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Simultaneous Finite Time Blow-up in aTwo-Species Model for ChemotaxisE. E. Espejo Arenas�, A. Stevensy, J. J. L. Vel�azquezzIn honor of Erhard Heinz, on the occasion of his 85th birthday.AbstractA system of two classical chemotaxis equations, coupled with an ellipticequation for an attractive chemical, is analyzed. Depending on the parametervalues for the three respective di�usion coe�cients and the two chemotacticsensitivities in the radial symmetric setting, conditions are given for global ex-istence of solutions and �nite time blow-up. A question of interest is, whetherthere exist parameter regimes, where the two chemotactic species di�er intheir long time behavior. This questions arises in the context of di�erentialchemotactic behavior in early aggregates of Dictyostelium discoideum1 IntroductionIn this paper we address the question if di�erential chemotaxis can serve as the mainmechanism for cell sorting in Dictyostelium discoideum during self-organisation un-der starvation conditions. In laboratory experiments [10], cell sorting was observedin the early aggregation stages during mound formation. Cells moving in the top ofthe aggregates show stronger chemotactic abilities when being observed separately,than the cells moving at the bottom. As a �rst mathematical ansatz to approachthis question on cell sorting, a model of two chemotactic species is considered, bothof which react to the same chemical, cAMP, but with di�erent chemotactic strength.�Institute for Cell Dynamics and Biotechnology ICDB, Universidad de Chile, Facultad de Cien-cias Fisicas y Matem�aticas, Beauchef 861-Santiago-Chile (eespejo@ing.uchile.cl)yUniversity of Heidelberg, Applied Mathematics and BioQuant, INF 267, D-69120 Heidelberg,Germany (angela.stevens@uni-hd.de)zICMAT (CSIC-UAM-UC3M-UCM), Facultad de Ciencias Matem�aticas, Universidad Com-plutense, Madrid 28040, Spain (velazque@mat.ucm.es)1



So we are interested to understand the qualitative behavior of the following system@tu1 = �u1 � �1r � (u1rv);@tu2 = �2�u2 � �2r � (u2rv); (1.1)0 = �v + u1 + u2 � 1; in BR(0): t > 0;with �2; �1; �2 > 0 (1.2)@u1@� = @u2@� = @v@� = 0 ; x 2 @BR(0); t > 0 ; (1.3)u1(0; x) = u1;0(x) � 0 ; u2(0; x) = u2;0(x) � 0 ; x 2 BR(0) ; (1.4)where BR(0) is the two-dimensional ball of radius R, which is centered in the origin,u1;0; u2;0 are not identically zero, and u1 and u2 are the density variables for the twocell types with di�erent chemotactic sensitivities, and v is the chemo-attractant.Chemotaxis models of Keller-Segel type with several chemotactic populationsreacting to several chemicals have be studied in [11]. By using energy methodssu�cient conditions for global existence of solutions, especially for the case we areinterested in, but with Dirichlet boundary conditions, were derived.In [4] the dynamics of two chemotactic species are considered, which are modeledby two classical chemotaxis equations. They are interacting via two chemicals. Oneof the chemotactic populations is attracted by one chemical and repelled by theother. For the second population this is the other way around. The chemicals aremodeled by elliptic equations. Under a certain symmetry condition for the ratioof the attractive and repulsive e�ects, the full model is numerically analyzed andsolutions for the stationary system are described. The stationary system could besimpli�ed by this symmetry assumption.A question of interest in the context of our paper is, if the two chemotactic speciesin (1.1) can separate. One possibility could be that for one species blow-up happens,whereas the solution for the other species is still bounded. We will show that thisis not the case. If blow-up happens, it is simultaneous for both chemotactic species.Speci�cally, it will be proved that blow-up for one chemotactic species implies blow-up for the other one. The di�erence between the species though is the following. Forsome parameter ranges of the chemotactic sensitivities and the di�usion coe�cients,but probably not for all of them, dirac-mass formation in one of the chemotacticspecies can be observed, whereas the blow-up asymptotics for the other species growlike an integrable power law. This means that for the �rst species mass aggregationhappens, whereas for the second species no accumulation of mass at the origin takesplace, so we obtain blowup without mass aggregation.2



The outline of this paper is as follows. First, in Section 2 we present a dimensionalanalysis of the model. Then, in Section 3, we recall several results on su�cientconditions for local and global existence of solutions in multi-component chemotaxissystems. Also we give su�cient conditions for �nite time blow-up in the radialsymmetric situation. In Section 4 we prove that blow-up for one of the chemotacticspecies implies also blow-up for the other one at the same time. In the last section wederive formal asymptotics of the blow-up pro�les for a certain range of parametersof our system.2 Dimensional analysisThe original model setup is@tu1 = �1�u1 � �1r(u1rv) (2.1)@tu2 = �2�u2 � �2r(u2rv) (2.2)@tv = D�v + �1u1 + �2u2 � �v in BR(0); t > 0 (2.3)with Neumann boundary conditions.We will restrict our attention to the case �1 � �2 � �; �1 � �2 � �; �1 � �2 � �.Moreover, we will assume that the concentrations u1; u2 are of the same order ofmagnitude. However, many other interesting limit cases would arise without posingthese assumptions.Suppose that D >> �, since molecular di�usion can be expected to be much fasterthan cell di�usion. The characteristic time scale for di�usion of the chemical inBR(0) then is tchem = R2D ; and the characteristic time scale for cell di�usion is givenby tcell = R2� . Thus tchem << tcell. We are interested in the regime in which thedi�usive and chemotactic e�ects in (2.1), (2.2) are of the same order of magnitude.If v� denotes the typical spatial variation of the concentration of the chemical, andkuk denotes a typical measure of the order of magnitude of the cell concentrationsui, and if we assume that the initial cell concentrations change in scales of the orderof magnitude of R, we then need�kukR2 � � kuk v�R2 ; whence � � �v� :On the other hand (2.3) yieldsv�R2 � � kukD ; so � � �R2�D kuk :3



Notice that kuk � NcellsR2 , where Ncells is the number of cells. In the regime inwhich the Keller-Segel model yields interesting critical dynamics, if the di�usive andchemotactic terms are balanced, we must have that Ncells is of order one. Therefore,we will consider the limit ��D� � 1 : (2.4)To non-dimensionalize the system we introduce the following new variablest = tcellt0 ; x = Rx0 ; ui = �D��R2u0i ; v � vbase = �R2D � �D��R2� v0 = ��v0 ;where vbase = 1��R2 R (�1u1+�2u2)dx is the base level of the chemo-attractor density.We further assume�i = ��0i ; �i = ��0i ; �i = ��0i ; for i = 1; 2 ;with �0i; �0i; �0i all being of order one. The original system of equations then becomes@u01@t0 = �01�x0u01 � �01rx0(u01rx0v0) ; (2.5)@u02@t0 = �02�x0u02 � �02rx0(u02rx0v0) ; (2.6)1tcell �� @v0@t0 = D ��R2�x0v0 + �(�01u01 + �02u02) �D��R2 � �(vbase + ��v0) :Therefore tchemtcell @v0@t0 = �x0v0 + (�01u01 + �02u02)� �tchem�� vbase � tchemtdegrad v0 ;where tdegrad = 1� is the characteristic time for the degradation of the chemical andvbase = ��� 1tchemv0base ;with v0base � 1� ZB1(0)(�01u01 + �02u02)dx0 : (2.7)So tchemtcell @v0@t0 = �x0v0 + (�01u01 + �02u02)� v0base � tchemtdegrad v0 : (2.8)4



By assumption all coe�cients and functions in (2.5) and (2.6) are of order one. Onthe other hand, (2.8) might be simpli�ed under the assumptionstchem << tcell and tchem << tdegrad : (2.9)If the conditions (2.4), (2.9) are satis�ed, then the original system (2.1)-(2.3) reducesformally to (2.5), (2.6) and0 = �x0v0 + (�01u01 + �02u02)� v0base (2.10)with vbase given as in (2.7).Actually this limit is similar to the limit considered by J�ager and Luckhaus in [7].Of course there are other regimes yielding interesting limits, for instance tchem <<tcell; tchem � tdegrad, but these will not be considered in this paper. Notice that now(2.5)-(2.7), (2.10) is solved for x0 2 
0 = B1 (0) ; t0 2 R+ .It is possible to reduce (2.5)-(2.7), (2.10) to a problem containing a minimal numberof parameters. To this end we de�neUi = �0iu0i ; i = 1; 2T = �01t0 ; V = v0 ; X = x0 :Therefore@U1@T = �XU1 � �01�01rX(U1rXV ) ; X 2 B1 (0) ; T > 0@U2@T = �02�01�XU2 � �02�01rX(U2rXV ) ; X 2 B1 (0) ; T > 00 = �XV + (U1 + U2)� 1� ZB1(0) (U1 + U2) dX ; X 2 B1 (0) ; T > 0Renaming �01�01 ; �02�01 and �02�01 as �1; �2; �2 respectively, and T by t we �nally obtain@U1@t = �XU1 � �1rX(U1rXV ) ; X 2 B1 (0) ; t > 0 (2.11)@U2@t = �2�XU2 � �2rX(U2rXV ) ; X 2 B1 (0) ; t > 0 (2.12)0 = �XV + (U1 + U2)� 1� ZB1(0) (U1 + U2) dX ; X 2 B1 (0) ; t > 0 (2.13)with boundary conditions:@U1@�X = @U2@�X = @V@�X = 0 ; X 2 @B1 (0) ; t > 0 (2.14)5



Later we will set the last term on the right hand side of (2.13) equal to 1.In case of radially symmetric solutions it is more convenient to rewrite our prob-lem in terms of the rescaled mass functionsM1 (t; r) = Z r0 U1 (t; �) �d� (2.15)M2 (t; r) = Z r0 U2 (t; �) �d� ; r = jXj : (2.16)As a consequence we obtain@V@r = M1 +M2r � cr2 ; (2.17)where c = 1� RB1(0) (U1 (0; X) + U2 (0; X)) dX. Now (2.11)-(2.14) become@M1@t = r @@r �1r @M1@r �� �1�cr2 � M1 +M2r � @M1@r ; (2.18)@M2@t = �2r @@r �1r @M2@r �� �2�cr2 � M1 +M2r � @M2@r ; (2.19)with boundary conditionsM1 (t; 1) = Z 10 U1 (0; �) �d� =: m1 ; M2 (t; 1) = Z 10 U2 (0; �) �d� =: m2 (2.20)In the following we will use u1; u2; v instead of U1; U2; V .3 Global Solutions and Blow-upHere we formulate some standard solvability conditions for system (1.1) togetherwith (1.2), (1.4), and boundary conditions. First, notice that the function v is notuniquely de�ned by the given equations, since a solution (u1; u2; v) automaticallyimplies a solution (u1; u2; v + g(t)) for any time dependent real function g(t). Theprecise normalization of v(t; x) though is not relevant for the problem we are consid-ering, since all estimates are done in terms of rv, which is unique. More precisely,v does not represent the chemical attractor itself, but the di�erence of chemicalconcentration of the attractor with respect to its basal concentration. LetZB1(0) v(t; x)dx = �(t) (3.1)6



be a normalization condition for this di�erence, where �(t) can be an arbitraryfunction of time. Integrating (2.8) with respect to x we obtainZB1(0) vdx = �ZB1(0) v0(0; x)dx� exp�� tcelltdegrad t� :Thus the relative size of tcell and tdegrad provides several natural choices for �.For our system the following local existence result holds.Theorem 1 Let u1;0; u2;0 2 C2;�(B1(0)) for some 0 < � < 1, with u1;0; u2;0 � 0 notbeing identically zero, and RB1(0)(u1;0(x) + u2;0(x))dx = �.Then there exists a unique classical solution of (1.1) with (1.2), (1.3), and (3.1)satisfying u1(0; x) = u1;0(x); u2(0; x) = u2;0(x) for 0 � t < T for a T > 0.Moreover, if ku1(t; �)k1 + ku2(t; _)k1 � C in 0 � t � T , it is possible to extendthe solution (u1; u2; v) to an interval 0 � t � T + � for some � > 0.Proof. The proof of this result can be done by standard arguments and was shownin the PhD-thesis by E.E. Espejo Arenas, [3].Global existence results for more general multi-component chemotaxis systemswere considered by Wolansky in [11]. Writing the notation by Wolansky on the lefthand side of the following equations and our notation in the present paper on theright hand side we have, that i = 1; 2 is the index for the chemotactic species, andk = 1 is the index for the involved chemical.Then �1 = 1, 1�2 = �2 and �1;1 = �1, �2;1 = �2�2 .For the chemo-attractant we have �1 = � = 0, 
1;1 = 
2;1 = 1 and f1 = �1.Just to make the cross-check easier, we also mention further introduced notation in[11], namely: �i;j = �i;1
j;1 = �i;1. Thus �1;1 = �1 and �2;1 = �2�2 .Additionally some constants aj > 0 are de�ned in [11] bya1�1;2 = a1�1 = a2�2;1 = a2�2�2 . So for instance a1 = 1�1 and a2 = �2�2 .Then Theorem 5 in [11] applied to our context and our notation readsTheorem 2 Consider our system (1.1) on the two-dimensional disc of radius 1.Assume Dirichlet boundary conditions for the chemo-attractant. Further let8�� 1�1N1 + �2�2N2�� (N21 + 2N1N2 +N22 ) > 0 ;with Ni = 2�mi for i = 1; 2 are the respective total preserved masses of the twochemotactic species. 7



Then for (u1(0; �); u2(0; �)) 2 YN withYN := n(u1; u2) : B1(0)! R+ : RB1(0) ui = Ni ; RB1(0) ui log ui dx <1o there existsa global in time classical solution.Remark 3 For one species the above mentioned inequality is the classical conditionfor global solutions of the classical chemotaxis model.For system (1.1) with (1.2), (1.3), (1.4), so Neumann boundary conditions, exis-tence of global solutions for the radial symmetric case, like in our situation, wasproved in [3]. The result basically says the following:If Tmax is the maximal time of existence for the classical radially symmetric solutionsof our problem and ifm1 < min��2�2 ; 2(2� �1m2)�1 � and m2 < min� 1�1 ; 2(2�2 � �2m1)�2 � ; (3.2)then Tmax =1 and supt�0 fku1(t; �)kL1 + ku2(t; �)kL1 + kv(t; �)kL1g <1 .Now we will derive su�cient conditions for blow-up in �nite time for the solutionsof our system.Theorem 4 For u1;0; u2;0 assume the conditions in Theorem 1.Let �1(t) = RB1(0) jxj2 u1(t; x)dx and m1(4�2�1m1)+�1�1(0) < 0, with m1; m2 beinggiven as in (2.20). Then there exists a T <1, such thatlimt!T� ku1(t; �)kL1 + ku2(t; �)kL1 � =1 : (3.3)Remark 5 From this result one can deduce that if m1 > 2�1 and �1 is "small" thenblow-up happens in �nite time.Proof. of Theorem 4We will argue by contradiction and use techniques related to [8] . Suppose that (3.3)is bounded for any T . Then Theorem 1 implies that the solution is classical for anytime. Now multiplying @tu1 = �u1 � �1r � (u1rv)by jxj2 and integrating the resulting relation over B1(0) we obtain@t ZB1(0) u1 jxj2 dx = ZB1(0) jxj2�u1dx� �1 ZB1(0) jxj2r � (u1rv)dx :8



From Green's identity we get@t ZB1(0) u1 jxj2 dx = ZB1(0) �� jxj2�u1dx� Z@B1(0) u1r jxj2 � dS��1 ZB1(0) jxj2r � (u1rv)dx= 4 ZB1(0) u1dx� Z@B1(0) u1r jxj2 � dS + �1 ZB1(0)r jxj2 � (u1rv)dx� 4 ZB1(0) u1dx+ 2�1 ZB1(0) u1(x � rv)dx (3.4)From (2.17) and using the identity x � rv = r @v@r we deriveZB1(0) u1(x � rv)dx = 2� Z 10 u1r@v@r rdr= �2� Z 10 u1�M1 +M2 � r22 � rdr= �2� Z 10 M1@M1@r dr � 2� Z 10 u1M2dr + 12 ZB1(0) u1 jxj2 dx� �� Z 10 @M21@r dr + 12 ZB1(0) u1 jxj2 dx = ��m21 + 12�1(t)From (3.4) it follows thatddt�1(t) � 4m1 + 2�1���m21 + 12�1(t)� = m1(4� 2�1m1) + �1�1(t):Since m1(4� 2�1m1) + �1�1(0) < 0, it follows that �1(t) is strictly decreasing withrespect to t. Then for every t we have thatddt�1(t) < m1(4� 2�1m1) + �1�1(0) :So 0 � �1(t) < �1(0) + [m1(4� 2�1m1) + �1�1(0)] t:and �1(t) ! 0 as t ! T�0 for some �nite T�0 . But then (u1; u2; v) cannot be aclassical solution. Hence due to Theorem 1 there exists T � T0 such thatlimt!T (ku1(t; �)kL1 + ku2(t; �)kL1) =1 :9



4 Simultaneous Blow-upIn this chapter we investigate if blow-up at two di�erent times is possible in alldensities variables of our system. Some of the techniques and tools that we use hereare taken from [5] and [6]. The proof will be done by contradiction. To obtain thisresult we will prove that u2 being bounded will imply a lower bound for M1 nearthe blow-up point. This estimate will allow us to construct a sub-solution for (2.19)that behaves like M2 � Cr2� for small values of r at the blow-up time. This is acontradiction to M2 = R r0 u2�d� � Cr2 for small values of r.To obtain our result we will �rst proveLemma 6 Suppose that u1 blows up at t = T � and that ku2(t; �)kL1 � C for 0 �t � T �. Then there exist "0 > 0 and L > 0, both depending on �2; �1; �2, and Csuch that lim inft!(T �)�M1(t; LpT � � t) � "0:Proof. We argue by contradiction. Suppose there exists a sequence (tn)n�0 suchthat tn ! (T �)� and M1(tn; LpT � � tn) < "0. De�ne a sequence of functionsmn(s; �) = M1(tn + L2(T � � tn)s; LpT � � tn �) (4.1)for 0 � s < 1L2 and 0 � � � 1LpT ��tn . Using (2.18) we obtainmn;s = mn;�� � 1�mn;� � �1 c2L2(T � � tn)�mn;� + �1mn +M2� mn;�; n � 0 : (4.2)By assumption the functions mn blow up at s = 1L2 .Our strategy is to construct a super-solution for (4.2), that shows that this is notthe case. To obtain this contradiction the proof is divided into three stepsStep 1. Construction of an auxiliary super-solutionIn order to obtain a super-solution for (4.2) we are looking for a function M whichsatis�es M�� � 1�M� + �1M +M2� M� � �1 c2L2(T � � tn)�M� �Ms � 0 (4.3)in the sense of distributions. Since u2 � C it follows that M2 � C L22 (T � � tn)�2.Therefore, if M(t; �) satis�esM�� � 1�M� + �1M� M� + �1 (C � c)2 L2(T � � tn)�M� �Ms � 0 (4.4)10



in the sense of distributions, then M automatically satis�es (4.3).First we obtain an auxiliary functionM(�) = M0 + �� ; M0; � > 0 ; (4.5)which satis�esM �� � 1�M � + �1M M �� + �1 (C � c)2 L2(T � � tn)�M � � 0 (4.6)for 0 � � � �, with M(�) < 1�1 , and 0 � t � T �. This is possible, since (4.6) isequivalent to�(�� 2) + ��1f(M0 + ��) + �1 (C � c)2 L2(T � � tn)�2g � 0 :And the above inequality holds for any � 2 (0; 2) in 0 � � � �, 0 � tn � T � forM0; � small enough.Now we construct another auxiliary function fM(s; �). De�ne fM0(�) for � � � asan increasing, strictly concave function, satisfying the following conditionsfM0(�) = M(�) ; @fM0@� (�) < @M@� (�)@2fM0@�2 (�) < 0 for � � � <1 (4.7)fM0(1) � 2m1 ; fM0 2 C1([�;1)) :We then de�ne fM(s; �) as the solution offMs =  �1fM� + ��! @fM@� for �̂(s) � � <1 ; with fM(0; �) = fM0(�) ; (4.8)where d�̂ds(s) = �1fM(�)�̂(s) + ��̂(s) for s � 0 ; with �̂(0) = � (4.9)and for � > 0 su�ciently small.In the following we assume, that �1 (C�c)2 L2(T � tn) � �. Problem (4.8) can besolved explicitly for short time, by using the method of characteristics. Moreover,11



for small values of s, i.e. s 2 [0; s0], with s0 > 0 su�ciently small and independentof L, the following estimates hold(i) fM(x; �̂(s)) = M(�) (4.10)(ii) 0 < @fM@� (s; �) < 1�̂(s) @M@� (�) (4.11)(iii) @2fM@� (s; �) < 0 for � � � <1 (4.12)(iv) fM(s; �) 2 C1([�;1))(v) fM(s;1) > 2m1(vi) �̂(s) � �w for 0 � s � s0 :These estimates can be derived by integration over characteristics. From (4.12) itfollows thatfM�� � 1�fM� + �1fM fM�� + �1 (C � c)2 L2(T � tn)�fM� � fMs � 0 (4.13)for 0 � s � s0, �̂(s) � � <1, if �1(C�c)2 L2(T � tn) � �.We now de�ne our super-solution asM̂(s; �) = 8><>: M � ��̂(s)� ; 0 � � � �̂(s)fM(s; �) ; � � �̂(s) (4.14)with 0 � s � s0.Due to (4.6),(4.10),(4.11), and (4.13), we have that M(s; �) satis�es (4.3) in thesense of distributions for 0 � s � s0, � � 0. Moreover, M̂(s; �) � m1 for � � ��,with some �� > 0.Finally de�ne M(s; �) = M̂(�s; ��) for � > 0 su�ciently large, then M(s; �)satis�es (4.3) in the sense of distributions for s 2 (0; s0� ), � � 0, (T � tn) small andM(s; �) � m1 for � � 1 : (4.15)12



Step 2. M1 is "small" close to the origin for t 2 [tn; T �].Suppose that "0 < M0, with M0 as in (4.5). Then from (4.1) it follows, that for Lsu�ciently large and 1L2 � s0� thatmn(0; �) � M(0; �) for � � 0 : (4.16)By comparison we obtainmn(s; �) � M(s; �) for � � 0; 0 � s � 1L2 (4.17)mn(s; �) � M � < 1�1 for 0 � � � 12�; 0 � s � 1L2 (4.18)respectively using (4.5),(4.7),(4.14)M1(t; r) � 1�1 ; for 0 � r � �2LpT � � tn ; tn � t � T � : (4.19)Step 3. (4.19) implies that u1 does not blow up at t = T �.We give a comparison argument. To do so, a super-solution for (2.18) is constructed.SinceM2 � C2 r2 due to the boundedness of u2, we obtain this super-solution by �nd-ing M̂1(t; r) such that@M̂1@t � @2M̂1@r2 � 1r @M̂1@r + �1 (C � c)2 r@M̂1@r + �1 M̂1r @M̂1@r : (4.20)We can obtain a solution for (4.20) by setting the right hand side equal to zero. Bysimple ODE arguments one can solve the stationary system to get M̂1 = M̂1(r). Wecan expressM̂1(r) = '(r") with " << 1 and '(�) = 4�1 �2(�2 + 1) +O(" �2�2 + 1) (4.21)Choosing " > 0 su�ciently small, we can then compareM1(t; r) and M̂1(r) to obtainM1(t; r) � Kr2 for 0 � t � T � ; r � 1 ; (4.22)and K > 0 �xed. 13



Finally we provide an estimate for u1. We have thatu1(t; r) = 1r @M1@r : (4.23)Therefore we have to estimate @M1@r . To do this, we de�ne for small R > 0 the familyof functions M1;R(�; �) = M1(t0 + �R2; R�)R2 (4.24)for 0 � � � 2 and t0 2 (0; T � � R2). Now (4.23) in particular impliesjM1;R(�; �)j � C for 14 � � � 2 ; � 2 [0; 1] :On the other hand@M1;R@� = � @@� �1� @M1;R@� � + f ��;M1;R; @M1;R@� � ; (4.25)where f is bounded for any R � 1, � 2 (14 ; 2), � 2 [0; 1]. Therefore, classical interiorregularity theory for parabolic equations yields����@M1;R@� ���� � C for � 2 �12 ; 1� ; � 2 �12 ; 1� : (4.26)Combining (4.24) and (4.26) it follows, that j@M1@r j � Cr for r � 1, t 2 (T �2 ; T �).Using (4.23) we obtain that u1(t; r) is bounded for 0 � r � 1, t 2 (0; T �), and ourLemma follows.Now we focus on the main result of our paper, which isTheorem 7 Assume that u1;0; u2;0 ful�ll the assumptions of Theorem 1. Also, sup-pose that lim supt!(T �)� ku1(t; �)kL1(B1(0)) =1 ; for some T � > 0 (4.27)then lim supt!(T �)� ku2(t; �)kL1(B1(0)) =1 : (4.28)14



Proof. We argue by contradiction. Suppose that (4.27) is ful�lled and (4.28) doesnot hold. Then there exists a constant C > 0 such that0 � u2(t; x) � C for x 2 B1(0) ; 0 � t � T � : (4.29)Thus M2(t; r) � Cr22 for 0 � r � 1 ; 0 � t � T � : (4.30)Our strategy is to construct a sub-solution for (2.19) behaving likeKr2� withK > 0,for r ! 0+ with � 2 (0; 1). This then contradicts (4.30).Let Ifr�ag be the characteristic function of the set fr � ag. Due to Lemma 6and the monotonicity of M1 with respect to r we have that M1(t; r) � "0 > 0 forLpT � � t � r � 1, with (T � � t) su�ciently small. Using (2.19) as well as the factthat @M2@r � 0, it follows that�2@2M2@r2 � �21r @M2@r � �2 �cr2 � "0Ifr�LpT ��tgr � @M2@r � @M2@t � 0 :Therefore, we can obtain a sub-solution for M2 by �nding a function M satisfying�2@2M@r2 � �21r @M@r � �2 �cr2 � "0Ifr�LpT ��tgr � @M@r � @M@t � 0 : (4.31)We are looking for M in the formM(t; r) =  � rpT � � t ;� log(T � � t)� : (4.32)Let y = rpT ��t and � = � log(T � � t), then�2@2 @y2 � y2 @ @y � �2 1y @ @y � �2�cy exp(��)2 � "0Ify�Lgy � @ @y � @ @� � 0 : (4.33)The structure of (4.33) suggests to look for solutions of the form (�; y) = exp(���)Q(y) + exp(�(�+ 1)�)G(y) ; (4.34)where �2d2Qdy2 � �y2 + �2y � �2 "0Ify�Lgy � dQdy + �Q = 0 : (4.35)15



and �2d2Gdy2 � �y2 + �2y � �2 "0Ify�Lgy � dGdy + (�+ 1)G � c�2ydGdy : (4.36)It will later be checked if  (�; y) in (4.34) yields a sub-solution for 0 � y � �0 exp(�)for �0 � 0 small enough.Before, we study the function Q(y) as de�ned in (4.35).Step 1. Analysis of Q(y):Equation (4.35) can be solved explicitly using Kummer functions. Let z = y24�2 , then(4.35) transforms intozd2Qdz2 � �z � �2"02�2 Ifz� L24�2 g� dQdz + �Q = 0 : (4.37)If z � L24�2 , this equation reduces tozQzz � zQz + �Q = 0 ; (4.38)and the unique solution of this equation, vanishing at the origin is (cf. [1])Q(z) = AzM(�� + 1; 2; z) ; (4.39)with M(a; b; z) = 1Xl=0 (al)(b)l zll! ;where (a)l = a(a + 1)(a + 2):::(a + l � 1) and (a)0 = 1. On the other hand, forz � L24�2 equation (4.37) becomeszd2Qdz2 � �z � �2"02�2 � dQdz + �Q = 0 : (4.40)The only solution of this equation that does not grow exponentially for large z isQ(z) = BU(��; "0�22�2 ; z) ; (4.41)withU(a; b; z) = �sin(�b) � M(a; b; z)�(1 + a� b)�(b) � z1�bM(1 + a� b; 2� b; z)�(a)�(2� b) �16



for b =2 Z. In particular, using (4.39), (4.41) one obtains that the solution of (4.35)is given as Q(y) = Ay24�2M(�� + 1; 2; y24�2 ) for y < L ; (4.42)Q(y) = BU(��; "0�22�2 ; y24�2 ) for y > L : (4.43)Suppose that A > 0 is a given constant. To obtain a solution of (4.35) with the aidof (4.42), (4.43) we need to impose continuity for Q and dQdy at y = L. Using 13.4.8and 13.4.21 in [1] this requiresL24�2AM(�� + 1; 2; L24�2 ) = BU ���; "0�22�2 ; L24�2� (4.44)A(��+ 1)16�22 L3M(�� + 2; 3; L24�2 ) + AL2�2M(�� + 1; 2; L24�2 )= B�L2�2 U ��� + 1; 1 + "0�22�2 ; L24�2� : (4.45)For the moment supposeU(��; "0�22�2 ; L24�2 ) 6= 0 for � 2 (0; 1) : (4.46)Without loss of generality we can always assume that L is su�ciently large. ThenB = L24�2 M(�� + 1; 2; L24�2 )U ���; "0�22�2 ; L24�2�A :So (4.45) can be rewritten asf(�) := (1� �)L22 M(�� + 2; 3; L24�2 ) + 4�2M(�� + 1; 2; L24�2 ) (4.47)��L2M(�� + 1; 2; L24�2 )U ���+ 1; 1 + "0�22�2 ; L24�2�U ���; "0�22�2 ; L24�2� = 0It can be shown that there exists at least one solution of (4.47) for � 2 (0; 1) and Llarge enough, if (4.46) holds. Indeed, we havef(0) = L22 M(2; 3; L24�2 ) + 4�2M(1; 2; L24�2 ) ;17



and using M(a; b; z) � �(b)�(a)ezza�b for z !1(cf. 13.1.4 in [1]), it follows thatf(0) � 4�2 exp( L24�2 ) > 0 for L!1 :On the other handf(1) = 4�2M(0; 2; L24�2 )� L2M �0; 2; L24�2� U(0; 1 + "0�22�2 ; L24�2 )U(�1; "0�22�2 ; L24�2 ) :Since M(0; b; z) = 1, it follows thatf(1) = 4�2 1� L24�2 U(0; 1 + "0�22�2 ; L24�2 )U(�1; "0�22�2 ; L24�2 ) ! :So we need to study the sign ofg(b; x) := �1� xU(0; b + 1; x)U(�1; b; x) � :Using 13.4.21 in [1] we obtain U 0(a; b; x) = �aU(a + 1; b+ 1; x). Thusg(b; x) = 1� xU 0(�1; b; x)U(�1; b; x) :Using 13.5.2 in [1] we getU(0; b; x) � x� b +O�1x� for x!1 ;and g(b; x) � 1� x(x� b) � � bx < 0 for x!1 :With b = "0�22�2 > 0 it follows, that f(1) < 0. Therefore there exists a root of (4.47)in the interval � 2 (0; 1). It only remains to prove (4.46). For large L this is a directconsequence of 13.5.2 in [1]. 18



Step 2. Analysis of G(y):Now we study the properties of G(y) in (4.34). A solution of the inequality (4.37)can be obtained by �nding a solution of�2@2G@y2 � �y2 + �2y � @G@y + (�+ 1)G(y) = c�2y@Q@y (4.48)for y � 0, satisfying @G@y > 0 for y � L. The unique solution of (4.48), which ispolynomially bounded for y !1 and bounded quadratically for y ! 0, is given byG(y) = y2M(��; 2; y24�2 ) Z 1y �2�Qy(�)U(��; 2; �24�2 )�2W (�) d� (4.49)+y2U(��; 2; y24�2 ) Z y0 �2�Qy(�)M(��; 2; �24�2 )�2W (�) d� ; (4.50)where W (y) = ����� y2M(��; 2; y24�2 ) y2U(��; 2; y24�2 )ddy �y2M(��; 2; y24�2 )� ddy �y2U(��; 2; y24�2 )� ����� : (4.51)Using (4.41) we obtain with 13.1.8 in [1] thatQ(y) � B � y24�2�� for y !1 : (4.52)Combining this with (4.49), (4.51), and 13.1.4, 13.1.8 in [1] we getG(y) = O �y2(�+1)� for y !1 (4.53)G(y) = O(y2) for y ! 0 : (4.54)Similar asymptotics and estimates for the derivatives can be obtained for Q and G.Step 3. Comparison argument:The function  de�ned in (4.34) satis�es (4.33) for values of y for which����@G@y ���� exp(�(�+ 1)�) � @Q@y exp(���)The asymptotics (4.52), (4.53) imply that this inequality is satis�ed for jyj �� exp( �2 ) with � > 0 small enough. 19



A comparison argument using (2.19) withM2 = 0 for r = �2 implies thatM2 � � > 0for r = �, T �2 � t � T �. Choosing B > 0 su�ciently small, we obtain that the sub-solution  (�; y) in (4.34) is smaller than M2(t; r) for r = �, t 2 (T � � �; T �) with� > 0 small. The same is true for t = T � � �, 0 � r � �. Overall, due to theself-similar structure of  (�; y) and (4.52), (4.53) it follows thatlimr!0 M2((T �)�; r)r2� =1But since � 2 (0; 1), this contradicts (4.30), thus the result follows.5 Formal derivation of the blowup pro�leIn this section we derive the asymptotics of the solutions of system (2.18), (2.19) nearthe blow-up time by formal asymptotic expansions Our analysis will be restrictedto parameters �1; �2; �2 for which the resulting asymptotics yields M2 << M1 nearthe blow-up point. It seems possible to obtain other asymptotics yielding massaggregation for both species at time t = T � when the chemotactic strength of bothspecies is comparable. But this case will not be considered here. In this paper wewill consider the situation where the chemotactic strength of the second species ismuch weaker than that of the �rst species. For M2 << M1 we can approximate(2.18), (2.19) by@M1@t = r @@r �1r @M1@r � + �1M1r @M1@r + h:o:t: (5.1)@M2@t = �2r @@r �1r @M2@r � + �2M1r @M2@r + h:o:t: : (5.2)Therefore the dynamics of M1 is decoupled from that of M2 to the leading order.Thus the asymptotics of M1 can be calculated like proved for the one species casein [9]. So one obtainsM1(t; r) � M1;s� rpT � t �(t)� (5.3)with M1;s = 4�1 r2(1 + r2) (5.4)and �(t) � 2 exp��(
 + 2)2 � exp �r j log(T � � t)j2 ! for t! T � ;(5.5)20



where M1;s is the stationary solution of the equation for M1 and 
 is the classicalEuler constant.So the problem reduces to the description of the asymptotics of M2 in (5.2)with M1 as in (5.3). Arguing like in the asymptotics for (5.3) it is convenient toreformulate (5.2) using self-similar variablesy = rpT � � t ; � = � log(T � � t) ; M1 = �(�; y) ; M2 =  (�; y) : (5.6)Then (5.2) becomes to leading order � = �2y @@y �1y @ @y�� y2 y + �1�y y : (5.7)Additionally we will need the equation for M2 in the so-called inner region y � �.For this we introduce new variables� = y�(�) ;  (�; y) = Q(�; �) ; �(�; y) = G(�; �) ; (5.8)where � is given as in (5.5) with some slight abuse of notation. Therefore@Q@� = �2� @@� �1� @Q@� �+ �2� G@Q@� � ��22 � ���� � @Q@� : (5.9)Due to (5.3) we have G(�; �) ! M1;s(�) for � ! 1. Thus to the leading orderQ(�; �)! Q0(�; �) for � !1, where�2� @@� �1� @Q0@� �+ �2� M1;s(�)@Q0@� = 0 : (5.10)Then Q0(�; �) = K(�)L(�) ; (5.11)with L(�) = Z �0 z exp���2�2 Z z0 M1;s(�)� d�� dz :Using (5.4) it follows thatL(�) � A1�� + A2 for � !1 : (5.12)21



Here � = 2� 4�2�2�1 andA1 = exp ��2�2 Z 10 M1;s(�)� d� � �2�2 Z 11 (M1;s(�)� 4�1 )� d�! ; (5.13)A2 = A1 Z 10 z1� 4�2�2�1 "exp �2�2 Z 1z (M1;s(�)� 4�1 )� d�!� 1# dz : (5.14)Combining (5.11) and (5.12) we obtain the following matching condition for  (�; y)in (5.7)  (�; y) � A1 K(�)(�(�))� y� + A2K(�) for � !1 ; (5.15)with �(�) << y << 1.In order to compute the asymptotics of  (�; y) we introduce a new variable	(�; y) =  (�; y)y� :Then 	� = �2�	yy � (2� + 4�2�1�2 � 1)	yy �� y2	y � �2	 (5.16)Writing N = 2� + 4�2�1�2 = 2 + �, then the right-hand side of (5.16) is self-adjoint inL2(R+ ; yN�1 exp(� y24�2 )). On the other hand (5.15) implies	(�; y) � K(�)A1�� + K(�)A2yN�2 : (5.17)To compute the asymptotics of 	(�; y) we argue as in [9] and write	(�; y) = a0(�) +Q(�; y) ; (5.18)with Z 10 yN�1Q(�; y) exp(� y24�2 )dy = 0 : (5.19)Plugging (5.18) into (5.16), multiplying by yN�1 exp(� y24�2 ), integrating in [";1) for" > 0, we obtain, after some computationsdd� �Z 1" y(N�1) exp�� y24�2�'(�; y)dy�= ��2"N�1'y(�; ") exp(� "24�2 )� �2 Z 1" '(�; y)yN�1 exp(� y24�2 )dy : (5.20)22



Using (5.17) and taking the limit "! 0 we getdd� �Z 10 yN�1 exp(� y24�2 )'(�; y)dy�= ��2 Z 10 '(�; y)yN�1 exp(� y24�2 )dy + �2K(�)(N � 2)A2 ; (5.21)and using (5.19) we obtaina0;� = ��2 a0 + �2(N � 2)A2K(�) : (5.22)Here K(�) could be expected to behave like exp(��2 �) up to logarithmic corrections,since �(�) >> exp(���) for any � > 0. Due to (5.17) we can assumeQ(�; y) = K(�)W (y) ;where to the leading order�2�Wyy + (N � 1)2 Wy�� y2Wy = 0 for y > 0 ;W (y) � A2yN�2 for y ! 0 ;Z 10 yN�1 exp�� y24�2�W (y)dy = 0 :On the other hand, (5.17) and (5.18) yielda0(�) = K(�)�� A1 : (5.23)So (5.22) reads a0;� = ��2 a0 + �2(N � 2)A2 ��A1a0 ;and since R +1(�(�))d� < 1 it follows that a0(�) � C exp(��2 �) for � ! 1 andsome C > 0. Using (5.23) we getK(�) � CA1 (�(�))� exp(��2 �) for � !1 :23



This concludes the computation for K(�) in (5.11) to the leading order.Combining this with (5.8), (5.15) gives the asymptotics for M2 in the region, wherejyj is large. ThenM2(t; x) � Cr� ; for (T � t) 12 << r << 1 ; where t! T ;where � = 2� 4�2�2�1 . This implies in particular thatu2(T; r) = 1r @M2@r � C�r 4�2�2�1 ; as r ! 0+ :This shows that there is a singularity for u2 but no mass aggregation.6 ConclusionsWe analyzed a two chemotactic species model, where the chemotactic species areattracted by the same chemical. In the radial symmetric situation we wanted to see,if chemotaxis can separate the two species. From our results so far this does notseem to be the case. There is simultaneous blow-up for both chemotactic species.Speci�cally it is proved that if there is blow-up in one chemotactic species, then thereis also blow-up in the other one. We give conditions for local and global existence.Also the existence of blow-up in this system is proved. The blow-up asymptotics ofthe solutions are formally calculated for certain parameter regimes. The two speciescan be di�erent in this respect, since one of them shows mass concentration in theblow-up regime, whereas the other one does not.AcknowledgementWhile working on this paper E.E. Espejo Arenas was supported by the the Max-Planck Institute for Mathematics in the Sciences (MPI MIS) in Leipzig and by theUniversity of Heidelberg. A. Stevens' work was partially supported by MPI MIS.J.J.L. Vel�azquez was supported by the Humboldt Foundation, by MPI MIS, by theInternational Graduate College 710, Heidelberg, and by DGES Grant MTM2007-61755. J.J.L. Vel�azquez also thanks the Universidad Complutense for its hospitality.References[1] Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions, Dover Pub-lications (1972). 24
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