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ENERGY IDENTITIES AND BLOW UP ANALYSIS FOR
SOLUTIONS OF THE SUPER LIOUVILLE EQUATION

JURGEN JOST, GUOFANG WANG, CHUNQIN ZHOU, MIAOMIAO ZHU

ABSTRACT. In this paper, we study the super Liouville equations, a natural
generalization of the Liouville equation. We establish energy identities and a
precise blow-up analysis for solutions of the super Liouville equations.

1. INTRODUCTION

In [JWZ], we have introduced the super Liouville functional, a conformally
invariant functional that couples a real-valued function and a spinor ¥ on a closed
Riemann surface M with conformal metric g and a spin structure,

1
Bww) = [ (3190l + Kyut (D + e, 0) - o, 1)
M
K, is the Gaussian curvature of M. The Dirac operator P is defined by Py :=
Zi:l e, - Ve, 1, where {ej, ez} is an orthonormal basis on TM, V is the Levi-

Civita connection on M with respect to g and - denotes Clifford multiplication in
the spinor bundle XM of M. Finally, (-, -) is the natural Hermitian metric on XM
induced by g. For the geometric background, see [LM] or [Jo].

The Euler-Lagrange system for E(u,) is

“Au = 20— () - K,
P = e

where A is the Laplacian with respect to g. These equations are called the super
Liouville equations.

in M. (2)

It is clear that, when v vanishes, we obtain the Liouville equation
—Au = 2e*" - K, in M. (3)

Liouville [Liou] studied this equation in the plane, that is, for K; = 0. The Liouville
equation is a basic equation for the complex analysis and differential geometry of
Riemann surfaces; in particular it shows up in the prescribing curvature problem.
It also occurs naturally in string theory as discovered by Polyakov [Po], from the
gauge anomaly in quantizing the string action. There then also is a natural super-
symmetric version of the Liouville functional and equation, coupling the bosonic
scalar field to a fermionic spinor field. This is the motivation behind the functional
(1). Note, however, that we consider ordinary instead of fermionic spinor fields
in the super-Liouville functional. An essential feature of the Liouville action is its

conformal invariance. For results by physicists about super-Liouville equations, we
refer to [CC] and [Pr].

The third named author supported partially by NSFC of China (No. 10871126).
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The conformal invariance of the super Liouville functional suggests that the space
of solutions is not compact, but that sequences of solutions may blow up at isolated
points, with a quantized loss of “energy”. In this paper, we wish to probe into
this blow up behavior, and in particular to relate the number of blow up points to
the genus of the underlying Riemann surface M. It turns out that for this anal-
ysis the precise coupling between the “bosonic” uw and the “fermionic” 1 is essential.

In technical terms, we shall be able to build upon [JWZ], where we have pro-
vided an analytic foundation for system (2). We have established the small energy
regularity theorem, proved a removable singularity theorem, and developed the
fundamental blow up analysis of solutions. The key analytical points are that sin-
gularities in solutions (un, ) of (2) on closed surfaces, or more generally with
bounded energy f e?%n 4 |1, |*, can form only at isolated points z where the limit
max{un (), |1, (x)|} tends to infinity. Away from those singularities u, () remains
either uniformly bounded or converge to —oo. The precise results are contained in:

Theorem 1.1. (see [JWZ]) Assume that (un,n) satisfy

_Aun — 262un — elUn <wn7 ql)n> - Kg, (4)
pwn = —e' '(/)nv
in M with the energy condition
/ e*ndv < C, and / |ihn|* dv < C. (5)
M M

for some positive constant C.
Define the blow up set of (un,n)

Y1 = {x €M, there is a sequence y, — x such that u,(y,) — +oo}
Yo = {x € M, there is a sequence y, — = such that |1, (yn)| — +oo}.

Then Yo C 31 and (un,n) admits a subsequence, still denoted by (un, Yy ), satis-
fying one of the following cases:
i) wup, is bounded in L*°(M).
i) u, — —oo uniformly on M.
iii) X 4s finite, nonempty and either

Uy, is bounded in LS. (M\X1)

or
Uy, — —00 uniformly on compact subsets of M\X;.

The challenge is to extend the full blow up theory for the Liouville equation, see
[BCL], [CL1], [CL2], [CL3], [LSh], [Ly] and [JLW] and the references therein. In
particular, this should contain the energy identity for solutions, the blow up values
at the blow up points, and the profile of solutions near the blow up point. Here, we
investigate these problems. What makes the analysis really interesting is that the
finer aspects of the blow up are revealed by analyzing the behavior of the spinor
part v, which, in fact, turns out to be similar to two-dimensional harmonic maps.

We can show



Theorem 1.2. Let M be a closed Riemann surface with a fized spin structure,
and suppose (un,y) is a sequence of smooth solutions of (4) and (5), with 31 =
{x1,29, -+ ,21}. Then there are finitely many solutions of (2) on S?: (u®* ™),
1= 1,2,---,1;k = 1,2,---,L;, such that, after selection of a subsequence, ¥y,

converges in C22, to 1y on M\X1 and we have the energy identity:

I L;
lim Up|dv = / Y|*dv + / PHEAdv. 6
im. Ml | M\ | SN Szl | (6)

1=1 k=1

The key point behind the energy identity in (6) is that the neck energy of spinors
1y, is zero. Therefore, as an application of the energy identity for spinors v,,, we
rule out the first case in (7i¢) in Theorem 1.1. This completes the qualitative picture
of the blow up process of u,,. The remaining quantitative aspects, i.e., the energy
identity for u,, and the profile of u,, at the blow up point, will be considered in a
later paper. Thus, we can state our Theorem as:

Theorem 1.3. Assume that (un, ) is a sequence of solutions to (4) and (5), and
the blow up set X1 # (). Then we have

Up, — —00  uniformly on compact subset of M\Xq,

and
2e%n — eu"‘wn|2 - Z ai§$i7
T;€X
in the distribution sense and with a; > 4.

Remark 1.4. In [JWZ], we have obtained this result under the condition ¥;\¥q #
0.

Further exploring the energy identity for spinors 1, we will compute the blow
up value at the blow up point. Assuming that p € 31, we define the blow up value
at p as

m(p) = lim lim (2e24n — v |hy, |*)dw.

r—0n—oo B (p)
T

To calculate the value of m(p), we need a Pohozaev type identity for smooth so-
lutions of (2). This will be established in the second section. With this Pohozaev
type identity and the asymptotic behavior of (u,,1,) at a blow up point obtained
in Theorem 1.3, we can show:

Theorem 1.5. If p € ¥, then we have m(p) = 4.

Furthermore, from (4) and the Gauss-Bonnet formula, we deduce

[ (e = e P)o = (1~ gur)
M
where gjs is the genus of M. Therefore we have the following Theorem:

Theorem 1.6. For the blow up set X1 we have

(1) If M is a closed surface with gpr = 0, then the blow up set X1 contains at most
one point.

(2) If M is a closed surface with gny > 1, then the blow set 1 = (). Thus, there is
no blow-up in this case.



We remark that in the case gp; = 0, ie, M is a sphere, the solution space is not
compact.

2. BASIC ANALYTIC PROPERTIES FOR SOLUTIONS

In this section, we first recall some basic analytic properties for solutions of super
Liouville equations obtained in [JWZ], which will be the key tools for the blow up
analysis. Then we prove a removability result for local singularities. At the end of
this section, we shall derive the Pohozaev identity for solutions.

Proposition 2.1. [JWZ] The functional E(u,) is conformally invariant. Namely,
for any conformal diffeomorphism ¢ : M — M, set

u = woyp—InA\

U= Aoy
where X is the conformal factor of the conformal map @, i.e., ©*(g) = A\2g. Then
E(u,¢) = E(u,¥). In particular, if (u,v) is a solution of (2), so is (4,).

We say that (u, 1) is a weak solution of (2) if u € W12(M) and ¢ € W3 (D(ZM))

satisfy
/ VuV odv
M

(W, P&dv = — [ ", &)dv
M M

for any smooth function ¢ and any smooth spinor . It is clear that (u,%) €
Wh2(M) x Wh3(I'(SM)) is a weak solution if and only if (u, ) is a critical point
of E in Wh2(M) x Wh3 (I(SM)). A weak solution is a classical solution by the
following

Proposition 2.2. [JWZ] Any weak solution (u,v) to (2) on M with [,, e*" +
[¢|*dv < 0o is smooth.

/ (262" — |2 — K, )bdv
M

Lemma 2.3. [JWZ] (gg-regularity) Let e < 7 be a constant. For any sequence of
solutions (Up,¥y) with

/ e?ndy < e, / [t |* da < C

r r

for some fized constant C' > 0 we have that ||u7—t||L°°(Br) is uniformly bounded.
E

It follows from Lemma 2.3 that the blow-up set ¥; can also be defined by

T, = ﬂ{x € M| lim inf/ e*rdr > eg}.
B(z,r)

n—oo
>0

Lemma 2.4. ([JWZ]) There is an 0 < g9 < 7 if (u,v) is a smooth solution to
(2) on B1\{0} with energy f|x\§1 e?Udx < eo, and f|x\§1 ||*dz < C, then for any

xEB% we have

ho(@)ljzlf + [Veb(a)lllt < O / [[*da)t.

Bz
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Furthermore, if we assume that e** = O(lxl%_s), then, for any x € B%, we have

[W(@)||z]2 + [V (@)|[z|* < Cla|e( /B RS

for some positive constant C. Here ¢ is any sufficiently small positive number.

Proposition 2.5. [JWZ] (Removability of a global singularity) Let (u,) be a
smooth solution of (2) in R? with [, e** + [ip|*dz < co. Then (u,v) extends to a
smooth solution on S®>. Moreover we have

/ 2e%% — e|4p|2dx = 4.
R2

In general, a local singularity of (u,)) is not removable. For example, if we set

S 1+ 22228

then wu is a solution of
—Au=2¢*,  in R?\{0}

where 8 > —1. Therefore (u,0) is also a solution of (2) with finite energy in R?\{0}.
It is clear that x = 0 is a local singularity which isn’t removable when 3 # 0.

Let z = x + iy be a local isothermal parameter of M with g = ds?> = p|dz?|.

Define the quadratic differential for (2) by
2 2 _ 52 1 L. 2

From Proposition 3.3 in [JWZ], we know that 8:T(z) = —18,K,. Hence T(2) is
holomorphic if the curvature of the surface is constant. On the other hand, it is
clear that fBT(O) |T'(z)|dz = 400 for (u,0) in the above example.

A simple, but crucial observation for the removability of local singularities is:

Proposition 2.6. (Removability of a local singularity) Let (u,) be a smooth so-
lution in B1\{0} of

—Au 2e% — ¥ (¢h, 1))
{ po = "

—eta)
with fBl e?% + [¢*dx < C. If the quadratic differential T(z)dz? satisfies

/ |T(2)|dz < C,
B

then the singularity of (u, ) is removable.

Proof. Since f B, e?“dx is conformally invariant, we assume for convenience that
fB1 e2tdr < g, where gp is as in Lemma 2.4. Since u is a smooth solution of

—Au = 2e* — "y
5



in B1\{0} with fBl e?" +|y|*dz < co. By the standard potential analysis it follows
that there is a constant v such that

) u
lim ——— =+.
lz|—0 — log ||

By fBl e?* + [1|*dz < oo we obtain that v < 1. Furthermore, by the argument of
Proposition 6.3 of [JLW], we can improve this inequality to v < 1.

Define v(x) by
1
o) =~ [ togle —yl2e - ety
1

and set w = u — v. It is clear that —Av = 2e?* — e%[¢)?| in By and Aw = 0 in
B1\{0}. One can check that

im 71)(3?) =
lz|—0 — log |z
which implies that
lim 710(:6) = lim —+ Y — vy
lz|—0 —log ||  |z|—0 —log|z|
Since w is harmonic in B;\{0} we have
w = —ylog|a] +wg
with a smooth harmonic function wg in D. Therefore we have

u=—vylog|z|+wy+v near0

Then by Lemma 2.4 we have

1) = T2 4o

2) =1 + O(Z—2 .
Since fBl |T(2)|dz < C we have v(y — 2) = 0, consequently v = 0. Then the
standard elliptic theory implies that (u, ) is smooth in Bj. O

We now come to the Pohozaev type identity for smooth solutions of super Liou-
ville equations.

Proposition 2.7. Let (u,v) be a smooth solution of (2). Then, for every geodesic
ball B C M,

1
R/ 22 _ L gy2d0
OBr 31/ 2

= / 2e%% — e|1h|2dv — R e*do
Br

dBr
1 oY o
+ BRKga:-Vudv+Q/Z’BR<&/’x.¢>+<z.¢’ay>dU

where v is the outward normal vector to OBg.

Proof. We choose a local orthonormal basis e;, ez on M such that V. esg = 0 at
a considered point. Denote x = z1e; + x2e2. As usual in deriving Pohozaev type
6



identities, we multiply the first equation of (2) by z - Vu and integrate over Br to
obtain

—/ Auzx - Vudv = / 2e2"y - Vudvy — / e[| - Vudv — Kyx - Vudv.
BR BR BR BR
By a direct computation we have

0
Auz - Vudv = R/ |—u|2 \Vu\%la,
Br

/ 2¢?%z - Vudv = R/ e?tdo — / 22 dv,
and

/BR e“|z/J|2m-Vudv:R/ e“|z/1|2da—/ e“x-V(|1/)|2)dv—2/ e[| dv.

Br Br Br

Therefore we have

1
R/ 22 - Lgurde
8Bg ov 2

= —-R 62“d0—|—/ 2e%“dv + R e|p*do
BBR BR BBR

—/ ez - V(|*)dv — 2/ e[| dv + / Kz - Vudv. (8)
Br Br Br

The local orthonormal basis {e1, e2} on M satisfies the Clifford multiplication re-
lation

ei'€j+€j'ei:_25ij7 for 1 <i,5 <2
and

(Yyp) = (eiY,ei - p)
for any spinors ¢, p € T'(XM). It is clear that
(,ei )+ (ei -, ¥) =0 (9)

for any ¢« = 1,2. Using the Schrodinger-Lichnerowicz formula EQ =-A+ %K g, We
have from the second equation of (2)

A = Zvea o — 2+ Ky (10)

Then we multiply (10) by z - ¢ (where - denotes the Clifford multiplication) and
integrate over By to obtain

/BR<A1/), P)dv —/B

eacthectlapdo— [ (=3 o,

R o,3=1
and
2 1
/BR@ ¥, A)do = . Q;I eg-w,Vea(e“)eaw)xlgdv—/BR(ez“—2Kg)<x~¢7¢>dv



On the other hand, by partial integration,

/ (A, 2 - Yo
Br

/BRdiv<Vw, V)dv — Z (Ve 1, eq - 1) dv—/BR<Vw,:c-V@/J)

BRr q=1

= [ Gorwios [ o~ [ (wv.av

Br
_ 87’(/) _ u 2 _ B
= [, Gorerwrdo— [ cwpan [ (vv.a-vy),

and similarly

/BR<:C~1/J,A7J1> /E)BR<I~¢,(Z1ﬁ>dJ/BR6“¢2dv/BR<g;.vw’v¢>_

Furthermore we also have

Ve, (€)eq -1, ep - wxgdv—i—/ Z eg -, Ve, (€ )eqy - Y)xgdy

Rozﬁl Raﬁl

(Ve (e")eq 1V, eq - P)xodv

2/ 2 V()| 2dv

Br

= 2 [ e VP [ ePdvrer [ el
Br Br 8BR

Therefore we obtain

R e“|w|2do—/ ez - V(|1*)dv
6BR BR

1 / o 1 )
= = (—,z-Y)do + 7/ (x -, — >d0—|—/ e“|YlPdv.  (11)
2 Jop, OV 2 JoBg Br
Putting (8) and (11) together, we obtain our Pohozaev type identity

1
R/ 242 _ L g0
OBr 81/ 2

= / 2e%" — e“|¢|?dv — R e*do
Br OBRr

1 o oY
+ BRKgx-Vudv+2/aBR<aV,ﬂf'¢> (z ¢, >

Il
b
m\
B
2

3. ENERGY IDENTITY FOR SPINORS

In this section, we shall prove the energy identity in Theorem 1.2. For harmonic
maps in dimension two and holomorphic curves as well as for Dirac harmonic maps
and solutions of certain nonlinear Dirac equations, similar results are derived in
[DT], [PW], [CJLW], [Z2] and the references therein. Firstly, we derive a local
estimate:

8



Lemma 3.1. Let (u, %) be a smooth solution of (2) on the annulus A,, ,, = {z €
R2|ry < |2 < 7o}, where 0 <71 < 2r; < 2 <1y < 1. Then we have

(/. vl ~(f ) Wﬁ (12)

27y, 5 271, 5
1 1
[plH) + (/ [p[*)
Arg |
Zora

SA(/AT i teedf

1,72 T1:T2 1,271
for a positive constant A and some universal positive constant C.

Proof. Let D be the unit disk. Choose a cut-off function n € [0,1] on D satisfying

UEC(C))O(AThTz); n=1in A2T1;T72
4 4

|V77| < —1In Ar1,2r1§ \Vn| < —inAr ro
1 T2 2

By LP boundary estimates for Dirac operators, see Lemma 2.2. in [CJW], we have
([ et < o
4.3 4.3
c([ mpulhyt+ o [ (vall)
D D
= o mewbt+o(f (valwnh?

c/r SHYRTCRERREY RO THRE

IN

IN

and

4
3

</D<|vm|w|>‘ )i

IN
S
<
=
=
e
\-,c:\w
+
—
<
=
=
Wl
e

INA
S
S
=
ol
e
+
|
—
=
ol
e

IN

cf |w|4>i+0</m 1)1,

1,271
Therefore we have

</ el el

7’2

A27'1
ié 1 ié
< /|ans4 (/IWI“ /|an“
<

af et it i (/A 1),

1,72 1,72 71,271

Now we apply Lemma 2.3 and the analytic properties in the second section to
prove Theorem 1.2.
9



Proof of Theorem 1.2. We will follow closely the argument for the energy identity
of harmonic maps, see [DT] and [CJLW]. Since the blow up set ¥; is finite, we
can find small disks D;, for each blow-up point z; such that Ds, ﬂng = () for
i # 44,5 = 1,2,--- 1, and on M\ Ui:l Ds,, 1, strongly converges to 1 in L*.
So, we need to prove that there are (u**, ¢%*) which are solutions of (2) on S2,
i=1,2,--- ,I;k=1,2,---, L;, such that

l
lim lim |¢n|4dv = § j§ j/ |E5F |2 dw,
§;—0n—oo D
i=1 =1 k=1
or

L;
hm lim [ |tdv = / 1E0F 4.
Ds; I; 52

§;—0n—oo

Without loss of generality, we assume that there is only one bubble at each blow
up point p. Then what we need to prove is that there exists a bubble (u, &), such
that

lim lim |¢n\4dv=/ €| *dv, (13)
5 S2

d—0n—oo

where Dy is a small neighborhood of the blow up point p.

Each (uy, ;) is then rescaled at the blow up point p. Choose z, € Dj such
that un(z,) = maxgp, un(x). Then we have z, — p and up(zn) — +o00. Let
)\n = e*“n(l‘n) — 0. Denote

Un(x) = up(Apx+zn)+lnA,

for any z € B_s_ (0). Then (@, (), Un () satisfies

Al () = 268 — |G, (@) - N,
Dipn(z) = _eu"(x)wn(x)
with the energy conditions

/ 2@ 4 |J ()] dv < C.
B 5 (0)

2Xxn

Since u,(0) = 0 and u,(x) < 0, it follows from Theorem 1.1 that only alternative
(i) may occur for @, (x). Therefore, we have for any R > 0

Uy, is bounded in LS (Bg(0)),
z/;n is bounded in LS. (Bgr(0)),

and by standard elliptic estimates then also in Og(B (0)). Finally, we pass to a
subsequence (which we will still denote by (T, ) ) converging in C’l “(R?) to u
and 1/1, which satisfy
AT = 2% oy
~ 14
Ui 2 N (14

10



with the energy condition [, e + |7:/;|4dx < 00. Therefore it follows from Propo-
sition 2.5 that

/ 2e%% — |y |2dx = 4.
R2

Furthermore, also by the removable singularity proposition 2.5, we get a noncon-

stant solution (1, ) of (2) on S?. Thus we get the first bubble at the blow-up point
p.

So in order to prove (13) we need to estimate the energy of v, in the neck
domain. Let

Asrn = {r € R®AR < |z — 2| <6}

We call As g, the neck domain, and the image of (uy,%y) is called the neck. Then
to prove (13) is equivalent to prove the following

lim lim lim [t |*dv = 0. (15)

R—03§—0n—oo As mn

For convenience and simplicity, we use a polar coordinate system as in [DT] and
[CILW]. Let (r,0) be the polar coordinates of R? centered at 0 and h = dr? +1r2df?
be the Eucliden metric on R2. Equip the cylinder R! x S! with the metric ds? =
dt? + df?, where S = R/27Z. Then the following map f : R! x S1 — R?

r=e*0=0I(t0) R xS

is a conformal transformation. One can verify that f*h = e~?!ds2. Given 1 > ry,
then, the annulus A,, ., = {re?|ry < r <} is mapped to the cylinder P, ;, =
[t1,t2] x S, where t; = —logr;,i = 1,2.

Denote Ty = |logd| and T;, = |log A, R|, then the neck domain changes to a
cylinder Ps g, = [Tp, Tp] x St. Let

{ vy, = f*u, +loge™?
on = e 2f"P,
Then (vy,, ¢, ) satisfies
—Av, = 2% — e, |?,
{ Pon = —ep “ o P (16)
n - ns

and with the condition fPéR e?'n + |pn|* < C. Therefore to prove (15), it is
sufficient to show

At ), el =0 "

Next we want to show two claims.

Claim 1 For any ¢, there is an NV > 0 such that for any n > N, we have

/ en +/ lon|* <5Vt € [To,Tn —1].
[t,t4+1]x ST [tt+1]xS*

11



To prove this claim, we note two facts. The first fact is: for any T > 0, set
Pr = [Ty, To + T] x S*, there exists some N(T') such that for any n > N(T) we

have
/ 0 4 palt <.
Pr

Actually, from Theorem 1.1, since (up,,) has no blow up point in Ds\{p}, then
|thy,] is uniformally bounded in Ds\ Ds.-7 , and u,, will either be uniformly bounded
in Ds\Ds.-7 or uniformly tend to —co in Ds\Ds.-7. So if u, uniformly tends to
—o0 in Dg\Ds,-r, it is clear that, for any given T' > 0, we have an N(T) big enough
such that when n > N(T)

3
/ €2U" :/ €2u71 < =,
Pr D,;\DM,T 2

Moreover, since v, converges to ¥ in L?OC
f* = ¢ in L* on Pp, namely,

[ tealt= [ttt
Pr Pr

For any small € > 0, we may choose § > 0 small enough such that fD(; [yt < 7

then for any given T > 0, we have an N(T') big enough such that when n > N(T')

g
lon]* < 5.
/pT "2

/ 2 4 onlt < e
Pr

If (up,ty) is uniformly bounded in Ds\Dgs,-r, then we know (u,,,) converges
to a weak solution (u,1)) of (2) strongly on compact sets of Ds \ {p} and hence
(Un, @n) converges to (f*u+ loge™, e~ 2 f*)) = (v, @) strongly on Pp, and

[ slpalto [ ot
Pr Pr

Again, we choose § > 0 small enough such that fDa e* + |[* < £, then for any
given T > 0, we have an N(T) big enough such that when n > N(T)

/ e + |50n|4 <é.
Pr

The second fact is: For any small € > 0, and T > 0, we may choose an N(T)
such that when n > N(T)

(M \ {p}) and hence ¢,, converges to

Consequently, we have

/ 621)" + |§0n|4 <g, QT = [Tn - T; Tn] X Sl'

T

This fact follows from the following equality:

| oemtientt= [ Pkl = [ <
T D, reT\DrnR Dy .7\Dr

if R is big enough.

12



Now we can prove the claim. We argue by contradiction by using the above two
facts. If there exists g > 0 and a sequence t,, such that

20, 4
/ e’ + |on|* > eo,
[tn,tn+1]x ST

then, by the above two facts, we know that t, — Ty and T,, — t,, tend to infinity as
n tends to infinity.
Translating ¢ to t — ¢, we get some (0, @), and for all n and for all R > 0, we

have
20y — 14
[ spliza
[0,1]x 51

and (U, ¢n) satistying

—AD, = 2% —e"|p,2 . 1
_ 5 in [-R,R] x §".
{ Do, = —e’o, [ ]
From Theorem 1.1, there are three possible cases:
(1). There exists some R > 0, some ¢q € [—R, R] x S* and energy concentration

near the point ¢, namely along some subsequence we have

lim ¥ 4+ B, |t > g0 >0

"D (q)
for any small » > 0. In such a case, we still obtain a second “bubble” by the
rescaling argument. Thus we get a contradiction.

(2). For any R > 0, there is no blow up point in [-R, R] x S! and #,, — —o0
uniformly in [~ R, R] x S'. Then, it is clear that %,, converges to a harmonic spinor
% (namely, P = 0) in L} (R! x S*). Note that harmonic spinors on surfaces are
special Dirac-harmonic maps studied in [CJLW] and hence @ conformally extends to
a harmonic spinor on 52. By the well know fact that there is no nontrivial harmonic
spinor on S2, we have that » = 0 and hence @, converges to 0 in L} (R! x S1).

loc
This will contradict
[0,1]x St

(3). For any R > 0, there is no blow up point in [-R, R] x S* and (9, @,) is
uniformly bounded in [~R, R] x S'. In such a case (¥, ¢,) will converge to (v, ¢)
strongly on [ R, R] x S and (v, ¢) satisfying

_ — 2v _ v 2
Avo= 27—l R R s
Py = —ep

with finite energy. In this case it is clear that (v,¢) € C°(R! x S!). Furthermore

(v, ) satisfies that [, o1 T(2)dz < C, where T(2) is the quadratic differential

1 1
T(2)dz* = {(9.v)* — &*v + Z<<p, dz - 0:) + Z<dg 0.0, ) Yd22.
Indeed, this property inherits from (u,,%,). Set

T,(2) = (Oetun)? = O + (o, - Osthn) + (7 Detbn )
13



It follows from Proposition 3.3 in [JWZ] that 0;T,(z) = —%@Kg. On the other
hand we can write T,,(z) as

T - ! / T(0) /D OT(E) 4.

© 2mip ap, 0 —2 , §—z

where p can be any number in (0, 1]. Then it follows that

/ |T.(2)|dz < C.
Ds

By the L'-norm of the quadratic differential is conformally invariant and (v, @)
converges to (v, @) strongly, we conclude that

/ T(2)|dz < C.
R1xS1

Note that R! x S! is conformal to S?\{N,S}. By Proposition 2.6 for the re-
movability of the local singularities, we get another bubble on S2. Thus we get a
contradiction to the assumption that m = 1.

Thus we have shown that: for any ¢, there is an N > 0 such that for any n > N,

we have
/ €2 4 [palt < e.
[t,t4+1]x 81

Thus we finish to prove the claim.

Claim 2 We can separate Ps r, into finitely many parts
N
Popn=J P Pr=[T"" T x 8T =T, T =T,
k=1
such that N < Ny, where Ny is a uniform integer for all n large enough, and on

each part
1
< — k=12, ,N.
/pke _4/\2’ 3 4y sy 4VE

where A is a constant as in Lemma 3.1.

The proof of this claim is very similar to those in [Zh] and [Z1]. The details are
as follows. Without loss of generality, we assume that T;, = Ty + m,,, where m,, is
an integer and lim,, o, m, = oo.

By Claim 1, for any ¢ < 8%, we can find N such that for any n > N we have

1
2v
e’ <e < —, Vte |y, T, —1].
/[f,,t+1]xsl 8A? [ ]

Then for any n > N, if

2v 1
e~ S A2
[To,Tp]x 51 4A

we take T' = T,, and denote P! = [T?, T'] x S! = [T, T;,] x St. Otherwise, if

/ 62'“71 > L
[To,T] X St 4A?’

we can choose an integer m) such that
14



1 < / 2v < 1 d / 2v > 1
—_— e n 77 an e n 7’
8A2 pl - 4A2 [TO,Tl +1] XSl 4A2
where 7! = T +m), P! = [T, T'] x S! and 1 < mj, <m} — 1. This is the first
step of the division.

Inductively, suppose that P! = [T'~!, T"] x S' is chosen such that [, €*’» < ;5.

If )
2v
esn < A2
‘/[Tl,Tn] % S§1 4A2

Then we take T'*! = T, and denote P'*! = [T, T'*!] x S'. On the other hand, if
1

2v
e?n >
/[Tl 7Tn] x S1 4A2 ’

then similar to the first step, we can find T'*! = T 4 ml+t pi+l = [Tt T+ x St
such that
1 ) 1 1
— < e’ < —, and e > —_
8A2 /PL+1 — 4A2 [T!,Tt+141]x S1 4A2
where m!, +1 < mit! < m,, — 1. Thus we can get one more part P'*! satisfying
Jpii e2vn < ﬁ. Since de . e2vs < C for some positive constant C, we will finish

our division after at most Ny = [8A2C] steps. So we have proved the claim.

Now from claim 1 and claim 2, we can show (17). Let ¢ > 0 be small, and let
6 be small enough, and let R and n be big enough. We apply Lemma 3.1 to each
part P! to obtain

1 v\ L 1
</ et < A & )2(/ PROE
pl [T1=1—1,T!+1]x S [T1-1—1,T141]x S
+ ol ot + ([ foul)}
[T1-1-1,T1-1]x S! [T!, Tt +1]x S1
<

A(</ e2“">%+e%+s%><</ ol )F + ¥ +e¥) + Ot
Pl Pl

< A(/ e%n)%(/ lonl)T +Ceh 42 +eb)
Pl Pl
1

< ([ lealt ol vt e e,
2" o

Therefore we have
([ Jonlt < 0ted 4t 4 e,
pl

Since ¢ is small, we may assume ¢ < 1. Then we get

([ teutt?t < et (13)

Pl
With similar arguments, and using (18), we have
([ 19ealt)?t < 2%, (19)
Pl

Summing up (18) and (19) on P! we get
15



No
[ ool [ wadi=Y [ et +vedi et )
Ps rn Ps pon =1 7P

Thus we have shown (17). The proof of the Theorem is complete. (]

4. BLOW UP BEHAVIOR

In this section, we will prove Theorem 1.1, which is an application of the energy
identity of spinors. The method is motivated by [BM].

Proof of Theorem 1.1. We argue by contradiction. If the theorem is false, then

we can assume that u, is uniformly bounded in LS (M\X;) by Theorem 1.1. Let

7o € ¥; and R > 0 small so that zq is the only point of ¥; in Br(x). Since u,, is
uniformly bounded in L7 (M\31), u, is uniformly bounded in L>(0Bgr(z¢)) and
similarly for |¢,|. Let z, satisfy

—Az, = €% —e'n|yh,]? — K, in Bg(xo),
zn = —C, on 0Bg(xo).

Then by the maximum principle we have u,, > z, in Br(zo) and in particular

/ e¥n §/ e < O, (21)
Br(zo) Br(zo)

On the other hand, similar to the arguments in [BM], we know that z,, — z a.e.
(even uniformly on compact subsets of Br(zg)\{zo}) where z is the solution of

Az = pu in Bgr(zg),
z = =C on OBr(xo).

Now we choose z,, € Br(zg) with u(z,) = maxp, up and set A, = e~ u(@n)  Let
R be small enough. Since

[
Br(zo)

/ 2¢2Un _ pln |¢n|2 + / 2¢% — e |¢n|2 - Kg
B, r(Tn) Brzo\Bx,r(@n) P

/ 2€2u" — €u"|’¢n|2 — / eun‘wn|2 - Kg.
B, r(zn) Brxzo\Bx, r(zn) Brxo

Note that the neck energy of the spinor field 1, is zero from Theorem 1.2. Let
n — 00, we have

Y

lim 2e2Un _ gln
=% JBp(z0)

where o (1) will tend to 0 when R — 0. This imply pu({zo}) > 47 and p > 270y, .
Therefore we have

Yn|? — Ky > 47 + og(1)

z(z) > log

+0(1), asz— xo.
|z — o]

2z C : 2z __
Thus we have e“* > To=wol® with C' > 0. Hence fBR(zo) e = 0.
16



On the other hand, by (21) and Fatou’s lemma we find that fBR(zo) e < C.
Thus we get a contradiction.

Consequently, u,, converges to —oo uniformly on compact subsets of M\X;. It
follows that

o D T
T;€EX
in the distribution sense and with «; > 4w. Thus we finish the proof of Theorem
1.1. O

5. BLOwW UP VALUE

In this section, we want to characterize the blow up value at blow up points in
1. For p € ¥4, let us define

m(p) = lim lim 2e%Un — eunah, |2
r—0n—oo B.(p

It is easy to see that m(p) = 0 implies that p € M is a regular point and hence
p ¢ 31. Furthermore, we have that m(p) # 0 if and only if p € ;. Actually, it is
clear from the previous section that m(p) > 47 when p is a blow up point. In this
section, we want to show that m(p) = 47 when the domain M is a closed Riemann
surface.

Lemma 5.1. There exists G € Wh4(M)NCE, (M\X1) with [,, G =0 forl < q <2

such that
Uy — U, — G
.

in C},(M\Z1) and weakly in WY9(M). Moreover, in 1 = {p1,p2, - ,pi}, then
for R > 0 small such that Br(pr) N1 = {pr}, k =1,2,---,1, we have

1 1
G= %m(pk) log 1z —pal +9(z)

forz e BR(pk)\{pk} with g € C?*(Bgr(pr)).
Proof. Let p= 15 > 2. We have

IVunl|Laar) < Sup{l/ VunVedo|lp € Wl’p(M),/ edv =0, [[ollwrear =1}
M M
By the Sobolev embedding theorem, we get

]l oo (any<c-
It is clear that

|/ Vu,Vdv| = |/ Auypdo| < / (2e%4m 4 €|y |?)|pldv < C.
M M M

Therefore, u — %y, is uniformly bounded in W14 (M).

Next, we define the Green function G by

{ AG = Zpezl m(p)dp — Ky,

JuG=0
17



We have for any ¢ € C*°(M)
/V —GV(pdv—/ A(u, — G)pdv

= /M(262““ — Ui | — Z m(p)d,)edv — 0, asn — oo.

PEX

Combining the fact that the w, — 1, are uniformly bounded in W4(M), we get
the conclusion of the lemma. O

Now we can compute the blow up value by using the Pohozaev identity and
Lemma 5.1.

Proof of Theorem 1.5 Without loss of generality, we assume that p = 0.
For sufficiently small R > 0, 0 then is the only blow up point in Byr(0) € M.By
Proposition 2.7, Pohozaev identity for solutions (u,,¥y,) is

Ouy,
R |—g{2—4{VuMcw
OBr

= / 2e%Un — eUn|ah,|?dv — R e?Undo
Br OBRr

1 37% 81&”
+ Kgx.vundv+2/aBR<ay, V) + {2, 2 )dor. (22)

Br

By Lemma 5.1, we have

lim lim R/ |%|277|V’un|2d(ji hm R/ a£|2
OB OB

R—0n—oo = ov

1
|VG|2dU = Emz(O).

Since u, — —oo uniformly on dBr(0) and u, — U, is uniformly bounded in
Wha(M) for 1 < g < 2, we have

hmhmR/ e?Undo = 0,
OBRr

R—0n—oo

and
lim lim Kgx - Vu,dv = 0.
R—0n—oo Br
Furthermore, by use the Schrédinger-Lichnerowicz formula EQ =—-A+ %K g, We
have

1
A, = e duy, - by, — 6271477,/(/)” + 5K'gz/Jn n BQR(O)\B% (0).

By u, — —oo uniformly in BQR(O)\B% (0), u, — U, is uniformly bounded in
Wha(M) for 1 < ¢ < 2 and |t,,| is uniformly bounded in BQR(O)\B% (0), we know

by the standard elliptic estimates that 1, is uniformly bounded in WQ’q(B%R(O)\Bg (0))

for 1 < g < 2. Then by the trace imbedding Theorem we obtain

lim lim [Vl - Viby|do = 0.

R—0n—oo 9Bg
18



Let R — 0 and n — oo in (22), we get that

T o5
L (0) = m(0).

It follows that m(0) = 4w. Thus we finish the proof of Theorem 1.5. O
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