‖∗λ.

Hence∣∣∣(L(p, q, k)
)
α(p,q)

∣∣∣ ≤‖ϕ′‖L∞(R)

λd+1

(
4β
√
d‖A−1‖∗λ ](RβA(x)(x) ∩B(x, 2λ))

+‖DAW
(
·, (A(x),−A(x)τ(x))

)
‖L∞(B(0,2λ)) ](IβA(x)(x) ∩B(x, 2λ))

)
,

finally, applying Remark 5.7 with r := ϕ−1(εJ) and by Definition 4.1-(O4), setting
C(W,U) := ‖DAW

(
·, (A(·),−A(·)τ(·))

)
‖L∞(B(0,2λ)×U), we obtain∣∣∣(L(p, q, k)
)
α(p,q)

∣∣∣
≤ ‖ϕ′‖L∞(R)

(
βsd0
√
d‖A−1(x)‖∗
2d−1

+
C(W,U)

λ

(
ε

1/2
J 4(d+1)

sd0CW,0
+
ωd(2d − ϕ−1(ε1/2

J ))
sd0

))
=: C1,∇(s0,W, ϕ, β, εJ , ‖AB(·)‖L∞(U)),

and C1,∇ → 0, as εJ , β → 0. Similarly, we get

|(R(m, k))m| ≤
C2,∇(s0,W, ϕ, β, εJ , ‖AB(·)‖L∞(U))

λ
,

where again C2,∇ → 0, as εJ , β → 0.
Hence by (5.15), we can find a positive constant CAB

conv such that, setting C∇ =
max{C1,∇, C2,∇}/CAB

conv, we have

(λ2|∂x(k)A(x)|2 + |∂x(k)τ (l)(x)− (a−1(x))·,k |2)

≤ C∇
λ

(λ|∂x(k)A(x)|+ |∂x(k)τ (l)(x)− (a−1(x))·,k |)

≤
√

2C∇
λ

√
(λ2|∂x(k)A(x)|2 + |∂x(k)τ (l)(x)− (a−1(x))·,k |2),

and finally

λ|∂x(k)A(x)|2 + |∂x(k)τ (l)(x)− (a−1(x))·,k |

≤
√

2
√

(λ2|∂x(k)A(x)|2 + |∂x(k)τ (l)(x)− (a−1(x))·,k |2) ≤ 2C∇
λ

,

which is our thesis. �
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Let us now consider an open simply connected subset U of ω̃d. We can apply a
global version of the Implicit Function Theorem (see for example [1]) and deduce
that the map AB(·) can be extended to the whole of U .

Finally as a consequence of Lemma 5.12, the discreteness of Aff (Zd) and the
smoothness of the map Φ

P0
, we obtain that (4.8) holds and the proof of Theorem

4.5 is completed.

8. Proof of Corollary 4.6

Let x0 ∈ {hλ(·,X ) + ϑ0ρλ(·,X ) < η}. By the definition of hλ(x0,X ) we can find
A = (A, τ) ∈ Aff +(Rdx0

) such that

hλ(x0,A,X ) + ϑ0ρλ(x0,X ) < 2η.

By the assumption (P1) made on W , and the non-negativity of the function F (·),
we have

C
W,0

λd

∑
xi∈X

dist2(xi,Lx(A))ϕλ,x(xi) + V(x,A, λ)

≤ hλ(x0,A,X ) + ϑ0ρλ(x0,X ) < 2η.

Hence if we choose η > 0 to satisfy (3.11), we can apply Proposition 3.3, and,
restricting ourselves to λ > λm1 , we deduce that m1(Lx(A)) < Ĉ . Moreover, by
Proposition 3.2 we obtain

F (A)−
dϑ1Ĉ +

√
ϑ1/CW,0Cϕ

λ
≤ hλ(x0,A,X ) + ϑ0ρλ(x0,X ) < 2η.

Hence, after choosing a possibly smaller η, for λ ≥ λ := λ(C
W,0 , ϑ1, ϕ, Ĉ) we obtain

detA0 < Cel ,

Consequently

ϑ1

( 1
detA

− 1
Cϕλd

∑
xi∈X

ϕλ,x0(xi)
)

≤ hλ(x0,A,X ) +
ϑ0

λd

∑
xi∈X

ϕλ,x0(xi) <
2ηCel

detA
,

and eventually, setting η′ := (2ηCelCϕ)/ϑ1, we obtain

(Cϕ − η′)
λd

detA
≤
∑
xi∈X

ϕλ,x0(xi). (8.1)
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By (2.22) we can find σ > 0 (dependent on (C
W,0s

2
0/4− ϑ1/Cϕ) > 0) such that

2η >hλ(x0,A,X ) + ϑ0ρλ(x0,X ) =
1
λd

∑
xi∈R

s0
4

A (x0)

W (xi − x,A)ϕλ,x0(xi)

+
1
λd

∑
xi /∈R

s0
4

A (x0)

[
W (xi − x,A)− ϑ1

Cϕ

]
ϕλ,x0(xi)

+ϑ1

 1
detA

− 1
Cϕλd

∑
xi∈R

s0/4
A (x0)

ϕλ,x0(xi)

+ F (A)

≥σ

(
1
λd

∑
xi∈X

W (xi − x,A)ϕλ,x0(xi)

)
−

3dωd‖ϕ′‖L∞(R)(Ĉ + s0/4)
λ

.

This means that, possibly further restricting to a larger λ ≥ λ, we can conclude
that

∑
xi∈X

W (xi − x,A)ϕλ,x0(xi) <
3ηCel

σ

λd

detA
=: η′′

λd

detA
. (8.2)

By (8.1), (8.2) and (3.10), for λ ≥ λ, we obtain that (x0, Ã) ∈ Ω̃(K,β, εJ , εv, λ),
where

K = 3Ĉ, εv = 3η′, β2εJ = 2η′′.

Since letting η → 0 we have η′, η′′ → 0, we can conclude that, for small enough
η and λ ≥ λ, the set Ω̃(K,β, εJ , εv, λ) verifies the hypothesis of Theorem 4.4 and
Ω̃(K2 , β,

8
9εJ ,

εv
2 , λ) is not empty.

Next we show that hλ(x0,X ) = hλ(x0,A0,x0 ,X ). To this aim we chose a min-
imizing sequence {An}n ⊂ Aff +

�(Rdx0
) such that An is a canonical representa-

tion for Lx0(An). Repeating th same argument as above, we obtain ‖An‖∗ ≤√
dm1(Lx0(An)) < K. Hence the sequence {An}n is pre-compact in Rd×d×Rd. Let

Ã0 ∈ Aff +
�(Rdx0

) be a limit point of {An}n. By the continuity of hλ(x0, ·,X ) we
obtain that Ã0 ∈ Ω̃(K,β, εJ , εv, λ) and that it is a minimizer of hλ(x0, ·,X ). The
thesis is then a consequence of the uniqueness of the local minimizers proved in
Theorem 4.4.
In order to conclude the proof we have to estimate the measure of Ω̃(K,β, εJ , εv, λ).
Keeping the notation introduced above, we notice that, by the assumptions η′ < η
and

Hλ(X ,Ω) + ϑ0

∫
Ω

ρλ(x,X ) dx =
∫

Ω

hλ(x,X ) + ϑ0ρλ(x,X ) dx < η′Ld,
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we deduce that Y := {hλ(·,X ) + ϑ0ρλ(·,X ) < η} ⊂ Ω is non-void. Moreover, by
Proposition 3.3 and Proposition 3.2, we have

|Ω \ Ω̃d| ≤ |Ω \ Y | ≤
1
η

∫
Ω\Y

hλ(x,X ) + ϑ0ρλ(x,X ) dx

≤ 1
η

(∫
Ω

hλ(x,X ) + ϑ0ρλ(x,X ) dx+
dϑ1Ĉ +

√
ϑ1/(CW,0cϕ)
λ

|Ω̃d|
)

<
(η′
η

+
dϑ1Ĉ +

√
ϑ1/(CW,0cϕ)
λη

)
Ld,

which is our thesis.

9. Dislocations

In the present section we briefly discuss how dislocations can be related to the
topology of Ω̃(K,β, εJ , εv, λ). We begin with a (sloppy) analysis of a configuration
containing a single dislocation and fulfilling some additional, simplifying, assump-
tions. Let XL ⊂ ΩL := (0, L)3 and C := {t(0, 0, 1) : t ∈ (0, L)}. We suppose that
for large L we can choose 1 << λ <<

√
L, such that for every simply connected

U ⊂⊂ Ω \ (C)λ, (C)λ := {dist(·, C) < 4λ},

we can find a smooth diffeomorphism Φ−1
U : U → Φ−1

U (U), such that Φ−1
U (XL ∩

U) ⊂ L(G), and ‖∇ΦU (·) − Id‖L∞(Φ−1
U (U)) is small. More precisely we suppose

that for every y ∈ U the matrix ∇ΦU (y)G belongs to a neighborhood V of G
such that V ∩ {B−1GB : B ∈ GL+(d, Z)} = {G}. As a consequence we can
suppose that, if L is large enough, we have Ω \ (C)λ ⊂ Ω̃(K,β, εJ , εv, λ), that
Theorem 4.4, Theorem 4.5 hold on this set, and that, as in Section 3, for every
x ∈ Ω \ (C)λ we have (∇ΦU

(
Φ−1
U (x)

)
G,G−1Φ−1

U (x)
)
∈ Ω̃x(K,β, εJ , εv, λ). Next

we let Γ ⊂⊂ Ω \ (C)λ be a Burgers-circuit (i.e. a simple, closed curve with non-
trivial link with C), and consider Û ⊂⊂ Ω \ (C)λ to be an open neighborhood
of Γ such that B(x, 2λ) ⊂⊂ Û for every x ∈ Γ. Fixed x0 ∈ Γ we define U to
be the simply connected open set obtained removing from Û a “disc-like” surface
Σ passing through x0. Since we assumed that C is a dislocation line of Burgers
vector Gb, the vector Gb represents also the jump performed by the map Φ−1

U (·)
when approaching x0 along Γ from the two opposite side of Σ with respect to
x0. However, by Theorem 4.4 and Theorem 4.5, we can conclude that, at least
for large λ, the same relations hold true for the map A0(·) ∈ C1(U, V ) such that
A0(x) ∈ ArgmineΩ(x) and ‖A0(·) − ∇ΦU (Φ−1

U (·))G‖L∞(Φ−1
U (U)) ≈ 1/λ. Moreover,

by the smallness of ‖∇ΦU (·)−Id‖L∞(Φ−1
U (U)) we can conclude that, as x→ x0 from

both sides of Σ, the limits of ∇ΦU (x) coincide.
Motivated by this example, we proceed as follows in order to give a definition of

generalized dislocation line.
Let Ω be simply connected, and let X ⊂ Ω be such that (4.10) holds. In what follows
we will adopt the same notation used in the proof of Theorem 4.5 (see Section 7).
We set P := Argmin eΩ(ω̃d) ⊂ Ω × Aff +(Rd). By the results of Theorem 4.5, we
can conclude that P is a d-dimensional C1-differentiable manifold embedded in
Rd ×Aff +(Rd). Next, we consider Aff +(Zd) as a group with product rule

B1 · B2 = (B1B2, B
−1
2 b1 + b2), ∀Bi = (Bi, bi) ∈ Aff +(Zd), i = 1, 2,
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acting (freely and transitively) on the elements of (x,Ax) ∈ P via

(x,Ax) · B = (x,Ax,B) :=
(
x, (AxB,B−1τx + b)

)
∈ {x} ×Aff +

�(Rdx) ∩ P.

(Let us remark that (x,Ax,B) ∈ P holds because we identify (A, τ) ∈ Aff +
�(Rdx) with

(A, x − Aτ) ∈ Aff +(Rd), hence Ax,B =
(
AxB, x − AxB(B−1τx + b)

)
∈ Aff +(Rd),

and therefore Lx(Ax) = Lx(Ax,B)). Since the action of Aff +(Zd) on P is properly
discontinuous, the projection map p : P → P/Aff +(Zd) is a G-covering. However,
since P/Aff +(Zd) = {(x,Lx(Ax)) : x ∈ ω̃d}, by Theorem 4.4 and Theorem 4.5
we can conclude that P/Aff +(Zd) is homeomorphic to ω̃d. Hence, given a simple,
regular path γ ∈ C0,1([0, 1], ω̃d) such that γ(0) = x0, γ([0, 1]) ⊂⊂ ω̃d, and fixed
(x0,Ax0) ∈ P, we can use the map p to lift γ to a path p],Ax0 γ ∈ C1([0, 1], P)
such that p],Ax0 γ(0) = (x0,Ax0). Next, by means of the lifting map p, we define
a function between Π1(ω̃d, x0), the fundamental group of ω̃d with base point x0,
and Aff +(Zd)/ ∼, where ∼ denotes the conjugacy in Aff +(Zd). Finally, we use
such map to define when a loop in ω̃d is linked to a generalized dislocation. More
precisely we proceed as follows. We consider a closed loop γ as above, and pick
Ax0 ∈ Argmin eΩ(x0). Then, since γ(0) = γ(1) = x0, we can find an unique BAx0 ,γ ∈
Aff +(Zd) such that

p],Ax0 γ(0) · BAx0 ,γ = p],Ax0 γ(1).

We can rephrase the definition of BAx0 ,γ in the following, less abstract, way. As
γ([0, 1]) ⊂⊂ ω̃d, we can find a connected, open neighborhood Û ⊂⊂ ω̃d of γ([0, 1]),
and a “disc-like surface” Σ, such that x0 ∈ Σ and U := Û\Σ is simply connected. By
Theorem 4.5, we can find a map A(·) ∈ C1(U, V ) such that limt→0 A(γ(t)) = Ax0 ,
and

(
γ(t),A(γ(t))

)
= p],Ax0 γ(t) ∈ P. Moreover, again by Theorem 4.4, Theorem

4.5, we have limt→1 A(γ(t)) ∈ Argmin eΩ(x0). Hence BAx0 ,γ is the unique element of
Aff +(Zd) such that

lim
t→1

A(γ(t)) = lim
t→0

A(γ(t)) · BAx0 ,γ = Ax0 · BAx0 ,γ .

From the above construction, and Theorem 4.5, it follows that
• chosen any B ∈ Aff +(Zd), we have

BAx0 ·B,γ = B−1 · BA0,γ · B. (9.1)

• If γ̂ ∈ C1([0, 1], ω̂d) is homotopic to γ in ω̃d (and with same orientation
of γ), setting γ̂(0) =: x1, for every (x1,Ax1) ∈ P we can find an element
B ∈ Aff +(Zd) such that

BAx1 ,bγ = B−1 · BAx0 ,γ · B. (9.2)

All in all we defined

Ψ : Π1(ω̃d, x0)→ Aff +(Zd)
∼

,

(γ) 7→ [Bp](γ)]∼,

where, for every closed loop γ̂ in the homotopy class of γ in ω̃d, and Abγ(0) ∈
Argmin eΩ(γ̂(0)), we can find an element BAbγ(0) in the conjugacy class of Bp](γ) in
Aff +(Zd) such that

p],Abγ(0) γ̂(0) · BAbγ(0) = p],Abγ(0) γ̂(1). (9.3)
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We call the map Ψ the holonomy representation of ω̃d. We remark that actually the
map Ψ does not depend on the base point x0 as soon as we let vary the base point
in the connected component Cx0 of ω̃d containing x0. We are now in a position to
state the following

Proposition 9.1. Let x0, Cx0 be as above. We have Ψ(Π1(Cx0 , x0)) = {(Id, 0)}
if and only if for every U ⊂⊂ Cx0 and Ax0 ∈ Argmin eΩ(x0) we can find A(·) ∈
C1(U,Aff +(Rd)) verifying the conclusions of Theorem 4.5. Moreover if the funda-
mental group Π1(Cx0 x0) of Cx0 with base point x0 is trivial, then Ψ(Π1(Cx0 , x0)) =
{(Id, 0)}.

Proof. The proof of the proposition is elementary, and can be obtained via a
straightforward adaptation of the proof of [3, Corollary 2.4]. �

The purpose of Proposition 9.1 is that of showing the relations holding between
the image of the map Ψ and the possibility of defining global approximate lagrangian
coordinates on the whole of a connected component Cx0 of ω̃d. In a way Proposition
9.1 gives us a tool to check wether or not, at the “meso-scale” λ, we can approximate
the set X ∩Cx0 via an elastically deformed portion of the ground state (up to errors
due to higher order derivatives of the elastic deformation, and “small” percentages
of “point-defects”). Moreover, we can interpret the case Ψ(Π1(ω̃d, x0)) ) {(Id, 0)}
as revealing the presence of some kind of topological defect in X ∩ Q, where Q is
the portion of Ω \ ω̃d not trivially linked to those loops γ ∈ C1([0, 1], ω̃d) such that
Ψ(γ) 6= (Id, 0). In particular, we are lead to give the following

Definition 9.2. . Let γ ∈ C1([0, 1], ω̃d). We say that γ links a generalized dislo-
cation in Ω if and only if Ψ(γ) = [(Id, bγ)]∼, for some bγ ∈ Zd \ {0}.

Remark 9.3. Suppose that X contains two (classical) dislocations lines l1, l2 of
Burgers vectors Gb1, Gb2 ∈ L(G). Due to the way our Hamiltonian depends on the
parameter λ, we will recognize the presence of both dislocations only if the distance
between l1 and l2 is larger than λ. Otherwise we will observe just one generalized
dislocation such that Ψ(γ) = [(Id, b1+b2)]∼, for every γ which is not trivially linked
to a λ-neighborhood of l1 ∪ l2.

Next we define an appropriate notion of Burgers vector for a generalized dislo-
cation. Since [(Id, bγ)]∼ = {(Id,B−1bγ) : B ∈ GL+(d,Z)}, the only quantity we
can define by means of Ψ(γ), requiring that it is stable with respect to homotopies
and changes of the base point within the same connected component of ω̃d, is the
sign of a generalized dislocation linked to γ (once a notion of positive orientation
for the loops is defined). This is not surprising at all for two reasons. Firstly, being
Hλ(X ,Ω) reference free, we cannot expect to be able to define the Burgers vector
as an element of L(G), and obtain that it is invariant with respect to homotopies,
unless we do not specify a particular basis for the ground state. The second rea-
son is related to the fact that, in contrast with the classical theory of dislocations,
Definition 9.2 is given without making any assumption on the distance between
the “(approximate) deformation gradient” and the identity, therefore in general we
cannot exclude that the Burgers vector depends on the base point. However, we can
define a notion of Burgers vector of a generalized dislocation,which depends on the
base point x0 but it is stable with respect to homotopy, if we look at the jump of the
approximate deformation. More precisely we consider A(·) as a map taking values
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in the linear space Aff +(Rd), we denote by πd : Aff +(Rd) = GL+(d,R)×Rd → Rd
the projection on Rd, and finally we define

bΩ,x0 [(γ)] := πd
(

A(γ(0))− A(γ(1))
)

= Ax0

(
τx0 − τ(γ(1))

)
. (9.4)

By Definition 9.2, and the relations (9.3), (9.1), (9.2), the Burgers vector bΩ,x0 [(γ)]
is an element of the lattice Lx0(Ax0) which does not depend on the choice of the
loop γ within the set of homotopic loops with base point x0.

Remark 9.4. An assumption on X that, in our context, corresponds to the hy-
pothesis that the deformation gradient far away from the dislocation core, belongs
to a small neighborhood of the identity, is the following. For every U ⊂⊂ ω̃d simply
connected and x0 ∈ U , we require that we can find (x0,A0,x0) ∈ P such that A0,x0

is a canonical representation of Lx0(A0,x0) and, denoted by A(·) ∈ C1(U, Ω̃) the
corresponding approximate local lagrangian coordinates, we have

[A(x)]G−1 ∈ U, ∀x ∈ U,

where U is an open neighborhood of the identity, whose closure has positive dis-
tance from the finite set of the proper symmetries (that is orientation preserving
isometries) of the ground state into itself. Under this assumption a canonical choice
between the elements of [(Id, bγ)]∼ is given by the one verifying

p],A0,x0
γ(0) · (Id, b(γ)) = p],A0,x0

γ(1),

where A0,x0 is as above. It can be easily checked that under such an assumption,
the vector Gb(γ) coincides with the classical Burgers vector, and that it is stable
with respect to homotopies and changes of the base point.

Remark 9.5. The whole matter of the present section is very closely related to
the formalism introduced in [3]. Moreover there exists a strong link between the
assumption discussed in the previous remark and the setting in which dislocations
are treated in [3, Section 3].

We conclude our discussion on generalized dislocations deriving a (very) rough
estimate on the asymptotic behavior of the value of our Hamiltonian along a se-
quence of configurations containing at least one of such dislocations. For the sake
of simplicity let us firstly consider the case d = 2.We choose {Ln}n, {λn}n ⊂ R+

to be such that

lim
n→∞

Ln = lim
n→∞

λn = lim
n→∞

Ln
λ2
n

= +∞,

and consider Xn = {xn,i}i∈In ⊂ Ωn = [0, Ln]2. We suppose that there exist ρ, η′ >
0 such that (3.10), (4.10) hold, and Xn satisfies the conclusions of Corollary 4.6
for every n ∈ N. Finally we suppose that for every n ∈ N we can find a path
γn ∈ C0([0, 1], (ω̃n)d), such that Ψ(γn) = (Id, bn), where bn ∈ Zd \ {0}. Since Ωn is
simply connected, by Proposition 9.1, we can conclude that Ωn \ ω̃d,n 6= ∅ so that
|{hλn(x,Xn) > η0}| ≥ cλ2

n, and

lim inf
n→∞

1
λ2
n

Hλn(Xn,Ωn) ≥ lim inf
n→∞

∫
Ωn\eωd hλn(x,Xn) dx+ lim inf

n→∞

∫
eωd hλn(x,Xn) dx

≥cη0 − lim inf
n→∞

O(1/λn) = cη0,
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When d = 3, making some assumptions on the geometry of Ω \ ω̃d, we can repeat
the same argument and obtain that

lim inf
n→∞

1
Lnλ2

n

Hλn(Xn,Ωn) ≥ cη0.

Clearly by these estimates we can deduce only a very rough clue on the scaling
of Hλn(Xn,Ωn) when X contains (generalized) dislocations. However, although we
expect that for some choices of λn, Ln a more careful analysis would furnish some
interesting (and more “realistic”) estimates, we have to keep in mind that we cannot
expect to get a reasonable energy estimate in the dislocation core because of the
definition of Hλ itself.

Remark 9.6. By (4.7) we can conclude that if γ is such that Ψ(γ) = [(Bγ , bγ)]∼
for some Bγ 6= Id, then the length of the γ has to be at least of order λ2. Hence,
by a simple argument (similar to the one used above to estimate the “dislocation-
core”) we can conclude that configurations containing topological defects such that
Ψ(Π1(Cx0 , x0)) ⊃ {[(B, b)]∼} for some B 6= Id, have an energy higher than that of
configuration containing dislocations.

Remark 9.7. We conclude this section noticing that we can also derive a (rough)
upper bound estimate on the asymptotic behavior of Hλn(Xn,Ωn) that is related
to the presence of some “grain boundaries” in Xn. More precisely, suppose Xn =(
L(A0)∩Un

)
∪
(
L(A1)∩Ωn \Un

)
, where Un are open subsets of Ωn, such that ∂Un

is (Lipschitz) smooth and the volume of Un is of order Ldn, we obtain

lim inf
n→∞

[
Hλn(Xn)− ηHd−1(∂Un)λn

]
≥ 0.

Appendix A.

In the present section we exhibit an example of a function W (·, ·) ∈ C0(Rd ×
Aff +(Rd)) satisfying (P1)-(P3).

A.1. Example. Let 0 < m0 < m1 verifying (2.15), and define

E := {M ∈ Aff +(Rd) : m0 < m0(L(M )) ≤ m1(L(M )) < m1},

E ′ := {M ∈ Aff +(Rd) :
m0

2
< m0(L(M )) ≤ m1(L(M )) <

3m1

2
} ⊃ E .

Let ψ ∈ C2([0, 1]× [1, 2]) be such that: there exists σ ∈ (0, 1) such that ψ(s, t) = s2

for (s, t) ∈ [0, σ]× [1, 2]; for every t ∈ [1, 2] we have ∂sψ(s, t) > 0 for s ∈ [0, 1); for
every t ∈ [1, 2] we have ψ(1, t) = t and ∂sψ(1, t) = ∂2

ssψ(1, t) = 0.
For every (y,M = (M,µ)) ∈ Rd × E ′ we define

Ψ(y,M ) :=
∑
z∈Zd

ψ
( |y −M (z)|

f(M)
, 2 detM

)
χB(M (z),f(M))(y)

+2(detM)χD(y),

where f(M) := 2(d−2) detM
(3m1)(d−1) and D := Rd \ ∪z∈ZdB(M (z), f(M)).
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By Proposition 2.2 we obtain that(m0

2

)(d−1) 1
Cd

m1(M) ≤ detM ≤
(3m1

2

)(d−1)

m1(M), (A.1)

m0(M)
2Cd

( m0

3m1

)(d−1)

≤ f(M) =
2(d−2) detM
(3m1)(d−1)

≤ m0(M)
2

, (A.2)

hold for every M ∈ E ′. As a consequence for every M ∈ E ′ and z ∈ Zd we have
B(M (z), f(M)) ⊂ B(M (z),m0(M)) and hence B((zi), f(M)) ∩ B((zj), f(M)) = ∅
for every zi 6= zj , zi, zj ∈ Zd. Therefore the sum defining Ψ(·,M ) has at most one
non-zero term.

In order to construct W (·, ·) we also need to define the functions

Φ0,Φ1 : Aff +(Rd)→ [0, 1],

Φ0(M ) :=


0 if m0(L(M )) ≤ m0

2
4m0(L(M ))−2m0

m0
if m0(M) ∈ [ m0

2 ,
3m0
4 ],

1 if m0(L(M )) ≥ 3m0
4

Φ1(M ) :=


1 if m1(L(M )) ≤ 5m1

4
6m1−4m1(L(M ))

m1
if m1(M) ∈ [ 5m1

4 , 3m1
2 ],

0 if m1(L(M )) ≥ 3m1
2 .

Let us notice that Φ0,Φ1 ∈ C0(Aff +(Rd), [0, 1]), since the functions M 7→
m0(L(M)), M 7→ m1(L(M)) are (locally Lipschitz) continuous on GL(d,R), (see
[9]). Finally we define

W (y,M ) := Φ0(M )Φ0(M )Ψ(y,M ) + (1− Φ0(M )Φ1(M )) dist2(y,L(M )).

By the choice of ψ(·, ·) and (A.1), (A.2) we have: W (·, ·) ∈ C0(Rd × Aff +(Rd))
and W (·, ·) = Ψ(·, ·) ∈ C2(Rd × E); for every M ∈ E and y ∈ Rd such that
dist(y,L(M )) < σm0(L(M ))/2 we have Ψ(y,M ) = dist2(y,L(M )); there exist 0 <
C
W,0 ≤ CW,1 such that for every (y,M ) ∈ Rd ×Aff +(Rd) we have

C
W,0 dist2(y,L(M )) ≤W (y,M ) ≤ C

W,1 dist2(y,L(M )).

Hence W (·, ·) satisfies the assumptions (P1) and (P3) (for β0 = σm0/2). Moreover,
by construction, W (·, ·) verifies also the assumption (P2).

Other periodic potentials can be constructed using a structure similar to the one
we used to define W (·, ·) as above. For example certain “anisotropies” can be intro-
duced adapting the previous construction to the case where |y−M (zk)| is replaced
with (D(y−M (zk))·(y−M (zk)))1/2 in the argument of ψ(·, ·) (D ∈ GL+(d,R) being
a positive definite matrix). In general, the only difficulty in producing explicit ex-
amples of periodic potentials verifying (P1)-(P3) is represented by the smoothness
requirement coupled with the invariance with respect to the action of GL+(d,Z)
(see [9] for the discussion of a related problem).
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