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Abstract

In the present paper, we present the numerical analysis of the Quantics-Tensor-
Train (QTT) methods for numerical solution of the elliptic equations in higher di-
mensions. The ε-accurate solutions in the Frobenius norm can be computed with the
complexity O(d logq ε−1), where d ≥ 2 is the spatial dimension, and q ≥ 2 is some fixed
constant. This seems to be the nearly optimal asymptotical computational cost to be
expected in the d-dimensional numerical simulations.
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1 Introduction

The construction of efficient and robust numerical methods for elliptic boundary value and
spectral problems in higher dimensions gives rise to the challenging mathematical and algo-
rithmic problems. The effective solution of arising computational problems can be accom-
plished based on the modern concept of tensor-structured multilinear algebra.

In the present paper our main goal is to demonstrate by extensive numerics that, based on
the so-called quantics-TT tensor formats, the asymptotical complexity O(d logq ε−1), q ≥ 2
can be really achieved for large dimensions d, for high accuracy ε > 0, and with the small
constant in the front of O(·). Another methods [3, 2, 9] can be based on the canonical
decomposition [10, 4, 1]. The approximation in canonical format is known to be ill-posed
and there are no robust numerical algorithms with guaranteed accuracy and cost. In three-
dimensional case Tucker format [6, 5] is a good alternative for the canonical representation
[15, 20, 16], but it is not directly applicable to high dimensional problems (cf. [15] for the
combined Tucker-canonical model).

The tensor-train (TT) decomposition [21, 18] is free from the curse of dimensionality and
can be computed by standard stable algorithms of linear algebra (SVD and QR decomposi-
tions). Therefore it is very promising for high-dimensional applications. The Quantics-TT
(QTT) format [14, 19] combines the idea of “virtual levels” in auxiliary higher dimensions
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with the tensor-train decomposition, and attains logarithmic complexity in the number of
tensor entries. It is closely related to the approximation of functions by the sum of exponen-
tials [11, 22], however it is much more general and the approximation has controlled error
and scales linear in log2 n, where n is a number of vector entries.

In the present paper, we combine TT decomposition in d dimensions with QTT represen-
tation of “small” n×n matrices and vectors of length n for numerical solution of the elliptic
boundary value and spectral problems in higher dimensions. The ε-accurate solutions in the
Frobenius norm can be computed with the complexity O(d logq ε−1), where q ≥ 2 is some
fixed constant. This result seems to be the nearly optimal in the sence asymptotical compu-
tational cost vs. accuracy, to be expected in the d-dimensional numerical simulations. The
numerical algorithms are based on the idea of truncated preconditioned iteration [8, 12, 14]
via the TT-approximation method [18, 21], and combined with the quantics reshaping of the
arising multidimensional arrays [19, 14]. The asymptotical performance is demonstrated by
numerous numerical examples.

The rest of the paper is organised as follows. Section describes the construction of QTT
approximate elliptic operator inverse via truncated preconditioned iteration. The efficient
implementation is essentially based on the new type of sinc-quadratures via recursive scheme
proposed in §2.4. In §2.5, we discuss the representation of d-Laplacian inverse in the QTT
and canonical-QTT matrix formats. Section 3 presents various numerical illustrations con-
sidering high dimensional Poisson and anisotropic Poisson equations, 3D convection-diffusion
equation, as well as the 3D spectral problem for the Schrödinger equation for the hydrogen
atom. The important issue is not the only featuring the linear dependence on the physical
dimension, but also demonstration on the log-scaling in the grid size. The later allows really
high resolution in FEM/FDM schemes. The future prospects of the QTT-based numerical
methods are discussed in Section 4.

2 QTT approximation of elliptic operator inverse

2.1 Quantics-TT representation of tensors

The solution vectors arising in d-dimensional discretisations of elliptic equations are rep-
resented by the N -d tensors in R

I that are real-valued arrays over the product index set
I = I1× ...× Id with Iℓ = {1, ..., nℓ}. For the ease of presentation we set N = nℓ, ℓ = 1, ..., d.

In this paper, our favorable rank-structured representation of N -d tensors is based on
the so-called TT format [21, 18]. The rank-(r0, ..., rd) tensor-train (TT) format is defined
in the spirit of Tucker model, but with essentially reduced “connectivity” constraints. As
in the case of canonical format it scales linearly in both d and N . We describe a slight
generalisation of the TT-format to the case of “periodic” index chain given by the following
definition [14].

Definition 2.1 (Tensor train/chain format). Given the rank parameter r = (r0, ..., rd),
and the respective index sets Jℓ = {1, ..., rℓ} (ℓ = 0, 1, ..., d), with the periodicity constraints
J0 = Jd. The rank-r tensor chain (TC) format contains all elements V in Wn = R

I that
can be represented as the chain of contracted products of 3-tensors over the d-fold product
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index set J := ×d
ℓ=1Jℓ,

V = {×ℓ}d
ℓ=1G

(ℓ) with given 3-tensors G(ℓ) ∈ R
Jℓ−1×Iℓ×Jℓ . (2.1)

Denote this set of tensors by TC[r, d] ≡ TC[r,n, d]⊂ Wn. The parameters d,n can be skept
upon the context.

In the case J0 = Jd = {1} (disconnected chain), this construction coincides with the
original definition of TT format in [21, 18], thus implying TT[r, d] ⊂ TC[r, d].

Quantics representation of N -d tensor with N = 2L is based on its binary reshaping
(folding) to the auxiliary 2-D tensor of size 2 × 2 × ...× 2︸ ︷︷ ︸

dL

, leaving in higher dimensional

tensor space R
{1,2}⊗D

with “virtual” dimension D = d logN (cf. [14, 19]). The advantage
of such a reshaping transform, F : Wn → R

{1,2}⊗D

, is the possibility for the low rank
tensor structured representation in the D-dimensional quantics tensor space thus reducing
dramatically the multilinear operational complexity fromNd toO(d logN). In particular, the
exponential N -vector has quantics rank 1, hence, it can be represented by 2 logN numbers
as declared in the following lemma (cf. [14]).

Proposition 2.2 For a given N = 2L, with L ∈ N+, and c, z ∈ C, the single exponential
vector X := {xn := czn−1}N

n=1 ∈ C
N , can be reshaped by the successive dyadic folding to the

rank-1 2 × 2 × ...× 2︸ ︷︷ ︸
L

-tensor representation (shortly, to the rank-1, 2-L tensor),

X 7→ A = c⊗L
p=1

[
1

z2p−1

]
, A : {1, 2}⊗L → C. (2.2)

The number of representation parameters is reduced dramatically from N to 2 log2N .
In turn, the trigonometric N-vector has the TT-rank equals to 2.

Proposition 2.2 implies that the single exponential N -vector is exactly represented by the
rank-1, 2-L tensor, hence the R-term sum of exponential vectors, {xn :=

∑R

k=1 ckz
n−1
k }N

n=1,
can be exactly reconstructed by the rank-R, 2-L tensor with the storage cost 2R log2N .
Clearly, the similar folding strategy can be applied to matrices and N -d tensors with d ≥ 3.

In the case of a general vector/matrix/tensor, the resultant 2-dL folding tensor can be
approximated in the low rank TT-format. We call such rank-structured tensor representation
as the quantics-TT tensors or shortly, QTT-representation. The above mentioned gainful
properties of exponential vectors indicate the class of functions to be well approximated in
the QTT tensor format.

2.2 Truncated preconditioned iteration

We consider the model discrete elliptic problem of stationary type

LU ≡ (∆d + V)U = F, U ∈ R
I , I = [1 : n]⊗d, (2.3)

where ∆d stands for the finite difference negative Laplacian in R
d, that allows the Kronecker

rank-d representation,

∆d = A⊗ In ⊗ ...⊗ In + In ⊗ A⊗ In...⊗ In + ...+ In ⊗ In...⊗ A, ∆d ∈ R
I⊗I ,
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with A = ∆1 = tridiag{−1, 2,−1} ∈ R
n×n, and In being the n× n identity. Notice that the

numerical algorithm presented applies to the general case of non-equal grid size in different
dimensions.

Here the matrix V ∈ R
I×I represents certain interaction potential, say, a sum of the

Newton potentials centered at different spacial points in R
d. The class of quasi-linear elliptic

equations corresponding to the case V = V0 + V(U) can be considered as well. In this case
the TT-Cross approximation [21] can be applied.

Following [12, 14], we make use of the so-called S-truncated preconditioned iteration.
Specifically, we choose the manifold S of rank structured QTT tensors, and then perform
the truncated iterations over S by projection of the current iterand onto this manifold.

For the linear system (2.3) the truncated preconditioned iteration takes the form

Ũm+1 = Um − B−1(LUm − F ), U (m+1) := TS(Ũ (m+1)),

where the truncation operator TS : R
I → S is defined by the nonlinear approximation

procedure that “projects” the respective vectors onto the manifold S by using SVD/QR-
based algorithm in [18]. The initial guess is chosen as an element U0 ∈ S. Given the
quadratue parameter M ∈ N+, the preconditioner B−1 can be specified as a rank-structured
approximate inverse of the d-Laplacian, B−1 = BM , that will be represented explicitly by
low TT-rank expansion [14], using the family of matrix exponentials, exp(−tk∆1), tk > 0,

BM :=
M∑

k=−M

ck

d⊗

ℓ=1

exp(−tk∆1), tk = ekh, ck = htk, h = π/
√
M. (2.4)

In the following, to specify the explicit dependence on a sequence {tk}, we call the respective
representation as the tk-quadrature. The numerical illustrations on the practical efficiency
of this quadrature in higher dimensions are given in Section 3.

In the present paper, we also consider the truncated Green function iteration (cf. [13]
and refrences therein) for solving the spectral problem,

(∆d + V)U = EU, ‖U‖ = 1, U ∈ R
I . (2.5)

This iteration takes the form

Ũm+1 = (∆d − EmI)
−1VUm, Um+1 := TS(Ũm+1), Um+1 :=

Um+1

||Um+1||
,

and Em+1 is recomputed at each step as a Rayleigh quotient:

Em+1 = 〈LUm+1, Um+1〉.

The particular numerical illustrations are presented in Section 3 for the Schrödinger equation
describing the hydrogen atom.

2.3 Computation of matrix exponentials: basic schemes

There are several ways to compute the family of the matrix exponentials exp(−tk∆1) in
the QTT format. For “small” one-dimensional mode sizes n (n ≤ 256 on our current-state
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computational environment) such computation can be performed fast by using standard
approaches, even separately for different k = −M, ...,M . For the symmetric case, the matrix
∆1 can be diagonalized ones and for all at O(n3) cost and then all exponents are computed
cheaply (only the exponents of diagonal matrices have to be computed).

For the nonsymmetric case, as in the convection-diffusion equations, the Schur decompo-
sition can be used to reduce the matrix in question to triangular form and compute exponent
of the triangular matrix by known methods. This would yield O(n3)-algorithm which is nom-
inally high but practically viable for moderate n. Finally, the conversion of a full n×n matrix
into QTT format takes O(n2) time, using the algorithm of [19].

For large n another approach is needed. A good idea is to use some truncated iteration
for the matrix exponential. First, it is easy to convert the Laplace operator ∆1 to the QTT
format (it can be done by simple algebraic manipulations). For example, standard 3-point
stencil for the second derivative gives a matrix with QTT ranks not larger than 3. For the
(approximate) computation of the matrix exponential scaling-and-squaring method can be
used, which is the most suitable for rank-structured format. The matrix B = −tk∆1 is first
scaled by 1

2s with s ≈ log2 ||B||, so that

1

2s
||B|| ≤ 1.

Then for a scaled matrix C = 1
2sB the exponent is computed by Taylor series

exp(C) ≈
N∑

k=0

Ck

k!
,

in N multiplications using a Horner rule:

Ck =
1

k
Ck+1C + I, k = N − 1, N − 2, . . . , 1, 0,

and CN = I. Of coarse, all multiplications are performed in a structured format (QTT
format here) and the compression is done at each step. After EN = C0 is computed, the
final exponent is obtained by squaring:

exp(B) = exp(C)2s

in s ≈ log2 ||B|| steps. This iteration requires N + s matrix-by-matrix multiplications with
compression, and if we assume that approximate ranks are bounded by r at each step, then
the complexity is

O(r6 log n)

operations, since after multiplication of two QTT matrices with compression ranks r the
result has compression ranks r2, and recompression requires O(r6 log n) operations. It is
worth to note that the recompression step dominates over the multiplication step, since all
mode sizes are equal to 4. The computation scheme for a matrix exponential of a QTT
matrix is given in Algorithm 2.1.

Unfortunately, the number of outer iterations (i.e. s) can be large. For example, for
M = 30, that usually gives accuracy of order 10−7 for the quadrature, tk can be large (of
order 107), and the number of additional iterations can be rather high. Thus, a special
quadrature is needed.
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Algorithm 2.1 Computation of a matrix exponential in QTT format

Require: Matrix A in QTT format, approximation parameter ε, parameter N (for Gorner
rule).

Ensure: Φ = expA in QTT format
1: Estimate ||A||2 by structured QTT power iteration:
2: Scale: s = ⌈log2B⌉, B = 1

2sA.
3: {Compute expB by Horner rule:}
4: CN = I.
5: for k = N − 1 to 1 step −1 do

6: Ck = 1
k
Ck+1C + I

7: Ck = TT COMPRESS(Ck, ε)
8: end for

9: {Compute expA}
10: Φ := C0

11: for k = 2 to s do

12: Φ := TT COMPRESS(Φ2, ε)
13: end for

2.4 A new quadrature via recursive scheme

Suppose we want to have a simple recursion that connects previously computed exponents
exp(−tp∆1), p < k, with the new one for the number k. Denote these matrices by Φk,

Φk = exp(−tk∆1).

The simplest possible recursion is
Φk = Φ2

k−1,

corresponding to
tk = 2tk−1.

This is possible by choosing M such that

eh = 2,

or equivalently,

h = log 2 =
π√
M
,

therefore

M =

(
π

log 2

)2

≈ 20.54.

Since M should be integer, so we select M = 21 or M = 20 and slightly modify h (h = log 2
to make the recursion exact. This yields a new quadrature formula with

tk = 2k, ck = 2k log 2, k = −M, . . . ,M. (2.6)

This quadrature will be called 2k-quadrature.
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The accuracy of quadrature formula (2.6) depends on the interval where it is considered
(i.e. on the spectrum of ∆1), but it always gives an excellent approximate inverse to serve as
preconditioner (with relative accuracy not smaller than 10−3). The special structure of the
quadrature nodes allows the computation of all exponents fast, in 2M + 1 multiplications
— in exact arithmetic. However, in the approximate case, the error may accumulate during
the squaring (since for k = −M the exponents are close to the identity matrix), and a
mixed scheme is more preferable. Up to some k0 the exponents are computed by scaling
and squaring method, and after that they are just the squares of the previously computed
exponents.

A similar approach can be adopted to obtain a more accurate quadrature. Another
possible recurrence relation is

Φk = Φk−1Φk−2,

or
tk = tk−1 + tk−2.

If we denote by a the exponent eh, then a should satisfy the quadratic equation

a2 − a− 1 = 0,

therefore a is a golden ratio:

a = ρ =
1 +

√
5

2
≈ 1.6180.

The corresponding M is larger:

M =

(
π

log ρ

)2

≈ 42.62,

so one can choose M = 42 or M = 43. The corresponding quadrature weights and nodes are

tk = ρk, ck = ρk log ρ.

This quadrature formula is around 1000 times more accurate than 2k-quadrature. The
number of quadrature points can be slightly decreased, since the norm of several first and
last summands is negligible.

There are other possible recursions:

Φk = Φ2
k−2, i.e. tk = 2tk−2, and Φk = Φk−2Φk−3, i.e. tk = tk−2 + tk−3,

and so on, which lead to increased M and increased accuracy, yielding a whole family of
“cheap” quadrature rules.

A scheme for computing the family of matrix exponentials exp(−tk∆1) for 2k-quadrature
is given in Algorithm 2.2. All other cheap quadrature formulae are implemented in the same
fashion.

Remark 2.3 The number of matrix-by-matrix multiplications in Algorithm 2.2 is

N(M + k0)N + (M − k0 − 1),

and it seems that choosing k0 to be as close to −M as possible gives lower complexity.
However, it may lead to considerable loss of accuracy. No theoretical estimates are available
yet, but numerical experiments confirm that k0 = 0 is generally a good choice, at least for
A = ∆1.
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Algorithm 2.2 Computations of a family of matrix exponentials for 2k-quadrature

Require: Matrix A is in QTT format, accuracy parameter ε > 0, parameter −M ≤ k0 ≤M ,
number of quadrature points M

Ensure: Approximation to matrices Φk = exp(−2kA), k = −M, . . . ,M
1: for k = −M to k0 do

2: {Compute Φk = exp(−2kA) using Algorithm 2.1}
3: end for

4: for k = k0 + 1 to M do

5: Φk := TT COMPRESS(Φ2
k−1, ε)

6: end for

2.5 Laplacian inverse and Canonical-to-QTT conversion

As the first example of the proposed technique consider the discretization of d-dimensional
Laplace operator on uniform grid with n = 2D points in QTT format and its inverse via sinc
quadrature. The simplest but interesting case (up to a scaling factor) is

△1 = tridiag[1,−2, 1],

which is the standard discretization of the one-dimensional Laplace operator. The compres-
sion of the representation (2.4) to QTT format is performed in two steps. Each individual
exponent exp(−tk∆1) is computed in QTT format, then each summand is computed by
taking Kronecker products of “one-dimensional” exponents (this can be done simply by con-
catenation of corresponding cores, [19], so no work to be done). Then the new tensor is
added to the current approximation, which is compressed with some accuracy parameter ε
to avoid unnecessary rank growth. It is observed numerically that during this procedure the
rank do not grow. This procedure is valid not only for the particular case of the inverse
to the Laplacian operator, but also for the compression of arbitrary tensor in the canonical
format to QTT format, so we give it here in the general setting.

The whole method is summarized in Algorithm 2.3. The computational complexity
(provided that all matrix exponents are already computed in QTT format) is estimated as
O(RDr3), where r is the typical TT rank in the computations, and R = 2M + 1 is the
number of summands (initial canonical rank). Note that the mode size n = 2D enters the
estimate only logarithmically.

After the representation for the inverse is computed, it can be stored and applied to
any QTT vector very cheap. Therefore, the first step, i.e. compression prpcedure, can be
considered as a precomputation step, since usually the inversion of the Laplace operator is
required many times during the iteration process. Hence, the approximate inverses can be
precomputed for a range of acceptable values of d and n and stored.
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Algorithm 2.3 Canonical-to-QTT compression

Require: d-dimensional tensor A in canonical format with factor matrices U1, U2, . . . , Ud of
sizes 2D ×R, required accuracy ε > 0.

Ensure: Approximation B in QTT format of A.
1: {Rank-one update QTT}
2: Set B to a zero TT tensor with dimension dD and mode sizes 2.
3: for k = 1 to R do

4: {Compress rank-one term}
5: Set TT to a zero TT tensor with dimension dD and mode sizes 2.
6: for i = 1 to d do

7: V := Ui(:, k), compress V to QTT with parameter ε.
8: TT := TT × V (by merging the cores)
9: end for

10: B := B + TT, in TT format (the core sizes are doubled).
11: B := TT COMPRESS(B, ε).
12: end for

3 Numerical experiments

3.1 Poisson equation in high dimension

As a first example we consider approximate solution of Poisson equation. In Table 3.1 we
present numerical results for d = 3 and grid sizes up to 210. The right-hand side is a vector of
all ones. We present timings (in seconds) for the construction of matrix exponentials (“Step
1”), for the computation of the Canonical-to-QTT conversion (QTT). This can be considered
as a precomputational step. The computed QTT approximate inverse can be stored. Time
required for a solution of a system with a single right-hand side is also given. The quality of
the solution can be measured in two ways. The simplest is the relative residue,

||Ax− f ||/||f ||.

However, in the as the order of the matrix grows, so does the condition number, and we can
have a small relative error in the solution itself, but large residue. Usually, the case with
known analytical solution is considered, and the L2 error is computed. However, in our case
we can provide a simple and cheap error estimator for the solution:

||x− x̂|| ≈ ||X(Ax− f)||,

where X is the computed approximate inverse.
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n Step 1 Step 2 Time for sol Residue Relative L2 error
25 2.12 0.46 0.03 1.5e-04 7.2e-06
26 4.83 0.98 0.07 2.0e-04 7.5e-06
27 7.34 1.66 0.11 7.4e-03 6.3e-06
28 10.01 2.67 0.19 2.1e-04 8.3e-06
29 12.43 7.68 0.36 2.0e-04 1.0e-05
210 18.71 27.89 0.49 1.7e-03 1.8e-05

Table 3.1: Numerics for 3D Poisson equation, using 2k-quadrature

The analogous results are presented for d = 10 in Table 3.2.

n Step 1 Step 2 Time for sol Residue Relative L2 error
25 1.90 2.29 0.14 3.34e-05 8.79e-06
26 2.77 4.28 0.34 5.07e-05 8.23e-06
27 4.68 8.56 0.58 1.18e-02 7.35e-05
28 6.94 12.98 0.78 4.42e-01 7.81e-04
29 9.99 24.12 1.17 5.97e+00 1.75e-02
210 13.32 45.37 1.48 1.0774e+00 6.23e-01

Table 3.2: Numerics for 10D Poisson equation, using 2k-quadrature

However, when we go to larger d, then the method that uses Canonical-to-QTT com-
pression does not work at all. It is interesting to explain why it is happening, since we have
a very good approximation to the inverse matrix in Frobenius norm:

||X − X̂|| ≤ ε||X||F .

The problem is that a good approximation of the inverse matrix in the Frobenius does not
guarantee that the solution Xf is good enough. The problem is that the d-dimensional
Laplace operator (and it inverse) has eigenvalues with high multiplicity. Indeed, the eigen-
values of the inverse to the d-dimensional discretization of the Laplace operator are

Λ(k1, k2, . . . , kd) =
1

λk1
+ λk2

+ . . .+ λkd

, 1 ≤ kℓ ≤ n,

where λk, k = 1, . . . , n are the eigenvalues of △1. If kℓ are all distinct, then the correspond-
ing eigenvalue has multiplicity d!. For example, minimal and maximal eigenvalues have
multiplicity 1. The approximation in Frobenius norm “captures” only eigenvalues of high
multiplicity, for large d, whereas eigenvalues that lie closer to the border of the spectrum
are not approximated. Even setting the approximation parameter ε to machine precision
10−15 will not help, since the required resolution is of order O(1/d!). This explains the dete-
rioration of the error for ten-dimensional equation compared to three-dimensional one. The
conclusion is that approximation in Frobenius norm is not well suited for high-order matrices.
However, the approximation can be applied for construction of O(d logN)-preconditioner.
Next table demonstrate the effect of preconditioning in the case of huge grids.
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n Step 1 Step 2 Time for sol Residue Relative L2 error
211 21.87 38.25 0.80 9.5e-03 4.3e-05
212 28.08 47.30 0.80 2.5e-02 1.4e-04
213 33.60 53.90 1.05 1.9e-01 5.3e-04
214 45.15 60.44 1.21 5.4e-00 2.1e-03
215 47.73 63.02 1.45 2.0e+01 8.3e-03

Table 3.3: Numerics for 3D Poisson equation, using 2k-quadrature on large grids, n ≥ 211.

For accurate approximation some other norm is needed. The quadrature formula gives
uniform approximation of the spectrum, i.e. good approximation in the spectral norm:

||∆−1
d −B||2 ≤ ε||B||2.

Further approximation of B in Frobenius norm destroys this property, therefore an good
approximation by QTT format is needed in spectral norm:

C = arg min
D∈S

||B −D||2.

However, we only have fast approximation procedure in the Frobenius norm, as well as some
linear algebra operations, like multiplication of matrices in QTT format. Based on these
ingredients, it is possible to design a heuristic iterative algorithm for best approximation in
spectral norm by structured matrices [17]. It requires few matrix-by-matrix multiplications
at each step and a best approximation to a certain matrix in Frobenius norm which are
readily available.

However, this approach is quite expensive, and a more simple remedy is to used mixed
Can-QTT (or simply CQTT) format, when we approximate each individual factor in QTT
format but do not assemble the full QTT matrix. It is easy to design an algorithm for matrix
and vector operations in such format, using algorithms from TT Toolbox. The results for
d = 100, given in Table 3.4 confirm that no collapses occur with this mixed format. Now,
as a precomputation, we have time for evaluation of matrix exponentials. As a pay off, the
solution time is now slightly higher, but still it is linear in d and logarithmic in grid size n.

n Precomp Time for sol Residue Relative L2 error
25 1.70 1.57 9.1e-06 8.9e-06
26 2.56 1.98 7.8e-06 7.3e-06
27 4.19 2.45 7.3e-06 7.1e-06
28 6.14 2.98 6.6e-06 7.0e-06
29 8.37 3.52 8.7e-06 7.0e-06
210 10.81 4.02 9.4e-06 7.0e-06

Table 3.4: Numerics for 100D Poisson equation, using 2k-quadrature
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3.2 Anisotropic diffusion

The next numerical examples concern Poisson equation with different diffusion coefficients
along each mode:

∆d = a1A⊗ In ⊗ ...⊗ In + a2In ⊗ A⊗ In...⊗ In + ...+ anIn ⊗ In...⊗ A,

where A = △1. The same approach is used to construct the approximate inverse, however
we have to compute the following matrix exponentials:

exp(−aℓtk△1), ℓ = 1, . . . , d, k = −M, . . . ,M,

i.e. there are d(2M + 1) exponents to compute, so the precomputation step is considerably
slower, but still free from the exponential dependence on d. We use mixed Can-QTT format
for the computations in 3D case, however, full QTT format is faster). The results for d = 3
are given in Table 3.5

n Precomp Time for sol Residue Relative L2 error
25 16.48 0.07 8.6e-06 1.1e-05
26 30.39 0.08 8.3e-06 9.5e-06
27 52.85 0.13 8.4e-06 7.8e-06
28 74.41 0.15 8.4e-06 6.3e-06
29 93.88 0.19 8.4e-06 5.2e-06
210 103.80 0.19 8.4e-06 4.7e-06

Table 3.5: Numerics for 3D anisotropic diffusion, diffusion coefficients 1, 0.01, 0.0001

The results for d = 100 are given in Table 3.6

n Precomp Time for sol Residue Relative L2 error
25 234.54 1.52 8.1e-06 9.1e-06
26 327.47 1.82 8.1e-06 8.7e-06
27 499.01 2.27 8.4e-06 8.3e-06
28 576.82 2.71 8.3e-06 8.1e-06
29 710.18 2.93 8.4e-06 7.9e-06
210 757.36 3.37 8.4e-06 8.8e-06

Table 3.6: Numerics for 100D anisotropic diffusion, diffusion coefficients ci = 0.5i, i =
0, . . . , 99

As we can see, the timings depend from d at most linearly, and from the grid size –
logarithmically, as expected.
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3.3 Convection-diffusion problem

We can also treat problems convection-diffusion problems which lead to systems with non-
symmetric matrices. As a model example, we consider the equation in form

Au = f,

where

A = −
d∑

i=1

∂2

∂x2
i

+
d∑

i=1

ci
∂

∂xi

,

with zero boundary conditions, considered on d-dimensional unit cube. The discretization
with second-order Fromm’s scheme [7] give rise to the matrix of form

B =
d∑

i=1

Bi ≡ A1 ⊗ In ⊗ In + In ⊗ A2 ⊗ In + In ⊗ In ⊗ A3, (3.1)

where each Bi acts along the i-th mode, and corresponding “one-dimensional” matrices Ai

are of form

Ai =
1

h2
△1 +

ci
h




3
4

−5
4

1
4

1
4

3
4

−5
4

1
4

. . . . . . . . . . . .
. . . . . . 1

4
1
4

3
4



,

where h is a mesh size. The the same quadrature approach to construct the quantics-inverse
is used, since Bi commute and the computation reduces to the computation of several matrix
exponential from “one-dimensional matrices” tkAi. Each Ai is easily transformed into the
QTT format, and the exponentials are computed via the Algorithm 2.2. However, since
matrices Ai are non-symmetric, the quadrature performs worse, than in the case with zero
convection terms. The numerical results are presented in Table 3.7. We used the same
quadrature with M = 20 and Can-QTT matrix format.

n Precomp Time for sol Residue Relative L2 error
25 7.60 0.07 8.3e-04 3.0e-03
26 13.16 0.08 3.0e-04 2.8e-03
27 20.47 0.13 1.1e-04 2.6e-03
28 27.62 0.15 4.2e-04 2.5e-03
29 32.55 0.16 1.7e-05 2.3e-03
210 35.90 0.20 9.9e-06 2.2e-03

Table 3.7: Numerics for 3D convection-diffusion problem, convection coefficients c1 = c2 =
c3 = 10
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3.4 Schrödinger equation for the hydrogen atom

Another example is the Schrödinger equation for the hydrogen atom. It has form

(−1

2
∆ + V (r))ψ = Eψ, ψ ∈ H1

0 (R3),

where V (r) = 1
r
, with r being the Euclidean distance in R

3, and the eigenfunction related
to minimal eigenvalue is sought. The solution is known: E = 1

2
and ψ = Ce−r, so the

accuracy can be controled. First, the infinite region is restricted to some cube [−20, 20]3,
and a tensor uniform grid is introduced. To avoid singularity at 0, the grid is shifted by
half of the step size. The discretization of the Laplacian operator is given by ∆3 with zero
boundary conditions (since the exponential decay of the solution). The potential V (r) is
discretised by collocation scheme leading to the diagonal matrix V consisting of the values
of the function 1

r
at grid points. For this example the iterative recompression procedure is

required, since the matrix is only approximately separable.
We apply Green iterations to compute the approximate eigenvalue:

ψk+1 = (
1

2
∆3 − ÊI)−1V ψk, ψk+1 := TS(ψk+1), ψk+1 :=

ψk+1

||ψk+1||
,

and Ê is recomputed at each step as a Rayleigh quotient:

Ê = (Lψk+1, ψk+1).

For simplicity we take E as an exact eigenvalue, and compute the inverse to the shifted
Laplacian by the same 2k-quadrature.

Note, that the shift E here improves the conditioning of the matrix and the quality of
the approximation to the inverse.

Also the potential V (r) is cast into the TT format by applying a suitable quadrature rule
for the representation

1

r
=

2√
π

∫ ∞

0

e−t2r2

dt.

The results of numerical experiments are given in Table 3.8. The QTT representation for
ψ is truncated at accuracy ε = 10−10 at each iteration. The time for one iteration is now
higher than in other examples, since the QTT ranks of involved vectors are considerably
larger. We still observe logarithmic scaling in n.

n Time for 1 iteration Iter Eigenvalue error
27 8.5 8 6.1e-03
28 13 8 1.5e-03
29 18 8 4.0e-04
210 25 8 1.0e-04

Table 3.8: Schrödinger equation for hydrogen atom
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4 Conclusions and future work

In this paper, we showed by numerical experiments that QTT format can be applied to
different high-dimensional problems discretized on tensor grids with nd elements (n up to 210,
d up to 100). For fixed accuracy ε > 0, it provides almost optimal complexity O(d logα ε−1)
with small computational times even for large d and prototype MATLAB implementation.

The proposed approach is applicable for various large scale problems, not only in high
dimensions but also for small “physical” dimension (1, 2, 3), but enormous grid size (up to
n = 215). The method is very promising for different applications including anisotropic and
convection-diffusion elliptic equations, the Stokes and Navier-Stokes problems, stochastic
PDEs and equations of density functional theory, yielding a log-linear complexity for all of
them. This is a subject of future works.
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