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Abstract

We study the entanglement of a multipartite quantum state. An in-

equality between the bipartite concurrence and the multipartite con-

currence is obtained. More effective lower and upper bounds of the

multipartite concurrence are obtained. By using the lower bound, the

entanglement of more multipartite states are detected.
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As a potential resource for communication and information processing, quantum entangle-

ment has rightly been the subject of much study in recent years [1]. However the boundary

between the entangled states and the separable states, states that can be prepared by means

of local operations and classical communications [2], is still not well characterized. Entan-

glement detection turns out to be a rather tantalizing problem. A more general question

is to calculate the well defined quantitative measures of quantum entanglement such as en-

tanglement of formation (EOF) [3] and concurrence [4, 5]. A series of excellent results have

been obtained recently.

There have been some (necessary) criteria for separability, the Bell inequalities [6], PPT

(positive partial transposition) [7] (which is also sufficient for the cases 2 × 2 and 2 × 3

bipartite systems [8]), realignment [9–11] and generalized realignment [12], as well as some

necessary and sufficient operational criteria for low rank density matrices[13–15]. Further

more, separability criteria based on local uncertainty relation [16–19] and the correlation

matrix [20, 21] of the Bloch representation for a quantum state have been derived, which are

strictly stronger than or independent of the PPT and realignment criteria. The calculation

of entanglement of formation or concurrence is complicated except for 2 × 2 systems [22]
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or for states with special forms [23]. For general quantum states with higher dimensions

or multipartite case, it seems to be a very difficult problem to obtain analytical formulas.

However, one can try to find the lower and the upper bounds to estimate the exact values

of the concurrence [24–27].

In this paper, we focus on the concurrence. We derive new lower and upper bounds of

concurrence for arbitrary quantum states. From the bounds we can detect more entangled

states. Detailed examples are given to show that the new bounds of concurrence are better

than that have been obtained before.

For a pure N-partite quantum state |ψ〉 ∈ H1 ⊗H2 ⊗ · · · ⊗HN , dimHi = di, i = 1, ..., N ,

the concurrence of bipartite decomposition between subsystems 12 · · ·M and M +1 · · ·N is

defined by

C2(|ψ〉〈ψ|) =
√

2(1 − Tr{ρ2
12···M}) (1)

where ρ2
12···M = TrM+1···N{|ψ〉〈ψ|} is the reduced density matrix of ρ = |ψ〉〈ψ| by tracing

over subsystems M + 1 · · ·N .

On the other hand, the concurrence of |ψ〉 is defined by [5]

CN(|ψ〉〈ψ|) = 21−N

2

√

(2N − 2) −
∑

α

Tr{ρ2
α}, (2)

where α labels all different reduced density matrices.

For a mixed multipartite quantum state, ρ =
∑

i pi|ψi〉〈ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , the

corresponding concurrence of (1) and (2) are then given by the convex roof:

C2(ρ) = min
{pi,|ψi}〉

∑

i

piC2(|ψi〉〈ψi|), (3)

CN(ρ) = min
{pi,|ψi}〉

∑

i

piCN(|ψi〉〈ψi|). (4)

We now investigate the relation between the two kinds of concurrences.

Lemma 1: For a bipartite density matrix ρ ∈ HA ⊗HB, one has

1 − Tr{ρ2} ≤ 1 − Tr{ρ2
A} + 1 − Tr{ρ2

B}, (5)

where ρA/B = TrB/A{ρ} be the reduced density matrices.

Proof: Let ρ =
∑

ij

λij|ij〉〈ij| be the spectral decomposition, where λij ≥ 0,
∑

ij λij = 1.

2



Then ρ1 =
∑

ij λij|i〉〈i|, ρ2 =
∑

ij λij|j〉〈j|. Therefore

1 − Tr{ρ2
A} + 1 − Tr{ρ2

B} − 1 + Tr{ρ2} = 1 − Tr{ρ2
A} − Tr{ρ2

B} + Tr{ρ2}

= (
∑

ij

λij)
2 −

∑

i,j,j′

λijλij′ −
∑

i,i′ ,j

λijλi′j +
∑

ij

λ2
ij

= (
∑

i=i′ ,j=j′

λ2
ij +

∑

i=i′ ,j 6=j′

λijλij′ +
∑

i6=i′ ,j=j′

λijλi′j +
∑

i6=i′ ,j 6=j′

λijλi′j′ ) − (
∑

i,j=j′

λ2
ij +

∑

i,j 6=j′

λijλij′ )

−(
∑

i=i′ ,j

λ2
ij +

∑

i6=i′ ,j

λijλi′j) +
∑

i,j

λ2
ij

=
∑

i6=i′ ,j 6=j′

λijλi
′
j
′ ≥ 0.

¤

The same result in this lemma has also been derived in [27, 28] to prove the subadditivity

of the linear entropy. Here we just give a simpler proof. In the following we compare the bi-

and multi-partite concurrence in (3)(4) by using the lemma.

Theorem 1: For a multipartite quantum state ρ ∈ H1 ⊗H2 ⊗· · ·⊗HN with N ≥ 3, the

following inequality holds,

CN(ρ) ≥ max 2
3−N

2 C2(ρ), (6)

where the maximum is taken over all kinds of bipartite concurrence.

Proof: Without lose of generality, we suppose that the maximal bipartite concurrence is

attained between subsystems 12 · · ·M and (M + 1) · · ·N .

For a pure multipartite state |ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , Tr{ρ2
12···M} = Tr{ρ2

(M+1)···N}.

From (5) we have

C2
N(|ψ〉〈ψ|) = 22−N((2N − 2) −

∑

α

Tr{ρ2
α}) ≥ 23−N(N −

N
∑

k=1

Tr{ρ2
k})

≥ 23−N(1 − Tr{ρ2
12···M} + 1 − Tr{ρ2

(M+1)···N})

= 23−N ∗ 2(1 − Tr{ρ2
12···M}) = 23−NC2

2(|ψ〉〈ψ|),

i.e. CN(|ψ〉〈ψ|) ≥ 2
3−N

2 C2(|ψ〉〈ψ|).

Let ρ =
∑

i

pi|ψi〉〈ψi| attain the minimal decomposition of the multipartite concurrence.

One has

CN(ρ) =
∑

i

piCN(|ψi〉〈ψi|) ≥ 2
3−N

2

∑

i

piC2(|ψi〉〈ψi|)

≥ 2
3−N

2 min
{pi,|ψi}

∑

i

piC2(|ψi〉〈ψi|) = 2
3−N

2 C2(ρ).
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Corollary For a tripartite quantum state ρ ∈ H1 ⊗ H2 ⊗ H3, the following inequality

hold:

C3(ρ) ≥ max C2(ρ) (7)

where the maximum is taken over all kinds of bipartite concurrence.

In [24] a lower bound for a bipartite state ρ ∈ HA ⊗HB, dA ≤ dB, has been obtained,

C2(ρ) ≥

√

2

dA(dA − 1)
[max(||TA(ρ)||, ||R(ρ)||) − 1]. (8)

where TA, R and || · || stand for the partial transpose, realignment, and the trace norm (i.e.,

the sum of the singular values), respectively.

In [26, 29], from the separability criteria related to local uncertainty relation, covariance

matrix and correlation matrix, the following lower bounds for bipartite concurrence are

obtained:

C2(ρ) ≥
2||C(ρ)|| − (1 − Tr{ρ2

A}) − (1 − Tr{ρ2
B})

√

2dA(dA − 1)
(9)

and

C2(ρ) ≥

√

8

d3
Ad2

B(dA − 1)
(||T (ρ)|| −

√

dAdB(dA − 1)(dB − 1)

2
), (10)

where the entries of the matrix C, Cij = 〈λA
i ⊗λB

j 〉−〈λA
i ⊗IdB

〉〈IdA
⊗λB

j 〉, Tij = dAdB

2
〈λA

i ⊗λB
j 〉,

λ
A/B
k stands for the normalized generator of SU(dA/dB), i.e. Tr{λ

A/B
k λ

A/B
l } = δkl and

〈X〉 = Tr{ρX}. It is shown that the lower bounds (9) and (10) are independent of (8).

Now we consider a multipartite quantum state ρ ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN as a bipartite

state belonging to HA ⊗ HB with the dimensions of the subsystems A and B being dA =

ds1
ds2

· · · dsm
and dB = dsm+1

dsm+2
· · · dsN

respectively. By using the corollary, (8), (9) and

(10) we have the following lower bound:

Theorem 2: For any N-partite quantum state ρ, we have:

CN(ρ) ≥ 2
3−N

2 max{B1, B2, B3}, (11)

where

B1 = max
{i}

√

2

Mi(Mi − 1)

[

max(||TA(ρi)||, ||R(ρi)||) − 1
]

,

B2 = max
{i}

2||C(ρi)|| − (1 − Tr{(ρi
A)2}) − (1 − Tr{(ρi

B)2})
√

2Mi(Mi − 1)
,

B3 = max
{i}

√

8

M3
i N2

i (Mi − 1)
(||T (ρi)|| −

√

MiNi(Mi − 1)(Ni − 1)

2
),
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ρis are all possible bipartite decompositions of ρ, and Mi =

min {ds1
ds2

· · · dsm
, dsm+1

dsm+2
· · · dsN

}, Ni = max {ds1
ds2

· · · dsm
, dsm+1

dsm+2
· · · dsN

}.

In [27, 30, 31], it is shown that the upper and lower bound of multipartite concurrence

satisfy
√

(4 − 23−N)Tr{ρ2} − 22−N
∑

α

Tr{ρ2
α} ≤ CN(ρ) ≤

√

22−N [(2N − 2) −
∑

α

Tr{ρ2
α}]. (12)

In fact we can obtain a more effective upper bound for multi-partite concurrence. Let

ρ =
∑

i

λi|ψi〉〈ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , where |ψi〉s are the orthogonal pure states and
∑

i

λi = 1. We have

CN(ρ) = min
{pi,|ϕi}〉

∑

i

piCN(|ϕi〉〈ϕi|) ≤
∑

i

λiCN(|ψi〉〈ψi|). (13)

The right side of (13) gives a new upper bound of CN(ρ). Since

∑

i

λiCN(|ψi〉〈ψi|) = 21−N

2

∑

i

λi

√

(2N − 2) −
∑

α

Tr{(ρi
α)2}

≤ 21−N

2

√

(2N − 2) −
∑

α

Tr{
∑

i

λi(ρi
α)2}

≤ 21−N

2

√

(2N − 2) −
∑

α

Tr{(ρα)2},

the upper bound obtained in (13) is better than that in (12).

The lower and upper bounds can be used to estimate the value of the concurrence.

Meanwhile, the lower bound of concurrence can be used to detect entanglement of quantum

states. We now show that our upper and lower bounds can be better than that in (12) by

several detailed examples.

Example 1: Consider the 2 × 2 × 2 Dü r-Cirac-Tarrach states defined by [32]:

ρ =
∑

σ=±
λσ

0 |Ψ
σ
0〉〈Ψ

σ
0 | +

3
∑

j=1

λj(|Ψ
+
j 〉〈Ψ

+
j | + |Ψ−

j 〉〈Ψ
−
j |), (14)

where the orthonormal Greenberger-Horne-Zeilinger (GHZ)-basis |Ψ±
j 〉 ≡

1√
2
(|j〉12|0〉3±|(3−

j)〉12|1〉3), |j〉12 ≡ |j1〉1|j2〉2 with j = j1j2 in binary notation. From theorem 2 we have that

the lower bound of ρ is 1
3
. If we mix the state with white noise,

ρ(x) =
(1 − x)

8
I8 + xρ, (15)

by direct computation we have, as shown in FIG. 1, the lower bound obtained in (12) is

always zero, while the lower bound in (11) is larger than zero for 0.425 ≤ x ≤ 1, which
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FIG. 1: Our lower and upper bounds of C3(ρ) from (11)(13)(solid line) and the upper bound

obtained in (12)(dot line) while the lower bound in (12) is always zero.

shows that ρ(x) is detected to be entangled at this situation. And the upper bound (dot

line) in (12) is much larger than the upper bound we have obtained in (13) (solid line).

Example 2: We consider the depolarized state [32]:

ρ =
(1 − x)

8
I8 + x|ψ+〉〈ψ+|, (16)

where 0 ≤ x ≤ 1 representing the degree of depolarization, |ψ+〉 = 1√
2
(|000〉 + |111〉). From

FIG. 2 one can obviously seen that our upper bound is tighter. For 0 ≤ x ≤ 0.7237 our lower

bound is higher than that in (12), i.e. our lower bound is closer to the true concurrence.

Moreover for 0.2 ≤ x ≤ 0.57735, our lower bound can detect the entanglement of ρ, while

the lower bound in (12) not.

We have studied the concurrence for arbitrary multipartite quantum states. We derived

new better lower and upper bounds. The lower bound can also be used to detect more

multipartite entangled quantum states.
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