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Quantum entanglement plays crucial roles in quantum information processing.

Quantum entangled states have become the key ingredient in the rapidly expanding

field of quantum information science. Although the nonclassical nature of entan-

glement has been recognized for many years, considerable efforts have been taken

to understand and characterize its properties recently. In this review, we introduce

some recent results in the theory of quantum entanglement. In particular separabil-

ity criteria based on the Bloch representation, covariance matrix, normal form and

entanglement witness; lower bounds, subadditivity property of concurrence and tan-

gle; fully entangled fraction related to the optimal fidelity of quantum teleportation

and entanglement distillation will be discussed in detail.

Contents

1 Introduction 2

2 Separability criteria and normal form 7

2.1 Separability criteria for mixed states . . . . . . . . . . . . . . . . . . 8

2.1.1 Partial positive transpose criterion . . . . . . . . . . . . . . . 8

2.1.2 Reduced density matrix criterion . . . . . . . . . . . . . . . . 9

2.1.3 Realignment criterion . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Criteria based on Bloch representations . . . . . . . . . . . . . 10

2.1.5 Covariance matrix criterion . . . . . . . . . . . . . . . . . . . 14

2.2 Normal form of quantum states . . . . . . . . . . . . . . . . . . . . . 20

1



2.3 Entanglement witness based on correlation matrix criterion . . . . . . 25

3 Concurrence and Tangle 27

3.1 Lower and upper bounds of concurrence . . . . . . . . . . . . . . . . 29

3.1.1 Lower bound of concurrence from covariance matrix criterion . 29

3.1.2 Lower bound of concurrence from “two-qubit” decomposition . 30

3.1.3 Estimation of multipartite entanglement . . . . . . . . . . . . 36

3.1.4 Bounds of concurrence and tangle . . . . . . . . . . . . . . . . 40

3.2 Concurrence and tangle of two entangled states are strictly larger

than that of one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Subadditivity of concurrence and tangle . . . . . . . . . . . . . . . . 43

4 Fidelity of teleportation and distillation of entanglement 44

4.1 Fidelity of quantum teleportation . . . . . . . . . . . . . . . . . . . . 45

4.2 Fully entangled fraction and concurrence . . . . . . . . . . . . . . . . 51

4.3 Improvement of entanglement distillation protocol . . . . . . . . . . . 54

5 Summary and Conclusion 57

References 57

1 Introduction

Entanglement is the characteristic trait of quantum mechanics, and it reflects the

property that a quantum system can simultaneously appear in two or more dif-

ferent states [1]. This feature implies the existence of global states of composite

system which cannot be written as a product of the states of individual subsystems.

This phenomenon [2], now known as “quantum entanglement”, plays crucial roles

in quantum information processing [3]. Quantum entangled states have become the

key ingredient in the rapidly expanding field of quantum information science, with

remarkable prospective applications such as quantum computation [3, 4], quantum

teleportation [5, 6], dense coding [7], quantum cryptographic schemes [8], entan-
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glement swapping [9] and remote states preparation (RSP) [10, 11, 12, 13]. All

such effects are based on entanglement and have been demonstrated in pioneering

experiments.

It has become clear that entanglement is not only the subject of philosophical

debates, but also a new quantum resource for tasks which can not be performed

by means of classical resources. Although considerable efforts have been taken to

understand and characterize the properties of quantum entanglement recently, the

physical character and mathematical structure of entangled states have not been

satisfactorily understood yet [14, 15]. In this review we mainly introduce some

recent results related to our researches on several basic questions in this subject:

(1) Separability of quantum states

We first discuss the separability of a quantum states, namely, for a given quantum

state, how can we know whether or not it is entangled.

For pure quantum states, there are many ways to verify the separability. For

instance for a bipartite pure quantum state the separability is easily determined

in terms of its Schmidt numbers. For multipartite pure states, the generalized

concurrence given in [16] can be used to judge if the state is separable or not. In

addition separable states must satisfy all possible Bell inequalities [17].

For mixed states we still have no general criterion. The well-known PPT (partial

positive transposition) criterion was proposed by Peres in 1996 [18]. It says that for

any bipartite separable quantum state the density matrix must be positive under

partial transposition. By using the method of positive maps Horodeckis [19] showed

that the Peres’ criterion is also sufficient for 2 × 2 and 2 × 3 bipartite systems.

And for higher dimensional states, the PPT criterion is only necessary. Horodecki

[20] has constructed some classes entangled states with positive partial transposes

for 3 × 3 and 2 × 4 systems. States of this kind are said to be bound entangled

(BE). Another powerful operational criterion is the realignment criterion [21, 22].

It demonstrates a remarkable ability to detect many bound entangled states and

even genuinely tripartite entanglement [23]. Considerable efforts have been made in

finding stronger variants and multipartite generalizations for this criterion [24, 25].

It was shown that PPT criterion and realignment criterion are equivalent to the

permutations of the density matrix’s indices [23]. Another important criterion for

separability is the reduction criterion [26, 27]. This criterion is equivalent to the

PPT criterion for 2 × N composite systems. Although it is generally weaker than
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the PPT, the reduction criteria has tight relation to the distillation of quantum

states.

There are also some other necessary criteria for separability. Nielsen et al. [28]

presented a necessary criterion called majorization: the decreasing ordered vector

of the eigenvalues for ρ is majorized by that of ρA1 or ρA2 alone for a separable

state. i.e. if a state ρ is separable, then λ↓
ρ ≺ λ↓

ρA1
, λ↓

ρ ≺ λ↓
ρA2

. Here λ↓
ρ denotes

the decreasing ordered vector of the eigenvalues of ρ. A d-dimensional vector x↓

is majorized by y↓, x↓ ≺ y↓, if
∑k

j=1 x↓
j ≤

∑k
j=1 y↓

j for k = 1, . . . , d − 1 and the

equality holds for k = d. Zeros are appended to the vectors λ↓
ρA1,A2

such that their

dimensions equal to the one of λ↓
ρ.

In Ref. [20], another necessary criterion called range criterion was given. If a

bipartite state ρ acting on the space HA⊗HB is separable, then there exists a family

of product vectors ψi ⊗ φi such that: (i) they span the range of ρ; (ii) the vector

{ψi ⊗ φ∗
i }k

i=1 span the range of ρTB , where ∗ denotes complex conjugation in the

basis in which partial transposition was performed, ρTB is the partially transposed

matrix of ρ with respect to the subspace B. In particular, any of the vectors ψi ⊗φ∗
i

belongs to the range of ρ.

Recently, some elegant results for the separability problem have been derived.

In [29, 30, 31], a separability criteria based on the local uncertainty relations (LUR)

was obtained. The authors show that for any separable state ρ ∈ HA ⊗HB,

1 −
∑

k

〈GA
k ⊗ GB

k 〉 −
1

2
〈GA

k ⊗ I − I ⊗ GB
k 〉2 ≥ 0,

where GA
k or GB

k are arbitary local orthogonal and normalized operators (LOOs) in

HA ⊗ HB. This criterion is strictly stronger than the realignment criterion. Thus

more bound entangled quantum states can be recognized by the LUR criterion. The

criterion is optimized in [32] by choosing the optimal LOOs. In [33] a criterion

based on the correlation matrix of a state has been presented. The correlation

matrix criterion is shown to be independent of PPT and realignment criterion [34],

i.e. there exist quantum states that can be recognized by correlation criterion while

the PPT and realignment criterion fail. The covariance matrix of a quantum state

is also used to study separability in [35]. It has been shown that the LUR criterion,

including the optimized one, can be derived from the covariance matrix criterion

[36].

(2) Measure of quantum entanglement
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One of the most difficult and fundamental problems in entanglement theory is

to quantify entanglement. The initial idea to quantify entanglement was connected

with its usefulness in terms of communication [37]. A good entanglement measure

has to fulfill some conditions [38]. For bipartite quantum systems, we have sev-

eral good entanglement measures such as Entanglement of Formation(EOF), Con-

currence, Tangle ctc. For two-quibt systems it has been proved that EOF is a

monotonically increasing function of the concurrence and an elegant formula for the

concurrence was derived analytically by Wootters [39]. However with the increas-

ing dimensions of the subsystems the computation of EOF and concurrence become

formidably difficult. A few explicit analytic formulae for EOF and concurrence have

been found only for some special symmetric states [40, 41, 42, 43, 44].

The first analytic lower bound of concurrence for arbitrary dimensional bipartite

quantum states was derived by Mintert et al. in [45]. By using the positive partial

transposition (PPT) and realignment separability criterion analytic lower bounds on

EOF and concurrence for any dimensional mixed bipartite quantum states have been

derived in [46, 47]. These bounds are exact for some special classes of states and

can be used to detect many bound entangled states. In [48] another lower bound on

EOF for bipartite states has been presented from a new separability criterion [49].

A lower bound of concurrence based on local uncertainty relations (LURs) criterion

is derived in [50]. This bound is further optimized in [32]. The lower bound of

concurrence for tripartite systems has been studied in [51]. In [52, 53] the authors

presented lower bounds of concurrence for bipartite systems by considering the “two-

qubit” entanglement of bipartite quantum states with arbitrary dimensions. It has

been shown that this lower bound has a tight relationship with the distillability of

bipartite quantum states. Tangle is also a good entanglement measure that has a

close relation with concurrence, as it is defined by the square of the concurrence for

a pure state. It is also meaningful to derive tight lower and upper bounds for tangle

[54].

In [55] Mintert et al. proposed an experimental method to measure the con-

currence directly by using joint measurements on two copies of a pure state. Then

S. P. Walborn et al. presented an experimental determination of concurrence for

two-qubit states [56], where only one-setting measurement is needed, but two copies

of the state have to be prepared in every measurement. In [57] another way of ex-

perimental determination of concurrence for two-qubit and multi-qubit states has

been presented, in which only one-copy of the state is needed in every measurement.

To determine the concurrence of the two-qubit state used in [56], also one-setting
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measurement is needed, which avoids the preparation of the twin states or the im-

perfect copy of the unknown state, and the experimental difficulty is dramatically

reduced.

(3) Fidelity of quantum teleportation and distillation

Quantum teleportation, or entanglement-assisted teleportation, is a technique

used to transfer information on a quantum level, usually from one particle (or se-

ries of particles) to another particle (or series of particles) in another location via

quantum entanglement. It does not transport energy or matter, nor does it allow

communication of information at super luminal (faster than light) speed.

In [5], Bennett et. al. first presented a protocol to teleport an unknown qubit

state by using a pair of maximally entangled pure qubit state. The protocol is

generalized to transmit high dimensional quantum states [6]. The optimal fidelity

of teleportation is shown to be determined by the fully entangled fraction of the

entangled resource which is generally a mixed state. Nevertheless similar to the

estimation of concurrence, the computation of the fully entangled fraction for a

given mixed state is also very difficult.

The distillation protocol has been presented to get maximally entangled pure

states from many entangled mixed states. by means of local quantum operations and

classical communication (LQCC) between the parties sharing the pairs of particles

in this mixed state [58, 59, 60, 61]. Bennett et. al. first derived a protocol to

distill one maximally entangled pure bell state from many copies of not maximally

entangled quantum mixed states in [58] in 1996. The protocol is then generalized

to distill any bipartite quantum state with higher dimension by Horodeckis in 1999

[62]. It is proven that a quantum state can be always distilled if it violates the

reduced matrix separability criterion [62].

This review mainly contains three parts. In section 2 we investigate the separa-

bility of quantum states. We first introduce several important separability criteria.

Then we discuss the criterions by using the Bloch representation of the density ma-

trix of a quantum state. We also study the covariance matrix of a quantum density

matrix and derive separability criterion for multipartite systems. We investigate the

normal forms for multipartite quantum states at the end of this section and show

that the normal form can be used to improve the power of these criteria. In section

3 we mainly consider the entanglement measure concurrence. We investigate the

lower and upper bounds of concurrence for both bipartite and multipartite systems.
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We also show that the concurrence and tangle of two entangled quantum states will

be always larger than that of one, even both the two states are bound entangled (not

distillable). In section 4 we study the fully entangled fraction of an arbitrary bipar-

tite quantum state. We derive precise formula of fully entangled fraction for two

qubits system. For bipartite system with higher dimension we obtain tight upper

bounds which can not only be used to estimate the optimal teleportation fidelity but

also helps to improve the distillation protocol. We further investigate the evolution

of the fully entangled fraction when one of the bipartite system undergoes a noisy

channel. We give a summary and conclusion in the last section.

2 Separability criteria and normal form

A multipartite pure quantum state ρ12...N ∈ H1 ⊗H2 ⊗ · · · ⊗ HN is said to be fully

separable if it can be written as

ρ12...N = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN , (2.1)

where ρ1 and ρ2, · · ·, ρN are reduced density matrices defined as ρ1 = Tr23...N [ρ12...N ],

ρ2 = Tr13...N [ρ12...N ], ..., ρN = Tr12...N−1[ρ12...N ]. This is equivalent to the condition

ρ12...N = |ψ1〉〈ψ1| ⊗ |φ2〉〈φ2| ⊗ · · · ⊗ |µN〉〈µN |,

where |ψ1〉 ∈ H1, |φ2〉 ∈ H2, . . . , |µN〉 ∈ HN .

A multipartite quantum mixed state ρ12...N ∈ H1 ⊗H2 ⊗ · · · ⊗ HN is said to be

fully separable if it can be written as

ρ12...N =
∑

i

qiρi
1 ⊗ ρi

2 ⊗ · · · ⊗ ρi
N , (2.2)

where ρi
1, ρi

2 . . . , ρi
N are the reduced density matrices with respect to the systems

1, 2, . . . , N respectively, qi > 0 and
∑

i qi = 1. This is equivalent to the condition

ρ12...N =
∑

i

pi|ψ1
i 〉〈ψ1

i | ⊗ |φ2
i 〉〈φ2

i | ⊗ · · · ⊗ |µN
i 〉〈µN

i |,

where |ψ1
i 〉, |φ2

i 〉, . . . , |µN
i 〉 are normalized pure states of systems 1, 2, . . . , N respec-

tively, pi > 0 and
∑

i pi = 1.

For pure states, the definition (2.1) itself is an operational separability criterion.

In particular, for bipartite case, there are Schmidt decompositions:
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Theorem 2.1 (Schmidt decomposition): Suppose |ψ〉 ∈ HA ⊗HB is a pure state of

a composite system, AB, then there exist orthonormal states |iA〉 for system A, and

orthonormal states |iB〉 for system B such that

|ψ〉 =
∑

i

λi|iA〉|iB〉,

where λi are non-negative real numbers satisfying
∑

i λi
2 = 1, known as Schmidt

coefficients.

|iA〉 and |iB〉 are called Schmidt bases with respect to HA and HB. The number

of non-zero values λi is called Schmidt number, also known as Schmidt rank, which

is invariant under unitary transformations on system A or system B. For a bipartite

pure state |ψ〉, |ψ〉 is separable if and only if the Schmidt number of |ψ〉 is one.

For multipartite pure states, one has no such Schmidt decomposition. In [63] it

has been verified that any pure three-qubit state |Ψ〉 can be uniquely written as

|Ψ〉 = λ0|000〉 + λ1e
iψ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (2.3)

with normalization condition λi ≥ 0, 0 ≤ ψ ≤ π, where
∑

i µi = 1, µi ≡ λ2
i .

Eq. (2.3) is called generalized Schmidt decomposition.

For mixed states it is generally very hard to verify if a decomposition like (2.2)

exists. For a given generic separable density matrix, it is also not easy to find the

decomposition (2.2) in detail.

2.1 Separability criteria for mixed states

In this section we introduce several separability criteria and the relations among

themselves. These criteria have also tight relations with lower bounds of entangle-

ment measures and distillation that will be discussed in the next section.

2.1.1 Partial positive transpose criterion

The positive partial transpose (PPT) criterion provided by Peres [18] says that if a

bipartite state ρAB ∈ HA ⊗HB is separable, then the new matrix ρTB

AB with matrix

elements defined in some fixed product basis as:

〈m|〈µ|ρTB

AB|n〉|ν〉 ≡ 〈m|〈ν|ρAB|n〉|µ〉
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is also a density matrix (i.e. has nonnegative spectrum). The operation TB, called

partial transpose, just corresponds to the transposition of the indices with respect

to the second subsystem B. It has an interpretation as a partial time reversal [64].

Afterwards the Horodeckis showed that the Peres’ criterion is also sufficient for

2 × 2 and 2 × 3 bipartite systems [19]. This criterion is now called PPT or Peres-

Horodecki (P-H) criterion. For high-dimensional states, the P-H criterion is only

necessary. Horodecki has constructed some classes of families of entangled states

with positive partial transposes for 3× 3 and 2× 4 systems [20]. States of this kind

are said to be bound entangled (BE).

2.1.2 Reduced density matrix criterion

Cerf et al. [65] and Horodecki [66] independently, introduced a map Γ : ρ →
TrB[ρAB] ⊗ I − ρAB (I ⊗ TrA[ρAB] − ρAB), which gives rise to a simple necessary

condition for separability in arbitrary dimensions, called the reduction criterion: If

ρAB is separable, then

ρA ⊗ I − ρAB ≥ 0, I ⊗ ρB − ρAB ≥ 0,

where ρA = TrB[ρAB], ρB = TrA[ρAB]. This criterion is simply equivalent to the P-H

criterion for 2×n composite systems. It is also sufficient for 2×2 and 2×3 systems.

In higher dimensions the reduction criterion is weaker than the P-H criterion.

2.1.3 Realignment criterion

There is yet another class of criteria based on linear contractions on product states.

They stem from the new criterion discovered in [67, 22] called computable cross

norm (CCN) criterion or matrix realignment criterion which is operational and in-

dependent on PPT test [18]. If a state ρAB is separable then the realigned matrix

R(ρ) with elements R(ρ)ij,kl = ρik,jl has trace norm not greater than one,

||R(ρ)||KF ≤ 1. (2.4)

Quite remarkably, the realignment criterion can detect some PPT entangled (bound

entangled) states [67, 22] and can be used for construction of some nondecomposable

maps. It also provides nice lower bound for concurrence [47].
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2.1.4 Criteria based on Bloch representations

Any Hermitian operator on an N -dimensional Hilbert space H can be expressed

according to the generators of the special unitary group SU(N) [68]. The generators

of SU(N) can be introduced according to the transition-projection operators Pjk =

|j〉〈k|, where |i〉, i = 1, ..., N , are the orthonormal eigenstates of a linear Hermitian

operator on H. Set

ωl = −
√

2

l(l + 1)
(P11 + P22 + · · · + Pll − lPl+1,l+1),

ujk = Pjk + Pkj, vjk = i(Pjk − Pkj),

where 1 ≤ l ≤ N − 1 and 1 ≤ j < k ≤ N . We get a set of N2 − 1 operators

Γ ≡ {ωl, ω2, · · · , ωN−1, u12, u13, · · · , v12, v13, · · ·},

which satisfy the relations

Tr[λi] = 0, Tr[λiλj] = 2δij, ∀ λi ∈ Γ

and thus generate the SU(N) [69].

Any Hermitian operator ρ in H can be represented in terms of these generators

of SU(N),

ρ =
1

N
IN +

1

2

N2−1∑

j=1

rjλj, (2.5)

where IN is a unit matrix and r = (r1, r2, · · · rN2−1) ∈ R
N2−1. r is called Bloch

vector. The set of all the Bloch vectors that constitute a density operator is known

as the Bloch vector space B(RN2−1).

A matrix of the form (2.5) is of unit trace and Hermitian, but it might not be

positive. To guarantee the positivity restrictions must be imposed on the Bloch

vector. It is shown that B(RN2−1) is a subset of the ball DR(RN2−1) of radius R =√
2(1 − 1

N
), which is the minimum ball containing it, and that the ball Dr(R

N2−1)

of radius r =
√

2
N(N−1)

is included in B(RN2−1) [70], that is,

Dr(R
N2−1) ⊆ B(RN2−1) ⊆ DR(RN2−1).

Let the dimensions of systems A, B and C be dA = N1, dB = N2 and dC = N3

respectively. Any tripartite quantum states ρABC ∈ HA ⊗HB ⊗HC can be written
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as:

ρABC = IN1 ⊗ IN2 ⊗ M0 +

N2
1−1∑

i=1

λi(1) ⊗ IN2 ⊗ Mi +

N2
2−1∑

j=1

IN1 ⊗ λj(2) ⊗ M̃j

+

N2
1−1∑

i=1

N2
2−1∑

j=1

λi(1) ⊗ λj(2) ⊗ Mij, (2.6)

where λi(1), λj(2) are the generators of SU(N1) and SU(N2); Mi, M̃j and Mij are

operators of HC .

Theorem 2.2 Let r ∈ R
N2

1−1, s ∈ R
N2

2−1 and |r| ≤
√

2
N1(N1−1)

, |s| ≤
√

2
N2(N2−1)

.

For a tripartite quantum state ρ ∈ HA ⊗ HB ⊗ HC with representation (2.6), we

have

M0 −
N2

1−1∑

i=1

riMi −
N2

2−1∑

j=1

sjM̃j +

N2
1−1∑

i=1

N2
2−1∑

j=1

risjMij ≥ 0. (2.7)

[Proof] Since r ∈ R
N2

1−1, s ∈ R
N2

2−1 and |r| ≤
√

2
N1(N1−1)

, |s| ≤
√

2
N2(N2−1)

, we

have that A1 ≡ 1
2
( 2

N1
I −

N2
1−1∑
i=1

riλi(1)) and A2 ≡ 1
2
( 2

N2
I −

N2
2−1∑

j=1

sjλj(2)) are positive

Hermitian operators. Let A =
√

A1⊗
√

A2⊗IN3 . Then AρA ≥ 0 and (AρA)† = AρA.

The partial trace of AρA over HA (and HB) should be also positive. Hence

0 ≤ TrAB[AρA]

= TrAB[A1 ⊗ A2 ⊗ M0 +
∑

i

√
A1λi(1)

√
A1 ⊗ A2 ⊗ Mi

+
∑

j

A1 ⊗
√

A2λj(2)
√

A2 ⊗ M̃j +
∑

ij

√
A1λi(1)

√
A1 ⊗

√
A2λj(2)

√
A2 ⊗ Mij]

= M0 −
N2

1−1∑

i=1

riMi −
N2

2−1∑

j=1

sjM̃j +

N2
1−1∑

i=1

N2
2−1∑

j=1

risjMij.

¤

Formula (2.7) is valid for any tripartite states. By setting s = 0 in (2.7), one can

get a result for bipartite systems:

Corollary 2.2 Let ρAB ∈ HA ⊗HB, which can be generally written as ρAB = IN1 ⊗

M0+
N2

1−1∑
j=1

λj⊗Mj, then for any r ∈ R
N2

1−1 with |r| ≤
√

2
N1(N1−1)

, M0−
N2

1−1∑
j=1

rjMj ≥ 0.

11



A separable tripartite state ρABC can be written as

ρABC =
∑

i

pi|ψA
i 〉〈ψA

i | ⊗ |φB
i 〉〈φB

i | ⊗ |ωC
i 〉〈ωC

i |.

From (2.5) it can also be represented as:

ρABC =
∑

i

pi
1

2
(

2

N1

IN1 +

N2
1−1∑

k=1

a
(k)
i λk(1)) ⊗ 1

2
(

2

N2

IN2 +

N2
2−1∑

l=1

b
(l)
i λl(2)) ⊗ |ωC

i 〉〈ωC
i |

= IN1 ⊗ IN2 ⊗
1

N1N2

∑

i

pi|ωC
i 〉〈ωC

i |

+

N2
1−1∑

k=1

λk(1) ⊗ IN2 ⊗
1

2N2

∑

i

a
(k)
i pi|ωC

i 〉〈ωC
i |

+

N2
2−1∑

l=1

IN1 ⊗ λl(2) ⊗ 1

2N1

∑

i

b
(l)
i pi|ωC

i 〉〈ωC
i |

+

N2
1−1∑

k

N2
2−1∑

l

λk(1) ⊗ λl(2) ⊗ 1

4

∑

i

a
(k)
i b

(l)
i pi|ωC

i 〉〈ωC
i |, (2.8)

where (a
(1)
i , a

(2)
i · · · , a(N2

1−1)
i ) and (b

(1)
i , b

(2)
i · · · , b(N2

2−1)
i ) are real vectors on the Bloch

sphere satisfying |−→ai |2 =
N2

1−1∑
j=1

(a
(j)
i )2 = 2(1− 1

N1
) and |−→bi |2 =

N2
2−1∑

j=1

(b
(j)
i )2 = 2(1− 1

N2
).

Comparing (2.6) with (2.8), we have

M0 = 1
N1N2

∑
i

pi|ωC
i 〉〈ωC

i |, Mk = 1
2N2

∑
i

a
(k)
i pi|ωC

i 〉〈ωC
i |,

M̃l = 1
2N1

∑
i

b
(l)
i pi|ωC

i 〉〈ωC
i |, Mkl = 1

4

∑
i

a
(k)
i b

(l)
i pi|ωC

i 〉〈ωC
i |. (2.9)

For any (N2
1 −1)× (N2

1 −1) real matrix R(1) and (N2
2 −1)× (N2

2 −1) real matrix

R(2) satisfying 1
(N1−1)2

I − R(1)T R(1) ≥ 0 and 1
(N2−1)2

I − R(2)T R(2) ≥ 0, we define

a new matrix

R =




R(1) 0 0
0 R(2) 0
0 0 T


 , (2.10)

where T is a transformation acting on an (N2
1 − 1) × (N2

2 − 1) matrix M by

T (M) = R(1)MRT (2).

12



Using R we define a new operator γR,

γR(ρABC) = IN1 ⊗ IN2 ⊗ M
′

0 +

N2
1−1∑

i=1

λi(1) ⊗ IN2 ⊗ M
′

i +

N2
2−1∑

j=1

IN1 ⊗ λj(2) ⊗ M̃
′

j

+

N2
1−1∑

i=1

N2
2−1∑

j=1

λi(1) ⊗ λj(2) ⊗ M
′

ij, (2.11)

where M
′

0 = M0, M
′

k =
N2

1−1∑
m=1

Rkm(1)Mm, M̃
′

l =
N2

2−1∑
n=1

Rln(2)M̃n and M
′

ij =

(T (M))ij = (R(1)MRT (2))ij.

Theorem 2.3 If ρABC is separable, then γR(ρABC) ≥ 0.

[Proof] From (2.9) and (2.11) we get

M
′

0 = M0 =
1

N1N2

∑

i

pi|ωC
i 〉〈ωC

i |, M
′

k =
1

2N2

∑

mi

Rkm(1)a
(m)
i pi|ωC

i 〉〈ωC
i |,

M̃
′

l =
1

2N1

∑

ni

Rln(2)b
(n)
i pi|ωC

i 〉〈ωC
i |, M

′

kl =
1

4

∑

mni

Rkm(1)a
(m)
i Rln(2)b

(n)
i pi|ωC

i 〉〈ωC
i |.

A straightforward calculation gives rise to

γR(ρABC) =
∑

i

pi
1

2


 2

N1

IN1 +

N2
1−1∑

k=1

N2
1−1∑

m=1

Rkm(1)a
(m)
i λk(1)




⊗1

2


 2

N2

IN2 +

N2
2−1∑

l=1

N2
2−1∑

n=1

Rln(2)b
(n)
i λl(2)


 ⊗ |ωC

i 〉〈ωC
i |.

As 1
(N1−1)2

I − R(1)T R(1) ≥ 0 and 1
(N2−1)2

I − R(2)T R(2) ≥ 0, we get

|
−→
a

′

i |2 = |R(1)−→ai |2 ≤
1

(N1 − 1)2
|−→ai |2 =

2

N1(N1 − 1)
,

|
−→
b
′

i |2 = |R(2)
−→
bi |2 ≤

1

(N2 − 1)2
|−→bi |2 =

2

N2(N2 − 1)
.

Therefore γR(ρABC) is still a density operator, i.e. γR(ρABC) ≥ 0. ¤
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Theorem 2.3 gives a necessary separability criterion for general tripartite systems.

The result can be also applied to bipartite systems. Let ρAB ∈ HA ⊗ HB, ρAB =

IN1 ⊗ M0 +
N2

1−1∑
j=1

λj ⊗ Mj. For any real (N2
1 − 1) × (N2

1 − 1) matrix R satisfying

1
(N1−1)2

I −RTR ≥ 0 and any state ρAB, we define

γR(ρAB) = IN1 ⊗ M0 +

N2
1−1∑

j=1

λj ⊗ M
′

j ,

where M
′

j =
∑
k

RjkMk.

Corollary 2.3 For ρAB ∈ HA ⊗HB, if there exists an R with 1
(N1−1)2

I −RTR ≥ 0

such that γR(ρAB) < 0, then ρAB must be entangled.

For 2 × N systems, the above corollary is reduced to the results in [71]. As an

example we consider the 3 × 3 istropic states,

ρI =
1 − p

9
I3 ⊗ I3 +

p

3

3∑

i,j=1

|ii〉〈jj| = I3 ⊗ (
1

9
I3) +

5∑

i=1

λi ⊗ (
p

6
λi) −

8∑

i=6

λi ⊗ (
p

6
λi).

If we choose R to be Diag{1
2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
}, we get that ρI is entangled for

0.5 < p ≤ 1.

For tripartite case, we take the following 3 × 3 × 3 mixed state as an example:

ρ =
1 − p

27
I27 + p|ψ〉〈ψ|,

where |ψ〉 = 1√
3
(|000〉+ |111〉+ |222〉)(〈000|+ 〈111|+ 〈222|). Taking R(1) = R(2) =

Diag{1
2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
}, we have that ρ is entangled for 0.6248 < p ≤ 1.

In fact the criterion for 2 × N systems [71] is equivalent to the PPT criterion

[72]. Similarly theorem 2.3 is also equivalent to the PPT criterion for 2 × 2 × N

systems.

2.1.5 Covariance matrix criterion

In this subsection we study the separability problem by using the covariance matrix

approach. We first give a brief review of covariance matrix criterion proposed in

[35]. Let HA
d and HB

d be d-dimensional complex vector spaces, and ρAB a bipartite

quantum state in HA
d ⊗ HB

d . Let Ak (resp. Bk) be d2 observables on HA
d (resp.

14



HB
d ) such that they form an orthonormal normalized basis of the observable space,

satisfying Tr[AkAl] = δk,l (resp. Tr[BkBl] = δk,l). Consider the total set {Mk} =

{Ak ⊗ I, I ⊗ Bk}. It can be proven that [30],

N2∑

k=1

(Mk)
2 = dI,

N2∑

k=1

〈Mk〉2 = Tr[ρ2
AB]. (2.12)

The covariance matrix γ is defined with entries

γij(ρAB, {Mk}) =
〈MiMj〉 + 〈MjMi〉

2
− 〈Mi〉〈Mj〉, (2.13)

which has a block structure [35]:

γ =

(
A C
CT B

)
, (2.14)

where A = γ(ρA, {Ak}), B = γ(ρB, {Bk}), Cij = 〈Ai ⊗ Bj〉ρAB
− 〈Ai〉ρA

〈Bj〉ρB
, ρA =

TrB[ρAB], ρB = TrA[ρAB]. Such covariance matrix has a concavity property: for

a mixed density matrix ρ =
∑
k

pkρk with pk ≥ 0 and
∑
k

pk = 1, one has γ(ρ) ≥
∑
k

pkγ(ρk).

For a bipartite product state ρAB = ρA ⊗ ρB, C in (2.14) is zero. Generally if

ρAB is separable, then there exist states |ak〉〈ak| on HA
d , |bk〉〈bk| on HB

d and pk such

that

γ(ρ) ≥ κA ⊕ κB, (2.15)

where κA =
∑

pkγ(|ak〉〈ak|, {Ak}), κB =
∑

pkγ(|bk〉〈bk|, {Bk}).

For a separable bipartite state, it has been shown that [35]

d2∑

i=1

|Cii| ≤
(1 − Tr[ρ2

A]) + (1 − Tr[ρ2
B])

2
. (2.16)

Criterion (2.16) depends on the choice of the orthonormal normalized basis of

the observables. In fact the term
d2∑
i=1

|Cii| has an upper bound ||C||KF which is

invariant under unitary transformation and can be attained by choosing proper

local orthonormal observable basis, where ||C||KF stands for the Ky Fan norm of C,

||C||KF = Tr[
√

CC†], with † denoting the transpose and conjugation. It has been

shown in [32] that if ρAB is separable, then

||C||KF ≤ (1 − Tr[ρ2
A]) + (1 − Tr[ρ2

B])

2
. (2.17)
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From the covariance matrix approach, we can also get an alternative criterion.

From (2.14) and (2.15) we have that if ρAB is separable, then

X ≡
(

A − κA C
CT B − κB

)
≥ 0. (2.18)

Hence all the 2 × 2 minor submatrices of X must be positive. Namely one has

∣∣∣∣
(A − κA)ii Cij

Cji (B − κB)jj

∣∣∣∣ ≥ 0,

i.e. (A − κA)ii(B − κB)jj ≥ C2
ij. Summing over all i, j and using (2.12), we get

d2∑

i,j=1

C2
i,j ≤ (Tr[A] − Tr[κA])(Tr[B] − Tr[κB])

= (d − Tr[ρ2
A] − d + 1)(d − Tr[ρ2

B] − d + 1) = (1 − Tr[ρ2
A])(1 − Tr[ρ2

B]).

That is

||C||2HS ≤ (1 − Tr[ρ2
A])(1 − Tr[ρ2

B]), (2.19)

where ||C||HS stands for the Euclid norm of C, i.e. ||C||HS =
√

Tr[CC†].

Formulae (2.17) and (2.19) are independent and could be complement. When

√
(1 − Tr[ρ2

A])(1 − Tr[ρ2
B]) < ||C||HS ≤ ||C||KF ≤ (1 − Tr[ρ2

A]) + (1 − Tr[ρ2
B])

2
,

(2.19) can recognize the entanglement but (2.17) can not. When

||C||HS ≤
√

(1 − Tr[ρ2
A])(1 − Tr[ρ2

B]) ≤ (1 − Tr[ρ2
A]) + (1 − Tr[ρ2

B])

2
< ||C||KF ,

(2.17) can recognize the entanglement while (2.19) not.

The separability criteria based on covariance matrix approach can be generalized

to multipartite systems. We first consider the tripartite case, ρABC ∈ HA
d ⊗HB

d ⊗HC
d .

Take d2 observables Ak on HA resp. Bk on HB resp. Ck on HC . Set {Mk} =

{Ak ⊗ I ⊗ I, I ⊗ Bk ⊗ I, I ⊗ I ⊗ Ck}. The covariance matrix defined by (2.13) has

then the following block structure:

γ =




A D E
DT B F
ET F T C


 , (2.20)

where A = γ(ρA, {Ak}), B = γ(ρB, {Bk}), C = γ(ρC , {Ck}), Dij = 〈Ai ⊗ Bj〉ρAB
−

〈Ai〉ρA
〈Bj〉ρB

, Eij = 〈Ai⊗Cj〉ρAC
−〈Ai〉ρA

〈Cj〉ρC
, Fij = 〈Bi⊗Cj〉ρBC

−〈Bi〉ρB
〈Cj〉ρC

.
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Theorem 2.4 If ρABC is fully separable, then

||D||2HS ≤ (1 − Tr[ρ2
A])(1 − Tr[ρ2

B]), (2.21)

||E||2HS ≤ (1 − Tr[ρ2
A])(1 − Tr[ρ2

C ]), (2.22)

||F ||2HS ≤ (1 − Tr[ρ2
B])(1 − Tr[ρ2

C ]), (2.23)

and

2||D||KF ≤ (1 − Tr[ρ2
A]) + (1 − Tr[ρ2

B]), (2.24)

2||E||KF ≤ (1 − Tr[ρ2
A]) + (1 − Tr[ρ2

C ]), (2.25)

2||F ||KF ≤ (1 − Tr[ρ2
B]) + (1 − Tr[ρ2

C ]). (2.26)

[Proof] For a tripartite product state ρABC = ρA⊗ρB ⊗ρC , D, E and F in (2.20)

are zero. If ρABC is fully separable, then there exist states |ak〉〈ak| in HA
d , |bk〉〈bk|

in HB
d and |ck〉〈ck| in HC

d , and pk such that γ(ρ) ≥ κA ⊕ κB ⊕ κC , where κA =∑
pkγ(|ak〉〈ak|, {Ak}), κB =

∑
pkγ(|bk〉〈bk|, {Bk}) and κC =

∑
pkγ(|ck〉〈ck|, {Ck}),

i.e.

Y ≡




A − κA D E
DT B − κB F
ET F T C − κC


 ≥ 0. (2.27)

Thus all the 2× 2 minor submatrices of Y must be positive. Selecting one with two

rows and columns from the first two block rows and columns of Y, we have
∣∣∣∣

(A − κA)ii Dij

Dji (B − κB)jj

∣∣∣∣ ≥ 0, (2.28)

i.e. (A − κA)ii(B − κB)jj ≥ |Dij|2. Summing over all i, j and using (2.12), we get

||D||2HS =
d2∑

i,j=1

D2
i,j ≤ (Tr[A] − Tr[κA])(Tr[B] − Tr[κB]

= (d − Tr[ρ2
A] − d + 1)(d − Tr[ρ2

B] − d + 1) = (1 − Tr[ρ2
A])(1 − Tr[ρ2

B]),

which proves (2.21). (2.22) and (2.23) can be similarly proved.

From (2.28) we also have (A − κA)ii + (B − κB)ii ≥ 2|Dii|. Therefore

∑

i

|Dii| ≤ (Tr[A] − Tr[κA]) + (Tr[B] − Tr[κB]

2

=
(d − Tr[ρ2

A] − d + 1) + (d − Tr[ρ2
B] − d + 1)

2

=
(1 − Tr[ρ2

A]) + (1 − Tr[ρ2
B])

2
. (2.29)
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Note that
d2∑
i=1

Dii ≤
d2∑
i=1

|Dii|. By using that Tr[MU ] ≤ ||M ||KF = Tr[
√

MM †] for

any matrix M and any unitary U [73], we have
d2∑
i=1

Dii ≤ ||D||KF .

Let D = U †ΛV be the singular value decomposition of D. Make a transformation

of the orthonormal normalized basis of the local orthonormal observable space: Ãi =∑
l

UilAl and B̃j =
∑
m

V ∗
jmBm. In the new basis we have

D̃ij =
∑

lm

UilDlmVjm = (UDV †)ij = Λij. (2.30)

Then (2.29) becomes

d2∑

i=1

D̃ii = ||D||KF ≤ (1 − Tr[ρ2
A]) + (1 − Tr[ρ2

B])

2

which proves (2.24). (2.25) and (2.26) can similarly treated. ¤

We consider now the case that ρABC is bi-partite separable.

Theorem 2.5 If ρABC is a bi-partite separable state with respect to the bipartite

partition of the sub-systems A and BC (resp. AB and C; resp. AC and B), then

(2.21), (2.22) and (2.24), (2.25) (resp. (2.22), (2.23) and (2.25), (2.26); resp. (2.21),

(2.23) and (2.24), (2.26)) must hold.

[Proof] We prove the case that ρABC is bi-partite separable with respect to the

A system and BC systems partition. The other cases can be similarly treated. In

this case the matrices D and E in the covariance matrix (2.20) are zero. ρABC

takes the form ρABC =
∑
m

pmρm
A ⊗ ρm

BC . Define κA =
∑

pmγ(ρm
A , {Ak}), κBC =

∑
pmγ(ρm

BC , {Bk ⊗ I, I ⊗ Ck}). κBC has a form

κBC =

(
κB F

′

(F
′

)T κC

)
,

where κB =
∑

pkγ(|bk〉〈bk|, {Bk}) and κC =
∑

pkγ(|ck〉〈ck|, {Ck}), (F
′

)ij =
∑
m

pm(〈Bi⊗
Cj〉ρm

BC
− 〈Bi〉ρm

B
〈Cj〉ρm

C
). By using the concavity of covariance matrix we have

γ(ρABC) ≥
∑

m

pmγ(ρm
A ⊗ ρm

BC) =




κA 0 0
0 κB F

′

0 (F
′

)T κC


 .

Accounting to the method used in proving Theorem 2, we get (2.21), (2.22) and

(2.24), (2.25). ¤

From Theorem 2.4 and 2.5 we have the following corollary.
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Corollary 2.5 If two of the inequalities (2.21), (2.22) and (2.23) (or (2.24), (2.25)

and (2.26)) are violated, the state must be fully entangled.

The result of Theorem 2.4 can be generalized to general multipartite case ρ ∈
H(1)

d ⊗H(2)
d ⊗· · ·⊗H(N)

d . Define Âi
α = I⊗I⊗· · ·λα⊗I⊗· · ·⊗I, where λ0 = I/d, λα

(α = 1, 2, · · · d2−1) are the normalized generators of SU(d) satisfying Tr[λαλβ] = δαβ

and acting on the ith system H(i)
d , i = 1, 2, · · · , N . Denote {Mk} the set of all Âi

α.

Then the covariance matrix of ρ can be written as

γ(ρ) =




A11 A12 · · · A1N

AT
12 A22 · · · A2N
...

...
...

AT
1N AT

2N · · · ANN


 , (2.31)

where Aii = γ(ρ, {Âi
k}) and (Aij)mn = 〈Âi

m ⊗ Âj
n〉 − 〈Âi

m〉〈Âj
n〉 for i 6= j.

For a product state ρ12···N , Aij, i 6= j, in (2.31) are zero matrices. Define

κAii
=

∑

k

pkγ(|ψi
k〉〈ψi

k|, {Âi
l}). (2.32)

Then for a fully separable multipartite state ρ =
∑
k

pk|ψ1
k〉〈ψ1

k| ⊗ |ψ2
k〉〈ψ2

k| ⊗ · · · ⊗

|ψN
k 〉〈ψN

k | one has

Z =




A11 − κA11 A12 · · · A1N

AT
12 A22 − κA22 · · · A2N
...

...
...

AT
1N AT

2N · · · ANN − κANN


 ≥ 0. (2.33)

From which we have the following separability criterion for multipartite systems:

Theorem 2.6 If a state ρ ∈ H(1)
d ⊗H(2)

d ⊗· · ·⊗H(N)
d is fully separable, the following

inequalities

||Aij||2HS ≤ (1 − Tr[ρ2
i ])(1 − Tr[ρ2

j ]), (2.34)

||Aij||KF ≤
(1 − Tr[ρ2

i ]) + (1 − Tr[ρ2
j ])

2
(2.35)

must be fulfilled for any i 6= j.
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2.2 Normal form of quantum states

In this subsection we show that the correlation matrix (CM) criterion can be im-

proved from the normal form obtained under filtering transformations. Based on

CM criterion entanglement witness in terms of local orthogonal observables (LOOs)

[74] for both bipartite and multipartite systems can be also constructed.

For bipartite case, ρ ∈ H = HA⊗HB with dimHA = M , dimHB = N , M ≤ N ,

is mapped to the following form under local filtering transformations [75]:

ρ → ρ̃ =
(FA ⊗ FB)ρ(FA ⊗ FB)†

Tr[(FA ⊗ FB)ρ(FA ⊗ FB)†]
, (2.36)

where FA/B ∈ GL(M/N, C) are arbitrary invertible matrices. This transformation

is also known as stochastic local operations assisted by classical communication

(SLOCC). By the definition it is obvious that filtering transformation will preserve

the separability of a quantum state.

It has been shown that under local filtering operations one can transform a

strictly positive ρ into a normal form [76],

ρ̃ =
(FA ⊗ FB)ρ(FA ⊗ FB)†

Tr[(FA ⊗ FB)ρ(FA ⊗ FB)†]
=

1

MN
(I +

M2−1∑

i=1

ξiG
A
i ⊗ GB

i ), (2.37)

where ξi ≥ 0, GA
i and GB

i are some traceless orthogonal observables. The matrices

FA and FB can be obtained by minimizing the function

f(A,B) =
Tr[ρ(A ⊗ B)]

(det A)1/M(det B)1/N
, (2.38)

where A = F †
AFA and B = F †

BFB. In fact, one can choose F 0
A ≡ | det(ρA)|1/2M(

√
ρA)−1,

and F 0
B ≡ | det(ρ

′

B)|1/2N(
√

ρ
′

B)−1, where ρ
′

B = TrA[I⊗ (
√

ρA)−1ρI⊗ (
√

ρA)−1]. Then

by iterations one can get the optimal A and B. In particular, there is a matlab code

available in [77].

For bipartite separable states ρ, the CM separability criterion [78] says that

||T ||KF ≤
√

MN(M − 1)(N − 1), (2.39)

where T is an (M2 − 1) × (N2 − 1) matrix with Tij = MN · Tr[ρλA
i ⊗ λB

j ], ||T ||KF

stands for the trace norm of T , λ
A/B
k s are the generators of SU(M/N) and have

been chosen to be normalized, Tr[λ
(A/B)
k λ

(A/B)
l ] = δkl.
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As the filtering transformation does not change the separability of a state, one

can study the separability of ρ̃ instead of ρ. Under the normal form (2.37) the

criterion (2.39) becomes

∑

i

ξi ≤
√

MN(M − 1)(N − 1). (2.40)

In [30] a separability criterion based on local uncertainty relation (LUR) has

been obtained. It says that for any separable state ρ,

1 −
∑

k

〈GA
k ⊗ GB

k 〉 −
1

2
〈GA

k ⊗ I − I ⊗ GB
k 〉2 ≥ 0, (2.41)

where G
A/B
k s are LOOs such as the normalized generators of SU(M/N) and GA

k = 0

for k = M2 + 1, · · · , N2. The criterion is shown to be strictly stronger than the

realignment criterion [47]. Under the normal form (2.37) criterion (2.41) becomes

1 −
∑

k

〈GA
k ⊗ GB

k 〉 −
1

2
〈GA

k ⊗ I − I ⊗ GB
k 〉2

= 1 − 1

MN

∑

k

ξk −
1

2
(

1

M
+

1

N
) ≥ 0,

i.e.

∑

k

ξk ≤ MN − M + N

2
. (2.42)

As
√

MN(M − 1)(N − 1) ≤ MN − M+N
2

holds for any M and N , from (2.40) and

(2.42) it is obvious that the CM criterion recognizes entanglement better when the

normal form is taken into account.

We now consider multipartite systems. Let ρ be a strictly positive density matrix

in H = H1 ⊗H2 ⊗ · · · ⊗HN , dimHi = di. ρ can be generally expressed in terms of

the SU(n) generators λαk
[79],

ρ =
1

ΠN
i di


⊗N

j Idj
+

∑

{µ1}

∑

α1

T {µ1}
α1

λ{µ1}
α1

+
∑

{µ1µ2}

∑

α1α2

T {µ1µ2}
α1α2

λ{µ1}
α1

λ{µ2}
α2

+
∑

{µ1µ2µ3}

∑
α1α2α3

T {µ1µ2µ3}
α1α2α3 λ

{µ1}
α1 λ

{µ2}
α2 λ

{µ3}
α3

+ · · · + ∑
{µ1µ2···µM}

∑
α1α2···αM

T {µ1µ2···µM}
α1α2···αM λ

{µ1}
α1 λ

{µ2}
α2 · · ·λ{µM}

αM

+ · · · +
∑

α1α2···αN

T {1,2,···,N}
α1α2···αM λ

{1}
α1 λ

{2}
α2 · · ·λ{N}

αN

)
,

(2.43)
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where λ
{µk}
αk = Id1 ⊗ Id2 ⊗ · · · ⊗λαk

⊗ Idµk+1 ⊗ · · · ⊗ IdN
with λαk

appears at the µkth

position and

T {µ1µ2···µM}
α1α2···αM

=

∏M
i=1 dµi

2M
Tr[ρλ{µ1}

α1
λ{µ2}

α2
· · ·λ{µM}

αM
].

The generalized CM criterion says that: if ρ in (2.43) is fully separable, then

||T {µ1,µ2,···,µM}||KF ≤

√√√√ 1

2M

M∏

k=1

dµk
(dµk

− 1), (2.44)

for 2 ≤ M ≤ N, {µ1, µ2, · · · , µM} ⊂ {1, 2, · · · , N}. The KF norm is defined by

||T {µ1,µ2,···,µM}||KF = maxm=1,2,···,M ||T(m)||KF ,

where T(m) is a kind of matrix unfolding of T {µ1,µ2,···,µM}.

The criterion (2.44) can be improved by investigating the normal form of (2.43).

Theorem 2.7 By filtering transformations of the form

ρ̃ = F1 ⊗ F2 ⊗ · · · ⊗ FNρF †
1 ⊗ F †

2 ⊗ F †
N , (2.45)

where Fi ∈ GL(di, C), i = 1, 2, · · ·N , followed by normalization, any strictly positive

state ρ can be transformed into a normal form

ρ =
1

ΠN
i di


⊗N

j Idj
+

∑

{µ1µ2}

∑

α1α2

T {µ1µ2}
α1α2

λ{µ1}
α1

λ{µ2}
α2

+
∑

{µ1µ2µ3}

∑
α1α2α3

T {µ1µ2µ3}
α1α2α3 λ

{µ1}
α1 λ

{µ2}
α2 λ

{µ3}
α3

+ · · · +
∑

{µ1µ2···µM}

∑
α1α2···αM

T {µ1µ2···µM}
α1α2···αM λ

{µ1}
α1 λ

{µ2}
α2 · · ·λ{µM}

αM

+ · · · + ∑
α1α2···αN

T {1,2,···,N}
α1α2···αM λ

{1}
α1 λ

{2}
α2 · · ·λ{N}

αN

)
.

(2.46)

[Proof] Let D1, D2, · · · , DN be the sets of density matrices of the N subsystems.

The cartesian product D1×D2×· · ·×DN consisting of all product density matrices

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN with normalization Tr[ρi] = 1, i = 1, 2, · · · , N , is a compact set of

matrices on the full Hilbert space H. For the given density matrix ρ we define the

following function of ρi

f(ρ1, ρ2, · · · , ρN) =
Tr[ρ(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)]

∏N
i=1 det(ρi)1/di

.
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The function is well-defined on the interior of D1 ×D2 × · · · ×DN where det ρi > 0.

As ρ is assumed to be strictly positive, we have Tr[ρ(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)] > 0. Since

D1 × D2 × · · · × DN is compact, we have Tr[ρ(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)] ≥ C > 0 with a

lower bound C depending on ρ.

It follows that f → ∞ on the boundary of D1×D2×· · ·×DN where at least one

of the ρis satisfies that det ρi = 0. It follows further that f has a positive minimum

on the interior of D1 ×D2 × · · · ×DN with the minimum value attained for at least

one product density matrix τ1 ⊗ τ2 ⊗ · · · ⊗ τN with det τi > 0, i = 1, 2, · · · , N . Any

positive density matrix τi with det τi > 0 can be factorized in terms of Hermitian

matrices Fi as

τi = F †
i Fi (2.47)

where Fi ∈ GL(di, C). Denote F = F1⊗F2⊗· · ·⊗FN , so that τ1⊗τ2⊗· · ·⊗τN = F †F .

Set ρ̃ = FρF † and define

f̃(ρ1, ρ2, · · · ρN) =
Tr[ρ̃(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)]

∏N
i=1 det(ρi)1/di

=
N∏

i=1

det(τi)
1/di · Tr[ρ(F †

1ρ1F1 ⊗ F †
2ρ2F2 ⊗ · · · ⊗ F †

NρNFN)]
∏N

i=1 det(τi)1/di det(ρi)1/di

=
N∏

i=1

det(τi)
1/di · f(F †

1ρ1F1, F
†
2ρ2F2, · · · , F †

NρNFN).

We see that when F †
i ρiFi = τi, f̃ has a minimum and

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN = (F †)−1τ1 ⊗ τ2 ⊗ · · · ⊗ τNF−1 = I.

Since f̃ is stationary under infinitesimal variations about the minimum it follows

that

Tr[ρ̃δ(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)] = 0

for all infinitesimal variations,

δ(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN) = δρ1 ⊗ Id2 ⊗ · · · ⊗ IdN
+ Id1 ⊗ δρ2 ⊗ Id3 ⊗ · · · ⊗ IdN

+ · · · · · · + Id1 ⊗ Id2 ⊗ · · · ⊗ IdN−1
⊗ δρN ,

subjected to the constraint det(Idi
+ δρi) = 1, which is equivalent to Tr[δρi] = 0,

i = 1, 2, · · · , N , using det(eA) = eTr[A] for a given matrix A. Thus, δρi can be

represented by the SU generators, δρi =
∑
k

δci
kλ

i
k. It follows that Tr[ρ̃λ

{µk}
αk ] = 0 for

any αk and µk. Hence the terms proportional to λ
{µk}
αk in (2.43) disappear. ¤
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Corollary 2.7 The normal form of a product state in H must be proportional to

the identity.

[Proof] Let ρ be such a state. From (2.46), we get that

ρ̃i = Tr1,2,···,i−1,i+1,···,N [ρ] =
1

di

Idi
. (2.48)

Therefore for a product state ρ we have

ρ̃ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN =
1

∏N
i=1 di

⊗N
i=1 Idi

.

¤

As an example for separability of multipartite states in terms of their normal

forms (2.46), we consider the PPT entangled edge state [63]

ρ =




1 0 0 0 0 0 0 1
0 a 0 0 0 0 0 0
0 0 b 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 1

c
0 0 0

0 0 0 0 0 1
b

0 0
0 0 0 0 0 0 1

a
0

1 0 0 0 0 0 0 1




(2.49)

mixed with noises:

ρp = pρ +
(1 − p)

8
I8.

Select a = 2, b = 3, and c = 0.6. Using the criterion in [79] we get that ρp is

entangled for 0.92744 < p ≤ 1. But after transforming ρp to its normal form (2.46),

the criterion can detect entanglement for 0.90285 < p ≤ 1.

Here we indicate that the filtering transformation does not change the PPT

property. Let ρ ∈ HA⊗HB be PPT, i.e. ρTA ≥ 0, and ρTB ≥ 0. Let ρ̃ be the normal

form of ρ. From (2.36) we have

ρ̃TA =
(F ∗

A ⊗ FB)ρTA(F T
A ⊗ F †

B)

Tr[(FA ⊗ FB)ρ(FA ⊗ FB)†]
.

For any vector |ψ〉, we have

〈ψ|ρ̃TA|ψ〉 =
〈ψ|(F ∗

A ⊗ FB)ρTA(F T
A ⊗ F †

B)|ψ〉
Tr[(FA ⊗ FB)ρ(FA ⊗ FB)†]

≡ 〈ψ′|ρTA|ψ′〉 ≥ 0,

where |ψ′〉 =
(F T

A⊗F †
B)|ψ〉√

Tr[(FA⊗FB)ρ(FA⊗FB)†]
. ρ̃TB ≥ 0 can be proved similarly. This property

is also valid for multipartite case. Hence a bound entangled state will be bound

entangled under filtering transformations.
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2.3 Entanglement witness based on correlation matrix cri-

terion

Entanglement witness (EW) is another way to describe separability. Based on CM

criterion we can further construct entanglement witness in terms of LOOs. EW

[74] is an observable of the composite system such that (i) nonnegative expectation

values in all separable states, (ii) at least one negative eigenvalue (can recognizes at

least one entangled state). Consider bipartite systems in HM
A ⊗HN

B with M ≤ N .

Theorem 2.8 For any LOOs GA
k and GB

k ,

W = I − α

N2−1∑

k=0

GA
k ⊗ GB

k

is an EW, where α =
√

MN√
(M−1)(N−1)+1

and

GA
0 =

1√
M

IM , GB
0 =

1√
N

IN . (2.50)

[Proof] Let ρ =
N2−1∑
l,m=0

TlmλA
l ⊗λB

m be a separable state, where λ
A/B
k are normalized

generators of SU(M/N) with λA
0 = 1√

M
IM , λB

0 = 1√
N

IN . Any other LOOs G
A/B
k

fulfill (2.50) can be obtained from these λs through orthogonal transformations

OA/B, G
A/B
k =

N2−1∑
l=0

OA/B
kl λl, where OA/B =

(
1 0
0 RA/B

)
, RA/B are (N2 − 1) ×

(N2 − 1) orthogonal matrices. We have

Tr[ρW ] = 1 − α
1√
MN

− α

N2−1∑

k=1

N2−1∑

l,m=1

RA
klRB

kmTr[ρ(λA
l ⊗ λB

m)]

=

√
(M − 1)(N − 1)√

(M − 1)(N − 1) + 1
− 1√

MN(
√

(M − 1)(N − 1) + 1)

N2−1∑

k=1

N2−1∑

l,m=1

RA
klTlmRB

km

≥
√

MN(M − 1)(N − 1) − ||T ||KF√
MN(

√
(M − 1)(N − 1) + 1)

≥ 0,

where we have used Tr[RT ] ≤ ||T ||KF for any unitary R in the first inequality and

the CM criterion in the second inequality.

Now let ρ = 1
MN

(IMN +
M2−1∑
i=1

siλ
A
i ⊗ IN +

N2−1∑
j=1

rjIM ⊗λB
j +

M2−1∑
i=1

N2−1∑
j=1

Tijλ
A
i ⊗λB

j )

be a state in HM
A ⊗HN

B which violates the CM criterion. Denote σk(T ) the singular
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values of T . By singular value decomposition, one has T = U †ΛV ∗, where Λ is

a diagonal matrix with Λkk = σk(T ). Now choose LOOs to be GA
k =

∑
l Uklλ

A
l ,

GB
k =

∑
m VkmλB

m for k = 1, 2, · · · , N2 − 1 and GA
0 = 1

M
IM , GB

0 = 1
N

IN . We obtain

Tr[ρW ] = 1 − α
1√
MN

− α

N2−1∑

k=1

N2−1∑

l,m=1

UklVkmTr[ρ(λA
l ⊗ λB

m)]

=

√
(M − 1)(N − 1)√

(M − 1)(N − 1) + 1
− 1√

MN(
√

(M − 1)(N − 1) + 1)
Tr[UTV T ]

=

√
MN(M − 1)(N − 1) − ||T ||KF√
MN(

√
(M − 1)(N − 1) + 1)

< 0

where the CM criterion has been used in the last step. ¤

As the CM criterion can be generalized to multipartite form [79], we can also

define entanglement witness for multipartite system in Hd1
1 ⊗Hd2

2 ⊗ · · · ⊗ HdN

N . Set

d(M) = max{dµi
, i = 1, 2, · · · ,M}. Choose LOOs G

{µi}
k for 0 ≤ k ≤ d(M)2 − 1 with

G
{µi}
0 = 1

dµi

Idµi
and define

W (M) = I − β(M)

d(M)2−1∑

k=0

G
{µ1}
k ⊗ G

{µ2}
k ⊗ · · · ⊗ G

{µM}
k , (2.51)

where β(M) =

√∏M
i=1 dµi

1+
√∏M

i=1(dµi
−1)

, 2 ≤ M ≤ N . One can prove that (2.51) is an

EW candidate for multipartite states. First we assume ||T (M)||KF = ||T(m0)||KF .

Note that for any T(m0), there must exist an elementary transformation P such that
d(M)2−1∑

k=1

T {µ1µ2···µM}
kk···k = Tr[T(m0)P ]. Then for an N-partite separable state we have

Tr[ρW (M)] = 1 − β(M) 1√∏M
i=1 dµi

− β(M) 1
∏M

i=1 dµi

Tr[T(m0)P ]

≥ 1 − β(M) 1√∏M
i=1 dµi

− β(M) 1
∏M

i=1 dµi

||T(m0)||KF

≥ 1 − β(M) 1√∏M
i=1 dµi

− β(M) 1
∏M

i=1 dµi

√√√√
M∏

k=1

dµk
(dµk

− 1)

= 0

for any 2 ≤ M ≤ N , where we have taken into account that P is orthognal and

Tr[MU ] ≤ ||M ||KF for any unitary U at the first inequality. The second inequality

is due to the generalized CM criterion.
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By choosing proper LOOs it is also easy to show that W (M) has negative eigen-

values. For example for three qubits case , taking the normalized pauli matrices as

LOOs, one find a negative eigenvalue of W (M), (1 −
√

3)/2.

3 Concurrence and Tangle

In this section, we focus on two important measures: concurrence and tangle (see,

[80]). An elegant formula for concurrence of two-qubit states is derived analytically

by Wootters [39, 81]. This quantity has recently been shown to play an essential

role in describing quantum phase transition in various interacting quantum many-

body systems [82] and may affect macroscopic properties of solids significantly [83].

Furthermore, concurrence also provides an estimation [84] for the entanglement of

formation (EOF) [61], which quantifies the required minimally physical resources to

prepare a quantum state.

Let HA (resp. HB) be an M (resp. N)-dimensional complex vector space with

|i〉, i = 1, · · · ,M (resp. |j〉, j = 1, · · · , N), as an orthonormal basis. A general pure

state on HA ⊗HB is of the form

|Ψ〉 =
M∑

i=1

N∑

j=1

aij|i〉 ⊗ |j〉, (3.52)

where aij ∈ C satisfy the normalization
∑M

i=1

∑N
j=1 aija

∗
ij = 1.

The concurrence of (3.52) is defined by [85, 16]

C(|ψ〉) =
√

2(1 − Tr[ρ2
A]), (3.53)

where ρA = TrB[|ψ〉〈ψ|]. The definition is extended to general mixed states ρ =∑
i pi|ψi〉〈ψi| by the convex roof,

C(ρ) = min
{pi,|ψi〉}

∑

i

piC(|ψi〉). (3.54)

For two qubits systems, the concurrence of |Ψ〉 is given by:

C(|Ψ〉) = |〈Ψ|Ψ̃〉| = 2|a11a22 − a12a21|, (3.55)

where |Ψ̃〉 = σy ⊗ σy|Ψ∗〉, |Ψ∗〉 is the complex conjugate of |Ψ〉, σy is the Pauli

matrix, σy =

(
0 −i
i 0

)
.
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For a mixed two-qubit quantum state ρ, the entanglement of formation E(ρ) has

a simple relation with the concurrence [39, 81]

E(ρ) = h(
1 +

√
1 − C(ρ)2

2
),

where h(x) = −x log2 x − (1 − x) log2(1 − x),

C(ρ) = max {λ1 − λ2 − λ3 − λ4, 0}, (3.56)

where the λis are the eigenvalues, in decreasing order, of the Hermitian matrix√√
ρρ̃

√
ρ and ρ̃ = (σy ⊗ σy)ρ

∗(σy ⊗ σy).

Another entanglement measure called tangle is defined by

τ(|ψ〉) = C2(|ψ〉) = 2(1 − Tr[ρ2
A]) (3.57)

for a pure state |ψ〉. For mixed state ρ =
∑

i pi|ψi〉〈ψi|, the definition is given by

τ(ρ) = min
{pi,|ψi〉}

∑

i

piτ(|ψi〉). (3.58)

For multipartite state |ψ〉 ∈ H1 ⊗H2 ⊗ · · · ⊗ HN , dimHi = di, i = 1, ..., N , the

concurrence of |ψ〉 is defined by [86]

CN(|ψ〉〈ψ|) = 21−N
2

√
(2N − 2) −

∑

α

Tr[ρ2
α], (3.59)

where α labels all different reduced density matrices.

Up to constant factor (3.59) can be also expressed in another way. Let H denotes

a d-dimensional vector space with basis |i〉, i = 1, 2, ..., d. An N -partite pure state

in H ⊗ · · · ⊗ H is generally of the form,

|Ψ〉 =
d∑

i1,i2,···iN=1

ai1,i2,···iN |i1, i2, · · · iN〉, ai1,i2,···iN ∈ C. (3.60)

Let α and α
′

(resp.β and β
′

) be subsets of the subindices of a, associated to the

same sub Hilbert spaces but with different summing indices. α (or α
′

) and β (or

β
′

) span the whole space of the given sub-indix of a. The generalized concurrence

of |Ψ〉 is then given by [16]

CN
d (|Ψ〉) =

√√√√ d

2m(d − 1)

∑

p

d∑

{α,α
′
,β,β

′}

|aαβaα′β′ − aαβ′aα′β|2, (3.61)
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where m = 2N−1 − 1,
∑
p

stands for the summation over all possible combinations of

the indices of α and β.

For a mixed multipartite quantum state, ρ =
∑

i pi|ψi〉〈ψi| in H1⊗H2⊗· · ·⊗HN ,

the corresponding concurrence is given by the convex roof:

CN(ρ) = min
{pi,|ψi}〉

∑

i

piCN(|ψi〉). (3.62)

3.1 Lower and upper bounds of concurrence

Calculation of the concurrence for general mixed states are extremely difficult. How-

ever, one can try to find the lower and the upper bounds to estimate the exact values

of the concurrence [47, 51, 50, 32].

3.1.1 Lower bound of concurrence from covariance matrix criterion

In [47] a lower bound of C(ρ) has been obtained,

C(ρ) ≥
√

2

M(M − 1)
[Max(||TA(ρ)||, ||R(ρ)||) − 1] , (3.63)

where TA and R stand for partial transpose with respect to subsystem A and the

realignment respectively. This bound is further improved based on local uncertainty

relations [50],

C(ρ) ≥
M + N − 2 − ∑

i △2
ρ(G

A
i ⊗ I + I ⊗ GB

i )√
2M(M − 1)

, (3.64)

where GA
i and GB

i are any set of local orthonormal observables, △2
ρ(X) = Tr[X2ρ]−

(Tr[Xρ])2.

Bound (3.64) again depends on the choice of the local orthonormal observables.

This bound can be optimized, in the sense that a local orthonormal observable-

independent up bound of the right hand side of (3.64) can be obtained.

Theorem 3.1 Let ρ be a bipartite state in HA
M ⊗HB

N . Then C(ρ) satisfies

C(ρ) ≥ 2||C||KF − (1 − Tr[ρ2
A]) − (1 − Tr[ρ2

B])√
2M(M − 1)

. (3.65)
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[Proof] The other orthonormal normalized basis of the local orthonormal observ-

able space can be obtained from Ai and Bi by unitary transformations U and V :

Ãi =
∑
l

UilAl and B̃j =
∑
m

V ∗
jmBm. Select U and V so that C = U †ΛV is the

singular value decomposition of C. Then the new observables can be written as

Ãi =
∑
l

UilAl, B̃j = −
∑
m

V ∗
jmBm. We have

∑

i

△2
ρ(Ãi ⊗ I + I ⊗ B̃i) =

∑

i

[△2
ρA

(Ãi) + △2
ρA

(B̃i) + 2(〈Ãi ⊗ B̃i〉 − 〈Ãi〉〈B̃i〉)]

= M − Tr[ρ2
A] + N − Tr[ρ2

B] − 2
∑

i

(UCV †)ii

= M − Tr[ρ2
A] + N − Tr[ρ2

B] − 2||C||KF .

Substituting above relation to (3.64) one gets (3.65). ¤

Bound (3.65) does not depend on the choice of local orthonormal observables.

It can be easily applied and realized by direct measurements in experiments. It is

in accord with the result in [32] where optimization of entanglement witness based

on local uncertainty relation has been taken into account. As an example let us

consider the 3 × 3 bound entangled state [61],

ρ =
1

4
(I9 −

4∑

i=0

|ξi〉〈ξi|), (3.66)

where I9 is the 9× 9 identity matrix, |ξ0〉 = 1√
2
|0〉(|0〉 − |1〉), |ξ1〉 = 1√

2
(|0〉 − |1〉)|2〉,

|ξ2〉 = 1√
2
|2〉(|1〉−|2〉), |ξ3〉 = 1√

2
(|1〉−|2〉)|0〉, |ξ4〉 = 1

3
(|0〉+ |1〉+ |2〉)(|0〉+ |1〉+ |2〉).

We simply choose the local orthonormal observables to be the normalized generators

of SU(3). Formula (3.63) gives C(ρ) ≥ 0.050. Formula (3.64) gives C(ρ) ≥ 0.052

[50], while formula (3.65) yields a better lower bound C(ρ) ≥ 0.0555.

If we mix the bound entangled state (3.66) with |ψ〉 = 1√
3

2∑
i=0

|ii〉, ρ
′

= (1−x)ρ+

x|ψ〉〈ψ|, it is easily seen that (3.65) gives a better lower bound of concurrence than

formula (3.63) (Fig. 1).

3.1.2 Lower bound of concurrence from “two-qubit” decomposition

In [53] the authors derived an analytical lower bound of concurrence for arbitrary

bipartite quantum states by decomposing the joint Hilbert space into many 2 ⊗
2 dimensional subspaces, which does not involve any optimization procedure and

gives an effective evaluation of entanglement together with an operational sufficient

condition for the distill ability of any bipartite quantum states.
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Figure 1: Lower bounds from (3.65) (dashed line) and (3.63) (solid line)

(1) Lower bound of concurrence for bipartite states

The lower bound τ2 of concurrence for bipartite states has been obtained in [53].

For a bipartite quantum state ρ in H ⊗ H, the concurrence C(ρ) satisfies

τ2(ρ) ≡ d

2(d − 1)

d(d−1)
2∑

m,n=1

C2
mn(ρ) ≤ C2(ρ), (3.67)

where Cmn(ρ) = max{0, λ(1)
mn −λ

(2)
mn −λ

(3)
mn −λ

(4)
mn} with λ

(1)
mn, ..., λ

(4)
mn the square roots

of the four nonzero eigenvalues, in decreasing order, of the non-Hermitian matrix

ρρ̃mn with ρ̃mn = (Lm ⊗ Ln)ρ∗(Lm ⊗ Ln), Lm and Ln are the generators of SO(d).

The lower bound τ2 in Eq.(3.67) in fact characterizes all two-qubit’s entanglement

in a high dimensional bipartite state. One can directly verify that there are at most

4 × 4 = 16 nonzero elements in each matrix ρρ̃mn. These elements constitute a

4 × 4 matrix ̺(σy ⊗ σy)̺
∗(σy ⊗ σy), where σy is the Pauli matrix, the matrix ̺ is a

submatrix of the original ρ:

̺ =




ρik,ik ρik,il ρik,jk ρik,jl

ρil,ik ρil,il ρil,jk ρil,jl

ρjk,ik ρjk,il ρjk,jk ρjk,jl

ρjl,ik ρjl,il ρjl,jk ρjl,jl


 , (3.68)

i 6= j and k 6= l, with subindices i and j associated with the first space, k and l

with the second space. The two-qubit submatrix ̺ is not normalized but positive

semidefinite. Cmn are just the concurrences of these states (3.68).
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The bound τ2 provides a much clearer structure of entanglement, which not only

yields an effective separability criterion and an easy evaluation of entanglement, but

also helps one to classify mixed-state entanglement.

(2) Lower bound of concurrence for multipartite states

We first consider tripartite case. A general pure state on H ⊗ H ⊗ H is of the

form

|Ψ〉 =
d∑

i,j,k=1

aijk|ijk〉, aijk ∈ C,

d∑

i,j,k=1

aijka
∗
ijk = 1 (3.69)

with

C3
d(|Ψ〉) =

√
d

6(d − 1)
×

√∑
(|aijkapqm − aijmapqk|2 + |aijkapqm − aiqkapjm|2 + |aijkapqm − apjkaiqm|2)

or equivalently

C3
d(|Ψ〉) =

√
d

6(d − 1)
(3 − (Tr[ρ2

1] + Tr[ρ2
2] + Tr[ρ2

3])), (3.70)

where ρ1 = Tr23[ρ], ρ2 = Tr13[ρ], ρ3 = Tr12[ρ] are the reduced density matrices of

ρ = |Ψ〉〈Ψ|.

Define C
12|3
αβ (|Ψ〉) = |aijkapqm − aijmapqk|, C

13|2
αβ (|Ψ〉) = |aijkapqm − aiqkapjm|,

C
23|1
αβ (|Ψ〉) = |aijkapqm − apjkaiqm|, where α and β of C

12|3
αβ (resp. C

13|2
αβ resp. C

23|1
αβ )

stand for the sub-indices of a associated with the subspaces 1, 2 and 3 (resp. 1, 3 and

2 resp. 2, 3 and 1). Let Li1i2···iN denote the generators of group SO(di1di2 · · · diN )

associated to the subsystems i1, i2, · · · , iN . Then for a tripartite pure state (3.69),

one has

C3
d(|Ψ〉) =

√√√√√ d

6(d − 1)

d2(d2−1)
2∑

α

d(d−1)
2∑

β

[(C
12|3
αβ (|Ψ〉))2 + (C

13|2
αβ (|Ψ〉))2 + (C

23|1
αβ (|Ψ〉))2]

=

√
d

6(d − 1)

∑

αβ

[(|〈Ψ|S12|3
αβ |Ψ∗〉|)2 + (|〈Ψ|S13|2

αβ |Ψ∗〉|)2 + (|〈Ψ|S23|1
αβ |Ψ∗〉|)2],

where S
12|3
αβ = (L12

α ⊗ L3
β), S

13|2
αβ = (L13

α ⊗ L2
β) and S

23|1
αβ = (L1

β ⊗ L23
α ).
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Theorem 3.2 For an arbitrary mixed state ρ in H ⊗H ⊗H, the concurrence C(ρ)

satisfies

τ3(ρ) ≡ d

6(d − 1)

d2(d2−1)
2∑

α

d(d−1)
2∑

β

[(C
12|3
αβ (ρ))2 + (C

13|2
αβ (ρ))2 + (C

23|1
αβ (ρ))2] ≤ C2(ρ),(3.71)

where τ3(ρ) is a lower bound of C(ρ),

C
12|3
αβ (ρ) = max{0, λ(1)

12|3
αβ − λ(2)

12|3
αβ − λ(3)

12|3
αβ − λ(4)

12|3
αβ }, (3.72)

λ(1)
12|3
αβ , λ(2)

12|3
αβ , λ(3)

12|3
αβ , λ(4)

12|3
αβ are the square roots of the four nonzero eigenval-

ues, in decreasing order, of the non-Hermitian matrix ρρ̃
12|3
αβ with ρ̃

12|3
αβ = S

12|3
αβ ρ∗S

12|3
αβ .

C
13|2
αβ (ρ) and C

23|1
αβ (ρ) are defined in a similar way to C

12|3
αβ (ρ).

[Proof] Set |ξi〉 =
√

pi|ψi〉, xi
αβ = |〈ξi|S12|3

αβ |ξ∗i 〉|, yi
αβ = |〈ξi|S13|2

αβ |ξ∗i 〉| and zi
αβ =

|〈ξi|S1|23
αβ |ξ∗i 〉|. We have, from Minkowski inequality

C(ρ) = min
∑

i

√
d

6(d − 1)

∑

αβ

[
(xi

αβ)2 + (yi
αβ)2 + (zi

αβ)2
]

≥ min

√√√√ d

6(d − 1)

∑

αβ

(
∑

i

[(xi
αβ)2 + (yi

αβ)2 + (zi
αβ)2]

1
2

)2

.

Noting that for nonnegative real variables xα, yα, zα and given X =
N∑

α=1

xα,

Y =
N∑

α=1

Yα and Z =
N∑

α=1

zα, by using Lagrange multipliers one obtains that the

following inequality holds,

N∑

α=1

(x2
α + y2

α + z2
α)

1
2 ≥ (X2 + Y 2 + Z2)

1
2 . (3.73)

Therefore we have

C(ρ) ≥ min

√
d

6(d − 1)

∑

αβ

[(
∑

i

xi
αβ)2 + (

∑

i

yi
αβ)2 + (

∑

i

zi
αβ)2]

≥
√

d

6(d − 1)

∑

αβ

[(min
∑

i

xi
αβ)2 + (min

∑

i

yi
αβ)2 + (min

∑

i

zi
αβ)2].

(3.74)

The values of C
12|3
αβ (ρ) ≡ min

∑
i

xi
αβ, C

13|2
αβ (ρ) ≡ min

∑
i

yi
αβ and C

23|1
αβ (ρ) ≡

min
∑
i

zi
αβ can be calculated by using the similar procedure in [39]. Here we compute
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the value of C
12|3
αβ (ρ) in detail. The values of C

13|2
αβ (ρ) and C

23|1
αβ (ρ) can be obtained

analogously.

Let λi and |χi〉 be eigenvalues and eigenvectors of ρ respectively. Any decompo-

sition of ρ can be obtained from a unitary d3×d3 matrix Vij, |ξj〉 =
d3∑
i=1

V ∗
ij(
√

λi|χi〉).

Therefore one has 〈ξi|S12|3
αβ |ξ∗j 〉 = (V YαβV T )ij, where the matrix Yαβ is defined by

(Yαβ)ij = 〈χi|S12|3
αβ |χ∗

j〉. Namely C
12|3
αβ (ρ) = min

∑
i |[V YαβV T ]ii|, which has an an-

alytical expression [39], C
12|3
αβ (ρ) = max{0, λ(1)

12|3
αβ −

∑
j>1 λ(j)

12|3
αβ }, where λ

12|3
αβ (k)

are the square roots of the eigenvalues of the positive Hermitian matrix YαβY †
αβ, or

equivalently the non-Hermitian matrix ρρ̃αβ, in decreasing order. Here as the matrix

S
12|3
αβ has d2 − 4 rows and d2 − 4 columns that are identically zero, the matrix ρρ̃αβ

has a rank no greater than 4, i.e., λ
12|3
αβ (j) = 0 for j ≥ 5. From Eq.(3.74) we have

Eq.(3.71). ¤

Theorem 3.2 can be directly generalized to arbitrary multipartite case.

Theorem 3.3 For an arbitrary N-partite state ρ ∈ H⊗H⊗· · ·⊗H, the concurrence

defined in (4.112) satisfies:

τN(ρ) ≡ d

2m(d − 1)

∑

p

∑

αβ

(Cp
αβ(ρ))2 ≤ C2(ρ), (3.75)

where τN(ρ) is the lower bound of C(ρ),
∑
p

stands for the summation over all possible

combinations of the indices of α, β, Cp
αβ(ρ) = max{0, λ(1)p

αβ − λ(2)p
αβ − λ(3)p

αβ −
λ(4)p

αβ}, λ(i)p
αβ, i = 1, 2, 3, 4, are the square roots of the four nonzero eigenvalues,

in decreasing order, of the non-Hermitian matrix ρρ̃p
αβ where ρ̃p

αβ = Sp
αβρ∗Sp

αβ.

(3) Lower bound and separability

An N-partite quantum state ρ is fully separable if and only if there exist pi with

pi ≥ 0,
∑
i

pi = 1 and pure states ρj
i = |ψj

i 〉〈ψj
i | such that

ρ =
∑

i

piρ
1
i ⊗ ρ2

i ⊗ · · · ⊗ ρN
i . (3.76)

It is easily verified that for a fully separable multipartite state ρ, τN(ρ) = 0.

Thus τN(ρ) > 0 indicates that there must be some kinds of entanglement inside the

quantum state, which shows that the lower bound τN(ρ) can be used to recognize

entanglement.
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As an example we consider a tripartite quantum state [63], ρ = 1−p
8

I8+p|W 〉〈W |,
where I8 is the 8 × 8 identity matrix, and |W 〉 = 1√

3
(|100〉 + |010〉 + |001〉) is the

tripartite W-state. Select an entanglement witness operator to be W = 1
2
I8 −

|GHZ〉〈GHZ|, where |GHZ〉 = 1√
2
(|000〉 + |111〉) to be the tripartite GHZ-state.

From the condition Tr[Wρ] < 0, the entanglement of ρ is detected for 3
5

< p ≤ 1

in [63]. In [79] the authors have obtained the generalized correlation matrix crite-

rion which says if an N-qubit quantum state is fully separable then the inequality

||T N ||KF ≤ 1 must hold, where ||T N ||KF = max{||T N
n ||KF}, T N

n is a kind of matrix

unfold of tα1α2···αN
defined by tα1α2···αN

= Tr[ρσ
(1)
α1 σ

(2)
α2 · · ·σ(N)

αN ] and σ
(i)
αi stands for

the pauli matrix. Now using the generalized correlation matrix criterion the entan-

glement of ρ is detected for 0.3068 < p ≤ 1. From theorem 3.2, we have that the

lower bound τ3(ρ) > 0 for 0.2727 < p ≤ 1. Therefore the bound (3.110) detects

entanglement better than these two criteria in this case. If we replace W with GHZ

state in ρ, the criterion in [79] detects the entanglement of ρ for 0.35355 < p ≤ 1,

while τ3(ρ) detects, again better, the entanglement for 0.2 < p ≤ 1.

Nevertheless for PPT states ρ, we have τ3(ρ) = 0, which can be seen in the

following way. A density matrix ρ is called PPT if the partial transposition of

ρ over any subsystem(s) is still positive. Let ρTi denote the partial transposition

with respect to the i-th subsystem. Assume that there is a PPT state ρ with

τ(ρ) > 0. Then at least one term in (3.71), say C
12|3
α0β0

(ρ), is not zero. Define

ρα0β0 = L12
α0

⊗ L3
β0

ρ(L12
α0

⊗ L3
β0

)†. By using the PPT property of ρ, we have:

ρT3
α0β0

= L12
α0

⊗ (L3
β0

)∗ρT3(L12
α0

)† ⊗ (L3
β0

)T ≥ 0. (3.77)

Noting that both L12
α0

and L3
β0

are projectors to two-dimensional subsystems, ρα0β0

can be considered as a 4×4 density matrix. While a PPT 4×4 density matrix ρα0β0

must be a separable state, which contradicts with C
12|3
α0β0

(ρ) 6= 0.

(4) Relation between lower bounds of bi- and tripartite concurrence

τ3 is basically different from τ2 as τ3 characterizes also genuine tripartite entan-

glement that can not be described by bipartite decompositions. Nevertheless, there

are interesting relations between them.

Theorem 3.4 For any pure tripartite state (3.69), the following inequality holds:

τ2(ρ12) + τ2(ρ13) + τ2(ρ23) ≤ 3τ3(ρ), (3.78)
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where τ2 is the lower bound of bipartite concurrence (3.67), τ3 is the lower bound

of tripartite concurrence (3.71) and ρ12 = Tr3[ρ], ρ13 = Tr2[ρ], ρ23 = Tr1[ρ], ρ =

|Ψ〉123〈Ψ|.

[Proof] Since C2
αβ ≤ (λαβ(1))2 ≤

∑4
i=1(λαβ(i))2 = Tr[ρρ̃αβ] for ρ = ρ12, ρ = ρ13

and ρ = ρ23, we have

τ2(ρ12) + τ2(ρ13) + τ2(ρ23)

≤ d

2(d − 1)
(

d(d−1)
2∑

α,β=1

Tr[ρ12(ρ̃12)αβ] +

d(d−1)
2∑

α,β=1

Tr[ρ13(ρ̃13)αβ] +

d(d−1)
2∑

α,β=1

Tr[ρ23(ρ̃23)αβ])

=
d

2(d − 1)
(3 − Tr[ρ2

1] − Tr[ρ2
2] − Tr[ρ2

3]) = 3C2(ρ) = 3τ3(ρ), (3.79)

where we have used the similar analysis in [53, 87] to obtain the equality
∑
α,β

Tr[ρ12(ρ̃12)αβ] =

1−Tr[ρ2
1]−Tr[ρ2

2]+Tr[ρ2
3],

∑
α,β

Tr[ρ13(ρ̃13)αβ] = 1−Tr[ρ2
1]+Tr[ρ2

2]−Tr[ρ2
3],

∑
α,β

Tr[ρ23(ρ̃23)αβ] =

1 + Tr[ρ2
1] − Tr[ρ2

2] − Tr[ρ2
3]. The last equality is due to that ρ is a pure state. ¤

In fact, the bipartite entanglement inside a tripartite state is useful for dis-

tilling maximally entangled states. Assume that there are two of the qualities

{τ(ρ12), τ(ρ13), τ(ρ23)} larger than zero, say τ(ρ12) > 0 and τ(ρ13) > 0. According

to [53], one can distill two maximal entangled states |ψ12〉 and |ψ13〉 which belong

to H1 ⊗ H2 and H1 ⊗ H3 respectively. In terms of the result in [88], one can use

them to produce a GHZ state.

3.1.3 Estimation of multipartite entanglement

For a pure N-partite quantum state |ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , dimHi = di,

i = 1, ..., N , the concurrence of bipartite decomposition between subsystems 12 · · ·M
and M + 1 · · ·N is defined by

C2(|ψ〉) =
√

2(1 − Tr[ρ2
12···M ]) (3.80)

where ρ2
12···M = TrM+1···N [|ψ〉〈ψ|] is the reduced density matrix of ρ = |ψ〉〈ψ| by

tracing over subsystems M + 1 · · ·N . On the other hand, the concurrence of |ψ〉 is

defined by (3.59).

For a mixed multipartite quantum state, ρ =
∑

i pi|ψi〉〈ψi| ∈ H1⊗H2⊗· · ·⊗HN ,

the corresponding concurrence of (3.80) and (3.59) are then given by the convex roof:

C2(ρ) = min
{pi,|ψi}〉

∑

i

piC2(|ψi〉〈ψi|), (3.81)
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and (4.112). We now investigate the relation between these two kinds of concur-

rences.

Lemma 3.1 For a bipartite density matrix ρ ∈ HA ⊗HB, one has

1 − Tr[ρ2] ≤ 1 − Tr[ρ2
A] + 1 − Tr[ρ2

B], (3.82)

where ρA/B = TrB/A[ρ] be the reduced density matrices of ρ.

[Proof] Let ρ =
∑
ij

λij|ij〉〈ij| be the spectral decomposition, where λij ≥ 0,
∑

ij λij =

1. Then ρ1 =
∑

ij λij|i〉〈i|, ρ2 =
∑

ij λij|j〉〈j|. Therefore

1 − Tr[ρ2
A] + 1 − Tr[ρ2

B] − 1 + Tr[ρ2] = 1 − Tr[ρ2
A] − Tr[ρ2

B] + Tr[ρ2]

= (
∑

ij

λij)
2 −

∑

i,j,j
′

λijλij
′ −

∑

i,i
′
,j

λijλi′j +
∑

ij

λ2
ij

= (
∑

i=i
′
,j=j

′

λ2
ij +

∑

i=i
′
,j 6=j

′

λijλij′ +
∑

i6=i
′
,j=j

′

λijλi′j +
∑

i6=i
′
,j 6=j

′

λijλi′j′ )

=
∑

i6=i
′
,j 6=j

′

λijλi′j′ ≥ 0.

¤

This lemma can be also derived in another way [32, 89].

Theorem 3.5 For a multipartite quantum state ρ ∈ H1⊗H2⊗· · ·⊗HN with N ≥ 3,

the following inequality holds,

CN(ρ) ≥ max 2
3−N

2 C2(ρ), (3.83)

where the maximum is taken over all kinds of bipartite concurrence.

[Proof] Without lose of generality, we suppose that the maximal bipartite con-

currence is attained between subsystems 12 · · ·M and (M + 1) · · ·N .

For a pure multipartite state |ψ〉 ∈ H1⊗H2⊗· · ·⊗HN , Tr[ρ2
12···M ] = Tr[ρ2

(M+1)···N ].

From (3.82) we have

C2
N(|ψ〉〈ψ|) = 22−N((2N − 2) −

∑

α

Tr[ρ2
α]) ≥ 23−N(N −

N∑

k=1

Tr[ρ2
k])

≥ 23−N(1 − Tr[ρ2
12···M ] + 1 − Tr[ρ2

(M+1)···N ])

= 23−N ∗ 2(1 − Tr[ρ2
12···M ]) = 23−NC2

2(|ψ〉〈ψ|),
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i.e. CN(|ψ〉〈ψ|) ≥ 2
3−N

2 C2(|ψ〉〈ψ|).

Let ρ =
∑
i

pi|ψi〉〈ψi| attain the minimal decomposition of the multipartite con-

currence. One has

CN(ρ) =
∑

i

piCN(|ψi〉〈ψi|) ≥ 2
3−N

2

∑

i

piC2(|ψi〉〈ψi|)

≥ 2
3−N

2 min
{pi,|ψi}

∑

i

piC2(|ψi〉〈ψi|) = 2
3−N

2 C2(ρ).

¤

Corollary 3.5 For a tripartite quantum state ρ ∈ H1 ⊗ H2 ⊗ H3, the following

inequality holds:

C3(ρ) ≥ max C2(ρ) (3.84)

where the maximum is taken over all kinds of bipartite concurrence.

In [50, 32], from the separability criteria related to local uncertainty relation,

covariance matrix and correlation matrix, the following lower bounds for bipartite

concurrence are obtained:

C2(ρ) ≥ 2||C(ρ)|| − (1 − Tr[ρ2
A]) − (1 − Tr[ρ2

B])√
2dA(dA − 1)

(3.85)

and

C2(ρ) ≥
√

8

d3
Ad2

B(dA − 1)
(||T (ρ)|| −

√
dAdB(dA − 1)(dB − 1)

2
), (3.86)

where the entries of the matrix C, Cij = 〈λA
i ⊗ λB

j 〉 − 〈λA
i ⊗ IdB

〉〈IdA
⊗ λB

j 〉,
Tij = dAdB

2
〈λA

i ⊗ λB
j 〉, λ

A/B
k stands for the normalized generator of SU(dA/dB),

i.e. Tr[λ
A/B
k λ

A/B
l ] = δkl and 〈X〉 = Tr[ρX]. It is shown that the lower bounds (3.85)

and (3.86) are independent of (3.63).

Now we consider a multipartite quantum state ρ ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN as a

bipartite state belonging to HA ⊗HB with the dimensions of the subsystems A and

B being dA = ds1ds2 · · · dsm
and dB = dsm+1dsm+2 · · · dsN

respectively. By using the

corollary, (3.63), (3.85) and (3.86) one has the following lower bound:

Theorem 3.6 For any N-partite quantum state ρ,

CN(ρ) ≥ 2
3−N

2 max{B1, B2, B3}, (3.87)
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where

B1 = max
{i}

√
2

Mi(Mi − 1)

[
max(||TA(ρi)||, ||R(ρi)||) − 1

]
,

B2 = max
{i}

2||C(ρi)|| − (1 − Tr[(ρi
A)2]) − (1 − Tr[(ρi

B)2])√
2Mi(Mi − 1)

,

B3 = max
{i}

√
8

M3
i N2

i (Mi − 1)
(||T (ρi)|| −

√
MiNi(Mi − 1)(Ni − 1)

2
),

ρis are all possible bipartite decompositions of ρ, and

Mi = min {ds1ds2 · · · dsm
, dsm+1dsm+2 · · · dsN

},
Ni = max {ds1ds2 · · · dsm

, dsm+1dsm+2 · · · dsN
}.

In [32, 84, 90], it is shown that the upper and lower bound of multipartite

concurrence satisfy

√
(4 − 23−N)Tr[ρ2] − 22−N

∑

α

Tr[ρ2
α] ≤ CN(ρ) ≤

√
22−N [(2N − 2) −

∑

α

Tr[ρ2
α]]

.(3.88)

In fact one can obtain a more effective upper bound for multi-partite concurrence.

Let ρ =
∑
i

λi|ψi〉〈ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , where |ψi〉s are the orthogonal pure

states and
∑
i

λi = 1. We have

CN(ρ) = min
{pi,|ϕi}〉

∑

i

piCN(|ϕi〉〈ϕi|) ≤
∑

i

λiCN(|ψi〉〈ψi|). (3.89)

The right side of (3.89) gives a new upper bound of CN(ρ). Since

∑

i

λiCN(|ψi〉〈ψi|) = 21−N
2

∑

i

λi

√
(2N − 2) −

∑

α

Tr[(ρi
α)2]

≤ 21−N
2

√
(2N − 2) −

∑

α

Tr[
∑

i

λi(ρi
α)2]

≤ 21−N
2

√
(2N − 2) −

∑

α

Tr[(ρα)2],

the upper bound obtained in (3.89) is better than that in (3.88).
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3.1.4 Bounds of concurrence and tangle

In [54], a lower bound for tangle defined in (3.58) has been derived:

τ(ρ) ≥ 8

MN(M + N)
(||T (ρ)||2HS − MN(M − 1)(N − 1)

4
), (3.90)

where ||X||HS =
√

Tr[XX†] denotes the Frobenius or Hilbert-Schmidt norm. Ex-

perimentally measurable lower and upper bounds for concurrence have been also

given by Mintert and Zhang et.al. in [84, 32]:

√
2(Tr[ρ2] − Tr[ρ2

A]) ≤ C(ρ) ≤
√

2(1 − Tr[ρ2
A]). (3.91)

Since the convexity of C2(ρ), we have that τ(ρ) ≥ C2(ρ) always holds. For two

qubits quantum systems, tangle τ is always equal to the square of concurrence C2

[44, 91], as a decomposition {pi, |ψi〉} achieving the minimum in Eq. (3.54) has the

property that C(|ψi〉) = C(|ψj〉) ∀i, j. For higher dimensional systems we do not

have similar relations. Thus it is meaningful to derive valid upper bound for tangle

and lower bound for concurrence.

Theorem 3.7 For any quantum state ρ ∈ HA ⊗HB, we have

τ(ρ) ≤ min{1 − Tr[ρ2
A], 1 − Tr[ρ2

B]}, (3.92)

C(ρ) ≥
√

8

MN(M + N)
(||T (ρ)||HS −

√
MN(M − 1)(N − 1)

2
), (3.93)

where ρA is the reduced matrix of ρ, and T (ρ) is the correlation matrix of ρ defined

in (3.86).

[Proof] We assume 1−Tr[ρ2
A] ≤ 1−Tr[ρ2

B] for convenience. By the definition of

τ , we have that for a pure state |ψ〉, τ(|ψ〉) = 2(1 − Tr[(ρ
|ψ〉
A )2]). Let ρ =

∑
i piρi be

the optimal decomposition such that τ(ρ) =
∑

i piτ(ρi). We get

τ(ρ) =
∑

i

piτ(ρi) =
∑

i

pi2[1−Tr[(ρ
|ψi〉
A )2]] = 2[1−Tr[

∑

i

pi(ρ
|ψi〉
A )2]] ≤ 2[1−Tr[ρ2

A]].

(3.94)

Note that for pure state |ψ〉 ∈ HA ⊗HB [54],

C(|ψ〉) =

√
8

MN(M + N)
(||T (|ψ〉)||2 − MN(M − 1)(N − 1)

4
). (3.95)
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Using the inequality
√

a − b ≥ √
a −

√
b for any a ≥ b, we get

C(|ψ〉) ≥
√

8

MN(M + N)
(||T (|ψ〉)||HS −

√
MN(M − 1)(N − 1)

2
). (3.96)

Now let ρ =
∑

i piρi be the optimal decomposition such that C(ρ) =
∑

i piC(ρi).

We get

C(ρ) =
∑

i

piC(ρi) ≥
∑

i

pi

√
8

MN(M + N)
(||T (ρi)||HS −

√
MN(M − 1)(N − 1)

2
)

=

√
8

MN(M + N)
(
∑

i

pi||T (ρi)||HS −
√

MN(M − 1)(N − 1)

2
)

≥
√

8

MN(M + N)
(||T (ρ)||HS −

√
MN(M − 1)(N − 1)

2
)

which ends the proof. ¤

The upper bound (3.92), together with the lower bound (3.93), (3.85), (3.86),

(3.90) and (3.91), can allow for estimations of entanglement for arbitrary quantum

states. Moreover, since the upper bound is exactly the value of tangle for pure

states, the upper bound can be a good estimation when the state is very weakly

mixed.

3.2 Concurrence and tangle of two entangled states are strictly

larger than that of one

In this subsection we show that although bound entangled states can not be distilled,

the concurrence and tangle of two entangled states will be always strictly larger than

that of one, even the two entangled states are both bound entangled.

Let ρ =
∑

ijkl ρij,kl|ij〉〈kl| ∈ HA ⊗ HB and σ =
∑

i′j′k′ l′ σi
′
j
′
,k

′
l
′ |i′j ′〉〈k′

l
′| ∈

HA′ ⊗ HB′ be two quantum states shared by subsystems AA
′

and BB
′

. We use

ρ ⊕ σ =
∑

ijkl,i′j′k′ l′ |ii
′〉AA

′ 〈kk
′| ⊗ |jj ′〉BB

′ 〈ll′| to denote the state of the whole

system.

Lemma 3.2 For pure states |ψ〉 ∈ HA ⊗HB and |ϕ〉 ∈ HA
′ ⊗HB

′ , the inequalities

C(|ψ〉 ⊕ |ϕ〉) ≥ max{C(|ψ〉), C(|ϕ〉)} (3.97)

and

τ(|ψ〉 ⊕ |ϕ〉) ≥ max{τ(|ψ〉), τ(|ϕ〉)} (3.98)
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always hold, and ” = ” in the two inequalities hold if and only if at least one of

{|ψ〉, |ϕ〉} is separable.

[Proof] Without loss of generality we assume C(|ψ〉) ≥ C(|ϕ〉). Fist note that

ρ
|ψ〉⊕|ϕ〉
AA′ = ρ

|ψ〉
A ⊗ ρ

|ϕ〉
A′ . (3.99)

Let ρ
|ψ〉
A =

∑
i λi|i〉〈i| and ρ

|ϕ〉
A′ =

∑
j πj|j〉〈j| be the spectral decomposition of ρ

|ψ〉
A

and ρ
|ϕ〉
A

′ , with
∑

i λi = 1 and
∑

j πj = 1 respectively. By using (3.99) one obtains

that

Tr[(ρ
|ψ〉⊕|ϕ〉
AA′ )2] =

∑
λiπjλi

′πj
′ |ij〉〈ij|i′j ′〉〈i′j ′| =

∑
λ2

i π
2
j (3.100)

while

Tr[(ρ
|ψ〉
A )2] =

∑

i

λ2
i . (3.101)

Now using the definition of concurrence and the normalization conditions of λi

and πj one immediately gets

C(|ψ〉 ⊕ |ϕ〉) =
√

2(1 − Tr[(ρ
|ψ〉⊕|ϕ〉
AA

′ )2]) ≥
√

2(1 − Tr[(ρ
|ψ〉
A )2]) = C(|ψ〉). (3.102)

If one of {|ψ〉, |ϕ〉} is separable, say |ϕ〉, then the rank of ρ
|ϕ〉
A′ must be one, which

means that there is only one item in the spectral decomposition in ρ
|ϕ〉
A′ . Using

the normalization condition of πj we obtain Tr[(ρ
|ψ〉⊕|ϕ〉
AA

′ )2] = Tr[(ρ
|ψ〉
A )2]. Then the

inequality (3.102) becomes an equality.

On the other hand, if both |ψ〉 and |ϕ〉 are entangled (not separable), there must

be at least two items in the decomposition of their reduced density matrices ρ
|ψ〉
A

and ρ
|ϕ〉
A′ , which means that Tr[(ρ

|ψ〉⊕|ϕ〉
AA′ )2] is strictly larger than Tr[(ρ

|ψ〉
A )2].

The inequality (3.98) also holds because that for pure quantum state ρ, τ(ρ) =

C2(ρ). ¤

From the lemma, we have, for mixed states,

Theorem 3.8 For any quantum states ρ ∈ HA ⊗ HB and σ ∈ HA′ ⊗ HB′ , the

inequalities

C(ρ ⊕ σ) ≥ max{C(ρ), C(σ)} (3.103)

and

τ(ρ ⊕ σ) ≥ max{τ(ρ), τ(σ)} (3.104)
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always hold, and the ” = ” in the two inequalities hold if and only if at least one

of {ρ, σ} is separable, i.e. if both ρ and σ are entangled (even bound entangled),

C(ρ ⊕ σ) > max{C(ρ), C(σ)} and τ(ρ ⊕ σ) > max{τ(ρ), τ(σ)} always hold.

[Proof] We still assume C(ρ) ≥ C(σ) for convenience. Let ρ =
∑

i piρi and

σ =
∑

j qjσj be the optimal decomposition such that C(ρ⊕ σ) =
∑

i piqjC(ρi ⊕ σj).

By using the inequality obtained in lemma 3.2 we have

C(ρ ⊕ σ) =
∑

i

piqjC(ρi ⊕ σj) ≥
∑

i

piqjC(ρi) =
∑

i

piC(ρi) ≥ C(ρ). (3.105)

Case 1: Now let one of {ρ, σ} be separable, say σ, with ensemble representation

σ =
∑

j qjσj, where
∑

j qj = 1 and σj is the density matrix of separable pure state.

Suppose ρ =
∑

i piρi be the optimal decomposition of ρ such that C(ρ) =
∑

i piC(ρi).

Using lemma 3.2 we have

C(ρ ⊕ σ) ≤
∑

i

piqjC(ρi ⊕ σj) =
∑

i

piqjC(ρi) =
∑

i

piC(ρi) = C(ρ). (3.106)

The inequalities (3.105) and (3.106) show that if σ is separable, then C(ρ ⊕ σ) =

C(ρ).

Case 2: If both ρ and σ are inseparable, i.e. there is at least one pure state in

the ensemble decomposition of ρ (and σ respectively), using lemma 3.2 we have

C(ρ ⊕ σ) =
∑

i

piqjC(ρi ⊕ σj) >
∑

i

piqjC(ρi) =
∑

i

piC(ρi) ≥ C(ρ). (3.107)

The inequality for tangle τ can be proved in a similar way. ¤

Remark : In [92] it is shown that any entangled state ρ can enhance the telepor-

tation power of another state σ. This holds even if the state ρ is bound entangled.

But if ρ is bound entangled, the corresponding σ must be free entangled (distillable).

By theorem 3.8, we can see that even two entangled quantum states ρ and σ are

bound entangled, their concurrence and tangle are strictly larger than that of one

state.

3.3 Subadditivity of concurrence and tangle

We now give a proof of the subadditivity of concurrence and tangle, which illustrates

that concurrence and tangle may be proper entanglement measurements.
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Theorem 3.9 Let ρ and σ be quantum states in HA ⊗HB, we have

C(ρ ⊗ σ) ≤ C(ρ) + C(σ) and τ(ρ ⊗ σ) ≤ τ(ρ) + τ(σ). (3.108)

Proof: We first prove that the theorem holds for pure states, i.e. for |ψ〉 and |φ〉
in HA ⊗HB,

C(|ψ〉 ⊗ |φ〉) ≤ C(|ψ〉) + C(|φ〉) and τ(|ψ〉 ⊗ |φ〉) ≤ τ(|ψ〉) + τ(|φ〉). (3.109)

Assume that ρ
|ψ〉
A =

∑
i λi|i〉〈i| and ρ

|φ〉
A =

∑
j πj|j〉〈j| be the spectral decomposition

of the reduced matrices ρ
|ψ〉
A and ρ

|φ〉
A . One has

1

2
[C(|ψ〉) + C(|φ〉)]2 ≥ 1 − Tr[(ρ

|ψ〉
A )2] + 1 − Tr[(ρ

|φ〉
A )2]

= 1 −
∑

i

λ2
i + 1 −

∑

j

π2
j ≥ 1 −

∑

ij

λ2
i π

2
j =

1

2
C2(|ψ〉 ⊗ |φ〉). (3.110)

Now we prove that (3.108) holds for any mixed quantum states ρ and σ. Let ρ =
∑

i piρi and σ =
∑

j qjσj be the optimal decomposition such that C(ρ) =
∑

i piC(ρi)

and C(σ) =
∑

j qjC(σj). We have

C(ρ) + C(σ) =
∑

ij

piqj[C(ρi) + C(σj)] ≥
∑

ij

piqjC(ρi ⊗ σj) ≥ C(ρ ⊗ σ). (3.111)

The inequality for τ can be derived in a similar way. ¤

4 Fidelity of teleportation and distillation of en-

tanglement

Quantum teleportation is an important subject in quantum information processing.

In terms of a classical communication channel and a quantum resource (a nonlocal

entangled state like an EPR-pair of particles), the teleportation protocol gives ways

to transmit an unknown quantum state from a sender traditionally named “Alice”

to a receiver “Bob” who are spatially separated. These teleportation processes can

be viewed as quantum channels. The nature of a quantum channel is determined by

the particular protocol and the state used as a teleportation resource. The standard

teleportation protocol T0 proposed by Bennett et.al in 1993 uses Bell measurements

and Pauli rotations. When the maximally entangled pure state |φ >= 1√
n

∑n−1
i=0 |ii >

is used as the quantum resource, it provides an ideal noiseless quantum channel
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Λ
(|φ><φ|)
T0

(ρ) = ρ. However in realistic situation, instead of the pure maximally

entangled states, Alice and Bob usually share a mixed entangled state due to the

decoherence. Teleportation using mixed state as an entangled resource is, in general,

equivalent to having a noisy quantum channel. An explicit expression for the output

state of the quantum channel associated with the standard teleportation protocol

T0 with an arbitrary mixed state resource has been obtained [93, 94].

It turns out that by local quantum operations (including collective actions over

all members of pairs in each lab) and classical communication (LOCC) between Al-

ice and Bob, it is possible to obtain a number of pairs in nearly maximally entangled

state |ψ+〉 from many pairs of non-maximally entangled states. Such a procedure

proposed in [58, 59, 60, 61, 62] is called distillation. In [58] the authors give op-

erational protocol to distill an entangled two-qubit state whose single fraction F ,

defined by F (ρ) = 〈ψ+|ρ|ψ+〉, is larger than 1
2
. The protocol is then generalized in

[62] to distill any d-dimensional bipartite entangled quantum states with F (ρ) > 1
d
.

It is shown that a quantum state ρ violating the reduction criterion can always be

distilled. For such states if their single fraction of entanglement F (ρ) = 〈ψ+|ρ|ψ+〉
is greater than 1

d
, one can distill these states directly by using the generalized dis-

tillation protocol, otherwise a proper filtering operation has to be used at first to

transform ρ to another state ρ
′

so that F (ρ
′

) > 1
d
.

4.1 Fidelity of quantum teleportation

Let H be a d-dimensional complex vector space with computational basis |i〉, i =

1, ..., d. The fully entangled fraction (FEF) of a density matrix ρ ∈ H⊗H is defined

by

F(ρ) = max
U

〈ψ+|(I ⊗ U †)ρ(I ⊗ U)|ψ+〉 (4.112)

under all unitary transformations U , where |ψ+〉 = 1√
d

d∑
i=1

|ii〉 is the maximally en-

tangled state and I is the corresponding identity matrix.

In [95], the authors give a optimal teleportation protocol by using a mixed en-

tangled quantum state. The optimal teleportation fidelity is given by

fmax(ρ) =
dF(ρ)

d + 1
+

1

d + 1
, (4.113)

which solely depends the FEF of the entangled resource state ρ.
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In fact the fully entangled fraction is tightly related to many quantum informa-

tion processing such as dense coding [7], teleportation [5], entanglement swapping

[9], and quantum cryptography (Bell inequalities) [8]. As the optimal fidelity of

teleportation is given by FEF [6], experimentally measurement of FEF can be also

used to determine the entanglement of the non-local source used in teleportation.

Thus an analytic formula for FEF is of great importance. In [96] an elegant for-

mula of FEF for two-qubit system is derived analytically by using the method of

Lagrange multipliers. For high dimensional quantum states the analytical computa-

tion of FEF remains formidable and less results have been known. In the following

we give an estimation on the values of FEF by giving some upper bounds of FEF.

Let λi, i = 1, ..., d2−1, be the generators of the SU(d) algebra. A bipartite state

ρ ∈ H ⊗H can be expressed as

ρ =
1

d2
I ⊗ I +

1

d

d2−1∑

i=1

ri(ρ)λi ⊗ I +
1

d

d2−1∑

j=1

sj(ρ)I ⊗ λj +
d2−1∑

i,j=1

mij(ρ)λi ⊗ λj,(4.114)

where ri(ρ) = 1
2
Tr[ρλi(1) ⊗ I], sj(ρ) = 1

2
Tr[ρI ⊗ λj(2)] and mij(ρ) = 1

4
Tr[ρλi(1) ⊗

λj(2)]. Let M(ρ) denote the correlation matrix with entries mij(ρ).

Theorem 4.1 For any ρ ∈ H ⊗H, the fully entangled fraction F(ρ) satisfies

F(ρ) ≤ 1

d2
+ 4||MT (ρ)M(P+)||KF , (4.115)

where MT stands for the transpose of M and ||M ||KF = Tr[
√

MM †] is the Ky Fan

norm of M .

[Proof] First, we note that

P+ =
1

d2
I ⊗ I +

d2−1∑

i,j=1

mij(P+)λi ⊗ λj,

where mij(P+) = 1
4
Tr[P+λi ⊗ λj]. By definition (4.112), one obtains

F(ρ) = max
U

〈ψ+|(I ⊗ U †)ρ(I ⊗ U)|ψ+〉 = max
U

Tr[ρ(I ⊗ U)P+(I ⊗ U †)]

= max
U

{ 1

d2
Tr[ρ] +

d2−1∑

i,j=1

mij(P+)Tr[ρλi ⊗ UλjU
†]}.

Since UλiU
† is a traceless Hermitian operator, it can be expanded according to

the SU(d) generators,

UλiU
† =

d2−1∑

j=1

1

2
Tr[UλiU

†λj]λj ≡
d2−1∑

j=1

Oijλj. (4.116)
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Entries Oij defines a real (d2 − 1) × (d2 − 1) matrix O. From the completeness

relation of SU(d) generators

d2−1∑

j=1

(λj)ki(λj)mn = 2δimδkn − 2

d
δkiδmn, (4.117)

one can show that O is an orthonormal matrix. Using (4.116) we have

F(ρ) ≤ 1

d2
+ max

O

∑

i,j,k

mij(P+)OjkTr[ρλi ⊗ λk]

=
1

d2
+ 4 max

O

∑

i,j,k

mij(P+)Ojkmik(ρ) =
1

d2
+ 4 max

O
Tr[M(ρ)T M(P+)O]

=
1

d2
+ 4||M(ρ)T M(P+)||KF .

¤

For the case d = 2, we can get an exact result from (4.115):

Corollary 4.1 For two qubits system, we have

F(ρ) =
1

4
+ 4||M(ρ)T M(P+)||KF , (4.118)

i.e. the upper bound derived in Theorem 4.1 is exactly the FEF .

[Proof] We have shown in (4.116) that given an arbitrary unitary U , one can

always obtain an orthonormal matrix O. Now we show that in two-qubit case, for

any 3×3 orthonormal matrix O there always exits 2×2 unitary matrix U such that

(4.116) holds.

For any vector t = {t1, t2, t3} with unit norm, define an operator X ≡
3∑

i=1

tiσi,

where σis are Pauli matrices. Given an orthonormal matrix O one obtains a new

operator X
′ ≡

3∑
i=1

t
′

iσi =
3∑

i,j=1

Oijtjσi.

X and X
′

are both hermitian traceless matrices. Their eigenvalues are given

by the norms of the vectors t and t′ = {t′1, t′2, t′3} respectively. As the norms are

invariant under orthonormal transformations O, they have the same eigenvalues:

±
√

t21 + t22 + t23. Thus there must be a unitary matrix U such that X
′

= UXU †.

Hence the inequality in the proof of Theorem 4.1 becomes an equality. The upper

bound (4.115) then becomes exact at this situation, which is in accord with the

result in [96]. ¤
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Remark : The upper bound of FEF (4.115) and the FEF (4.118) depend on the

correlation matrices M(ρ) and M(P+). They can be calculated directly according to

a given set of SU(d) generators λi, i = 1, ..., d2 − 1. As an example, for d = 3, if we

choose λ1 =




1 0 0
0 −1 0
0 0 0


 , λ2 =




1√
3

0 0

0 1√
3

0

0 0 − 2√
3


 , λ3 =




0 1 0
1 0 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 0
0 0 1
0 1 0


 , λ6 =




0 i 0
−i 0 0
0 0 0


 , λ7 =




0 0 i
0 0 0
−i 0 0


 , and

λ8 =




0 0 0
0 0 i
0 −i 0


, then we have

M(P+) = Diag{1

6
,
1

6
,
1

6
,
1

6
,
1

6
,−1

6
,−1

6
,−1

6
}. (4.119)

Nevertheless the FEF and its upper bound do not depend on the choice of the

SU(d) generators.

The usefulness of the bound depends on detailed states. In the following we give

two new upper bounds which is different from theorem 4.1. These bounds work for

different states.

Let h and g be n×n matrices such that h|j >= |(j +1)modn >, g|j >= ωj|j >,

with ω = exp{−2iπ
n

}. We can introduce n2 linear-independent n × n-matrices Ust =

htgs, which satisfy

UstUs′t′ = ωst′−ts′Us′t′Ust, Tr[Ust] = nδs0δt0. (4.120)

One can also check that {Ust} satisfy the condition of bases of the unitary operators

in the sense of [97], i.e.

Tr[UstU
+
s′t′ ] = nδtt′δss′ , UstU

+
st = In×n, (4.121)

where In×n is the n×n identity matrix. {Ust} form a complete basis of n×n-matrices,

namely, for any n × n matrix W , W can be expressed as

W =
1

n

∑

s,t

Tr[U+
stW ]Ust. (4.122)

From {Ust}, we can introduce the generalized Bell-states,

|Φst >= (I ⊗ U∗
st)|ψ+ >=

1√
d

∑

i,j

(Ust)
∗
ij|ij >, and |Φ00 >= |ψ+ >, (4.123)

|Φst > are all maximally entangled states and form a complete orthogonal normalized

basis of Hd ⊗Hd.
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Theorem 4.2 For any quantum state ρ ∈ Hd ⊗ Hd, the fully entangled fraction

defined in (4.112) fulfills the following inequality:

F(ρ) ≤ max
j

{λj}, (4.124)

where λjs are the eigenvalues of the real part of matrix M =

(
T iT

−iT T

)
, T is a

d2 × d2 matrix with entries Tn,m = 〈Φn|ρ|Φm〉 and Φj are the maximally entangled

basis states defined in (4.123).

[Proof] From (4.122), any d × d unitary matrix U can be represented by U =∑d2

k=1 zkUk, where zk = 1
d
Tr[U †

kU ]. Define

xl =

{
Re[zl], 1 ≤ l ≤ d2;
Im[zl], d

2 < l ≤ 2d2 and U
′

l =

{
Ul, 1 ≤ l ≤ d2;
i ∗ Ul, d

2 < l ≤ 2d2.
(4.125)

Then the unitary matrix U can be rewritten as U =
∑2d2

k=1 zkU
′

k. The necessary

condition for the unitary property of U implies that
∑

k x2
k = 1. Thus we have

F (ρ) ≡ 〈ψ+|(I ⊗ U †)ρ(I ⊗ U)|ψ+〉 =
2d2∑

m,n=1

xmxnMmn, (4.126)

where Mmn is defined in the theorem. One can deduce that

M∗
mn = Mnm (4.127)

from the hermiticity of ρ.

Taking into account the constraint with an undetermined Lagrange multiplier λ,

we have
∂

∂xk

{F (ρ) + λ(
∑

l

x2
l − 1)} = 0. (4.128)

Accounting to (4.127) we have the eigenvalue equation

2d2∑

n=1

Re[Mk,n]xn = −λxk. (4.129)

Inserting (4.129) into (4.126) results in

F(ρ) = max
U

F ≤ max
j

{ηj}, (4.130)

where ηj = −λj is the corresponding eigenvalues of the real part of the matrix M .

¤
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Upper Bound

Figure 2: Upper bound of F(ρ(a)) from (4.124) (solid line) and upper bound from
(4.115)(dashed line).

Example: Horodecki gives a very interesting bound entangled state in [20],

ρ(a) =
1

8a + 1




a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2

0
√

1−a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√

1−a2

2
0 1+a

2




. (4.131)

One can easily compare the upper bound obtained in (4.124) and that in (4.115).

From Fig. 2 we see that for 0 ≤ a < 0.572, the upper bound in (4.124) is larger than

that in (4.115). But for 0.572 < a < 1 the upper bound in (4.124) is always lower

than that in (4.115), which means the upper bound (4.124) is tighter than (4.115).

In fact, we can drive another upper bound for FEF which will be very tight for

weakly mixed quantum states.

Theorem 4.3 For any bipartite quantum state ρ ∈ Hd⊗Hd, the following inequality

holds:

F(ρ) ≤ 1

d
(Tr[

√
ρA])2, (4.132)

where ρA is the reduced matrix of ρ.

50



[Proof] Note that in [62] the authors have obtained the FEF for pure state |ψ〉,

F(|ψ〉) =
1

d
(Tr[

√
ρ
|ψ〉
A ])2, (4.133)

where ρ
|ψ〉
A is the reduced matrix of |ψ〉〈ψ|.

For mixed state ρ =
∑

i piρ
i, we have

F(ρ) = max
U

〈ψ+|(I ⊗ U †)ρ(I ⊗ U)|ψ+〉 ≤
∑

i

pi max
U

〈ψ+|(I ⊗ U †)ρi(I ⊗ U)|ψ+〉

=
1

d

∑

i

pi(Tr[
√

ρi
A])2 =

1

d

∑

i

(Tr[
√

piρi
A])2. (4.134)

Let λij be the real and nonnegative eigenvalues of the matrix piρ
i
A. Recall that for

any function F =
∑

i(
∑

j x2
ij)

1
2 subjected to the constraints zj =

∑
i xij with xij

being real and nonnegative, the inequality
∑

j z2
j ≤ F 2 holds, from which it follows

that

F(ρ) ≤ 1

d

∑

i

(
∑

j

√
λij)

2 ≤ 1

d
(
∑

j

√∑

i

λij)
2 =

1

d
(Tr[

√
ρA])2, (4.135)

which ends the proof. ¤

4.2 Fully entangled fraction and concurrence

The upper bound of FEF has also interesting relations to the entanglement measure

concurrence. As shown in [96], the concurrence of a two-qubit quantum state has

some kinds of relation with the optimal teleportation fidelity. For quantum state

with high dimension, we have the similar relation between them too.

Theorem 4.4 For any bipartite quantum state ρ ∈ Hd ⊗Hd, we have

C(ρ) ≥
√

2d

d − 1
[F(ρ) − 1

d
]. (4.136)

[Proof] In [98], the authors show that for any pure state |ψ〉 ∈ HA ⊗ HB, the

following inequality holds:

C(|ψ〉) ≥
√

2d

d − 1
(max|φ〉∈ε|〈ψ|φ〉|2 −

1

d
), (4.137)

where ε denotes the set of d × d-dimensional maximally entangled states.
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Let ρ =
∑

i pi|φi〉〈φi| be the optimal decomposition such that C(ρ) =
∑

i piC(|ψi〉).
We have

C(ρ) =
∑

i

piC(|ψi〉) ≥
∑

i

pi

√
2d

d − 1
(max|φ〉∈ε|〈ψi|φ〉|2 −

1

d
)

≥
√

2d

d − 1
(max|φ〉∈ε

∑

i

pi|〈ψi|φ〉|2 −
1

d
)

=

√
2d

d − 1
(max|φ〉∈ε〈φ|ρ|φ〉 −

1

d
) =

√
2d

d − 1
(F(ρ) − 1

d
),

which ends the proof. ¤

The inequality (4.136) has demonstrated the relation between the lower bound of

concurrence and the fully entangled fraction (thus the optimal teleportation fidelity),

i.e. the fully entangled fraction of a quantum state ρ is limited by it’s concurrence.

We now consider tripartite case. Let ρABC be a state of three-qubit systems

denoted by A, B and C. We study the upper bound of the FEF , F(ρAB), between

qubits A and B, and its relations to the concurrence under bipartite partition AB

and C. For convenience we normalize F(ρAB) to be

FN(ρAB) = max{2F(ρAB) − 1, 0}. (4.138)

Let C(ρAB|C) denote the concurrence between subsystems AB and C.

Theorem 4.5 For any triqubit state ρABC, FN(ρAB) satisfies

FN(ρAB) ≤
√

1 − C2(ρAB|C). (4.139)

[Proof] We first consider the case that ρABC is pure, ρABC = |ψ〉ABC〈ψ|. By using

the Schmidt decomposition between qubits A,B and C, |ψ〉ABC can be written as:

|ψ〉AB|C =
2∑

i=1

ηi|iAB〉|iC〉, η2
1 + η2

2 = 1, η1 ≥ η2 (4.140)

for some othonormalized bases |iAB〉, |iC〉 of subsystems AB, C respectively. The

reduced density matrix ρAB has the form

ρAB = TrC [ρABC ] =
2∑

i=1

η2
i |iAB〉〈iAB| = UT ΛU∗,

where Λ is a 4 × 4 diagonal matrix with diagonal elements {η2
1, η

2
2, 0, 0}, U is a

unitary matrix and U∗ denotes the conjugation of U .
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The FEF of the two-qubit state ρAB can be calculated by using formula (4.118)

or the one in [96]. Let

M =
1√
2




1 0 0 i
0 i −1 0
0 i 1 0
1 0 0 −i




be the 4 × 4 matrix constituted by the four Bell bases. The FEF of ρAB can be

written as

F(ρAB) = ηmax(Re{M †ρABM}) = 1
2
ηmax(M

†ρABM + MT ρ∗
ABM∗)

≤ 1
2
[ηmax(M

†UT ΛU∗M) + ηmax(M
T U †ΛUM∗)] = η2

1

(4.141)

where ηmax(X) stands for the maximal eigenvalues of the matrix X.

For pure state (4.140) in bipartite partition AB and C, we have

C(|ψ〉AB|C) =
√

2(1 − Tr[ρ2
AB]) = 2η1η2. (4.142)

From (4.138), (4.141) and (4.142) we get

FN(ρAB) ≤
√

1 − C2(|ψ〉AB|C). (4.143)

We now prove that the above inequality (4.143) also holds for mixed state

ρABC . Let ρABC =
∑
i

pi|ψi〉ABC〈ψi| be the optimal decomposition of ρABC such

that C(ρAB|C) =
∑
i

piC(|ψi〉)AB|C . We have

FN(ρAB) ≤
∑

i

piFN(ρi
AB) ≤

∑

i

pi

√
1 − C2(ρi

AB|C)

≤
√

1 −
∑

i

piC2(ρi
AB|C) ≤

√
1 − C2(ρAB|C),

where ρi
AB|C = |ψi〉ABC〈ψi| and ρi

AB = TrC [ρi
AB|C ]. ¤

From Theorem 4.5 we see that the FEF of quibts A and B are bounded by

the concurrence between qubits A, B and qubit C. The upper bound of FEF for

ρAB decreases when the entanglement between qubits A,B and C increases. As an

example, we consider the generalized W state defined by |W ′〉 = α|100〉 + β|010〉 +

γ|001〉, |α|2 + |β|2 + |γ|2 = 1. The reduced density matrix is given by

ρW
′

AB =




|γ|2 0 0 0
0 |β|2 α∗β 0
0 αβ∗ |α|2 0
0 0 0 0


 .
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Figure 3: FN(ρW
′

AB) (dashed line) and Upper bound
√

1 − C2(|W ′〉AB|C) (solid line)

of state |W ′〉AB|C at |α| = |β|.

The FEF of ρW
′

AB is given by

FN(ρW
′

AB) = −1

2
+ 2|α||β| + 1

2
||α|2 + |β|2 − |γ|2|.

While the concurrence of |W ′〉 has the from CAB|C(|W ′〉) = 2|γ|
√
|α|2 + |β|2. We

see that (4.139) always holds. In particular for |α| = |β| and |γ| ≤
√

2
2

, the inequality

(4.139) is saturated (see Fig. 3).

4.3 Improvement of entanglement distillation protocol

The upper bound can give rise to not only an estimation of the fidelity in quantum

information processing such as teleportation, but also an interesting application

in entanglement distillation of quantum states. In [62] a generalized distillation

protocol has been presented. It is shown that a quantum state ρ violating the

reduction criterion can always be distilled. For such states if their single fraction of

entanglement F (ρ) = 〈ψ+|ρ|ψ+〉 is greater than 1
d
, then one can distill these states

directly by using the generalized distillation protocol. If the FEF (the largest value

of single fraction of entanglement under local unitary transformations) is less than

or equal to 1
d
, then a proper filtering operation has to be used at first to transform ρ

to another state ρ
′

so that F (ρ
′

) > 1
d
. For d = 2, one can compute FEF analytically

according to the corollary. For d ≥ 3 our upper bound (4.115) can supply a necessary

condition in the distillation:

Theorem 4.6 For an entangled state ρ ∈ H ⊗H violating the reduction criterion,
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Figure 4: Upper bound of F(ρ) − 1
3

from (4.115) (solid line) and fidelity F (ρ) − 1
3

(dashed line).

if the upper bound (4.115) is less than or equal to 1
d
, then the filtering operation has

to be applied before using the generalized distillation protocol.

As an example we consider a 3 × 3 state

ρ =
8

9
σ +

1

9
|ψ+〉〈ψ+|, (4.144)

where σ = (x|0〉〈0| + (1 − x)|1〉〈1|) ⊗ (x|0〉〈0| + (1 − x)|1〉〈1|). It is direct to verify

that ρ violates the reduction criterion for 0 ≤ x ≤ 1, as (ρ1 ⊗ I) − ρ has a negative

eigenvalue − 2
27

. Therefore the state is distillable. From Fig. 4 we see that for

0 ≤ x < 0.0722 and 0.9278 < x ≤ 1, the fidelity is already greater than 1
3
, thus

the generalized distillation protocol can be applied without the filtering operation.

However for 0.1188 ≤ x ≤ 0.8811, even the upper bound of the fully entangled

fraction is less than or equal to 1
3
, hence the filtering operation has to be applied

first, before using the generalized distillation protocol.

Moreover, the lower bounds of concurrence can be also used to study the distilla-

bility of quantum states. Based on the positive partial transpose (PPT) criterion, a

necessary and sufficient condition for the distillability was proposed in [99], which is

not operational in general. An alternative distillability criterion based on the bound

τ2 in (3.67) can be obtained to improve the operationality.

Theorem 4.7 A bipartite quantum state ρ is distillable if and only if τ2(ρ
⊗N) > 0

for some number N .
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[Proof] It was shown in [99] that a density matrix ρ id distillable if and only if

there are some projectors P , Q that map high dimensional spaces to two-dimensional

ones and some number N such that the state P ⊗ Qρ⊗NP ⊗ Q is entangled [99].

Thus if τ2(ρ
⊗N) > 0, there exists one submatrix of matrix ρ⊗N , similar to Eq. (3.68),

which has nonzero τ2 and is entangled in a 2 ⊗ 2 space, hence ρ is distillable. ¤

Corollary 4.7 The lower bound τ2(ρ) > 0 is a sufficient condition for the distilla-

bility of any bipartite state ρ.

Corollary 4.7 The lower bound τ2(ρ) = 0 is a necessary condition for separability

of any bipartite state ρ.

Remark: Corollary 4.7 directly follows from Theorem 4.7 and this case is referred

to as one-distillable [100]. The problem of whether non-PPT (NPPT) nondistillable

states exist is studied numerically in [100, 101]. By using Theorem 4.7, although it

seems impossible to solve the problem completely, it is easy to judge the distillability

of a state under condition that it is one-distillable.

The lower bound τ2, PPT criterion, separability and distillability for any bipartite

quantum state ρ have the following relations: if τ2(ρ) > 0, ρ is entangled. If ρ is

separable, it is PPT. If τ2(ρ) > 0, ρ is distillable. If ρ is distillable, it is NPPT. From

the last two propositions it follows that if ρ is PPT, τ2(ρ) = 0, i.e., if τ2(ρ) > 0, ρ is

NPPT.

Theorem 4.8 For any pure tripartite state |φ〉ABC in arbitrary d⊗d⊗d dimensional

spaces, bound τ2 satisfies

τ2(ρAB) + τ2(ρAC) ≤ τ2(ρA:BC), (4.145)

where ρAB = TrC(|φ〉ABC〈φ|), ρAC = TrB(|φ〉ABC〈φ|), and ρA:BC = TrBC(|φ〉ABC〈φ|).

[Proof] Since C2
mn ≤

(
λ

(1)
mn

)2

≤ ∑4
i=1

(
λ

(i)
mn

)2

= Tr(ρρ̃mn), one can derive the

inequality:

τ(ρAB) + τ(ρAC) ≤
D∑

l,k

Tr [ρAB(ρ̃AB)lk] +
D∑

p,q

Tr [ρAC(ρ̃AC)pq] , (4.146)

where D = d(d − 1)/2. Note that
∑

lk Tr [ρAB(ρ̃AB)lk] ≤ 1 − Trρ2
A − Trρ2

B + Trρ2
C

and
∑

pq Tr [ρAC(ρ̃AC)pq] ≤ 1 − Trρ2
A + Trρ2

B − Trρ2
C , where l, pk, q, = 1, ..., D. By
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using the similar analysis in [102] one has that the right-hand side of Eq. (4.146) is

equal to 2(1− Trρ2
A) = C2(ρA:BC). Taking into account that τ2(ρA:BC) = C2(ρA:BC)

for a pure state, one obtains the inequality (4.145). ¤

Generally for any pure multipartite quantum state ρAB1B2...bn
, one has the fol-

lowing monogamy inequality:

τ2(ρAB1) + τ2(ρAB2) + ... + τ2(ρABn
) ≤ τ2(ρA:B1B2...Bn

).

5 Summary and Conclusion

We have introduced some recent results on three aspects in quantum information

theory. The first one is the separability of quantum states. New criteria to detect

more entanglements have been discussed. The normal form of quantum states have

been also studied, which helps in investigating the separability of quantum states.

Moreover, since many kinds of quantum states can be transformed into the same

normal forms, quantum states can be classified in terms of the normal forms. For the

well known entanglement measure concurrence, we have discussed the tight lower

and upper bounds. It turns out that although one can not distill a singlet from many

pairs of bound entangled states, the concurrence and tangle of two entangled quan-

tum states are always larger than that of one, even both two entangled quantum

states are bound entangled. Related to the optimal teleportation fidelity, upper

bounds for the fully entangled fraction have been studied, which can be used to

improve the distillation protocol. Interesting relations between fully entangled frac-

tion and concurrence have been also introduced. All these related problems in the

theory of quantum entanglement have not been completely solved yet. Many prob-

lems remain open concerning the physical properties and mathematical structures

of quantum entanglement, and the applications of entangled states in information

processing.
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