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Abstract We investigate exponential families of random graph distributions as a

framework for systematic quantification of structure in networks. In this paper we

restrict ourselves to undirected unlabeled graphs. For these graphs, the counts of sub-

graphs with no more than k links are a sufficient statistics for the exponential families

of graphs with interactions between at most k links. In this framework we investigate

the dependencies between several observables commonly used to quantify structure in

networks, such as the degree distribution, cluster and assortativity coefficients.
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1 Introduction

The notion of “complex networks” is usually utilized in an informal manner, intending

to suggest that these networks are not simple in some sense or another. Among the

simple networks one would include regular lattices on the one side and purely random

networks, i.e. Erdős-Rényi random graphs or Bernoulli graphs, on the other side. In

contrast, in the physics literature, two types of networks are considered as prototypes

of complex networks: scale free graphs, i.e. graphs with degrees distributed according

to a power law and small world networks, i.e. graphs with a small diameter, but higher

cluster coefficient than a Bernoulli graph with the same diameter. Thus the degree

distribution and the cluster coefficient are used to define certain kinds of complex

networks. Another structural property, utilized to assess whether some graph should
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be termed complex, is its assortativity or disassortativity, describing whether high

degree nodes are more often connected to high degree nodes or to low degree nodes.

These properties are not independent of each other; the degree distribution, for in-

stance, imposes constraints on the degree of assortativity. Therefore it would be desir-

able to have a general framework that allows to study these dependencies in a system-

atic way and, in particular, to quantify structure and therefore complexity of networks.

Here we propose the theory of hierarchically structured exponential families [1,8] with

the help of which we can, starting from the Erdős-Rényi random graphs, incorporate

more and more interaction between parts of a network and provide a framework for

quantifying the degree of interaction.

In this theory “complexity” means statistical complexity [3]: In order to distinguish

between the structure and the random part, not only one object is considered, but a

set of objects equipped with a probability distribution. “Random” then means statisti-

cally independent. Accordingly, measures of statistical complexity quantify statistical

dependencies in a distribution. They vanish in both cases of a totally ordered and a

totally random system.

Using the notion of “statistical complexity” to characterize single objects such as a

given network is problematic in the following sense. If we speak about the complexity

of a single network, we have to consider it as typical in an ensemble of networks.

This assumption need not always be justified. If it is satisfied, however, we can use

an ergodicity-type argument to approximate ensemble means by counts over a single

typical instance in the ensemble. For example, the count of edges in one instance should

provide an estimate of the edge probability in the ensemble.

This paper is structured as follows. In Section 2 we describe the theoretical framework

of exponential families of random graphs. Building on this, Section 3 contains our main

results. We interpret common observables on graphs in our framework and shed new

light on their interpretation. Section 4 contains concrete examples of our models with

few parameters and discusses special features of sampling procedures. Following the

discussion in Section 5 is an Appendix which contains technical details.

2 Basic setting — exponential families of random graphs

We consider undirected random graphs without self connections, specified by an ad-

jacency matrix A. Denote by N the number of nodes, [N ] := {1, . . . , N} the set of

nodes, and E := {(i, j) ∈ [N ] × [N ] : i 6= j} the set of off-diagonal indices of A. In a

given graph each edge is either present or not, therefore we are dealing with |E| binary

random variables. Denote by X := {0, 1}E the set of states of this collection of random

variables. For any subset B of potential edges we denote XB := {0, 1}B .

In this labeled setting the probability of a random graph is given by the probability of

its adjacency matrix A = (ae)e∈E . A random graph G is described by binary random

variables with state space X and a probability

P (G) = P (ae1 , . . . , aeN(N−1)) .

A distribution P (G) is often called a graph ensemble in the following. We consider so

called exponential families, classes of graph ensembles with a particularly nice struc-

ture and interpretation. When used to describe probability distributions for random

graphs they have been termed “exponential random graphs”, “p∗ models”, or “logit-

models” in the literature. For a recent overview see [11]. Here, we utilize families Ek
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that consist of the distributions with interactions between at most k units. Let f be a

function mapping states (ae1 , . . . , aeN(N−1)) to the reals. With the usual addition and

multiplication by real numbers, these functions form a vector space

R
X := {f : X → R} .

Of course, any (real-valued) observable is such a function. Our systematic approach to

quantifying structure consists in considering natural bases of this space. We can then

express well known observables in terms of these bases, yielding a better understanding

of the relation between observables.

The probability measures

P(X ) :=



P ∈ R

X : P (x) > 0,
∑

x∈X

P (x) = 1



 ,

form a subset of RX , which has the geometry of a simplex. Its closure, where P (x) = 0

is allowed, is denoted by P(X ). The exponential map assigns to each function a strictly

positive probability measure:

exp : R
X → P(X ) f 7→

exp(f)∑
x∈X exp(f(x))

.

Here, exp(f) is to be taken coordinatewise. Using the exponential map, there is a nat-

ural way to define exponential families of probability measures by considering families

E that are exponential images of linear subspaces of RX . One natural class of such

subspaces is given by limiting the interaction order. Following [2,8] one can define

IB :=
{

f ∈ R
X : f(xB , xE\B) = f(xB , x′

E\B) for all xB ∈ XB , xE\B , x′
E\B ∈ XE\B

}
,

as the space of functions depending only on the subset B ⊆ E of their arguments. Then

Ik =
∑

|B|≤k

IB

is the space of functions depending on at most k of their arguments. Here, the sum over

IB is to be understood as their span inside RX . This definition leads to a hierarchy of

exponential families

E1 ( . . . ( EN(N−1)−1 ( P(X ) , (1)

which is studied in information geometry [1]. It allows to model networks by considering

interactions of successively increasing order between their parts. It has been used to

quantify the amount and degree of interaction in dynamical systems in a systematic

fashion in [8].

The notion of interaction order can be understood from the fact that any P ∈ Ek has

a (non-unique) representation as

P (G) =
∏

B⊆E:|B|=k

Φ(xB) =
1

Z
exp




∑

B⊆E:|B|=k

φB(xB)


 .
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Thus, P ∈ Ek means that

P (G) =
1

Z
e−H(G)

H(G) =
∑

e

cefe(ae) +
∑

e1,e2

ce1,e2fe1,e2(ae1 , ae2) + . . . (2)

. . . +
∑

e1,e2,...,ek

ce1,e2,...,ekfe1,e2,...,ek (ae1 , ae2 , . . . , aek ) .

As mentioned above any collection O1, . . . ,Os of observables defines a linear space as

their span

L =

{
f ∈ R

X : f =
s∑

i=1

ciOi, c1, . . . , cs ∈ R

}
,

which in turn defines an exponential family EL := exp(L). This exponential family

is the collection of maximum entropy distributions for fixed expectation values of the

observables. In particular, the mean values of the observables in a sample form a

sufficient statistics for the model EL. Given data, one can determine the mean values

of the observables on the data and then find a unique P in the closure EL which has the

same statistics as the data and maximal entropy among all such distributions. Finding

this estimate in practice can be computationally expansive for a general linear space. In

practice, an algorithm called iterative proportional fitting is used [5]. It is implemented

in cipi [12] and statistical software packages like loglin inside the software R. Since

this method works directly on the vectors in RX it is limited to small X . Less than

N = 20 elements can be feasible. It is well known that for E1 the maximum entropy

distribution is just the product of the one-dimensional marginals of the data.

2.1 Undirected Graphs and subgraph counts

In the following we specialize the general theory to the case of undirected unlabeled

homogeneous graphs. Here E = {(i, j) ∈ [N ] × [N ] : i < j} is the set of potential edges,

resulting in a symmetric adjacency matrix A = (aij)i,j=1,...,N , by setting aij = ae if

(i, j) ∈ E or (j, i) ∈ E, and aii = 0.

Unlabeled graphs are defined as equivalence classes and working with them in practice

becomes infeasible quickly. It is a curiosity of complexity theory that the graph isomor-

phism problem is in the class NP, but neither known to lie in P, nor to be NP-complete.

In any case, at the current time there is no fast algorithm to determine whether two

unlabeled graphs are isomorphic. Due to this unavoidable restriction we will always

work with adjacency matrices. In particular the partition function is a sum over sym-

metric adjacency matrices and P (H), for some unlabeled graph H denotes the sum

of probabilities of adjacency matrices which have H as their unlabeled graph. This is

complemented by the homogeneity that we assume in this setting. It means that we

consider observables that are only evaluated on a small part of the system, and the

value should show no systematic differences when varying the position. In particular,

the probability of finding an edge should be the same for any pair of vertices. In the

setting that was described in Section 2 this homogeneity is a certain symmetry require-

ment. For instance the Erdős-Rényi graphs emerge from the exponential family where

the linear space is the one-dimensional span of the edge count observable.
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Generalizing from Erdős-Rényi graphs to higher dependency structures, natural ob-

servables are the subgraph counts, defined as follows: Given a graph G with potential

edge set E, we define the subgraph counts of a subgraph H as

nH := # {unlabeled subgraphs H of G} . (3)

For example, we denote by n− the number of edges and by n the number of triangles.

For any undirected graph G, the counts of subgraphs with at most k edges form a

sufficient statistics for the exponential family Ek considered above. This can be seen as

follows. For each set B ⊆ E of potential edges, we can define a function which takes

the value one precisely if all edges in B are present, i.e. it counts the subgraph defined

by the labeled graph B1:

fB(G) :=
∏

e∈B

ae . (4)

A classical argument from the theory of Markov random fields [13] shows that these

functions {fB : B ⊆ E} form a basis of the whole space RX , while with k = |B| we have

fB ∈ Ik. Uniqueness of the coefficients with respect to this basis depends on a choice

of a reference configuration, the so called vacuum state. In our case the vacuum is the

empty graph. The statement about sufficiency follows if one observes that the homo-

geneity requirement translates into a condition on the coefficients in (2): Coefficients

ce1,...,el for different e1, . . . , el representing the same undirected unlabeled subgraph

are required to be the same. Therefore the counts of unlabeled subgraphs with k edges

(which are just sums over the fB for all B representing a specific subgraph) span the

linear subspace space of functions depending only on k of their arguments, and taking

equal values whenever these k arguments represent the same subgraph. Summarizing

we have ∑

B∼H

fB = nH , (5)

where the summation runs over all sets B which define a subgraph isomorphic to an

unlabeled graph H.

Note that fixing the number of vertices breaks the relation with the hierarchy in (1).

Consider as an example the full model with subgraph counts up to 4 vertices. The

energy has the form

H = c−n− + c n + c n + . . . + c n + c n . (6)

This distribution is an element of E6, but not all elements of E6 are of this form, as we

have not used a subgraph count for 6 edges forming a chain, which would be a subgraph

on 7 vertices. It is also important to notice that changing one of the coefficients will

generally change all of the expected counts.

Apart from the subgraph counts, we often use the subgraph probabilities pH , that is,

the probabilities for observing the subgraph H when drawing a random graph from the

ensemble P on randomly selected nodes. This can be written as an expectation value2

with respect to the distribution P as

pH := 〈fB〉 , B ∼ H , (7)

1 The graph corresponding to B ⊆ E specifies the relations between the edges in B. As
an example consider B = {(1, 2), (1, 6)} where the two edges share vertex 1 compared to
B = {(1, 2), (4, 7)} where they are disconnected.

2 We use the notation 〈·〉 for expectation values with respect to the graph ensemble P .
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where B ⊆ E is any set of edges whose unlabeled graph is H. That any such B can

be chosen is a consequence of the homogeneity that we require for our model. If the

subgraphs whose counts we use as observables are small enough (when compared to the

size of the network G), the homogeneity assumption allows to use counts on a single

given network to estimate the ensemble expectation values. Quantities derived from a

single network are denoted by a hat as in n̂H .

When a subgraph probability pH is estimated from a single network, it is given by the

count of that subgraph, normalized by the maximum possible number of occurrences

of that subgraph. This in turn is just the number of occurrences of H in the fully

connected network F :

p̂H =
nH(G)

nH(F )
. (8)

3 Measures of structural network properties

3.1 Link density

One of our main aims is to find good sets of network observables that capture the

important structural properties of a graph. Obviously the first property is the number

of links n− or the link density

p̂− =
n−(G)

n−(F )
(9)

=
2n−

N(N − 1)
, (10)

with F denoting the fully connected graph.

If only the expectation value of the link density or the number of links is specified,

the corresponding maximum entropy ensemble is the ensemble of Erdős-Rényi random

graphs or Bernoulli graphs. Its Hamiltonian is simply

H(G) = c−n− = c−
∑

(i,j):i<j

aij . (11)

The main property of this ensemble is that there are no statistical dependencies between

the links. The degrees of the nodes are distributed according to a Bernoulli distribution

fully determined by the mean node degree.

3.2 Degree distribution

A distribution different from the Bernoulli distribution introduces statistical dependen-

cies between the potential links. The resulting random graph ensemble will therefore

be different from the Bernoulli graphs. How does the degree enter our framework? In

a first step one might label the nodes using some labeling π, and assign to each node

an expected degree. This leads to exponential random graph model

H(G, π) =
∑

i

ci

∑

j

aπ(i)π(j), (12)
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with the ci determining the degree of node π(i). In a second step one considers an

ensemble of ensembles of random graphs, where the different ensembles correspond to

different labellings, i.e. permutations of the node degrees. This leads to a probability

distribution that is a convex combination of distributions P ∈ E1, and thus generally

not contained in E1 but in a so called mixture model. Moreover, this approach does

not lead to a parameterization of the form (2).

Our next aim is to understand how the degree distribution can be specified within the

exponential families Ek. The key point is that the k-star3 counts allow to determine

the moments of the degree distribution. With di =
∑

j aij being the degree of node i

we call P (d) the probability that a randomly chosen node has degree d. We find

P (d) =
∑

G

P (G)
1

N

N∑

i=1

δdi(G),d . (13)

The moments of the degree distribution are

µk = 〈dk〉 =

∞∑

d=0

dkP (d) . (14)

For a given graph, we also have the empirical degree distribution

P̂G(d) =
1

N

N∑

i=1

δdi(G),d ,

with the moments

µ̂k =
1

N

N∑

i=1

dk
i . (15)

Note that 〈µ̂k〉 = µk. There is a direct relationship between the moments of the degree

distribution and the numbers of k-stars

nk =
N∑

i=1

(
di

k

)
. (16)

Note that with this definition the number of 1-stars is two times the numbers of links

n1 = 2n−. Thus looking for the maximum entropy distribution for graphs with given

moments of the degree distribution up to order kmax corresponds to the exponential

random graph model having non-zero coefficients only for k-stars with k ≤ kmax. In

particular, this distribution lies in Ekmax
. The parameterization using the k-stars on

the one hand side

H =

kmax∑

k=1

cknk , (17)

and the moments of the empirical degree distribution of the graph

H =

kmax∑

k=1

c
(d)
k µ̂k , (18)

3 A k-star is a subgraph consisting of one central node that is connected to k other peripheral
nodes, i.e. it contains k links.
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can be converted into each other using

nk =
1

k!

N∑

i=1

k∑

m=1

s(k, m)dm
i (19)

=
N

k!

k∑

m=1

s(k, m)µ̂m . (20)

with s(k, m) being the Stirling numbers of the first kind. The inverse relationship

between the k-star counts and the moments of the degree distribution can be expressed

using the Stirling number of the second kind S(k, m):

µ̂k =

k∑

m=1

S(k, m)
k!

N
nm . (21)

For the parameters this leads to the relationships

cm =

kmax∑

k=m

k!

N
S(k, m)c

(d)
k (22)

c
(d)
m =

kmax∑

k=m

N

k!
s(k, m)ck . (23)

The parameterization (18) might still not be the best way to explore different degree

distributions, because of the dependencies between the different moments. Instead of

using the empirical moments (15) as observables, one could think of observables that

can be independently varied more easily, such as the variance, skewness, and kurtosis.

Let us look in more detail at the variance, the other cases are similar. In the two star

model

H(G) = c−n− + c n (24)

= c1n1 + c2n2 . (25)

with c1 = c−/2 and c2 = c , the resulting probability distribution can be equivalently

parameterized by the pairs (c1, c2), (µ1, µ2) or (µ1, µ2−µ2
1), the last being the mean and

the variance of the degree distribution. The variance of the empirical degree distribution

of a graph G is

var(P̂ (d)) = µ̂2 − µ̂2
1 . (26)

One might think of a Hamiltonian of the form

H(G) = c
(d)
1 µ̂1 + c̃

(d)
2

(
µ̂2 − µ̂2

1

)
. (27)

This model is different from the two star model because it involves a non-linear trans-

formation of the observables.
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3.3 Cluster coefficient

The cluster coefficient can be defined as three times the ratio between the numbers of

triangles and the numbers of two stars in a given graph:

Ĉ =
3n

n
(28)

=
p̂

p̂
, (29)

with

p̂ =
2n

N(N − 1)(N − 2)
(30)

p̂ =
6n

N(N − 1)(N − 2)
. (31)

Thus the cluster coefficient for the ensemble P measures the conditional probability

that if for three randomly selected nodes one node is connected to the two others, these

are also connected.

C = p(aij = 1|aik = 1, ajk = 1) . (32)

In the context of social networks this property is also called “transitivity” because it

means the probability that the friend of my friend is also my friend. If there are no

statistical dependencies between the links, we would expect

Cind := p− . (33)

Moreover, if there are statistical dependencies only between pairs of links (P (G) ∈ E2),

such as in the two star model, one might expect

p(aij = 1|aik = 1, ajk = 1) = p(aij = 1|aik = 1) ,

or
p

p
=

p

p−
, (34)

respectively, and therefore the cluster coefficient would be equal to

p

p−
. (35)

This is, however, not the correct expression for the two star model. Already the case

of only three nodes provides an example:

P (G) = P (a1,2, a2,3, a3,1) =
1

Z
exp(c−n− + c n ) .

There we have

ZP (0, 0, 0) = 1

ZP (1, 0, 0) = ZP (0, 1, 0) = ZP (0, 0, 1) = h1 = exp c−

ZP (1, 1, 0) = ZP (1, 0, 1) = ZP (0, 1, 1) = h2 = exp(2c− + c )

ZP (1, 1, 1) = h3 = exp(3c− + 3c ) = p

Z = 1 + 3h1 + 3h2 + h3 .
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Hence, the cluster coefficient is

C =
p

p
=

P (1, 1, 1)

P (1, 1)
=

P (1, 1, 1)

P (1, 1, 1) + P (1, 1, 0)

=
h3

h2 + h3
=

1

1 + h2/h3
.

On the other hand (35) becomes

p

p−
=

h2 + h3

h2 + h3 + h2 + h1

=
1

1 + h2/h3(
h1/h2+1
h2/h3+1

)
6= C .

If the three random variables are only a subset of a larger set of random variables as

in the case of larger networks, things become even more complicated.

Nevertheless, if n− and n are sufficient statistics for the two star model, we should be

able to express the cluster coefficient by these two variables. In particular, we should

be able to express the expected number of triangles by the expected number of two

stars and the expected number of links.

3.4 Markov graphs

If the Hamiltonian contains only the numbers of k-stars and triangles, it defines the so

called Markov graphs [6]. This class of random graphs is well known in the social net-

work community. “Markov” here refers to the fact that in these graphs the occurrence

of links without a common node is statistically independent. The only subgraphs where

all pairs of links have a common node are the k-stars and the triangles. From what

we have discussed so far it becomes clear that these models can account already for a

large range of degree distributions in contrast to the statement sometimes found in the

literature that the exponential random graph models of the social network community

only accounts for Poissonian degree distributions [4].

3.5 Assortativity

Another widely studied property of a graph is its assortativity or disassortativity.

In an assortative graph, high degree nodes are prevalently connected to other high

degree nodes and low degree nodes to low degree ones. In disassortative graphs, high

degree nodes tend to be connected to low degree nodes. A simple way to measure this

property is the correlation coefficient between the remaining degrees of two connected

nodes [10]. “Remaining” degree refers to the degree of a node after subtracting one

for the link connecting this node to the other one. Empirical investigations showed

that most social networks are assortative, while the Internet or biological networks are

rather disassortative [10].

For an edge aij = 1 the remaining degrees at either side of the edge are given by

dr,i
ij =

∑

k 6=i,j

aki = di − 1 ,

dr,j
ij =

∑

l 6=i,j

ajl = dj − 1 .
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The assortativity is then given by the correlation coefficient between the remaining

degrees at either side of an edge:

r2 =
〈(dr,i − 〈dr,i〉)(dr,j − 〈dr,j〉)〉√
〈(dr,i − 〈dr,i〉)2〉〈(dr,j − 〈dr,j〉)2〉

.

Using that we consider undirected graphs, i.e. A is symmetric, 〈(dr,i)n〉 = 〈(dr,j)n〉 for

n = 1, 2, . . ., and linearity of expectation values, this simplifies to

r2 =
〈dr,idr,j〉 − 〈dr,i〉〈dr,i〉

〈(dr,i)2〉 − 〈dr,i〉2
. (36)

All relevant quantities can now be expressed in terms of subgraph counts (see appendix

for details):

r̂2 =

n−

n

(
3n
n + n

n

)
− 1

n−

n

(
3n
n + 1

)
− 1

. (37)

In order to express the assortativity by the subgraph probabilities we list again all

subgraph probabilities including the missing ones:

p̂− =
2n−

N(N − 1)
(38)

p̂ =
2n

N(N − 1)(N − 2)
(39)

p̂ =
6n

N(N − 1)(N − 2)
(40)

p̂ =
6n

N(N − 1)(N − 2)(N − 3)
(41)

p̂ =
2n

N(N − 1)(N − 2)(N − 3)
(42)

Thus

r̂2 =

p̂−

(N−2)p̂

(
p̂
p̂ +

(N−3)p̂
p̂

)
− 1

p̂−

(N−2)p̂

(
(N−3)p̂

p̂ + 1
)
− 1

=

(
p̂
p̂ − p̂

p̂−

)
+
(

p̂
p̂ − p̂

p̂−

)
(N − 3)

(
1 − p̂

p̂−

)
+
(

p̂
p̂ − p̂

p̂−

)
(N − 3)

. (43)

The assortativity coefficient is zero, if

3 · n

n
+

n

n
=

n

n−
, (44)

or equivalently
p̂

p̂
+

(N − 3)p̂

p̂
=

(N − 2)p̂

p̂−
, (45)

which is a relation between conditional probabilities that is fulfilled in particular if

p̂

p̂
=

p̂

p̂−
and

p̂

p̂
=

p̂

p̂−
. (46)



12

Again, this does not mean that exponential random graphs with pairwise interactions

only, such as the two star model, have a vanishing assortativity coefficient r2. The same

arguments as for the cluster coefficient apply. For Markov graphs, defined as random

graphs for which links without a common node occur statistically independently, we

can make an interesting observation: Condition (46) is fulfilled, and the assortativity

is fully controlled by the cluster coefficient.

4 Network structure in simple exponential random graph models

Let us consider an exponential random graph model

H(G) =
∑

H

cHpH(G) (47)

where the summation runs over some set of subgraphs. If we fix the number of nodes,

then (47) defines an energy landscape in the space of all graphs with N nodes. High

probability corresponds to low energy, therefore the minima of (47) should correspond

to the graphs that are most probable and therefore “typical” in the ensemble defined

by this model. A second possible reason for a graph being typical is a high number of

isomorphic graphs, but for sufficiently low temperatures this effect will be dominated

by the effect of the energy.4 Because we expressed the energy using the subgraph

probabilities (8) it is obvious that the empty graph has zero energy and the energy of

the fully connected graph is equal to the sum of all coefficients H(F ) =
∑

H cH . Thus

we realize a first property of (47): If all coefficients cH are sufficiently negative, the

fully connected graph has minimal energy and is the most probable and only typical

graph. If, on the other hand, all coefficients are sufficiently positive, the empty graph

is the most probable and therefore typical graph. We conclude that in order to get

non-trivial typical graphs, at least one coefficient has to have a different sign then the

other coefficients. A more detailed analysis will show that additional requirements are

needed in order to get “interesting” typical graphs. In the following we discuss this for

some simple exponential random graph models, and shed some light on the difficulties

that were reported by several authors that tried to use them to describe real world

networks [7].

4.1 The two star model

The two star model has the form

H = c−p− + c p . (48)

Fig. 1 shows the position of all 6-node graphs in the (p−, p )-plane. The convex hull of

these points defines all possible expectation values of p− and p for two star models.

By linearity, the energy landscape is a plane in a third dimension and extreme values lie

on the boundary of the convex region. A positive value of c− and a negative value of c

result in the minimal energy graphs being located on the upper boundary of the region.

4 We did not introduce a temperature explicitly, but it can be done easily be setting
H(G) = E(G)/T with E(G) being the energy and T the temperature. Changing the tem-
perature corresponds to a rescaling of all coefficients cH in H(G) by a constant factor.
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Fig. 1 Position of all graphs with N = 6 nodes in the (p−, p )-plane. On each point a bar is
drawn according to its multiplicity, i.e. the number of adjacency matrices with these link and
two star counts. The dashed line shows the position of Erdős-Rényi graphs.

As visible in Fig. 1, the empty and the fully connected graphs are the only graphs lying

on this boundary. Therefore, for sufficiently low temperatures, the graph ensemble is

supported only on these two graphs In the opposite case of negative c− and positive c

the minimal energy graphs lie on the lower boundary of the region. These graphs have

less two stars than the Erdős-Rényi graphs with the same link density. This is the only

structural property of graphs that can be quantified by the two star model (48). Fig. 2

gives an example of such a graph ensemble and shows its typical graphs corresponding

to the three most probable combinations of link and two star counts. The two most

probable positions A and B have a higher energy than the graphs of lowest energy at

C, but gain probability from their multiplicity (compare Fig. 1).

4.2 Cluster coefficient and assortativity

H = c p + c p (49)

Another simple exponential random graph model is given by (49). By the same reason-

ing as above c and c should have opposite signs in order to have non-trivial typical

graphs. Fig. 3 shows again the region of admissible expectation values p and p , all

6-node graphs, and the line p = p = p− of the Erdős-Rényi graphs. The minimal

energy graphs can be easily understood in this example. In the case of negative c and

positive c triangles are preferred. The minimal energy graphs are lying on the lower

boundary of the admissible region and are non-connected graphs with fully connected

components that could be considered as the ideal case of a “community structure” (see

for instance [9]). The size of the components depends on the concrete values of the

parameters. If the components are of different size, the graph is fully assortative, i.e.

r = 1. In the opposite case of positive c and negative c triangles are suppressed, and

the minimal energy graph is a complete bipartite graph. The numbers of nodes in the
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Fig. 3 Position of all graphs with N = 6 nodes in the (p , p )-plane. Graphs corresponding
to the extremal points of the convex hull are shown to the right.

two subsets are equal if the total number of nodes is even. Fig. 3A shows this graph in

the case of 6 nodes. If the total number of nodes is odd, the numbers of nodes in the

two subsets will differ by one. As a consequence the minimal energy graph in this case

will be fully disassortative. This disassortativity is a consequence of the bipartiteness

and the different size of the components, thus not very informative on its own. The

same applies for the observed assortativity in the first case that is also the consequence

of the very specific structure of these minimal energy graphs. At the moment it is not

clear to which extent it is possible and reasonable to explain assortativity and disas-
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sortativity by a catalog of paradigmatic structures that correspond to minimal energy

graphs in exponential random graphs model as in these simple examples.

5 Discussion

We have presented a formalism that allows to study and quantify systematically the

structures of networks as statistical dependencies. In particular, we showed how popular

measures of network structures such as the degree distribution, the cluster coefficient

and the assortativity coefficient could be expressed by subgraph probabilities. This

allows to situate graph ensembles with predetermined values of these properties in the

elements of the hierarchy of exponential families (1) which illuminates both their re-

lationship and to which extent they specify redundant information about the graph

structure. Very often only a single property is studied. For instance in [10], a random

graph model with given degree distribution and additionally given joint remaining de-

gree distribution for connected links is considered. This model allows for control of

the degree of assortativity, corresponding to a variation of P (G) in one direction. De-

pending on the exponential family Ek chosen, there are many other directions with

non-vanishing assortativity. Thus it remains unclear how relevant this particular direc-

tion is.

By identifying the subgraph counts as sufficient statistics for exponential random graph

models we also provide a link to systematically incorporate motif analysis in the anal-

ysis of network structures. A more detailed analysis of this aspect is beyond the scope

of this paper and will be presented elsewhere.

A Expressing the assortativity coefficient by subgraph counts

Due to the homogeneity assumption all expectation values occurring in (36) can be estimated
as the average over all links in a given graph. Then the following relations to the subgraph
counts are derived:

– 〈dr,i〉:

〈̂dr,i〉 =

∑
i,j aijdr,i

ij∑
i,j aij

=

∑
i,j

(
aij

∑
k 6=i,j aki

)

∑
i,j aij

=

∑
i,j 6=k akiaij∑

i,j aij

=
2 · n

2 · n−

=
n

n−

Since the average is performed with respect to all links, nodes with high degree get high

weights. Thus, even though dr,i
ij = di − 1, 1∑

i,j aij

∑
i,j dr,i is not equal to 1

N

∑
i di − 1!
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– 〈dr,idr,j〉:

̂〈dr,idr,j〉 =

∑
i,j aijdr,i

ij dr,j
ij∑

i,j aij

=

∑
i,j

(
aij

∑
k 6=i,j aki

∑
l6=i,j ajl

)

∑
i,j aij

=

∑
i,j 6=k akiaijajk +

∑
i,j 6=k 6=l akiaijajl∑

i,j aij

=
3 · n + n

n−

– 〈(dr,i)2〉:

̂〈(dr,i)2〉 =

∑
i,j aij

(∑
k 6=i,j aki

)
2

∑
i,j aij

=

∑
i,j

(
aij

∑
k 6=i,j aki

∑
k′ 6=i,j ak′i

)

∑
i,j aij

=

∑
i,j 6=k aij

=aki︷︸︸︷
a2

ki +
∑

i,j 6=k 6=k′ aijakiak′i∑
i,j aij

=
2 · n + 6 · n

2 · n−

=
n + 3n

n−

Hence the assortativity expressed in subgraph counts is

r̂2 =
3 · n + n −

n2

n−(
n + 3 · n −

n2

n−

)

=
n− (3 · n + n ) − n2

(
n−n + 3n−n − n2

)

=

n−

n

(
3n

n
+ n

n

)
− 1

n−

n

(
3n

n
+ 1

)
− 1

.
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