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Abstract

A system of two classical chemotaxis equations, coupled with an elliptic
equation for an attractive chemical, is analyzed. Depending on the parameter
values for the three respective diffusion coefficients and the two chemotactic
sensitivities in the radial symmetric setting, conditions are given for global ex-
istence of solutions and finite time blow-up. A question of interest is, whether
there exist parameter regimes, where the two chemotactic species differ in
their long time behavior. This questions arises in the context of differential
chemotactic behavior in early aggregates of Dictyostelium discoideum

1 Introduction

In this paper we address the question if differential chemotaxis can serve as the main
mechanism for cell sorting in Dictyostelium discoideum during self-organisation un-
der starvation conditions. In laboratory experiments [10], cell sorting was observed
in the early aggregation stages during mound formation. Cells moving in the top of
the aggregates show stronger chemotactic abilities when being observed separately,
than the cells moving at the bottom. As a first mathematical ansatz to approach
this question on cell sorting, a model of two chemotactic species is considered, both
of which react to the same chemical, cAMP, but with different chemotactic strength.
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So we are interested to understand the qualitative behavior of the following system

our = Aup —x1V - (41 Vo),

Oy = psAug — X2V - (ua V), (1.1)
0 = Av+u+uy—1, in Bg(0). t >0,
with M2, X1, X2 > 0 (12)
Oou; Ous  Ov
LA B 1.
5 5 = 3y 0, x€dBgr(0),t>0, (1.3)
u1(0,z) = upo(z) >0 : u(0,2) = ugo(z) >0 , =z € Br(0), (1.4)

where Bg(0) is the two-dimensional ball of radius R, which is centered in the origin,
1,0, Uz are not identically zero, and u; and u, are the density variables for the two
cell types with different chemotactic sensitivities, and v is the chemo-attractant.

Chemotaxis models of Keller-Segel type with several chemotactic populations
reacting to several chemicals have be studied in [11]. By using energy methods
sufficient conditions for global existence of solutions, especially for the case we are
interested in, but with Dirichlet boundary conditions, were derived.

In [4] the dynamics of two chemotactic species are considered, which are modeled
by two classical chemotaxis equations. They are interacting via two chemicals. One
of the chemotactic populations is attracted by one chemical and repelled by the
other. For the second population this is the other way around. The chemicals are
modeled by elliptic equations. Under a certain symmetry condition for the ratio
of the attractive and repulsive effects, the full model is numerically analyzed and
solutions for the stationary system are described. The stationary system could be
simplified by this symmetry assumption.

A question of interest in the context of our paper is, if the two chemotactic species
in (1.1) can separate. One possibility could be that for one species blow-up happens,
whereas the solution for the other species is still bounded. We will show that this
is not the case. If blow-up happens, it is simultaneous for both chemotactic species.
Specifically, it will be proved that blow-up for one chemotactic species implies blow-
up for the other one. The difference between the species though is the following. For
some parameter ranges of the chemotactic sensitivities and the diffusion coefficients,
but probably not for all of them, dirac-mass formation in one of the chemotactic
species can be observed, whereas the blow-up asymptotics for the other species grow
like an integrable power law. This means that for the first species mass aggregation
happens, whereas for the second species no accumulation of mass at the origin takes
place, so we obtain blowup without mass aggregation.



The outline of this paper is as follows. First, in Section 2 we present a dimensional
analysis of the model. Then, in Section 3, we recall several results on sufficient
conditions for local and global existence of solutions in multi-component chemotaxis
systems. Also we give sufficient conditions for finite time blow-up in the radial
symmetric situation. In Section 4 we prove that blow-up for one of the chemotactic
species implies also blow-up for the other one at the same time. In the last section we
derive formal asymptotics of the blow-up profiles for a certain range of parameters
of our system.

2 Dimensional analysis

The original model setup is

Oyuy = i Auy — x1V(u Vo) (2.1)
Orug = polAus — x2V(ua Vo) )
0w = DAv + ajuy + agug — fv in - Bg(0),t >0 (2.3)

with Neumann boundary conditions.

We will restrict our attention to the case puy ~ po ~ p, X1 & X2 X X, 1 X Q9 X Q.
Moreover, we will assume that the concentrations u;, uy are of the same order of
magnitude. However, many other interesting limit cases would arise without posing
these assumptions.

Suppose that D >> pu, since molecular diffusion can be expected to be much faster
than cell diffusion. The characteristic time scale for diffusion of the chemical in
Br(0) then is topem = %2, and the characteristic time scale for cell diffusion is given
by teen = %2. Thus tepem << teen. We are interested in the regime in which the
diffusive and chemotactic effects in (2.1), (2.2) are of the same order of magnitude.
If vs denotes the typical spatial variation of the concentration of the chemical, and
||u|| denotes a typical measure of the order of magnitude of the cell concentrations
u;, and if we assume that the initial cell concentrations change in scales of the order
of magnitude of R, we then need

ull xllullvs
R2 T R2 ’

whence = yvs .

On the other hand (2.3) yields

vy alull R*a
— X —— , S0 U=y

[l



Notice that [|ul ~ %, where N, is the number of cells. In the regime in
which the Keller-Segel model yields interesting critical dynamics, if the diffusive and
chemotactic terms are balanced, we must have that N, is of order one. Therefore,
we will consider the limit

X

~1. 2.4
Dn (2.4)
To non-dimensionalize the system we introduce the following new variables
2
oy HD _ ol (D N\ R
t=teyt , x=Rx , u;, = Wui , U — Upgse = R (XG{R2> Vo= v,

where vy = ﬁ [ (e +agug)de is the base level of the chemo-attractor density.
We further assume

MZ:NM;aXZ:XX;aaZ:aaga fori:laQa

with g}, x}, o all being of order one. The original system of equations then becomes

8 /’

57;,1 = i Apuy = Xy Var (1 Vrt') (2.5)

8 /’

572,2 = 1y Agrty = X Var (u3Vart') (2.6)
1 pov 1 uD

=— =D A" + ald v, + ol
tcellxat’ XR2 ’ ( H 2 2)

Therefore

tehem OV Bt t

/ - 1 /B ! Lchem X ‘chem
ton OF Agv' + (0quy + a5uy) — ———Vpase — v,
L ce A

w o
XOARQ ﬁ(vbase + XU ) -

tdegrad

where t4egr00 = % is the characteristic time for the degradation of the chemical and

1 '
Vpgse = — ——Vp
ase BX t(:h,em base
with
1
Vppse = — / (afuy + abhuy)da . (2.7)
T ) B:(0)
So
t o' t
chem Ay Afr,’vl + (aqull + O/QUIZ) - Ulliase - chem UI : (28)
tcell ot tdegrad



By assumption all coefficients and functions in (2.5) and (2.6) are of order one. On
the other hand, (2.8) might be simplified under the assumptions

tch,em << tcell and tch,em << tdegrad . (29)

If the conditions (2.4), (2.9) are satisfied, then the original system (2.1)-(2.3) reduces
formally to (2.5), (2.6) and

0=Apv + (ayul + abuy) — vy, (2.10)

with vy given as in (2.7).

Actually this limit is similar to the limit considered by Jager and Luckhaus in [7].
Of course there are other regimes yielding interesting limits, for instance t.pe, <<
Teeily tehem = tdegrad, but these will not be considered in this paper. Notice that now
(2.5)-(2.7), (2.10) is solved for 2’ € Q' = B; (0), t' € R".

It is possible to reduce (2.5)-(2.7), (2.10) to a problem containing a minimal number
of parameters. To this end we define

U =au, , i=1,2

T=uyt b, V=ov,6 X=20".

Therefore
aU '
T AU - MV (U V), X €B (0), T>0
or 1
aU ! !
2 AU, - 2V (U, VKV) , XEB(0), T >0
or Hi
1
O—AXV+(U1+U2);/ (U]+U2)dX, XGB](O),T>0
J B1(0)

Renaming z—:l, z—% and Z—:Z as x1, X2, M2 respectively, and T by ¢ we finally obtain
1 1 1

oU,

W = AxU] — X]VX(U]V)(V) , X e B] (0) , 1> 0 (211)
oU.
1
OZAXV+(U1+U2)—;/ (U1+UQ)dX, XGBl(U),t>0 (213)
B1(0)

with boundary conditions:

oU; oU, ov
= = =0, Xe0B(0),t>0 2.14
aVX aVX 8VX ’ < ! ( ) ’ o ( )




Later we will set the last term on the right hand side of (2.13) equal to 1.

In case of radially symmetric solutions it is more convenient to rewrite our prob-
lem in terms of the rescaled mass functions

My (1) = / Us (1,€) €de (2.15)
My (L) = /TU2 (1e)ede , r=|X| . (2.16)
0

As a consequence we obtain

aV M1 +M2 T
—_— = — Cc— 217
or r “9 ( )

where ¢ = %f&(o) (U1 (0,X)+ U, (0,X))dX. Now (2.11)-(2.14) become

oM, 0 (10M, cr My, + M\ OM,

ot or (? or ) oA (5 a r ) or (2.18)
OMy 0 (10M, cr My + My\ OM,

o "or <; or ) R (5 a r > or ' (2.19)

with boundary conditions

M, (t,1):/0 Uy (0,€) EdE = my . My (t,1):/0 Uy (0,€)EdE = my  (2.20)

In the following we will use uy, us, v instead of Uy, U,, V.

3 Global Solutions and Blow-up

Here we formulate some standard solvability conditions for system (1.1) together
with (1.2), (1.4), and boundary conditions. First, notice that the function v is not
uniquely defined by the given equations, since a solution (uy,us, v) automatically
implies a solution (u, us,v + ¢(t)) for any time dependent real function g(¢). The
precise normalization of v (¢, x) though is not relevant for the problem we are consid-
ering, since all estimates are done in terms of Vv, which is unique. More precisely,
v does not represent the chemical attractor itself, but the difference of chemical
concentration of the attractor with respect to its basal concentration. Let

/ v(t, x)de = ¢(t) (3.1)
JB1(0)

6



be a normalization condition for this difference, where ¢(t) can be an arbitrary
function of time. Integrating (2.8) with respect to x we obtain

tce
/ vdx = (/ 7)'(0,.7:)(1.7:) exp ( 4 t)
J B1(0) J B1(0) tdegrad

Thus the relative size of t..; and ?4.4reqa provides several natural choices for ¢.

For our system the following local existence result holds.

Theorem 1 Let uy g, usg € C**(B1(0)) for some 0 < a < 1, with uy g, us9 > 0 not
being identically zero, and fBl(U)(uho(m) + ugo(z))dr = .

Then there exists a unique classical solution of (1.1) with (1.2), (1.3), and (3.1)
satisfying uy (0, ) = uyo(x), u2(0,2) = ugg(x) for 0 <t <T for a T > 0.

Moreover, if ||uy(t, )]s + [uz(t,)]|ec < C in 0 < t < T, it is possible to extend
the solution (uy,us,v) to an interval 0 <t < T + 0§ for some § > 0.

Proof. The proof of this result can be done by standard arguments and was shown
in the PhD-thesis by E.E. Espejo Arenas, [3]. =

Global existence results for more general multi-component chemotaxis systems
were considered by Wolansky in [11]. Writing the notation by Wolansky on the left
hand side of the following equations and our notation in the present paper on the
right hand side we have, that 7 = 1, 2 is the index for the chemotactic species, and
k =1 is the index for the involved chemical.

Then v = 1, Vlz = pp and 6y 1 = x1, B0 = ﬁ
For the chemo-attractant we have oy = a =0, v, = 721 =1 and f; = —1.
Just to make the cross-check easier, we also mention further introduced notation in

[11], namely: A;; = 60;17v,1 = 6;1. Thus A;; = x; and Ay = %
Additionally some constants a; > 0 are defined in [11] by
A1 Ao = a1X1 = AaAo 1 = % So for instance a; = i and ay = %

Then Theorem 5 in [11] applied to our context and our notation reads
Theorem 2 Consider our system (1.1) on the two-dimensional disc of radius 1.
Assume Dirichlet boundary conditions for the chemo-attractant. Further let
1 H2 2 2
8m —N1+—N2 —(N] +2N1NQ+N2) >0 s
X1 X2

with N; = 2mm; for i = 1,2 are the respective total preserved masses of the two
chemotactic species.



Then for (uq(0,-),u2(0,-)) € Yy with
Yy = {(u],ug) 1B (0) = RY : [, () Ui = Ni s, (o) Uilogu;dr < oo} there erists

a global in time classical solution.

Remark 3 For one species the above mentioned inequality is the classical condition
for global solutions of the classical chemotaxis model.

For system (1.1) with (1.2), (1.3), (1.4), so Neumann boundary conditions, exis-
tence of global solutions for the radial symmetric case, like in our situation, was
proved in [3]. The result basically says the following:

If Thax is the maximal time of existence for the classical radially symmetric solutions
of our problem and if

2(2 — ) 1 2(2 )
my < mm{“? w} and my < mln{ : (2022 XQm])} . (3.2)
X2 X1 X1 X2

then Tiayx = 00 and supysg {{|ui(t, )l o + [[ua(t, 1o + [0t )|} < 00

Now we will derive sufficient conditions for blow-up in finite time for the solutions
of our system.

Theorem 4 For uy 0 ug o assume the conditions in Theorem 1.
Let oy (t fB \3:| uq (t, z)dz and my(4—2x1mq)+x101(0) < 0, with my, my being
given as in (2. 20) Then there exists a T < 0o, such that

Ty ([ (1) e + o) ) = 00 (3.3)

Remark 5 From this result one can deduce that if mq, > x% and oy 18 “small” then
blow-up happens in finite time.

Proof. of Theorem 4
We will argue by contradiction and use techniques related to [8] . Suppose that (3.3)
is bounded for any 7. Then Theorem 1 implies that the solution is classical for any
time. Now multiplying

Oy = Aup — 1V - (u1 Vo)

by |z|” and integrating the resulting relation over B;(0) we obtain

8t/ uy |z de = / z” Auydz — / 2> V - (u Vo)dz
B (0) B (0) B (0)



From Green’s identity we get

Oy / uy |z’ de = / (A |T\2) urdxr — / n V |z|? - dS
J B1(0) J B1(0) 0B (0)

—X1 / >V - (uy Vo)dz
J B1(0)

= 4/ urdz — / wV |z - dS + x1/ V |z? - (uyVo)dz
B1(0) B (0) B1(0)
< 4 / urdx + 2x4 / u(z - Vo)dz (3.4)
. B1(U) . B](O)

From (2.17) and using the identity z - Vv = r2 we derive

or
Y o
/ ur(z - Vo)dr = 27r/ urr—rdr
B1(0) 0 or

1 2
= 27r/ U <M] + My — %) rdr
0

1 1
oM 1
= 27r/ M, 1dr27r/ 11,]M2d7“+—/ U \T\QdT
0 or 0 2 B1(0)

1 2
oM 1 1
Ldr + —/ uy |z de = —rm? + =0 (t)

< -7

From (3.4) it follows that

d 1

%01 (t) < 4my + 2x; <—7rm? + 501 (t)> =mq(4 — 2x1my) + x101(%).

Since mq(4 — 2x1m1) + x101(0) < 0, it follows that oy() is strictly decreasing with
respect to t. Then for every ¢ we have that
d
Eal(t) < m1(4 — 2X1m1) + XlO'l(O) .
So

0 < o1(t) < o1(0) + [my(4 = 2x1mq) + x101(0)] ¢.

and oy(t) — 0 as t — T, for some finite 7, . But then (u;,us,v) cannot be a
classical solution. Hence due to Theorem 1 there exists T" < T such that

limg s ([ (£ ) oo + 2 (t, ) 0) = 00 -



4 Simultaneous Blow-up

In this chapter we investigate if blow-up at two different times is possible in all
densities variables of our system. Some of the techniques and tools that we use here
are taken from [5] and [6]. The proof will be done by contradiction. To obtain this
result we will prove that us being bounded will imply a lower bound for M; near
the blow-up point. This estimate will allow us to construct a sub-solution for (2.19)
that behaves like My > Cr?* for small values of r at the blow-up time. This is a
contradiction to My = for uspdp < Cr? for small values of 7.

To obtain our result we will first prove

Lemma 6 Suppose that uy blows up at t = T* and that ||ua(t, )], < C for 0 <
t < T*. Then there exist e¢ > 0 and L > 0, both depending on ps, x1, X2, and C
such that

liminf M (¢, LVVT* — t) > &q.

t—(T*)~

Proof. We argue by contradiction. Suppose there exists a sequence (¢,),>o such
that ¢, — (T*)~ and M;(t,, L\/T* —t,) < &9. Define a sequence of functions

My (s,€) = My (t, + L*(T* — t,)s, L\/T* — t, €) (4.1)

for 0 <s < % and 0 < ¢ < r\/% Using (2.18) we obtain

mn+M2

¢ Mpe, n>0. (4.2)

1 ¢ N
mn,s = mn:ff — meE — X1 §L2(T - fn)fmmf + X1

By assumption the functions m,, blow up at s = %

Our strategy is to construct a super-solution for (4.2), that shows that this is not
the case. To obtain this contradiction the proof is divided into three steps

Step 1. Construction of an auxiliary super-solution
In order to obtain a super-solution for (4.2) we are looking for a function M which
satisfies

1 M + M.
Mff — E 7—2 QME — X1 gLQ(T* - fn)gME - Ms S 0 (43)
in the sense of distributions. Since uy < C it follows that My < C’L;(T* — )&%

Therefore, if M (t, &) satisfies

ME+X1

(C—¢)

L*(T* = t,)éMe — My < 0 (4.4)



in the sense of distributions, then M automatically satisfies (4.3).
First we obtain an auxiliary function

M(&) = My + &%, My,a >0, (4.5)

which satisfies

MM C—c
£+X1( . c)

(T~ )M <0 (46)

for 0 < & < €, with M(§) < X]—], and 0 < t < T*. This is possible, since (4.6) is
equivalent to
o @ (C 7 C) 2% 2
afa —2) +axi{(My + ¢ )+X]TL (T* —1,)°} <0.

And the above inequality holds for any o € (0,2) in 0 < § < £0<t, <T* for
My, & small enough. . . B

Now we construct another auxiliary function M (s, &). Define My(&) for £ > € as
an increasing, strictly concave function, satisfying the following conditions

— OMy —  OM -
My(§) = M(E) 9 (€) < 8—{5(5)
02 M, _
TQO(S) < 0 for £E<E< o0 (4.7)

My(o0) > 2my , My e C®([€,00)) .

We then define ]f\\](s, €) as the solution of

M, = (XI% + 55) oMy £(s) < €< oo, with M(0,€) = My(¢), (4.8)

¢ %
where
%s)—mﬂég)ﬂé(s) for 5>0, with{(0)=¢ (49)

and for § > 0 sufficiently small.
In the following we assume, that X]@LQ(T —t,) < J. Problem (4.8) can be
solved explicitly for short time, by using the method of characteristics. Moreover,

11



for small values of s, i.e. s € [0, sq], with s > 0 sufficiently small and independent
of L, the following estimates hold

(i) M(z,&(s) = () (4.10)
y oM 1 OM

(i7) 0< 8—5(875) < f(s)a—f(a (4.11)

(iii) a;féw(s,g) <0 for £<¢&< 0 (4.12)

(i) M(s.) € C™([€, o))
(v) M(s,00) > 2my

~

(vi) €(s) > -

for 0<s5<sg.

g |/l

These estimates can be derived by integration over characteristics. From (4.12) it
follows that

—~ 1~ M M, C—c ~
Mee = £Me + 1 €E+X1( 5 )LQ(T—tn)fo—MsSU (4.13)

for(]gsgso,f()<£<001f>“( )LQ(T tn) < 6.

We now define our super-solution as
N (s,€) = | o (4.14)

with 0 < 5 < sq.
Due to (4.6),(4.10),(4.11), and (4.13), we have that M(s, &) satisfies (4.3) in the
sense of distributions for 0 < s < s9, & > 0. Moreover, M(s,&) > my for £ > &,,
with some &, > 0.

Finally define M(s,&) = M(\s, A¢) for A > 0 sufﬁciently large, then M(s, &)
satisfies (4.3) in the sense of distributions for s € (0,%), £ > 0, (T' — t,,) small and

M(s, &) >my for £>1. (4.15)

12



Step 2. M, is ”small” close to the origin for ¢ € [t,,, T*].

Suppose that ey < My, with M, as in (4.5). Then from (4.1) it follows, that for L
sufficiently large and % < % that

mn(0,8) < M(0,&) for £>0. (4.16)

By comparison we obtain

1
my(s, &) < M(s,&) for €>0,0<s<— T3
1 1

(4.17)
mp(s, &) < ME<

respectively using (4.5),(4.7),(4.14)

M(t,r) < — , for 0<r < - LMT“Jh,f<f<T* (4.19)

1
X1

Step 3. (4.19) implies that u; does not blow up at ¢ = T*.

We give a comparison argument. To do so, a super-solution for (2.18) is constructed.
Since My < %TQ due to the boundedness of uy, we obtain this super-solution by find-

ing M, (t,r) such that
8]\2/1 > 822\2/1 18]\2/1 4 (C - C) 6M1 4 Ml 6]\2/1
— - r — .
ot — 0Or? r or Xy or Xy

(4.20)

We can obtain a solution for (4.20) by setting the right hand side equal to zero. By
simple ODE arguments one can solve the stationary system to get M; = M;(r). We
can express

~ . T . B i 62
M (r) = So(g) with £ << 1 and ¢(§) = NEES) +

Choosing ¢ > 0 sufficiently small, we can then compare M, (¢, 7) and M (r) to obtain

62
&Z+1

O(e

) (4.21)

M(t,r) < Kr? for0<t<T*, r<1, (4.22)

and K > 0 fixed.

13



Finally we provide an estimate for u;. We have that

1 0M,
t = - . 4.23
U1( ,7“) " or ( )
Therefore we have to estimate %. To do this, we define for small R > 0 the family
of functions
M (to +TR?*, R
Myl p) = 2 +RZ - F0) (4.24)
for 0 < p<2andt; e (0,7 — R?). Now (4.23) in particular implies
1
M, g(T,p)| < C for 1 <p<2,7€|01].
On the other hand
aMl R 8 1 aMl R a]\41 R
— =p—| - — M — 4.25
o pap (p ap + f P 1L,R, ap ; ( )

where f is bounded for any R <1, p € (1,2), 7 € [0, 1]. Therefore, classical interior
regularity theory for parabolic equations yields

aMLR
dp

1 1
< C forpe€ <§,1> , T E {5,1} . (4.26)
e (L, 17).

Combining (4.24) and (4.26) it follows, that |22t| < Cr for r < 1, ¢
€ (0,7*), and our

Using (4.23) we obtain that wu(¢,7) is bounded for 0 < r <1, ¢
Lemma follows. m

Now we focus on the main result of our paper, which is

Theorem 7 Assume that uy, usyg fulfill the assumptions of Theorem 1. Also, sup-
pose that

limsup ||u1 (¢, )| oo (B, (0)) = 00 , for some T™ >0 (4.27)
t—(T*)~
then  limsup |lua(t,-)|[ 1 (B, (0)) = 0© - (4.28)
t—(T*)~

14



Proof. We argue by contradiction. Suppose that (4.27) is fulfilled and (4.28) does
not hold. Then there exists a constant C' > 0 such that

0 <wuy(t,z) <C forz e By(0), 0<t<T" . (4.29)

Thus
My(t,r) < — for0<r<1,0<t<T". (4.30)

Our strategy is to construct a sub-solution for (2.19) behaving like K72 with K > 0,
for r — 0% with A € (0,1). This then contradicts (4.30).

Let I{;>q be the characteristic function of the set {r > a}. Due to Lemma 6
and the monotonicity of M; with respect to r we have that M;(t,r) > g9 > 0 for
LT —t <r <1, with (T* — t) sufficiently small. Using (2.19) as well as the fact
that % > 0, it follows that

2 T

0% M, 1 OM, <cr 501{@11%}) oM, OM,

gr2_ ,n2 . <0.
Ha or? 'u27" or X2 or ot —

Therefore, we can obtain a sub-solution for M, by finding a function M satisfying

> 0. 4.31
or 875_0 (4.31)

0?M 10M ((:7" 601{T>Lm}> oM oM

I

We are looking for M in the form

r
M(t,r) = —, —log(T" —t) | . 4.32
(1.1) =0 (e 0T 1) (1.3
Let y = = and 7 = —log(T™ — 1), then
0? 0 10 cyexp(—7) eol 0 0
L0 vov 100 (yen(on)  enluen) 000 o )
oy 2 Oy y 0y 2 Y dy Ot
The structure of (4.33) suggests to look for solutions of the form
(1, y) = exp(=AT)Q(y) + exp(— (A + 1)1)G(y) , (4.34)
where
d’Q Yo pe colpy>r1) dQ
— |+ —=—xo————= | —+ QR =0. 4.35
> 0 <2+y X2 dy+Q (4.35)
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and

e eol G e
PR (y+&_x2m> OGS ey (4.36)
2y y dy dy

[t will later be checked if ¢(7,y) in (4.34) yields a sub-solution for 0 < y < §y exp(7)
for §g > 0 small enough.
Before, we study the function Q(y) as defined in (4.35).

Step 1. Analysis of Q(y):
Equation (4.35) can be solved explicitly using Kummer functions. Let z = %, then
(4.35) transforms into

d’Q X280 dQ)
— =z —=—I, 2] — =0. 4.
S <Z s 2215) ) dz +AQ =0 (4.37)
If z < 4L—2, this equation reduces to
p2
2Q,, —2Q, +A\Q =0, (4.38)

and the unique solution of this equation, vanishing at the origin is (cf. [1])
Qz) = AzM(-A+1;2;2) , (4.39)

with

o

M(a;b;Z)—Z%%,

=0

where (a); = a(a+ 1)(a +2)...(a+ 1 — 1) and (a)y = 1. On the other hand, for
z > 4LE equation (4.37) becomes

d’Q X260\ dQ
— — — = — +XQ =0. 4.40
“d2? (Z 2uy ) dz A (4.40)
The only solution of this equation that does not grow exponentially for large z is
Q(z) = BU(- % 2X2;2) (4.41)
2419
with
Ulab,2) = — m M (a; b; 2) 7217,)M(1+a—b;2—b;z)
sin(mb) \I'(1 4+ a — b)['(b) ['(a)T(2 —b)
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for b ¢ Z. In particular, using (4.39), (4.41) one obtains that the solution of (4.35)
is given as

Ay? y?
Qly) = —M(-A+1;2,~—) fory< L, (4.42)
A Apy
2
€oX2 Y
= BU(—\; ;—) fory > L. 4.43
Q(y) (=X m 4u2) y (4.43)

Suppose that A > 0 is a given constant. To obtain a solution of (4.35) with the aid
of (4.42), (4.43) we need to impose continuity for ) and % at y = L. Using 13.4.8
and 13.4.21 in [1] this requires

L2 L? L?
—AM(=A+1;2;,—) = BU (—,\; coxz, —) (4.44)
4o 4tz 2p9  Apg
—A+1 L? AL L?
#Lf‘M(—)\ F 23 ) M (A4 12, )
1645 41y 22 4
BAL L?
i (—/\ 11 222 —) . (4.45)
2419 219 Ao
For the moment suppose
gox2 L?
U(—\; —/—=; — 0 for A e (0,1). 4.46
(X i) (0.1 (4.46)

Without loss of generality we can always assume that L is sufficiently large. Then

12 M(=\+1;2; L)

B— 19 Ay
4 . Eoxz. L2
o (na £
So (4.45) can be rewritten as
1—\)L? L? L?
fA) = QM(—)\+2;3;—) +ApsM(—A+1;2,—)  (4.47)
2 4pio 4o

2uo * 4uo

~AL*M (=X +1;2; _2)U< =
T’ g (_A. coxe . L_> a

» ops ) A

AT T4 L)
0

It can be shown that there exists at least one solution of (4.47) for A € (0,1) and L
large enough, if (4.46) holds. Indeed, we have
L? L? L?

0) = —M(2:3;— dposM(1;2; —
f() 92 (’,4N2)+ 2 (,’4,“2

)
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and using

M (a;b; z) ~ F((a)) e’z for z — o0

(cf. 13.1.4 in [1]), it follows that

2

L
f(0) = 4psexp(—) >0 for L — oo .
4o

On the other hand

2 12\ U(0;1 + 22, L2
F(1) = 4paM(0;2; 7 —) = L*M (0;2;4—> ( e {2’“) :

Since M (0;b; z) = 1, it follows that

c0ye 2
_L_QU(0;1+ i)
419 U(—l‘ gox2. LQ)

» 2ps ) A

0=

So we need to study the sign of

g(b,x) == <1 - T%)

Using 13.4.21 in [1] we obtain U'(a;b;2) = —aU(a + 1;b+ 1; ). Thus

U'(=1;b;x)
br)=1—2r—-"7-"—"—.
g( 7T) TU(*]_I),T)

Using 13.5.2 in [1] we get

1
U(O;b;x)zx—b—i—()(—) for x — oo,
x
and
x b
g(b,x) =~ —(x_b)%—5<0 for x — o0

With b = 3% > 0 it follows, that f(1) < 0. Therefore there exists a root of (4.47)
in the interval A € (0,1). It only remains to prove (4.46). For large L this is a direct
consequence of 13.5.2 in [1].
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Step 2. Analysis of G(y):
Now we study the properties of G(y) in (4.34). A solution of the inequality (4.37)
can be obtained by finding a solution of

82G Yy U2 BQ

oG
I ATt R 1 = — 4.4
Zrw <2 + ) ) 9 + (A+1)G(y) = cxay 3 (4.48)

for y > 0, satisfying (?3;; > 0 for y > L. The unique solution of (4.48), which is

polynomially bounded for y — oo and bounded quadratically for y — 0, is given by

2 oo —)\-9- 122
y X2nQy (MU (=A: 2; 75-)n
Gly) = y¥’M(=X; 22— / dn 4.49
w = ruexzl) [ . (1.49)
2 y M(=X;2; Z)p2
y X2nQy(n) M (=X; 25 7)1
+2U (=N 27— / dn , 4.50
( 4#2) 0 W (n) ( )
where
2 9. ¥’ 2 9. Y
W(y) = Sl @
W (yQM(—/\; 2; f’;)) i (yQU(—A; 2; f’;))
Using (4.41) we obtain with 13.1.8 in [1] that
)
Qy) ~ B (—) for y — oo . (4.52)
At
Combining this with (4.49), (4.51), and 13.1.4, 13.1.8 in [1] we get
Gly) = O (yQ(’\H)) for y — o0 (4.53)
Gly) = Oy for y—0. (4.54)

Similar asymptotics and estimates for the derivatives can be obtained for @) and G.

Step 3. Comparison argument:
The function ¢ defined in (4.34) satisfies (4.33) for values of y for which

oG

0
9 exp(—(A+ 1)) < a—Q exp(—A7)

Y

The asymptotics (4.52), (4.53) imply that this inequality is satisfied for |y| <
d exp(3) with § > 0 small enough.
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A comparison argument using (2.19) with My = 0 for r = g implies that My > v > 0
for r = 9, % <t <T*. Choosing B > 0 sufficiently small, we obtain that the sub-
solution ¢ (7,y) in (4.34) is smaller than My (¢,7) for r = 0, t € (T* — 6, T*) with
f > 0 small. The same is true for t = T* — 0, 0 < r < §. Overall, due to the
self-similar structure of (7, y) and (4.52), (4.53) it follows that

M) )
r—0 ’[“2)‘

But since A € (0,1), this contradicts (4.30), thus the result follows. m

5 Formal derivation of the blowup profile

In this section we derive the asymptotics of the solutions of system (2.18), (2.19) near
the blow-up time by formal asymptotic expansions Our analysis will be restricted
to parameters Y1, X2, 2 for which the resulting asymptotics yields My << M; near
the blow-up point. It seems possible to obtain other asymptotics yielding mass
aggregation for both species at time ¢ = T when the chemotactic strength of both
species is comparable. But this case will not be considered here. In this paper we
will consider the situation where the chemotactic strength of the second species is
much weaker than that of the first species. For M, << M; we can approximate
(2.18), (2.19) by

oMy 9 (10M, M, oM,
5 = TE <; or >+X17 oy + h.o.t. (5.1)
oM, 0 (10M, M, OM,

Therefore the dynamics of M; is decoupled from that of M, to the leading order.
Thus the asymptotics of M; can be calculated like proved for the one species case
in [9]. So one obtains

r
My(tr) ~ My, [— ol 5.3
)~ i () 53
4 r?
ith M = —— A4
wit 1,s » (1—|—’I“2) (5 )

Q

and 0(t)

2 exp <(7;2)> exp (‘/W) for ¢t — T* ,(5.5)
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where M, ; is the stationary solution of the equation for M; and v is the classical
Euler constant.

So the problem reduces to the description of the asymptotics of My in (5.2)
with M, as in (5.3). Arguing like in the asymptotics for (5.3) it is convenient to
reformulate (5.2) using self-similar variables

Y= —/—7—/—7—,T7= 710g(T* 77L) ’ Ml - ¢(7—7y) ’ M2 - Zb(ﬂy) . (56)

Then (5.2) becomes to leading order
d (10¢y Y ¢
o= _ _Z Zab, 5.7
W 2y (u ay) oy (5.7)

Additionally we will need the equation for M, in the so-called inner region y =~ 9.
For this we introduce new variables

¢ = % b, y) = Q(r,€) L br,y) = G(r,€) (5.8)

where 0 is given as in (5.5) with some slight abuse of notation. Therefore
0Q 10Q Q) o oQ
o i (¢a) + 205~ (7-00) 5% )

Due to (5.3) we have G(7,&) — M, 4(§) for 7 — oo. Thus to the leading order
Q(1,&) = Qo(T,€) for 7 — oo, where

18@0 X2 8@0 -
N258—€ (E o ) + = ¢ M1,s(f)a—€ =0. (5.10)
Then
Qo(7,&) = K(7)L(£) , (5.11)
with

L(&)—/U Zexp< /M”’ )z

Using (5.4) it follows that

L&) ~ AP + Ay for € = 0. (5.12)
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4
Here =2 — X2 and
H2X1

s ) o (M _ 4
H2 Jo n

M2 Jq

Ui
00 dxo oo (M B _ 4
AQ — Al/ Z]7N2X1 [eXp <&/ ( b (n) Xl)d'f’) — 1] dZ . (514)
0 M2 J n

Combining (5.11) and (5.12) we obtain the following matching condition for ¢ (7, y)
in (5.7)

K(7)
(6(7))?

(1Y) = A Y + AyK (1) for T — o0, (5.15)

with §(7) <<y << 1.
In order to compute the asymptotics of ¢ (7, y) we introduce a new variable

U(1,y
U(r,y) = (5 )
Yy
Then
4x2 \I’> Y 3
v, = U, — 20+ 22 12 ) - 29, - S0 5.16

Writing N = 25 + ;IX—;Z = 2+ (3, then the right-hand side of (5.16) is self-adjoint in

L*(RF; 4N exp(—%)). On the other hand (5.15) implies
K(T)Al K(T)AQ
U(r,y) ~ 55 + R (5.17)
To compute the asymptotics of W(7,y) we argue as in [9] and write
\I’(T, U) = aU(T) + Q(T, U) ) (518)
with
o0 UQ
| v Qe =o. (5.19)
0 411

Plugging (5.18) into (5.16), multiplying by y™ ! exp(—%), integrating in [g, 0o) for
£ > 0, we obtain, after some computations

d fo'e) B y2
— / y N Vexp [ ) ot y)dy
dr € 4:“/2

2 o 2

N—1 € N—1 Y
= — e T,e)exp(——) — = T,Y)1 exp(——)dy . (5.20
2 SOy( ) exp( 4,u2) 2/5 o(T,y)y p( 4#2) y . ( )
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Using (5.17) and taking the limit ¢ — 0 we get

e yV T exp(= L) o(r, y)dy
e 1 E 4/12 7 & :

2

_g,/ﬂ p(r.y)y™! eXp(4y—m)dy+M2K(T)(N2)Ag, (5.21)

and using (5.19) we obtain

(I,[]’T = gag —+ MQ(N - 2)A2K(7—) . (522)

Here K (1) could be expected to behave like exp(—g ) up to logarithmic corrections,
since §(7) >> exp(—or) for any o > 0. Due to (5.17) we can assume

Q(r,y) = K(1)W(y) ,

where to the leading order
N -1
Lo (WW+QW1,> —gWy = 0 for y >0,

Ay
W(y) =~ o for y— 0,

oo 2
(_y_)w Q) = 0.
/0 y P\ =1 (y)dy

On the other hand, (5.17) and (5.18) yield

K(r)
(LO(T) 5—ﬂA1 . (523)
So (5.22) reads
Y
ag,r = gag + MQ(N - 2)A2A—]a0 ,

and since ["*(8(7))dr < oo it follows that ao(7) ~ Cexp(—E27) for 7 — oo and
some C' > 0. Using (5.23) we get

C

K(T)%A—]

(6(7))? eXp(—gT) for 7 — oo .
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This concludes the computation for K(7) in (5.11) to the leading order.
Combining this with (5.8), (5.15) gives the asymptotics for M, in the region, where
ly| is large. Then

My(t,x) ~ CrP | for (T—t)% <<r<<l1l , wheret—T,
where f =2 — % This implies in particular that
10M. C
us(Tyr) = =2 =~ 4£ , asr— 0%,
roor T H2ax1

This shows that there is a singularity for uy but no mass aggregation.

6 Conclusions

We analyzed a two chemotactic species model, where the chemotactic species are
attracted by the same chemical. In the radial symmetric situation we wanted to see,
if chemotaxis can separate the two species. From our results so far this does not
seem to be the case. There is simultaneous blow-up for both chemotactic species.
Specifically it is proved that if there is blow-up in one chemotactic species, then there
is also blow-up in the other one. We give conditions for local and global existence.
Also the existence of blow-up in this system is proved. The blow-up asymptotics of
the solutions are formally calculated for certain parameter regimes. The two species
can be different in this respect, since one of them shows mass concentration in the
blow-up regime, whereas the other one does not.
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