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Abstract

In this work, the Haar wavelet operational matrix of fractional integration is first
obtained. Haar wavelet approximating method is then utilized to reduce the fractional
Volterra integral equations (which are also called the weakly-singular linear Volterra
integral equations) and in particular the Abel integral equations, to a system of al-
gebraic equations. An error bound is estimated and some numerical examples are
included to demonstrate the validity and applicability of the method.
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1 Introduction

The conception of the fractional derivatives was introduced for the first time in the middle of the
19th century by Riemann and Liouville. After that the number of researches and studies about
the fractional calculus has rapidly increased, because some physical processes such as anomalous
diffusion [5], complex viscoelasticity [14], behavior of mechatronic and biological systems [12],
rheology [15] and etc. can’t be described by classical models. Fractional differential equations
have been discussed in many papers and in most of them, they are transformed into fractional
volterra integral equations. Also different techniques have been used for solving them like Fourier
and Laplace transforms [1], power spectral density [20], Adomian decomposition method [11], Path
integration[6], etc. But in comparison to the above methods, the wavelet method has not been
much considered yet, specially for solving Volterra integral equations. We found only these papers
[3, 10]. The solutions are often quite complicated, so we are looking for simplifications. For this
reason we use Haar wavelets in present paper, which are the most simple wavelets, to approximate
the solution of such equations [8, 9, 13, 7].
This paper is organized as follows: In section 2 we state the preliminaries. In section 3 We introduce
the function approximation via Haar wavelets. In section 4 the generalized operational matrix of
fractional integration is obtained and in section 5 this matrix is utilized for solving the fractional
Volterra integral equation and Abel integral equation. Finally in section 6 an error bound for
approximation and the error function are estimated and in section 7 the numerical results are
shown in figures and tables.
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2 Preliminaries

2.1 Riemann-Liouville fractional integration

The Riemann-Liouville fractional integral operator of order α > 0 of the function f(x) is defined
as [17, 16]:

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, x > 0, (2.1)

where Γ(.) is Gamma function with this property: Γ(x+ 1) = xΓ(x), x ∈ R.
Some properties of the operator Iα can be found in [17], we mention only the following. For
α, β > 0 and γ > −1 we have:

Iαxγ =
Γ(γ + 1)

Γ(α+ γ + 1)
xα+γ . (2.2)

2.2 Haar Wavelets

The orthogonal set of the Haar wavelets hn(x) is a group of square waves defined as follows:

h0(x) =

{
1, 0 ≤ x ≤1;
0, elsewhere.

, h1(x) =





1, 0 ≤ x < 1
2 ;

−1, 1
2 ≤ x < 1;

0, elsewhere.
hn(x) = h1(2

jx− k), n = 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j ,

(2.3)

such that: ∫ 1

0

hn(x)hm(x)dx = 2−jδnm, (2.4)

where δnm is the Kronecker delta. For more details see [2, 19, 18].

2.3 Laplace transforms

The Laplace transform L{f} of a function f(x) is defined as:

L{f} = F (s) =

∫ ∞

0

e−stf(t)dt. (2.5)

The inverse L−1{F} is:
L−1{F} = f(x). (2.6)

This transformation is linear. In the following, some of the basic properties of the Laplace transform
are presented:

L{xα} =
Γ(α+ 1)

sα+1
, α ∈ R, (2.7)

L{
∫ x

0

f(x− t)g(t)dt} = L{f}L{g}, (2.8)

L{u(x− τ)} =
e−τs

s
, τ ∈ R, (2.9)

L{(x− τ)αe−β(x−τ)u(x− τ)} =
Γ(α+ 1)e−τs

(s+ β)α+1
, α, τ ∈ R, (2.10)
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where u(x) is the Heaviside step function which is defined as:

u(x) =

{
1, x≥0;
0, x<0.

(2.11)

A useful property of the Heaviside step function is:

u(x− a)u(x− b) = u(x−max{a, b}), a, b ∈ R. (2.12)

Note that we can write Eq. (2.3) by using the Heaviside step function as the following:

h0(x) = u(x)− u(x− 1),

hn(x) = u(x− k
2j )− 2u(x− k+1/2

2j ) + u(x− k+1
2j ),

n = 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j .

(2.13)

2.4 Fractional volterra integral equation and Abel integral equation

A fractional Volterra integral equation has the form:

f(x)− 1

Γ(α)

∫ x

0

(x− t)α−1k(x, t)f(t)dt = g(x), 0 ≤ x ≤ 1. (2.14)

The kernel k(x, t) and the right-hand-side function g(x) are given, α > 0 is a real number. This
equation is also called the weakly-singular linear Volterra integral equation. The value α = 1
corresponds to the ordinary (non-fractional) Volterra integral equation.
Particularly, if k(x, t) = 1 and 0 < α < 1 in equation (2.14), we have an Abel integral equation in
the form:

f(x)− λ

∫ x

0

f(t)

(x− t)β
dt = g(x), 0 < β < 1. (2.15)

Here λ = 1
Γ(α) and β = 1− α.

3 Function approximation

A square integrable function f(x) in the interval [0, 1] can be expanded into a Haar series of infinite
terms:

f(x) = c0h0(x) +
∞∑

j=0

2j−1∑

k=0

c2j+kh2j+k(x), x ∈ [0, 1], (3.1)

where the Haar coefficients are determined as:

ci = 2j
∫ 1

0

f(x)hi(x)dx, i = 0, 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j , (3.2)

such that the following integral square error ǫm is minimized:

ǫm =

∫ 1

0

[f(x)−
m−1∑

i=0

cihi(x)]
2dx, m = 2J+1, J ∈ N ∪ {0}. (3.3)
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By using Eq. (2.13), the above Haar coefficients can be rewritten as:

ci = 2j [

∫ k+1/2

2j

k

2j

f(x)dx−
∫ k+1

2j

k+1/2

2j

f(x)dx], i = 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j . (3.4)

If f(x) is a piecewise constant or may be approximated as a piecewise constant during each
subinterval, the series sum in Eq. (3.1) can be truncated after m terms (m = 2J+1 , J ≥ 0 is a
resolution, level of wavelet), that is:

f(x) ∼= c0h0(x) +

J∑

j=0

2j−1∑

k=0

c2j+kh2j+k(x) = cTh(x) = fm(x), x ∈ [0, 1], (3.5)

where c = cm×1 = [c0, c1, . . . , cm−1]
T , h(x) = hm×1(x) = [h0(x), h1(x), . . . , hm−1(x)]

T .

3.1 Operational Matrix of Integration

The integration of h(x) can be expanded into Haar series with Haar coefficient matrix Pm [4] as:

∫ x

0

h(x)dx ∼= Pmh(x), (3.6)

the m×m square matrix Pm is called the operational matrix of integration and is given in [7] as:

Pm =
1

2m

[
2mPm/2 −Hm/2×m/2

H−1
m/2×m/2 0

]
, (3.7)

where H1×1 = [1], P1 = [1/2] and Hm×m = [h( 1
2m ),h( 3

2m ), . . . ,h( 2m−1
2m )].

3.2 Product Operational Matrix

Three basic multiplication properties of Haar wavelets are as follows [7]:

• (i) hn(x)h0(x) = hn(x) for any n ∈ N ∪ {0}.

• (ii) For any two Haar wavelets hn(x) and hl(x) with n < l:

hn(x)hl(x) = ρnlhl(x), (3.8)

ρnl = hn(2
−i(q + 1/2)) =





1, 2i−jk ≤ q < 2i−j(k + 1/2);
−1, 2i−j(k + 1/2) ≤ q < 2i−j(k + 1);
0, O.W,

(3.9)

where n = 2j + k, j ≥ 0, 0 ≤ k < 2j and l = 2i + q, i ≥ 0, 0 ≤ q < 2i.

• (iii) The square of any Haar wavelet is a block pulse with magnitude of 1 during both positive
and negative half waves.
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The product of h(x), hT (x) and c can be expanded into Haar series with Haar coefficient matrix
Mm as follows:

h(x)hT (x)c = Mmh(x), (3.10)

where Mm is an m×m matrix and is called the product operational matrix and given by [7]:

Mm =

[
Mm/2 Hm/2diag(c̃b)

diag(c̃b)H
−1
m/2 diag(c̃Ta .Hm/2)

]
, (3.11)

such that M1 = c0 and c̃a = [c0, . . . , cm/2−1]
T , c̃b = [cm/2, . . . , cm−1]

T .

4 Operational Matrix of Fractional Integration

In this section we want to obtain the operational matrix of fractional integration for Haar wavelets,
which is the generalized form of Pm in (3.7). The fractional integration of order α of h(x) can be
expanded into Haar series with Haar coefficient matrix Pα

m as follows:

1

Γ(α)

∫ x

0

(x− t)α−1h(t)dt = Pα
mh(x). (4.1)

We call this m×m square matrix Pα
m the (generalized) operational matrix of fractional integration.

If f(x) is expanded into Haar wavelet series, as shown in Eq. (3.5), the Riemann-Liouville fractional
integral of f(x) becomes:

1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt ∼= cT
1

Γ(α)

∫ x

0

(x− t)α−1h(t)dt. (4.2)

Thus for expanding the Riemann-Liouville integral, it is enough to expand:

1

Γ(α)

∫ x

0

(x− t)α−1hn(t)dt, (4.3)

for n = 0, 1, . . . ,m− 1, in Haar series. We know:

1

Γ(α)

∫ x

0

(x− t)α−1hn(t)dt =
1

Γ(α)
{xα−1 ∗ hn(x)}, (4.4)

where ∗ is the convolution operator of two functions. By taking the Laplace transform of the above
equation and using Eq. (2.8) we have:

L{ 1

Γ(α)

∫ x

0

(x− t)α−1hn(t)dt} =
1

Γ(α)
L{xα−1}L{hn(x)}, (4.5)

where:

L{xα−1} =
Γ(α)

sα
,

L{hn(x)} = L{u(x− k

2j
)− 2u(x− k + 1/2

2j
) + u(x− k + 1

2j
)}

=
1

s
{e− k

2j
s − 2e−

k+1/2

2j
s + e−

k+1

2j
s},
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the last two equalities are obtained by Eqs. (2.13), (2.9). Therefore (4.5) can be rewritten as:

L{ 1

Γ(α)

∫ x

0

(x− t)α−1hn(t)dt} =
1

Γ(α+ 1)
.
Γ(α+ 1)

sα+1
{e− k

2j
s − 2e−

k+1/2

2j
s + e−

k+1

2j
s}. (4.6)

Now taking the inverse Laplace transform of the above equation and using (2.10) yields:

1

Γ(α)

∫ x

0

(x− t)α−1hn(t)dt =

1

Γ(α+ 1)
{(x− k

2j
)αu(x− k

2j
)

︸ ︷︷ ︸
X(x)

−2 (x− k + 1/2

2j
)αu(x− k + 1/2

2j
)

︸ ︷︷ ︸
Y (x)

+ (x− k + 1

2j
)αu(x− k + 1

2j
)

︸ ︷︷ ︸
Z(x)

}

=
1

Γ(α+ 1)
{X(x)− 2Y (x) + Z(x)}. (4.7)

Specially for n = 0 we have:

1

Γ(α)

∫ x

0

(x− t)α−1h0(t)dt =
1

Γ(α+ 1)
{xαu(x)− (x− 1)αu(x− 1)︸ ︷︷ ︸

W (x)

}

=
1

Γ(α+ 1)
W (x). (4.8)

The Eqs. (4.7) and (4.8) can be expanded into Haar wavelets as:

Iαhn(x) = cn0h0(x) +

J∑

p=0

2p−1∑

q=0

cn2p+qh2p+q(x), n = 0, 1, . . . ,m− 1. (4.9)

Now we want to obtain the coefficients, cnl, n, l = 0, 1, ...,m− 1 in the above equation.
According to (2.12), (2.13) we have:

c00 =
1

Γ(α+ 1)

∫ 1

0

W (t)h0(t)dt =
1

Γ(α+ 2)
, (4.10)

c02p+q =
2p

Γ(α+ 1)

∫ 1

0

W (t)h2p+q(t)dt

=
2p

Γ(α+ 1)

∫ 1

0

W (t){u(t− q

2p
)− 2u(t− q + 1/2

2p
) + u(t− q + 1

2p
)}dt

=
2p

Γ(α+ 1)
[

∫ 1

q
2p

tαdt− 2

∫ 1

q+1/2
2p

tαdt+

∫ 1

q+1

2p

tαdt].

Thus:

c02p+q = − 2p

Γ(α+ 2)
[(

q

2p
)α+1 − 2(

q + 1/2

2p
)α+1 + (

q + 1

2p
)α+1], (4.11)

where p = 0, 1, . . . , J , q = 0, 1, . . . , 2p − 1.
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Similarly to calculate cn0 and cn2p+q for n = 1, 2, . . . ,m−1, p = 0, 1, . . . , J and q = 0, 1, . . . , 2p−1
(in Eq. (4.9)), we have:

cn0 =
1

Γ(α+ 1)

∫ 1

0

[X(t)− 2Y (t) + Z(t)]h0(t)dt

=
1

Γ(α+ 1)

∫ 1

0

[X(t)− 2Y (t) + Z(t)][u(t)− u(t− 1)]dt

=
1

Γ(α+ 1)
[

∫ 1

k

2j

(t− k

2j
)αdt− 2

∫ 1

k+1/2

2j

(t− k + 1/2

2j
)αdt+

∫ 1

k+1

2j

(t− k + 1

2j
)αdt],

so:

cn0 =
1

Γ(α+ 2)
[(1− k

2j
)α+1 − 2(1− k + 1/2

2j
)α+1 + (1− k + 1

2j
)α+1]. (4.12)

and:

cn2p+q =
2p

Γ(α+ 1)

∫ 1

0

[X(t)− 2Y (t) + Z(t)]h2p+q(t)dt

=
2p

Γ(α+ 1)

∫ 1

0

[X(t)− 2Y (t) + Z(t)][u(t− q

2p
)− 2u(t− q + 1/2

2p
) + u(t− q + 1

2p
)]dt

=
2p

Γ(α+ 1)
[

∫ 1

η0

(t− k

2j
)αdt− 2

∫ 1

η1/2

(t− k

2j
)αdt+

∫ 1

η1

(t− k

2j
)αdt]

−2.
2p

Γ(α+ 1)
[

∫ 1

θ0

(t− k + 1/2

2j
)αdt− 2

∫ 1

θ1/2

(t− k + 1/2

2j
)αdt+

∫ 1

θ1

(t− k + 1/2

2j
)αdt

+
2p

Γ(α+ 1)
[

∫ 1

ξ0

(t− k + 1

2j
)αdt− 2

∫ 1

ξ1/2

(t− k + 1

2j
)αdt+

∫ 1

ξ1

(t− k + 1

2j
)αdt,

where:

ηi = max{ k

2j
,
q + i

2p
}, i = 0, 1/2, 1,

θi = max{k + 1/2

2j
,
q + i

2p
}, i = 0, 1/2, 1,

ξi = max{k + 1/2

2j
,
q + i

2p
}, i = 0, 1/2, 1.

Therefore:

cn2p+q = − 2p

Γ(α+ 2)
[(η0 −

k

2j
)α+1 − 2(η1/2 −

k

2j
)α+1 + (η1 −

k

2j
)α+1]

+2.
2p

Γ(α+ 2)
[(θ0 −

k + 1/2

2j
)α+1 − 2(θ1/2 −

k + 1/2

2j
)α+1 + (θ1 −

k + 1/2

2j
)α+1]

− 2p

Γ(α+ 2)
[(ξ0 −

k + 1

2j
)α+1 − 2(ξ1/2 −

k + 1

2j
)α+1 + (ξ1 −

k + 1

2j
)α+1], (4.13)

for n = 1, 2, . . . ,m− 1, p = 0, 1, . . . , J and q = 0, 1, . . . , 2p − 1.
Thus, we can write the operational matrix of fractional integration, which is introduced in (4.1)
as:

Pα
m =

[
Pα

m/2 Rm/2×m/2

Sm/2×m/2 Um/2×m/2

]
, (4.14)
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where:
Rm/2×m/2 = [cn2J+q] n = 0, 1, . . . ,m/2− 1, q = 0, 1, . . . , 2J − 1

and:
Sm/2×m/2 = [cnl], n = m/2, . . . ,m− 1, l = 0, 1, . . . ,m/2− 1

are calculated easily by (4.11), (4.13) and (4.12), (4.13), respectively, and Um/2×m/2 is an upper
triangular matrix which is in the form:

Um/2×m/2 = u1I+ u2µ+ u3µ
2 + . . .+ um/2µ

m/2−1, (4.15)

such that:

ui =

{
2J

Γ(α+2) .(
1
2J

)α+1[4(1/2)α+1 − 1], i=1;
2J

Γ(α+2) .(
1
2J

)α+1[−iα+1 + 4(i− 1/2)α+1 − 6(i− 1)α+1 + 4(i− 3/2)α+1 − (i− 2)α+1], i=2,...,m/2,

Im/2 is the identity matrix and:

µm/2 =




0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . . 0

1
0 . . . 0



. (4.16)

It is considerable that for α = 1, the fractional integration (2.1) is the ordinary integration and the
generalized operational matrix of fractional integration Pα

m is the same as Pm, which is introduced

in (3.7). Here we present P
1/3
m for J = 0, 1, 2:

P
1/3
2 =

[
0.8399 −0.1733
0.1733 0.4933

]
, P

1/3
4 =




0.8399 −0.1733 −0.1375 −0.0571
0.1733 0.4933 −0.1375 0.2179
0.0286 0.1090 0.3916 −0.0428
0.0688 −0.0688 0 0.3916


 ,

P
1/3
8 =




0.8399 −0.1733 −0.1375 −0.0571 −0.1092 −0.0453 −0.0320 −0.0256
0.1733 0.4933 −0.1375 0.2179 −0.1092 −0.0453 0.1863 0.0651
0.0286 0.1090 0.3916 −0.0428 −0.1092 0.1730 −0.0505 −0.0068
0.0688 −0.0688 0 0.3916 0 0 −0.1092 0.1730
0.0064 0.0163 0.0865 −0.0034 0.3108 −0.0339 −0.0029 −0.0009
0.0080 0.0466 −0.0546 −0.0253 0 0.3108 −0.0339 −0.0029
0.0113 −0.0113 0 0.0865 0 0 0.3108 −0.0339
0.0273 −0.0273 0 −0.0546 0 0 0 0.3108




.

5 Approximation of the Fractional Volterra Integral Equa-

tion and Abel Integral Equation Via Haar Waveles

5.1 Fractional Volterra Integral Equation

Now we consider the fractional Volterra integral equation (2.14). According to section (3), the
right-hand-side of the mentioned equation is approximated as:

g(x) ∼= g0h0(x) +

J∑

j=0

2j−1∑

k=0

g2j+kh2j+k(x) = gTh(x). (5.1)
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Similarly, K(x, t) ∈ L2([0, 1)× [0, 1)) can be approximated as:

k(x, t) ∼=
m−1∑

i=0

m−1∑

j=0

kijhi(x)hj(t), (5.2)

or in the matrix form:
k(x, t) ∼= hT (x)Kh(t), (5.3)

where K = [kij ]m×m such that:

kij = 2i+j

∫ 1

0

∫ 1

0

k(x, t)hi(x)hj(t)dtdx, i, j = 0, 1, . . . ,m− 1.

Also the fractional integral part of (2.14) is written as the following:

1

Γ(α)

∫ x

0

(x− t)α−1k(x, t)f(t)dt ∼= ṽh(x), (5.4)

for calculating ṽ we need some preliminaries, then we will introduce it in subsection (5.3). By
substituting the approximations (3.5), (5.4) and (5.1) into (2.14) we obtain:

hT (x)c− hT (x)ṽ = hT (x)g, (5.5)

therefore:
c− ṽ = g. (5.6)

Eq. (5.6) is a system of linear equations and can be easily solved for the unknown vector c. Note
that the entries of the vector ṽ are related to the entries of c.

5.2 Abel Integral Equation

similarly, the Abel integral equation (2.15) as a particular kind of the fractional Volterra integral
equation can be written as:

hT (x)c− hT (x)(Pα
m)T c = hT (x)g, (5.7)

therefore:
c− (Pα

m)T c = g. (5.8)

Eq. (5.8) is a system of linear equations and can be easily solved for the unknown vector c, as:

c = (I − (Pα
m)T )−1g. (5.9)

5.3 Evaluating ṽ

As we mentioned before, the fractional integral part of (2.14) can be written via Haar wavelets as
(5.4), where ṽ = [ṽ0, ṽ1, . . . , ṽm−1]

T and according to Eq. (3.2), we have:

ṽi = 2j
∫ 1

0

[
1

Γ(α)

∫ x

0

(x− t)α−1k(x, t)f(t)dt]hi(x)dx, i = 2j + k, (5.10)
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by substituting f(t) ∼= hT (x)c and (5.3) into Eq. (5.10) we get:

ṽi ∼= 2j
∫ 1

0

[
1

Γ(α)

∫ x

0

(x− t)α−1 hT (x)Kh(t) hT (t)cdt] hi(x)dx

= 2j
∫ 1

0

hT (x)K M [
1

Γ(α)

∫ x

0

(x− t)α−1h(t)dt] hi(x)dx,

the m×m matrix M is introduced in (3.11). Now by using (4.1), we have:

ṽi ∼= 2j
∫ 1

0

hT (x)K M Pα
mh(x) hi(x)dx

= 2j
∫ 1

0

hT (x)Ah(x) hi(x)dx,

where A = K M Pα
m = [aij ]m×m. It is obvious that hT (x)Ah(x) is a 1× 1 matrix, and:

hT (x)Ah(x)hi(x) =
m∑

m1=2

m∑

n1=m1

(an1(m1−1) + a(m1−1)n1
)hn1−1(x)hm1−2(x) +

m∑

i1=1

ai1i1h
2
i1−1(x)

=

m∑

n1=2

(a1n1
+ an11)hn1−1(x)h0(x)

+

m∑

m1=3

m∑

n1=m1

(an1(m1−1) + a(m1−1)n1
)hn1−1(x)hm1−2(x) +

m∑

i1=1

ai1i1h
2
i1−1(x)

=

m∑

n1=2

(a1n1
+ an11)hn1−1(x)

+
m∑

m1=3

m∑

n1=m1

(an1(m1−1) + a(m1−1)n1
)ρn1−1m1−2hn1−1(x) +

m∑

i1=1

ai1i1h
2
i1−1(x),

where ρn1m1
is defined in (3.9). Therefore:

ṽi ∼= 2j [

m∑

n1=2

(a1n1
+ an11)

∫ 1

0

hn1−1(x)hi(x)dx

+

m∑

m1=3

m∑

n1=m1

(an1(m1−1) + a(m1−1)n1
)ρn1−1m1−2

∫ 1

0

hn1−1(x)hi(x)dx

+

m∑

i1=1

ai1i1

∫ 1

0

h2
i1−1(x)hi(x)dx]

= (a1(i+1) + a(i+1)1) +

i∑

m1=2

(am1(i+1) + a(i+1)m1
)ρi(m1−1) + 2j

m∑

i1=i+2

ai1i1 ρi1i.
1

2l
,

where i1 = 2l + w, l, w ∈ {0} ∪ N; 0 ≤ w < 2l. Specially ṽ0 = a11 +
∑m

i1=2 ai1i1 .
1
2l1

, for i1 − 1 =

2l1 + z, l1, z ∈ {0} ∪ N; 0 ≤ z < 2l1 .
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Figure 1. Fractional integration of f(x) = x, (−−, −, − .−) and its approximation (Iαf16(x)) (�,♦, ⋆) for α = 2/3, 1, 4/3.

6 Error Approximation

Let f(x) be the exact solution of (2.14) , f(x) ∼= cTh(x) = fm(x) and em(x) = f(x)− fm(x). By
(3.1) and (3.5) we have:

em(x) =
∞∑

j=J+1

2j−1∑

k=0

c2j+kh2j+k(x), (6.1)

where em(x) is called the error function of Haar wavelet method. Suppose that f(x) satisfies in
the Lipschitz condition on [0, 1], that is:

∃M > 0 ; ∀x, y ∈ [0, 1] : |f(x)− f(y)| ≤ M |x− y|. (6.2)

In this section we first obtain a bound for ‖em(x)‖2, then a method for estimating error function,
(6.1), is introduced.

6.1 A Bound for ‖em(x)‖2

‖em(x)‖22 =

∫ 1

0

(

∞∑

j=J+1

2j−1∑

k=0

c2j+kh2j+k(x))
2dx

=

∞∑

j=J+1

2j−1∑

k=0

c22j+k

∫ 1

0

h2
2j+k(x)dx

+

∞∑

j=J+1

2j−1∑

k=0

∞∑

p=J+1

2p−1∑

q=0, q 6=k

c2j+kc2p+q

∫ 1

0

h2j+k(x)h2p+q(x)dx

=
∞∑

j=J+1

2j−1∑

k=0

c22j+k(
1

2j
).

11



Figure 2. Exact solution (-) and Numerical solution (•) of the example (7.2) for J = 2.

Since c2j+k = 2j
∫ 1

0
f(x)hi(x)dx, by (3.4) and using mean value theorem we have:

∃ xjk
1 ∈ [

k

2j
,
k + 1/2

2j
], xjk

2 ∈ [
k + 1/2

2j
,
k + 1

2j
],

such that:

c2j+k = 2j [(
k + 1/2

2j
− k

2j
)f(xjk

1 )− (
k + 1

2j
− k + 1/2

2j
)f(xjk

2 )]

=
1

2
[f(xjk

1 )− f(xjk
2 )]

≤ 1

2
M(xjk

1 − xjk
2 )

≤ 1

2
M

1

2j

= M
1

2j+1
,

the first inequality is obtained by (6.2). Therefore c22j+k ≤ M2 1
22j+2 and:

‖em(x)‖22 =

∞∑

j=J+1

2j−1∑

k=0

c22j+k(
1

2j
)

≤
∞∑

j=J+1

2j−1∑

k=0

M2 1

22j+2
(
1

2j
)

=
M2

4

∞∑

j=J+1

2j
1

23j

=
M2

3
(

1

2J+1
)2.

Since m = 2J+1, we have ‖em(x)‖22 ≤ M2

3 ( 1
m )2 or in other words: ‖em(x)‖2 = O( 1

m ).
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Figure 3. Exact solution (-) and Numerical solution (•) of the example (7.2) for J = 3.

7 Numerical Examples

Example 7.1. Let f(x) = x, here we want to approximate Iαf(x) by the proposed Pα
m for α =

2/3, 1, 4/3 and compare it to the exact fractional integration of the function f(x) = x, which is
easily obtained by (2.2). If we put x ∼= cTh(x), we will have Iαx ∼= cT Iαh(x) ∼= cTPα

mh(x).
Numerical results for m = 16 are shown in Figure 1.

Example 7.2. Consider the following Abel integral equation:

∫ x

0

f(t)√
x− t

dt = x,

with the exact solution f(x) = 2
π

√
x. Here α = 1/2. Numerical results are shown in Table(1) and

Figures (2, 3), for J = 2, J = 3, respectively.

xi |f(xi)− f8(xi)| |f(xi)− f16(xi)|
0.0312 0.0200 0.0188
0.0937 0.0623 0.0087
0.1562 0.0363 0.0021
0.2187 0.0098 0.0011
0.2812 0.0153 1.0127e-4
0.3437 0.0204 2.2067e-4
0.4062 0.0169 7.0290e-5
0.4687 0.0132 9.0791e-5
0.5312 0.0133 6.3717e-5
0.5937 0.0132 5.7721e-5
0.6562 0.0124 4.8337e-5
0.7187 0.0116 4.2550e-5
0.7812 0.0112 3.7400e-5
0.8437 0.0108 3.3342e-5
0.9062 0.0105 2.9912e-5
0.9687 0.0101 2.7052e-5

Table 1.
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Example 7.3. Consider the following fractional Volterra integral equation:

f(x) +

∫ 1

0

xt√
x− t

f(t)dt = g(x), 0 ≤ x ≤ 1, (7.1)

where g(x) = x(1− x) + 16
105x

7
2 (7− 6x) and f(x) = x(1− x) is the exact solution. The numerical

results are shown in Table(2) and Figures (4, 5), for J = 2, J = 3, respectively.

xi |f(xi)− f8(xi)| |f(xi)− f16(xi)|
0.0312 0.0289 0.0020
0.0937 0.0258 0.0014
0.1562 0.0208 0.0011
0.2187 0.0182 0.0014
0.2812 0.0152 0.0040
0.3437 0.0078 0.0038
0.4062 0.0076 0.0035
0.4687 0.0002 0.0034
0.5312 0.0057 0.0025
0.5937 0.0021 0.0022
0.6562 0.0129 0.0020
0.7187 0.0105 0.0018
0.7812 0.0214 0.0030
0.8437 0.0177 0.0026
0.9062 0.0283 0.0023
0.9687 0.0263 0.0020

Table 2.

Figure 4. Exact solution (-) and Numerical solution (•) of the example (7.3) for J = 3.
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Figure 5. Exact solution (-) and Numerical solution (•) of the example (7.3) for J = 2.

8 Conclusion

Haar wavelets have been used before for solving integral equations, in this paper we use them for
solving fractional Volterra integral equations by introducing a new fractional operational matrix
which is the generalized form of the operational matrix of integration. The error analysis shows
that, the larger resolution J is used, the more accurate results are obtained.
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