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Abstract The computation of two-electron integrals

in electronic structure calculations is a major bottle-

neck in Hartree-Fock, density functional theory and
post-Hartree-Fock methods. For large systems, one has

to compute a huge number of two-electron integrals for

these methods which leads to very high computational

costs. The adaptive computation of products of orbitals
in wavelet bases provides an important step towards ef-

ficient algorithms for the treatment of two-electron in-

tegrals in tensor product formats. For this, we use the

non-standard approach of Beylkin which avoids explicit

coupling between different resolution levels. We tested
the efficiency of the algorithm for the products of or-

bitals in Daubechies wavelet bases and computed the

two-electron integrals. This paper contains the detailed

procedure and corresponding error analysis.
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1 Introduction

1.1 Two-electron integrals in electronic structure
calculations

Over the past years, much work has been done in quan-

tum chemistry to improve the efficiency of algorithms

for electronic structure calculations. The most popu-
lar quantum many-particle models are Hartree-Fock,

Møller-Plesset perturbation theory and coupled cluster

theory, c.f., the monograph [29] for a detailed exposition

of the subject. In these models, the many-electron wave-

functions are represented as linear combinations of anti-
symmetric tensor products of single-electron wavefunc-

tions, so-called orbitals, which reduces the computa-

tional complexity for the evaluation of matrix elements

involving many-electron Hamiltonians and wavefunc-
tions. According to Slater’s rules, the 3Ne-dimensional

integrals decompose into the familiar one- and two-

electron integrals, where Ne is the number of electrons.

The major computational task in electronic structure

calculations therefore is the computation of two-electron
integrals

∫

R3

∫

R3

Ψa(x)Ψb(x)
1

| x − y |Ψc(y)Ψd(y)dx dy

over a set of orbitals {Ψa}a∈Λ. If each orbital Ψa is rep-

resented in a common basis set {gi}i=1,...,K , then the

two-electron integrals require computation of O(K4)

such integrals for the basis functions. This determines
the computational complexity for small molecules espe-

cially if high accuracies are required. For large molecules,

it is possible to benefit from locality for standard types

of basis functions employed in quantum chemistry. A
popular approach to reduce the computational com-

plexity is to introduce another so-called auxiliary ba-

sis {g̃i}i=1,...,K̃ which can be used to approximate the
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products of orbitals

ΨaΨb =
K

∑

i,j=1

ca,i cb,j gi gj ≈
K̃

∑

i=1

c̃ab,i g̃i,

in two-electron integrals. Since the early work of Boys
[8,9] and Preuss [38], atomic centred Cartesian-Gaussian

functions became the most commonly used basis in elec-

tronic structure calculations. Efficient algorithms have

been devised for the computation of the corresponding

two-electron integrals [21,26,28,29,35,40,44]. Auxiliary
bases were originally introduced for electron densities in

the Hartree potential within density functional theory

[2,20,33,41]. Later on, this approach was generalized to

arbitrary two-electron integrals [30,37,45–48] where it
reduces the computational complexity from O(K4) to

O(K3). Successful applications have been reported for

Møller-Plesset perturbation theory [4,23,49,50] and the

coupled cluster method [39,42]. The latter is currently

considered to be the most powerful model for highly
accurate electronic structure calculations. Furthermore,

we have to mention the closely related Cholesky decom-

position of two-electron integrals [1,3,7] and the pseu-

dospectral method [27,34] which can achieve a similar
reduction of the computational complexity.

Within the present work, we focus on an alternative

approach for the computation of two-electron integrals

[11,12,31] which is based on the best fixed-rank ten-

sor product approximation of orbitals. In a sense, our
approach can be considered as a generalization of con-

ventional Gaussian-type bases [11]. A crucial step is the

computation of the pointwise product of factors in the

tensor products representing the orbitals. It was shown
in [10,12] that these factors are well approximated by

Daubechies wavelets. Therefore, it suggests itself to per-

form these products directly in the wavelet bases, in

order to benefit from adaptivity, while the computa-

tional complexity scales linearly with respect to the
number of non-vanishing wavelet coefficients. For this

purpose, various algorithms have been discussed in the

literature. Besides Beylkin’s non-standard approach [5]

which has been applied in the present work, we want to
mention the work of Dahmen, Schneider and Xu [15].

Once the products have been computed, they can be

further compressed by best fixed-rank tensor product

approximations. This reduces the computational effort

for the computation of two-electron integrals consider-
ably as it has been discussed in Refs. [10–12]. We want

to mention that such a compression step has been al-

ready suggested almost forty years ago by Dacre and

Elder [13]. In their work, the fully optimized Gaussian
expansions have been used to represent orbital prod-

ucts instead of more general tensor products which are

considered below.

1.2 Tensor product approximation in electronic

structure calculation

In consequence of our applications in electronic struc-

ture calculation, we have to deal with third-order ten-

sors and their optimal tensor product approximations

with fixed separation rank κ, so-called best rank-κ ap-
proximations. The tensors under consideration may rep-

resent individual orbitals and their products as well as

the electron density or the corresponding Hartree po-

tential. So far the concept of an orbital was not further
specified in agreement with varied uses of this term in

the chemistry literature. In the following we denote by

an orbital a function in R
3 which is used in the sense

of a single-electron wavefunction and has the following

properties: (i) locality, (ii) multi-scale character, (iii)
smoothness up to pointwise singularities. Concerning

locality we assume that the spread of orbitals is es-

sentially independent of the size of the molecules. This

requires the concept of local orbitals which forms the
basis for all recent developments in the field of elec-

tronic structure calculations for large molecules, cf. [42,

50] and references therein. The orbitals of a molecule

represent different length and energy scales, i.e., inner

core orbitals, valence orbitals which form the actual
chemical bonds, and virtual orbitals for the description

of electron correlations in post-Hartree-Fock methods.

Furthermore, orbitals have a well defined singular be-

haviour near atomic nuclei [25]. Altogether the prop-
erties (i) to (iii) provide our motivation for the tensor

product approach where (ii) and (iii) strongly suggest

the use of adaptive wavelet representations for the uni-

variate factors of the tensor products.

For a given function f(x) with x ∈ R
3, one can look

for the best separable approximation with fixed rank κ

in the following form

f(x) ≈
κ

∑

k=1

h
(1)
k (x1)h

(2)
k (x2)h

(3)
k (x3), (1)

where the univariate functions h
(i)
k (xi) for i = 1, 2, 3

are subject of the optimization. In particular, there are

no orthogonality constraints imposed. Here the rank

of a tensor is the smallest number of rank-one tensors
whose linear combination represents the given tensor.

The error of an approximation with fixed rank κ may

be defined via the least-squares problem

σκ(f) := inf
h
(i)
k

∈L2(R)

∥

∥

∥

∥

∥

f −
κ

∑

k=1

h
(1)
k ⊗ h

(2)
k ⊗ h

(3)
k

∥

∥

∥

∥

∥

L2(R3)

.

(2)

This kind of variational problem is usually ill-posed, i.e.,

a minimizer does not always exist. In fact the space of
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rank-κ tensor products is not closed in L2(R3) and in

general an optimal solution for such a variational prob-

lem in dimension d > 2 does not exist [18]. However, it

is possible to choose a set of functions h
(i)
k (xi) for which

the error is arbitrarily close to σκ [22].

The variational problem (2) can be considerably

simplified if we assume that the original function f(x)

is already given in tensor product format, for instance,

canonical format [12] or Tucker format [31]. Usually

orbitals are given as linear combinations of Cartesian-
Gaussian functions. Therefore, one can take the advan-

tage of such a nice representation to obtain best sep-

arable approximations for orbitals and related quanti-

ties. Given a function f(x) which is represented in a
Cartesian-Gaussian basis set as

f(x) =
K

∑

k=1

ck

3
∏

i=1

g
(i)
k (xi −A

(i)
k ) (3)

where

g
(i)
k (xi −A

(i)
k ) = (xi − A

(i)
k )l

(i)
k e−αk(xi−A

(i)
k

)2

for i = 1, 2, 3 and ck are the coefficients including nor-
malization constants. Here, K is the total number of

Gaussians used to represent the function (3), the so-

called initial separation rank. Then the individual uni-

variate Gaussians are discretized on a uniform grid with
grid spacing h = 2−j,

g
(i)
k (xi −A

(i)
k ) ≈

∑

a∈Λ

b
(i)
k,j,a φj,a(xi) (4)

with b
(i)
k,j,a = 2−j/2 g

(i)
k (2−ja − A

(i)
k ). For this purpose,

interpolating scaling functions φj,a(x) := 2j/2φ(2jx−a)
of Deslauriers and Dubuc [19] are used. Here j ∈ Z, is

the resolution level and a ∈ Λ ⊂ Z, is the translation
parameter. The size of the data vector used to represent

each univariate Gaussian (4) is N := #Λ. Then the

discrete version of the function (3) in the tensor product

format is given by

f̃ :=

K
∑

k=1

ck b
(1)
k,j ⊗ b

(2)
k,j ⊗ b

(3)
k,j , (5)

where f̃ is a coefficient tensor with initial separation
rank K and b

(i)
k,j := {b(i)k,j,a}Na=1, for i = 1, 2, 3 denotes

the coefficient vectors in the expansion (4). For a given

tensor with an initial separation rank K ≫ 1, one can

look for the best rank-κ approximation (1) with pre-
scribed accuracy. The problem now becomes a mini-

mization problem in the discrete tensor product format

and the subsequent compression step is performed in a

purely algebraic manner using the discretized represen-

tation (5). The corresponding least-squares functional

is

σκ(f̃ ) := inf
h

(i)
k

∈ℓ2

∥

∥

∥

∥

∥

f̃ −
κ

∑

k=1

h
(1)
k ⊗ h

(2)
k ⊗ h

(3)
k

∥

∥

∥

∥

∥

ℓ2

. (6)

We want to mention, however, that for (bi)orthogonal
wavelet and scaling function bases, a norm equivalence

exists between L2 and ℓ2 which means that minimizing

the discrete functional (6) in the tensor product format

is equivalent to minimizing the continuous functional
(2) up to a constant factor. Correspondingly one can

obtain the best rank-κ approximation for products of

orbitals Ψa Ψb [10,11] and in particular for the electron

density to compute the Hartree potential in an efficient

way [12] by using appropriate tensor product approxi-
mations for the Coulomb potential.

In the present work, we focus on efficient algorithms

for the computation of products of orbitals which are

already represented by best rank-κ tensor product ap-

proximations. This is a preparatory step and the result-
ing rank-κ2 tensor products are further compressed and

used for the calculation of two-electron integrals.

1.3 Various approaches to deal with products of

orbitals

In principle, one can use the best rank-κ approximation

of orbitals Ψa and compute their products Ψa Ψb directly

on the grid. This is what we call the direct approach

for orbital products. On high resolution grids, the di-
rect approach is rather costly to treat two-electron inte-

grals. Instead, we want to have an algorithm that takes

the advantage of adaptivity and computes the products

more efficiently. Precisely, we want to compute only

significant contributions on the different length-scales
and neglect the smaller contributions up to a certain

threshold ǫ. According to Eq. (4), the univariate factors

h
(i)
k (xi) for i = 1, 2, 3 of the tensor product approxima-

tions of the individual orbitals are represented by in-
terpolating scaling functions of Deslauriers and Dubuc

[19]. In an intermediate step we convert the factors into

orthogonal Daubechies wavelet bases and perform a

subsequent compression step. The computation of prod-

ucts of factors in a hierarchical wavelet bases with op-
timal complexity, i.e., linear with respect to the num-

ber of non-zero wavelet coefficients, can be achieved via

different algorithms. In the following, we want to dis-

cuss the so-called standard approach, a straightforward
method simply taking the product of the wavelet expan-

sions, and Beylkin’s non-standard approach [5]. The lat-

ter avoids explicit coupling between different resolution
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levels. To the best of our knowledge, numerical results

for the non-standard approach have not been presented

so far in the literature. In this paper, we present results

for products of orbitals of the C2H6 molecule. We stud-

ied the computational complexity of the non-standard
approach with different Daubechies wavelet bases [16,

17] and tested the accuracy of resulting two-electron

integrals by comparison with direct orbital products in

Section 6.

2 Non-standard approach for the computation

of products of orbitals

In the following, we want to compare the performance of

the standard and non-standard approach for the com-

putation of products of functions represented in wavelet

bases. The fundamental difference is that the standard
approach deals with products of wavelets at different

resolution levels whereas in Beylkin’s non-standard ap-

proach [5], products of wavelets and scaling functions

appear only on the same resolution level.

2.1 Standard approach

Let us consider two functions

f =
∑

a∈Λn

s(1)n,a φn,a, and g =
∑

a∈Λn

s(2)n,a φn,a,

represented by scaling functions φn,a at the resolution

level n, where a ∈ Λn ⊂ Z is the translation parameter.
The size of the data vector used to represent each of

these functions is N := #Λn. Here s
(1)
n,a and s

(2)
n,a are

the scaling function coefficients of f and g, respectively.

The multiresolution representations of these functions
in the wavelet basis are

f =
∑

a∈Λj0

s
(1)
j0,a

φj0,a +
n−1
∑

j=j0

∑

a∈Λj

d
(1)
j,a ψj,a, (7)

and

g =
∑

a∈Λj0

s
(2)
j0,a

φj0,a +

n−1
∑

j=j0

∑

a∈Λj

d
(2)
j,a ψj,a, (8)

where d
(1)
j,a and d

(2)
j,a are the wavelet coefficients corre-

sponding to f and g, respectively and j0 is the coarsest

resolution level. The product of two functions f and g

in the standard approach becomes

fg =

n−1
∑

j=j0

n−1
∑

j′=j0

∑

a∈Λj

∑

a′∈Λj

d
(1)
j,a d

(2)
j′,a′ ψj,a ψj′,a′

+

n−1
∑

j=j0

∑

a∈Λj

∑

a′∈Λj0

d
(1)
j,a s

(2)
j0,a′

ψj,a φj0,a′

+

n−1
∑

j′=j0

∑

a∈Λj0

∑

a′∈Λj

s
(1)
j0,a

d
(2)
j′,a′ φj0,a ψj′,a′

+
∑

a∈Λj0

∑

a′∈Λj0

s
(1)
j0,a

s
(2)
j0,a′

φj0,a φj0,a′ , (9)

where we can observe interactions between different res-

olution levels. As Daubechies wavelets have compact
support, the algorithm leads to O(N log2N) computa-

tional complexity. Here, we estimate the computational

complexity by computing the total number of non-zero

products in the expansion (9) without taking into ac-

count possible compressions of the wavelet expansions
(7) and (8).

2.2 Non-standard approach

The non-standard approach of Beylkin [5] avoids ex-

plicit coupling between different resolution levels for

the product. In order to uncouple the interaction be-

tween resolution levels, Beylkin suggested not to use

the full wavelet expansions of the functions (7) and (8).
Instead, one should use wavelet expansions of the func-

tions f and g only up to the next coarser level before

taking their product. Let us assume that the functions

f and g are given at resolution level n. We can express
these functions in wavelet and scaling functions at the

next coarser level n− 1 as

f =
∑

a∈Λn−1

s
(1)
n−1,a φn−1,a+

∑

a∈Λn−1

d
(1)
n−1,a ψn−1,a, (10)

and

g =
∑

a∈Λn−1

s
(2)
n−1,a φn−1,a +

∑

a∈Λn−1

d
(2)
n−1,a ψn−1,a. (11)

The product of two functions (10) and (11) becomes

fg = Fn−1
1 + Fn−1

2 + Fn−1
3 + Fn−1

4 , (12)

where

Fn−1
1 =

∑

a∈Λn−1

∑

a′∈Λn−1

s
(1)
n−1,a s

(2)
n−1,a′ φn−1,a φn−1,a′ ,

Fn−1
2 =

∑

a∈Λn−1

∑

a′∈Λn−1

s
(1)
n−1,a d

(2)
n−1,a′ φn−1,a ψn−1,a′ ,



5

Fn−1
3 =

∑

a∈Λn−1

∑

a′∈Λn−1

d
(1)
n−1,a s

(2)
n−1,a′ ψn−1,a φn−1,a′ ,

Fn−1
4 =

∑

a∈Λn−1

∑

a′∈Λn−1

d
(1)
n−1,a d

(2)
n−1,a′ ψn−1,a ψn−1,a′ .

Here the last three combinations Fn−1
2 , Fn−1

3 and Fn−1
4

contain one or two wavelets in the product. It should be

mentioned that most of the wavelet coefficients dn−1,a

are assumed to be small at higher resolution levels.

Therefore, the last three combinations Fn−1
2 , Fn−1

3 and
Fn−1

4 are considered to be sparse in a sense that one can

apply an adaptive thresholding procedure to avoid the

computation of small contributions. However, the first

combination Fn−1
1 is not small because it consists of

products of scaling functions. In order to achieve some

sparsity for Fn−1
1 , the scaling functions are expressed in

wavelets and scaling functions at the next coarser level

n− 2. Then Fn−1
1 can be further decomposed into

Fn−1
1 = Fn−2

1 + Fn−2
2 + Fn−2

3 + Fn−2
4 .

This decomposition can be repeated on each level until

the coarsest level j0 is reached. The product of functions

(12) can be rewritten as

fg =
∑

a∈Λj0

∑

a′∈Λj0

s
(1)
j0,a

s
(2)
j0,a′

φj0,a φj0,a′

+

n−1
∑

j=j0

∑

a∈Λj

∑

a′∈Λj

s
(1)
j,a d

(2)
j,a′ φj,a ψj,a′

+

n−1
∑

j=j0

∑

a∈Λj

∑

a′∈Λj

d
(1)
j,a s

(2)
j,a′ ψj,a φj,a′

+

n−1
∑

j=j0

∑

a∈Λj

∑

a′∈Λj

d
(1)
j,a d

(2)
j,a′ ψj,a ψj,a′ , (13)

where products of scaling functions and wavelets are at

the same resolution level. We still need to do something

more in order to get the final wavelet representation.
For this, let us start with the Haar wavelet, i.e., D2

basis which provides a simple illustration to the general

case of Daubechies wavelets. The product of wavelets

and scaling functions in the Haar basis is non-zero only
for a = a′ and we have the following explicit relations

φj,a φj,a = 2j/2 φj,a, (14)

φj,a ψj,a = 2j/2 ψj,a, (15)

ψj,a ψj,a = 2j/2 φj,a. (16)

Using these relations, Eq. (13) becomes

fg =
∑

a∈Λj0

ŝj0,a φj0,a +

n−1
∑

j=j0

∑

a∈Λj

d̂j,a ψj,a

+

n−1
∑

j=j0+1

∑

a∈Λj

r̂j,a φj,a, (17)

where

ŝj0,a = 2j0/2
[

s
(1)
j0,a

s
(2)
j0,a

+ d
(1)
j0,a

d
(2)
j0,a

]

,

d̂j,a = 2j/2
[

s
(1)
j,a d

(2)
j,a + d

(1)
j,a s

(2)
j,a

]

,

r̂j,a = 2j/2 d
(1)
j,a d

(2)
j,a .

As the third term of Eq. (17) is still in the scaling

function representation, we need to expand it into the

wavelet basis with scaling function coefficients s̄j0,a and

wavelet coefficients d̄j,a. We then end up with the fol-
lowing expression

fg =
∑

a∈Λj0

(ŝj0,a + s̄j0,a)φj0,a

+

n−1
∑

j=j0

∑

a∈Λj

(d̂j,a + d̄j,a)ψj,a.

which represents the expansion of a product of functions
in the Haar basis. A similar procedure can be used for

the standard approach (9).

In order to check the computational complexity for a

product of functions in the Haar basis, we consider two
Gaussian functions with exponents 4 and 8 on the unit

interval and compute their product by using the stan-

dard and non-standard algorithms. The total number

of non-zero products we need to compute in both algo-

rithms are shown in Fig. 1 a). As can be seen from Fig. 1
a), we just need to compute a much smaller number of

products in the non-standard algorithm compared to

the standard algorithm. We also show the total num-

ber of products which have absolute coefficients greater
than a threshold ǫ for the standard and non-standard

algorithms in Fig. 1 b) and c), respectively. It can be

seen that the non-standard algorithm remains more ef-

ficient using adaptive thresholding procedures to avoid

the computation of small contributions. For our envis-
aged applications in electronic structure calculations,

we therefore restrict ourselves to the non-standard al-

gorithm.

In the Haar wavelet case, everything is simple since
we have explicit relations, cf. Eqs. (14) to (16), for prod-

ucts of scaling functions and wavelets. In the general

case of Daubechies wavelets, such explicit relations do

not exist anymore, because Daubechies wavelets are not

closed under multiplication. Therefore, we have to ap-
proximate the products, i.e., φj0,a φj0,a′ , φj,a ψj,a′ etc.,

in the wavelet basis. The first product can be repre-

sented as

φj0,a φj0,a′ =
∑

i∈Λj0

Sj0,j0V V V (a, a′, i)φj0,i

+
∑

l≥j0

∑

i∈Λl

Dj0,l
V VW (a, a′, i)ψl,i. (18)
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Fig. 1 Computational complexity for the product of two Gaus-
sian functions in the Haar wavelet basis using the standard and
non-standard algorithms versus the number of grid points N on
the finest resolution level. b) and c) show the number of prod-
ucts which have absolute values of the coefficients greater than
the threshold ǫ.

Using orthonormality of Daubechies wavelets, we get

Sj0,j0V V V (a, a′, i) =

∫

R

φj0,a(x)φj0,a′(x)φj0,i(x) dx,

and

Dj0,l
V VW (a, a′, i) =

∫

R

φj0,a(x)φj0,a′(x)ψl,i(x) dx.

In the following we refer to these integrals as coupling
coefficients. By inserting coupling coefficients in the

first term of Eq. (13), we form the sums

F̃1
j0

(i) =
∑

a∈Λj0

∑

a′∈Λj0

s
(1)
j0,a

s
(2)
j0,a′

Sj0,j0V V V (a, a′, i)

F j01 (l, i) =
∑

a∈Λj0

∑

a′∈Λj0

s
(1)
j0,a

s
(2)
j0,a′

Dj0,l
V VW (a, a′, i)

with respect to scaling function and wavelet coefficients.

Now let us take the second term of Eq. (13) and

represent the product φj,a ψj,a′ as we did in the previous
case,

φj,a ψj,a′ =
∑

i∈Λj

Sj,jVWV (a, a′, i) φj,i

+
∑

l≥j

∑

i∈Λl

Dj,l
VWW (a, a′, i) ψl,i. (19)

As before, we obtain the coupling coefficients

Sj,jVWV (a, a′, i) =

∫

R

φj,a(x)ψj,a′ (x)φj,i(x) dx,

and

Dj,l
VWW (a, a′, i) =

∫

R

φj,a(x)ψj,a′ (x)ψl,i(x) dx.

Once more, we can form the sums

F̃2
j
(i) =

∑

a∈Λj

∑

a′∈Λj

s
(1)
j,a d

(2)
j,a′ S

j,j
VWV (a, a′, i),

F j2 (l, i) =
∑

a∈Λj

∑

a′∈Λj

s
(1)
j,a d

(2)
j,a′ D

j,l
V WW (a, a′, i), (20)

for the second term of Eq. (13). The remaining terms
of Eq. (13) can be handled in a similar way. Here we

also need the coupling coefficients

Sj,jWWV (a, a′, i) =

∫

R

ψj,a(x)ψj,a′(x)φj,i(x) dx,

and

Dj,l
WWW (a, a′, i) =

∫

R

ψj,a(x)ψj,a′(x)ψl,i(x) dx.

A simple algorithm to compute the coupling coeffi-

cients is the iterative method of Beylkin [6], Dahmen

and Micchelli [14]. In Fig. 2 a) to c), we show the decay



7

of the coupling coefficients for different combinations

of scaling functions and wavelets. For this, we compute

the maximum values of coupling coefficients, e.g.,

‖Dj,l
V VW ‖∞ := max

{

Dj,l
V V W (a, a′, i) : a, a′, i ∈ Z

}

,

for different Daubechies wavelet bases D4, D8 and D10.

Here, Dm stands for the Daubechies wavelet family of

degree m. Dm has m/2 vanishing moments and repre-

sents polynomial up to degree m/2− 1. The maximum
values of the coupling coefficients can be estimated by

‖Dj,l
V VW ‖∞ ≤ c 2−s(l−j)2

1
2 j , (21)

for 0 ≤ s < min{t, p} where t denotes the Sobolev reg-

ularity of the wavelet, i.e., t := sup{s : ψ ∈ Hs} and p

refers to the number of vanishing moments, cf. Ref. [32]

for further details. By taking the Sobolev regularity of
Daubechies wavelets from Ref. [36], it turns out that

this estimate provides a good description for the decay

of coupling coefficients, with increasing resolution level

l, shown in Fig. 2 a) to c).
The product of two functions in the general case of

Daubechies wavelets using the non-standard approach

becomes

fg =
∑

j

∑

i∈Λj

(

F̃1
j0

(i) δj,j0 + F̃2
j
(i)

+ F̃3
j
(i) + F̃4

j
(i)

)

φj,i

+
∑

l

∑

i∈Λl

[

∑

j≤l

(

F j1 (l, i) + F j2 (l, i)

+F j3 (l, i) + F j4 (l, i)
)

]

ψl,i. (22)

What remains to be done is to decompose the scaling

functions φj,i on levels j > j0 into wavelets and to add

up the corresponding contributions to the wavelet part
of Eq. (22).

3 Contraction of scaling function contributions

For the computation of the product of two functions

which are both smooth except for possibly a few iso-

lated singularities, it is beneficial to perform the dou-
ble sum (20) by first summing over the scaling function

coefficients, i.e.,

F j2 (l, i) =
∑

a′∈Λj

d
(2)
j,a′

(

∑

a∈Λj

s
(1)
j,aD

j,l
V WW (a, a′, i)

)

, (23)

where the sum in brackets is given by
∫

R

(

∑

a∈Jl,i

s
(1)
j,aφj,a(x)

)

ψj,a′(x)ψl,i(x) dx.
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Fig. 2 The maximum values of coupling coefficients at different
resolution levels l for Daubechies wavelets with various number
of vanishing moments.
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The sum of scaling functions, which runs over the index

set

Jl,i := {a ∈ Z : suppψl,i ∩ suppφj,a 6= ∅},

corresponds to

g|suppψl,i
≈

∑

a∈Jl,i

s
(1)
j,aφj,a, with s

(1)
j,a =

∫

R

g(x)φj,a(x) dx.

Let us assume g ∈ C∞(suppψl,i) and perform a Taylor
expansion of g at the centre of ψl,i (p vanishing mo-

ments) which gives

g(x)|suppψl,i
=

p−1
∑

m=0

am(x− x0)
m +Rp−1(x),

where the remainder of the Taylor series can be repre-

sented by the integral

Rp−1(x) =
(x− x0)

p

(p− 1)!

∫ 1

0

(1−t)p−1g(p) (x0 + t(x− x0)) dt.

Next, we split the scaling function coefficients into

s
(1)
j,a = s̃

(1)
j,a +∆s

(1)
j,a

with

s̃
(1)
j,a :=

∫

R

( p−1
∑

m=0

am(x− x0)
m

)

φj,a(x) dx

and

∆s
(1)
j,a :=

∫

R

Rp−1(x)φj,a(x) dx.

A straightforward estimate gives

|∆s(1)j,a| . 2−(p+ 1
2 )j‖g‖Wp

∞(Ωl,i)

with Ωl,i := ∪a∈Jl,i
suppφj,a. Together with (21), we

obtain

∣

∣

∣

∣

∑

a∈Jl,i

∆s
(1)
j,aD

j,l
VWW (a, a′, i)

∣

∣

∣

∣

. 2−s(l−j)2−pj‖g‖Wp
∞(Ωl,i)

for 0 ≤ s < min{t, p} where t denotes the Sobolev

regularity of the wavelet. Because the scaling functions

exactly represent polynomials of degree p− 1, we get

∑

a∈Jl,i

s̃
(1)
j,aφj,a(x)

∣

∣

∣

∣

suppψl,i

=

p−1
∑

m=0

am(x− x0)
m.

From this and the following estimate
∣

∣

∣

∣

∫

R

ψj,a′(x)(x − x0)
mψl,i(x) dx

∣

∣

∣

∣

. 2−(s+ 1
2 )l‖(· − x0)

mψj,a′‖W s
∞

(suppψl,i)

. 2−(s+ 1
2 )l

∑

α1+α2≤s
α1≤m

2−(m−α1)l‖ψj,a′‖Wα2
∞

. 2−(s+ 1
2 )l

∑

α1+α2≤s
α1≤m

2−(m−α1)l2(α2+
1
2 )j

.

{

2−(s+ 1
2 )(l−j)2−mj if m ≤ s

2−(m+ 1
2 )l2

1
2 j if m > s

,

we obtain the final estimate
∣

∣

∣

∣

∣

∣

∑

a∈Λj

s
(1)
j,aD

j,l
V WW (a, a′, i)

∣

∣

∣

∣

∣

∣

(24)

.
(

2−(s+ 1
2 )(l−j)2−j + 2−s(l−j)2−pj

)

‖g‖Wp
∞(Ωl,i),

where
∫

R
ψj,a′(x)ψl,i(x)dx = 0 has been assumed. For

comparison, this estimate decays for l ≤ (2p − 1)j by
O(2−

1
2 l2−j) faster than the uncontracted estimate (21).

We want to mention that the idea to smoothen one

factor by contraction has already been discussed in a

qualitative manner by Beylkin [5].

4 Adaptivity

In order to compensate for the computational overhead

of the non-standard approach, it is mandatory to use

adaptivity. This has been already demonstrated for the

Haar wavelet in Fig. 1. For our envisaged application,
the sparsity of wavelet approximations for tensor prod-

uct factors has been demonstrated in Ref. [12]. In ad-

dition, it is possible to use the contraction scheme dis-

cussed in Section 3 to further reduce the magnitude of
the mixed contributions represented by the sums F j2
and F j3 in the expansion (22) according to the estimate

(24). It remains to devise an adaptive algorithm to com-

pute only those contributions in (22) which are greater

than a certain threshold ǫ. A simple approach is to per-
form a hierarchical decomposition of the domain and to

compute the maximum norm of the coefficients on each

sub domain. Then one can easily devise a tree like algo-

rithm which decides whether specific hierarchical sub-
sets of the index set in the sum (23) potentially contain

contributions which are greater than the threshold.

A simple example which illustrates the potential

of adaptivity in electronic structure calculations is the

product of the functions

f(x) = e−4|x|, g(x) = e−8|x|, x ∈ [−20, 20].
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Fig. 3 Computational complexity of the non-standard algorithm
for the product of two Slater-type functions in D2 and D10
wavelet bases versus the number of grid points N on the finest
resolution level.

These functions resemble to the familiar Slater-type ba-

sis functions which are related to the eigenfunctions

of the hydrogen atom. We have studied the effect of
adaptivity for different types of Daubechies wavelets.

The comparatively large box size is rather typical for

our applications. It reflects the multi-scale structure of

the orbitals, i.e., in Hartree-Fock theory it is the ener-

getically highest occupied orbital which determines the
box size, whereas the orbital lowest in energy defines

the finest resolution level. Furthermore, our large box

size avoids boundary effects for Daubechies wavelets of

high degree which have large supports. A finite level
cut-off was introduced, i.e., the expansion of products of

wavelets and scaling functions in (18) and (19) has been

restricted to l ≤ n− 1 where n− 1 is the finest level of

the wavelet representation of the individual functions f

and g. In order to judge the effect of adaptivity, we have
counted the number of products in (22), using already

contracted coefficients (23), which are greater than a

certain threshold ǫ. Results are shown in Fig. 3 for

D2 and D10 Daubechies wavelets. Apparently, the total
number of products is much smaller in the case of D2

compared with D10. The higher degree of D10 is coun-

terbalanced by the larger support and the huge number

of additional products which arise from the wavelet ex-

pansion (19).

5 Computation of products of orbitals

In this section, we want to consider a realistic appli-

cation of the non-standard algorithm for products of

orbitals of the C2H6 molecule. The orbitals are conve-

niently represented in a Cartesian-Gaussian basis set

(3) which is standard in quantum chemistry. Follow-

ing our previous work [11,12], we have taken the best

rank-κ approximation of orbitals in the canonical tensor

product format, i.e.,

Ψa(x) ≈
κ

∑

k=1

ψ
(1)
a,k(x1)ψ

(2)
a,k(x2)ψ

(3)
a,k(x3),

as a starting point for further calculations. The product

of two orbitals is given as

Ψa(x)Ψb(x) ≈
κ

∑

k,k′=1

P
(1)
ab,kk′ (x1)P

(2)
ab,kk′ (x2)P

(3)
ab,kk′ (x3),

(25)

where univariate products

P
(i)
ab,kk′ (xi) = ψ

(i)
a,k(xi)ψ

(i)
b,k′ (xi)

have been computed with the non-standard algorithm

using precontracted coefficients (23). In Fig. 4, we present

the computational complexity for the product of two
valence orbitals Ψ3, Ψ4 lowest in energy of the C2H6

molecule using D2, D4, D6 and D10 Daubechies wavelets.

The tensor rank κ = 10 was chosen and the under-

lying mesh contained N = 5121 grid points in each

direction. A straightforward pointwise computation of
the product on this grid requires 3Nκ2 = 1, 536, 300

multiplications. This number can be reduced through

the non-standard algorithm e.g., by a factor of 15 if

we take ǫ = 10−3. It can be seen that the D4, D6 or
D10 Daubechies wavelets require almost the same num-

ber of products. The advantage of a higher number of

vanishing moments is obviously counterbalanced by the

larger supports of the corresponding wavelets. Remark-

ably, for D2 wavelets the number of products can be
reduced by a factor of 54 for the same ǫ.

6 Computation of two-electron integrals

In Hartree-Fock, hybrid density functional theory and

post-Hartree-Fock methods, one needs to compute a
huge number of two-electron integrals which goes along

with a high computational complexity. The application

of tensor product approximations to simplify the com-

putation of two-electron integrals was our main moti-

vation for the present work. It is therefore essential to
test the performance of the non-standard algorithm for

such integrals. In the following we consider exchange

integrals

Kab =

∫

R3

∫

R3

Ψa(x)Ψb(x)
1

|x − y|Ψa(y)Ψb(y) dx dy
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Fig. 4 Computational complexity of the non-standard algorithm
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line indicates the number of multiplications required by a point-
wise computation of the product on the finest grid.

for the C2H6 molecule. Integrals of this type appear in

Hartree-Fock and hybrid density functional theory. The

latter comprises a compromise between the purely non-

local Hartree-Fock exchange and the local exchange po-
tentials in standard density functional theory. Presently,

the most accurate density functionals used in quantum

chemistry are of this type, e.g., the popular B3LYP hy-

brid functional [43]. In order to deal with the Coulomb

potential, it is convenient to use a tensor product ap-
proximation based on a quadrature formula for the in-

tegral representation

1

|x − y| =
2√
π

∫ ∞

0

e−|x−y|2t2 dt

≈
M
∑

m=−M

wm e
−|x−y|2t2m ,

c.f., [12] for further details. The computation of ex-

change integrals is performed in several steps. Once the

product (25) has been computed, it is convenient to per-

form first a recompression step [11] in order to reduce

the tensor rank of the product. This step introduces,
however, an additional approximation error and there-

fore we refrained from doing it in the present work. The

next step is the convolution of the orbital product with

the Coulomb interaction in the tensor format

∫

R3

1

|x − y|Ψa(y)Ψb(y) dy ≈
M
∑

m=−M

κ
∑

k,k′=1

W
(1)
ab,mkk′ (x1)

×W
(2)
ab,mkk′ (x2)W

(3)
ab,mkk′ (x3),

with

W
(i)
ab,mkk′ (xi) = w1/3

m

∫

R

e−|xi−yi|
2t2mP

(i)
ab,kk′ (yi) dyi.

It remains to calculate the scalar product of the convo-

lution with the orbital product, i.e.,

Kab ≈
M
∑

m=−M

κ
∑

k,k′=1
l,l′=1

∫

R

P
(1)
ab,kk′ (x1)W

(1)
ab,mll′ (x1) dx1

×
∫

R

P
(2)
ab,kk′ (x2)W

(2)
ab,mll′ (x2) dx2

×
∫

R

P
(3)
ab,kk′ (x3)W

(3)
ab,mll′ (x3) dx3,

which yields the final exchange integral.

In our test calculations, we considered different com-

binations of orbitals for the C2H6 molecule. The or-

bitals Ψ1, Ψ2 represent core orbitals which are dom-

inated by the smallest length scales in our multi-scale
wavelet bases. All other orbitals Ψ3 to Ψ9 are valence or-

bitals which mainly correspond to intermediate length

scales. In Table 1, we have listed absolute errors of

the non-standard algorithm without further truncation,
i.e., ǫ = 0, for D2, D4 and D10 Daubechies wavelets.

For D2 the error is of the order of machine accuracy

whereas for D4 and D10 substantially larger errors due

to the finite level cut-off for the coupling coefficients has

been observed. The errors for D4 and D10 are at most
10−6 a.u. and therefore acceptable for the Hartree-Fock

model. In order to benefit from the non-standard algo-

rithm, it is necessary to truncate the evaluation of prod-

ucts at a certain threshold ǫ. The effect of truncation on
exchange integrals are listed in Table 2. It can be seen

that the D2 wavelet outperforms D4 and D10 wavelets

of higher degree which is a consequence of the exact rep-

resentation of wavelet products. For wavelets of higher

degree, the expansion of wavelet products gives rise to
additional truncations which results in a larger approx-

imation error.
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Table 1 Accuracy of exchange integrals for C2H6 molecule using
the non-standard algorithm for the computation of products of
orbitals. Besides a level cut-off for the coupling coefficients no

further truncation has been performed, i.e., ǫ = 0. Absolute errors
are given for D2, D4 and D10 Daubechies wavelets.

Ψa Ψb Ψ1 Ψ2 Ψ1 Ψ3 Ψ3 Ψ4 Ψ4 Ψ5 Ψ5 Ψ6 Ψ6 Ψ7 Ψ7 Ψ8 Ψ8 Ψ9

Kab 1.58 2.12E-2 1.14E-1 5.13E-2 1.94E-2 1.98E-2 2.00E-2 2.34E-2

Abs. error

D2 2.00E-14 1.28E-16 9.99E-16 4.30E-16 1.80E-16 2.08E-16 1.91E-16 1.98E-16
D4 1.99E-07 8.88E-09 6.08E-09 2.42E-09 1.06E-08 1.07E-09 2.08E-09 1.75E-08
D10 2.34E-06 1.64E-06 7.28E-07 5.43E-09 1.23E-09 3.88E-10 2.04E-09 2.19E-09

Table 2 Effect of truncation for products of orbitals on exchange
integrals of C2H6 molecule for D2, D4 and D10 Daubechies
wavelets. Different values of the threshold ǫ are considered.

ǫ 1.0E-2 1.0E-3 1.0E-4 1.0E-5 1.0E-6

Ψ1 Ψ2

D2 6.44E-02 2.94E-03 2.71E-05 2.11E-06 1.23E-07
D4 2.58E-01 4.36E-02 5.29E-04 2.41E-04 3.04E-05
D10 0.629796 1.05E-02 1.62E-03 2.33E-04 1.14E-05

Ψ1 Ψ3

D2 1.32E-03 2.79E-05 2.04E-06 7.01E-08 3.73E-10
D4 4.09E-03 1.35E-03 9.78E-05 1.98E-06 6.21E-07
D10 1.49E-02 2.70E-04 4.97E-05 6.47E-06 1.47E-06

Ψ3 Ψ4

D2 6.67E-03 1.69E-04 1.24E-05 4.14E-07 1.70E-08
D4 4.25E-03 1.57E-03 1.76E-05 1.60E-05 2.35E-06
D10 3.17E-03 3.85E-04 7.60E-05 1.04E-05 1.13E-06
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7 Conclusions

We have studied a specific application of Beylkin’s non-

standard algorithm for the computation of products
of orbitals, represented by wavelet bases, in quantum

chemistry. The basic task is to find efficient algorithms

for the computation of two-electron integrals which rep-

resents a bottleneck for many models in electronic struc-

ture calculations. We are presently studying a tensor
product based approach for which the computation of

products represents an essential step. The non-standard

algorithm allows full exploitation of adaptivity which

is of great significance for our envisaged applications
in quantum chemistry. Different types of Daubechies

wavelets have been considered for this purpose and it

turned out that for our applications potential advan-

tages of wavelets of higher degree are counterbalanced

by their larger supports and an additional effort re-
quired for the expansion of wavelet products. This addi-

tional effort cannot be compensated by adaptivity. Fur-

thermore, the finite level cut-off for coupling coefficients

of higher degree wavelets introduces an additional ap-
proximation error which leads to larger thresholds for

truncation in order to achieve a certain accuracy. It

seems that simple D2 Haar wavelets are most suitable to

compute products of orbitals in an efficient manner uti-

lizing adaptivity and taking into account the multi-scale
character of the problem under consideration. Finally,

we want to mention that more complicated molecules,

especially those including heavy elements, are much

more challenging concerning adaptivity and for these
molecules the real benefits of the non-standard algo-

rithm should become even more visible.
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